The present subject matter is directed to apparatuses and methods regarding crossbows. More specifically the present subject matter is directed to apparatuses and methods for guidance of the bowstring of a crossbow.
Crossbows have been used for many years as a weapon for hunting and fishing, and for target shooting. Crossbows typically comprise a bowstring engaged through set of pulleys to a set of limbs and to a set of power cords. Engagement of the bowstring is of interest. It is of interest to make the engagement of the bowstring reliable, light, inexpensive, low maintenance, safe, and adjustable.
It remains desirable to improve the apparatuses and methods by which the engagement of the bowstring may be modified to suit the designer or user or both.
According to some embodiments of this invention, a crossbow may comprise: an elongated barrel having a first barrel side and a second barrel side opposite the first barrel side; a bow engaged with the elongated barrel; a first limb set supported to the first barrel side; a second limb set supported to the second barrel side; an elongated bowstring: 1) having a first end operatively engaged with the first limb set; 2) having a second end operatively engaged with the second limb set; and 3) movable between a fully cocked position and a fully uncocked position; a first bowstring guide: 1) engaged with the first barrel side; 2) adapted to push the bowstring toward the second barrel side when the bowstring is moved from the fully uncocked position to the fully cocked position; and 3) adapted to push the bowstring toward the second barrel side when the bowstring is moved from the fully cocked position to the fully uncocked position; and a second bowstring guide: 1) engaged with the second barrel side; 2) adapted to push the bowstring toward the first barrel side when the bowstring is moved from the fully uncocked position to the fully cocked position; and 3) adapted to push the bowstring toward the first barrel side when the bowstring is moved from the fully cocked position to the fully uncocked position.
According to some embodiments of this invention, a crossbow method may comprise the steps of: A) providing a crossbow including: 1) an elongated barrel having a first barrel side and a second barrel side opposite the first barrel side; 2) a bow engaged with the elongated barrel; 3) a first limb set supported to the first barrel side; 4) a second limb set supported to the second barrel side; 5) an elongated bowstring: a) having a first end operatively engaged with the first limb set; b) having a second end operatively engaged with the second limb set; and c) movable between a fully cocked position and a fully uncocked position; 6) a first bowstring guide engaged with the first barrel side; and 7) a second bowstring guide engaged with the second barrel side; B) providing the first bowstring guide to be operable when the bowstring is moved from the fully uncocked position to the fully cocked position to push the bowstring toward the second barrel side; C) providing the first bowstring guide to be operable when the bowstring is moved from the fully cocked position to the fully uncocked position to push the bowstring toward the second barrel side; D) providing the second bowstring guide to be operable when the bowstring is moved from the fully uncocked position to the fully cocked position to push the bowstring toward the first barrel side; and E) providing the second bowstring guide to be operable when the bowstring is moved from the fully cocked position to the fully uncocked position to push the bowstring toward the first barrel side.
According to some embodiments of this invention, a crossbow may comprise: an elongated barrel having a first barrel side and a second barrel side opposite the first barrel side; a bow engaged with the elongated barrel; a first limb set supported to the first barrel side; a second limb set supported to the second barrel side; an elongated bowstring: 1) having a first end operatively engaged with the first limb set; 2) having a second end operatively engaged with the second limb set; and 3) movable between a fully cocked position and a fully uncocked position; a first bowstring guide: 1) engaged with the first barrel side; 2) having a barrel facing surface; and 3) adapted to push the bowstring toward the second barrel side when the bowstring is moved between the fully uncocked position and the fully cocked position; a second bowstring guide: 1) engaged with the second barrel side; 2) having a barrel facing surface; and 3) adapted to push the bowstring toward the first barrel side when the bowstring is moved between the fully uncocked position and the fully cocked position; wherein: 1) the barrel facing surface of the first bowstring guide is a distance D1 from the barrel when the bowstring is moved from the fully uncocked position to the fully cocked position; 2) the barrel facing surface of the first bowstring guide is a distance D2 from the barrel when the bowstring is moved from the fully cocked position to the fully uncocked position; 3) D1=D2; 4) the barrel facing surface of the second bowstring guide is a distance D3 from the barrel when the bowstring is moved from the fully uncocked position to the fully cocked position; 5) the barrel facing surface of the second bowstring guide is a distance D4 from the barrel when the bowstring is moved from the fully cocked position to the fully uncocked position; and 6) D3=D4.
The present subject matter may take physical form in certain parts and arrangement of parts, embodiments of which will be described in detail in this specification and illustrated in the accompanying drawings which form a part hereof and wherein:
The following definitions are controlling for the disclosed subject matter:
“Arrow” means a projectile that is shot with (or launched by) a bow assembly.
“Bow” means a bent, curved, or arched object.
“Bow Assembly” means a weapon comprising a bow and a bowstring that shoots or propels arrows powered by the elasticity of the bow and the drawn bowstring.
