The present invention generally relates to amplifiers, and more specifically, crossed-field amplifiers.
Crossed-field Amplifiers (CFAs) are a class of vacuum microwave devices where an applied direct current (DC) electric field is oriented perpendicular to a constant magnetic field. Typically, CFAs have a magnetic field oriented in an axial direction and an electric field applied around a circumference of a cathode. Crossed-field amplifiers are used in many types of radars, in part due to their high efficiency and broad bandwidth.
The most common type of CFA consists of a slow-wave-circuit (SWC) that surrounds a cathode in a cylindrical geometry. These devices generally consist of an input coupler for receiving a radio frequency (RF) input wave, a cathode for emitting electrons, a slow wave circuit, an anode drift block, and an output coupler for transmitting the amplified RF wave. The SWC is usually of the forward wave type in which the electron beam interacts with a wave propagating in the same direction as the electron beam; however, backward wave circuits are also possible, and are referred to as Amplitrons.
In use, the RF wave first enters the SWC through an input coupler. The cathode of the CFA emits electrons as a result of primary (thermionic) or secondary emission, or both. Under the influence of the crossed electric and magnetic fields, the electrons emitted from the cathode rotate around the cathode and form a thin region of high electron density near the cathode surface, known as a hub. When the outer surface of the electric hub has about the same velocity as the RF wave, the rotating electrons give up potential energy to the wave. This causes amplification of the RF wave, also known as gain.
In reentrant beam CFAs, after the bunched electrons pass the output coupler, the SWC ends and the spent bunches drift toward the input coupler without the influence of external RF fields. Ideally, the electron bunches would completely diffuse into a uniform electron stream before reentering the input section of the CFA. But because the spent electrons are in the drift section for a short period of time, there are fluctuations in the electron density upon reentry into the input section. These fluctuations can produce spurious emissions, also referred to as spurious noise. The spurious noise can interfere with radars and a variety of other communication systems.
Accordingly, there is a need for improved cross-field amplifiers with reduced spurious emissions.
Various crossed-field amplifiers are disclosed herein. In general, a crossed-field amplifier includes an input coupler, an output coupler, a cathode, and an anode. In certain aspects, the input coupler can receive an RF wave and the output coupler can transmit an amplified RF wave. The cathode can have a substantially-cylindrical shape, and the anode can be positioned around an outer circumference of the cathode with a gap therebetween. The anode can be configured to emit electrons to the cathode, and spacing between the anode and the cathode can reduce a velocity of the electrons as the electrons move through a portion of the gap adjacent to an anode drift block.
The CFAs disclosed herein can have a variety of other features. In particular, a CFA can further comprise a body extending around an outer surface of the anode for cooling the amplifier. In another embodiment, the anode can comprise a slow wave circuit and an anode drift block. In yet another embodiment, the slow wave circuit can extend about a range around 270-330 degrees, and the anode drift block can extend about a range around 30 to 90 degrees. Additionally, the spacing between the anode drift block and the cathode can be greater than the spacing between the slow wave circuit and the cathode. More specifically, the radial thickness of the anode drift block can be less than the radial thickness of the slow wave circuit. The magnetic field can also be oriented along a longitudinal axis of the cathode.
In another exemplary embodiment, a crossed-field amplifier can comprise an input coupler, an output coupler, a cathode, and an anode. The input coupler can receive an RF wave and the output coupler can transport an amplified RF wave. The cathode can have a substantially cylindrical shape and the anode can be configured to emit electrons to the cathode. In certain aspects, the anode can comprise an anode drift block that is positioned between the input coupler and the output coupler. A section of the cathode adjacent to the anode drift block can have a reduced-radius such that electrons are dispersed as they move between the cathode and the anode drift block.
In one embodiment, the section of the cathode adjacent to the anode drift block can have a substantially constant radius. In another embodiment, the section of the cathode adjacent to the anode drift block has a first step and a second step that define a first radius of the cathode, and a curved portion that defines a second radius of the cathode. The section of the cathode can extend about a range around about 30-90 degrees. In another embodiment, the anode drift block can extend about a range around 30 to 90 degrees of the CFA. The amplifier can further comprise a body disposed around the anode for cooling. A magnetic field can also be oriented perpendicular to a radius of the cathode.
The invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention. As will be appreciated, the specification and the drawings use the same reference numerals to refer to the same components that are present in multiple figures.
Various crossed-field amplifiers are disclosed herein. In general, CFAs include an input coupler for receiving an RF wave, an output coupler for transporting an amplified RF wave, an anode, and a cathode. In one embodiment, the geometry of the cathode and/or the anode reduces the velocity of the electrons as they travel near the anode drift block. In another embodiment, an abrupt geometric change to the cathode at the beginning or the end of the anode drift block can disperse the electrons, thereby increasing the rate of mixing and diffusion. By decreasing the velocity of the electrons and/or increasing the diffusion of the electrons, the peak amplitude of spurious emissions produced by a CFA can be reduced.