“Bowstring” means a string or cable attached to a bow.
“Compound Bow” means a crossbow that has wheels, pulleys or cams at each end of the bow through which the bowstring passes.
“Crossbow” means a weapon comprising a bow assembly and a trigger mechanism both mounted to a main beam.
“Draw Weight” means the amount of force required to draw or pull the bowstring on a crossbow into a cocked condition.
“Main Beam” means the longitudinal structural member of a weapon used to support the trigger mechanism and often other components as well. For crossbows, the main beam also supports the bow assembly. The main beam often comprises a stock member, held by the person using the weapon, and a barrel, used to guide the projectile being shot or fired by the weapon.
“Power Stroke” means the linear distance that the bowstring is moved between the uncocked condition and the cocked condition.
“Trigger Mechanism” means the portion of a weapon that shoots, fires or releases the projectile of a weapon. As applied to crossbows, trigger mechanism means any device that holds the bowstring of a crossbow in the drawn or cocked condition and which can thereafter be operated to release the bowstring out of the drawn condition to shoot an arrow.
“Weapon” means any device that can be used in fighting or hunting that shoots or fires a projectile including bow assemblies and crossbows.
Referring now to the drawings wherein the showings are for purposes of illustrating embodiments of the present subject matter only and not for purposes of limiting the same, and wherein like reference numerals are understood to refer to like components, provided are a crossbow, crossbow components, and a method of using a crossbow and crossbow components.
The crossbow 10 has a main beam 12 which may include a stock member 14, and a barrel 16. The main beam 12 may be made by assembling the stock member 14 and the barrel 16 together as separate components or, in another embodiment, the main beam 12 may be made as one piece. A handgrip 18 may be mounted to the main beam 12 in any conventional manner chosen with sound judgment by a person of ordinary skill in the art. A trigger mechanism 20 suitable for shooting an arrow is mounted to the main beam 12 in any suitable manner. It should be noted that the crossbow 10 may comprise any trigger mechanism chosen with sound judgment by a person of ordinary skill in the art. The crossbow 10 also includes a bow assembly 30 adapted to propel an associated arrow and having a bow 32 and a bowstring 34. The bow 32 may include a set of limbs 36, 36 that receive the bowstring 34 in any conventional manner chosen with sound judgment by a person of ordinary skill in the art. For the embodiment shown, a pair of wheels, pulleys, or cams 38, 38 mounted to the limbs 36, 36 receive the bowstring 34 in an operational manner. In each of the non-limiting embodiments, the set of limbs has a first side 36a and a second side 36b opposite the first side 36a with first side 36a being operationally engaged with a first cam 38 and second side 36b being operationally engaged with a second cam 38. The bow may also include a riser 40. The riser 40 may comprise a set of limb pockets 42, 42 adapted to receive the limbs 36, 36, as shown in
Without limitations, other crossbow components may be optionally used with a crossbow as provided herein. Without limitation, in some non-limiting embodiments, a crossbow 10 shown may include a scope 50 attached to a scope mount 52 that is supported on the main beam 12. Other optional components shown include a cocking unit 56, and arrow holder 58. In certain non-limiting embodiments, the riser 40 may have an opening 72 formed therein defining a foot stirrup 74 adapted for holding and balancing the crossbow by foot.
A crossbow 10 may have a power stroke distance PD. The distance between the pivot axes of the wheels, pulleys, or cams 38, 38 may be some distance WD.
A crossbow may comprise a bow assembly mounted with the bowstring cams rearward of the riser, or mounted with the bowstring cams forward of the riser. A crossbow with the bow assembly mounted with the bowstring cams rearward of the riser is sometimes referred to as a conventional crossbow, while a crossbow with the bow assembly mounted with the bowstring cams forward of the riser is sometimes referred to as a reversed crossbow. The subject matter herein applies to both conventional crossbows and reversed crossbows.
With reference to the crossbow shown in
With continued reference to the crossbow shown in
With continued reference to the crossbow shown in
With continued reference to the crossbow shown in
With continued reference to the crossbow shown in
With continued reference to the crossbow shown in
With continued reference to the crossbow shown in
With continued reference to the crossbow shown in
With continued reference to the crossbow shown in
An operation during which the bowstring 34 is moved between a cocked position and an uncocked position may refer to either: a cocking operation, or a decocking operation. During a cocking operation, the bowstring 34 is moved from an uncocked position to a cocked position.
In some embodiments, a crossbow may comprise one or more bowstring guides 282, 284. The bowstring guide 282, 284, may be a pin, wheel, pulley, or other surface adapted to guide the path of a bowstring during a cocking operation or a decocking operation. In the non-limiting embodiment shown in
It should be noted that in some embodiments, the bowstring guides 282, 284 may only contact the bowstring 34 during a portion of the cocking operation or decocking operation. As shown in
In the non-limiting embodiments shown the bowstring guides are pulleys and each defining an operational plane, the operational planes of the guides are coincident with one another and are coincident with the first cam plane and the second cam plane.
Numerous embodiments have been described, hereinabove. It will be apparent to those skilled in the art that the above methods and apparatuses may incorporate changes and modifications without departing from the general scope of the present subject matter. It is intended to include all such modifications and alterations in so far as they come within the scope of the appended claims or the equivalents thereof.
This application is a continuation of U.S. patent application Ser. No. 16/700,566, filed Jun. 4, 2020 which is a continuation of U.S. patent application Ser. No. 16/130,081, filed Sep. 13, 2018, which claims the benefit of U.S. Provisional Application No. 62557886, filed Sep. 13, 2017, the entirety of which is fully incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2092361 | Shirn | Sep 1937 | A |
3043287 | Nelson | Jul 1962 | A |
3561419 | Cucuzza, Sr. | Feb 1971 | A |
3670711 | Firestone | Jun 1972 | A |
3739765 | Moore | Jun 1973 | A |
4192281 | King | Mar 1980 | A |
4246883 | Ash | Jan 1981 | A |
4593675 | Waiser | Jun 1986 | A |
4603676 | Luoma | Aug 1986 | A |
4649892 | Bozek | Mar 1987 | A |
4662345 | Stephens | May 1987 | A |
4665885 | Glomski et al. | May 1987 | A |
4719897 | Gaudreau | Jan 1988 | A |
4721092 | Waiser | Jan 1988 | A |
4942861 | Bozek | Jul 1990 | A |
5115795 | Farris | May 1992 | A |
5205267 | Burdick | Apr 1993 | A |
5215069 | Liu | Jun 1993 | A |
5220906 | Choma | Jun 1993 | A |
5243956 | Luehring | Sep 1993 | A |
5433186 | Corwin | Jul 1995 | A |
5437260 | King | Aug 1995 | A |
5445139 | Bybee | Aug 1995 | A |
5553596 | Bednar | Sep 1996 | A |
5598829 | Bednar | Feb 1997 | A |
5649520 | Bednar | Jul 1997 | A |
5678528 | Hadley | Oct 1997 | A |
5987724 | Kleman | Nov 1999 | A |
6095128 | Bednar | Aug 2000 | A |
6286496 | Bednar | Sep 2001 | B1 |
6874491 | Bednar | Apr 2005 | B2 |
6913007 | Bednar | Jul 2005 | B2 |
7100590 | Chang | Sep 2006 | B2 |
7578289 | Norkus | Aug 2009 | B2 |
7624725 | Choma | Dec 2009 | B1 |
7784453 | Yehle | Aug 2010 | B1 |
7891348 | Colley | Feb 2011 | B2 |
8387604 | Terzo | Mar 2013 | B1 |
8443790 | Pestrue | May 2013 | B2 |
8499753 | Bednar | Aug 2013 | B2 |
8578918 | Islas | Nov 2013 | B1 |
9297604 | Sidebottom | Mar 2016 | B1 |
9377267 | Kempf | Jun 2016 | B1 |
9494379 | Yehle | Nov 2016 | B2 |
9513080 | Kempf | Dec 2016 | B1 |
9879938 | Isenhower | Jan 2018 | B1 |
10018442 | Kempf | Jul 2018 | B1 |
10018443 | Dziekan | Jul 2018 | B2 |
10139191 | Kempf | Nov 2018 | B1 |
10184749 | Trpkovski | Jan 2019 | B2 |
10267592 | Bartels | Apr 2019 | B2 |
10473418 | Shaffer | Nov 2019 | B2 |
10962323 | Langley | Mar 2021 | B2 |
20060086346 | Middleton | Apr 2006 | A1 |
20090101126 | Anderson | Apr 2009 | A1 |
20100170488 | Rasor | Jul 2010 | A1 |
20110056467 | Popov | Mar 2011 | A1 |
20130213373 | Biafore, Jr. | Aug 2013 | A1 |
Entry |
---|
European Crossbows, a survey by Josef Alm; copyrighted by the Trustees of the Royal Armouries and the Arms and Armour Society, 1994. |
The Book of the Crossbow, by Ralph Payne-Gallwey, published by Dover Publications, Inc. of New York, 1995; 400 pgs. |
A Guide to the Crossbow, by W.F. Paterson, published by the Society of Archer-Antiquaries, 1990; 134 Pgs. |
Number | Date | Country | |
---|---|---|---|
20210102775 A1 | Apr 2021 | US |
Number | Date | Country | |
---|---|---|---|
62559886 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16700566 | Dec 2019 | US |
Child | 17121865 | US | |
Parent | 16130081 | Sep 2018 | US |
Child | 16700566 | US |