A crossed-field amplifier 10 as is known in the art is illustrated in
Referring now to
Referring back to
As will be appreciated by those skilled in the art, electrons 30 travel through the drift gap 42 for a short period of time. As a result, the electrons 30 do not typically have enough time to diffuse and form a substantially uniform electric field prior to reaching the input coupler 22. As previously explained, these fluctuations in electron density can cause crossed-field amplifiers to produce spurious emissions, or spurious noise, consistent with the spectrum of spurious emissions output provided in
Without being bound to a particular theory, one way to reduce spent electron velocity in the drift space and decrease spurious emissions is to increase the distance between the anode drift block and the cathode. This reduces the dc electric field in the drift gap, Edc, and so reduces the drift velocity, vd, given by: vd=Edc/B; where B is the static magnetic field.
As an additional theory related to the periodicity of the spurious emissions, coherency of re-circulating space charge is known to affect spurious noise away from the carrier. In particular, data taken by A. MacMullen at NSWC and distributed as: “A Quick Look At Some May 99 CFA Data” indicates a periodicity in the spurious output of about 68 MHz. Since the hub spokes in the CFA rotate at a rate that is synchronous with the phase velocity of the RF circuit wave on the anode, it is reasonable to believe that frequencies supporting an integer number of wavelengths around the cathode will be regenerative and will cause an increase in the amplitude of spurious emissions at particular frequencies. This can be expressed mathematically for the nth resonance as: βnL=2πn where βn=θn/P is the wave number with θn the phase shift per circuit section and P the circuit pitch. The parameter L is the total length or perimeter of the anode bore inner diameter (ID), including the drift region. Since β is linearly related to frequency, ω, over the operating band of the CFA, the resonant frequencies can be estimated.
By taking the difference between two adjacent resonances, the separation between resonances can be calculated as Δf=1/mL=65 [MHz]. By way of example, for the AEGIS CFA, m=1.125E−7 [s/m] and L=0.136 [m]. Note here that m is the reciprocal group velocity of the circuit. This periodicity, calculated from the cold circuit parameters, is close to the observed spurious output periodicity shown in
A significant reduction in spoke coherency can be achieved by exploiting the natural turbulence in the electron hub as it passes through the drift region. Making the drift region physically longer has previously been used to achieve this goal, with somewhat limited success. However, the drift space can be made electronically longer without making the drift length longer. This is accomplished by increasing the anode-to-cathode spacing in the drift region. When this is done, the E/B drift velocity of the hub electrons is reduced in the drift region. This will increase the transit time for the drift space and allow for increased mixing of hub electrons prior to reentering the input section.
In light of theories of chaotic mixing, it is expected that increasing the anode-to-cathode spacing would significantly reduce the spoke coherency across the drift region. More specifically, two electrons that enter the drift region with nearly the same initial conditions will follow paths that diverge from each other at an exponential rate. If the initial, small separation between two electrons is Δx0, then the separation at a later time t is approximately: Δx≈exp(ht)Δx0; where h>0 is the Lyapunov exponent for the mixing process. If the anode-to-cathode spacing is increased by two times the nominal gap spacing in the interaction region, then the electron transit time will approximately double. This will cause an increase in separation by a multiplication factor exp(ht) over the base line separation assuming that the value of h remains fairly constant.
Consistent with these theories, the geometry of the anode and/or the cathode can be altered to achieve the desired reduction in drift velocity. In one embodiment, the radius of a cathode portion that is positioned across from the anode drift block, separated by the drift gap, can be reduced to achieve a larger spacing within the drift gap. This is shown, for example, in
As previously explained,
In another embodiment, the geometry of the cathode can be altered to both increase the diffusion of the electrons and decrease their velocity in the drift gap. This is true in the embodiment shown in
Referring back to
Experimental data confirms that the changes in geometry to the cathode and/or the anode drift block can reduce spurious emissions. For example,
In both
As also shown in
One skilled in the art will appreciate further features and advantages of the invention based on the above-described embodiments, such as body 150 shown in
The present application claims the benefit under §119(e) of U.S. provisional patent application U.S. 61/466,105 filed on Mar. 22, 2011 and entitled “METHOD TO REDUCE SPURIOUS EMISSION IN CROSSED-FIELD AMPLIFIERS.”
Number | Name | Date | Kind |
---|---|---|---|
2939037 | Jepsen | May 1960 | A |
3069594 | Feinstein | Dec 1962 | A |
3192435 | Feinstein et al. | Jun 1965 | A |
3246190 | Boyd et al. | Apr 1966 | A |
3330707 | Reed | Jul 1967 | A |
3614515 | Wilczek | Oct 1971 | A |
4082979 | Farney et al. | Apr 1978 | A |
4413208 | Morizot | Nov 1983 | A |
4719436 | Garwin et al. | Jan 1988 | A |
6437510 | Thomas et al. | Aug 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20120242224 A1 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
61466105 | Mar 2011 | US |