This application priority under 35 U.S.C. 119 to United Kingdom Patent Application Serial No. 0816921.1, filed Sep. 16, 2008; which application is incorporated herein by reference and made a part hereof.
The invention relates generally to the field of inductors, and more particularly to swinging inductors of a stepped-gap construction.
Swinging inductors, often also referred to as swinging chokes, exhibit a relatively large inductance at light load and a progressively smaller inductance as the load increases. This makes them well suited for applications requiring good output regulation in the presence of variable load conditions. Switching power supplies and electronic ballasts are typical examples.
For such applications, swinging inductors offer a good practical compromise between designing for maximal load, in which case the inductance may be too low to meet the ‘critical’ inductance required at light load (i.e. that inductance necessary to prevent the inductor current from going to zero) and which may result in increased ripple on the output, and designing for increased inductance, which may result in a physically large inductor that is overspecified for the nominal load of the application.
To achieve variable inductance with DC bias (swinging choke), it is known practice to step-gap ferrite cores. Background prior art can be found in U.S. Pat. No. 5,816,894: Gap-providing ferrite core half and method for producing same; EP 0,518,421: Inductive device; U.S. Pat. No. 4,728,918: Storage coil with air gap in core; and U.S. Pat. No. 5,440,225: Core for coil device such as power transformers, choke coils used in switching power supply. Background information may also be found in S. T. S. Lee et al, “Use of Saturable Inductor to Improve the Dimming Characteristics of Frequency-Controlled Dimmable Electronic Ballasts”, IEEE Transactions on Power Electronics, vol. 19, no. 6, pp.1653-1660, 2004.
Further background prior art can be found in U.S. Pat. No. 5,440,225 A (Kojima) FIGS. 1-8, US 2003/0048644 A1 (Nagai et al) FIGS. 2A-2E, EP 0577334 A2 (AT&T) FIGS. 1-6D and col. 1, lines 3-9, U.S. Pat. No. 3,603,864 A (Thaker et al) FIGS. 1-5, U.S. Pat. No. 3,942,069 A (Kaneda) FIGS. 11(A)-11(E), and U.S. Pat. No. 5,847,518 A (Ishiwaki) FIG. 11.
By way of example,
However, narrower ungapped sections are prone to misalignment when the cores are assembled onto a bobbin, with resulting inconsistencies in manufacture. This is shown graphically in
Due to the misalignment of the two core halves 402, 404, the contact area of the stepped sections 406 is reduced, thereby lowering the inductance of the core assembly and failing to achieve the desired inductance properties. This is especially the case at light load, for which the inductance of a device with misaligned core halves might be less than half that of a corresponding device with fully aligned core halves. The problem is exacerbated with smaller cores, largely due to tolerances of core and bobbin dimensions, where a bobbin might accept a range of core halves varying in size by around ±10%. Those core halves at the smaller end of this range may not securely engage together and could therefore slip out of position. Since the core's low load inductance properties depend on the contact area (or relative closeness, as the case may be for a fully gapped structure) of the step gap, such 10% linear variations may become detrimental.
Thus, for configurations such as those depicted in
Existing core configurations and manufacturing techniques are not entirely satisfactory at mitigating the detrimental effects of misalignment and ensuring a consistent inductor characteristic, and there is therefore a need for improved techniques.
According to a first aspect of the invention there is therefore provided an inductor core comprising: a first core segment having a body and a plurality of spaced legs extending from the body, each of said legs having a distal end relative to said body, at least one of said distal ends having a ridge projecting therefrom; and a second core segment having a body and a plurality of spaced legs extending from the body, each of said legs having a distal end relative to said body, at least one of said distal ends having a ridge projecting therefrom; wherein said first and second core segments are constructed and arranged such that distal ends of legs of the first core segment are paired with distal ends of legs of the second core segment in an opposing relation, whereby said at least one distal ends of said first core segment having a ridge projecting therefrom being paired with said at least one distal ends of said second core segment having a ridge projecting therefrom in an opposing relation, and wherein said opposingly paired projecting ridges form a cross arrangement.
By providing such a cross arrangement, the inductor is less susceptible to the influence of misalignment errors resulting from core and bobbin tolerances, thereby enabling more reproducible inductance performance. Broadly speaking, this is because a substantially constant area of crossover between opposed ridges can be maintained. Appropriate dimensioning and positioning of the ridges on the distal ends facilitates variable sizing of this area.
In some preferred embodiments, the role of physically bridging a gap between two core segments is shared equally between opposingly paired projecting ridges. This is advantageous since the resulting ridges may be reduced in height compared to the situation where only one ridge is provided for a pair of opposed distal ends. Thus, increased robustness and ease of manufacture may be achieved since ridges of core segments become less susceptible to damage.
In some preferred embodiments a gap between core segments may be bridged completely by contacting opposing ridges, while in other preferred embodiments a gap is only bridged partially such that opposing ridges are separated from each other. The gap between opposing distal faces is preferably an air gap, though a nonmagnetic filler could also be used.
In some preferred embodiments the first and second core segments are substantially identical. This significantly reduces the likelihood of incorrectly mixing core segments, and makes assembly of the inductor easier. However, in other preferred embodiments, asymmetrical cores may be implemented. For example, one core could have a relatively larger ridge compared to the opposing ridge.
In some preferred embodiments, multiple diagonal ridges are provided on distal ends of at least one of the legs on one or both of the core segments.
In some preferred embodiments one or both of the core segments are E-shaped cores, though it will be apparent that other core shapes including I- and U-shaped cores may equally by implemented.
In preferred embodiments the core segments are ferrite cores.
In preferred embodiments, the inductor core comprises more than two segments.
In a related aspect of the invention there is provided an inductor core assembly comprising an inductor core according to the first aspect of the invention; a winding; and a bobbin. The inductor core assembly may be implemented in, for example, a switching power supply, an electronic ballast, and a power electronic circuit.
According to another aspect of the invention there is provided a method of manufacturing an inductor core segment, the method comprising: supplying a material comprising a ferrite in a molded body shaped to form a core segment for use in an inductor core according to the first aspect of the invention; and firing the molded body having said material to form the core segment.
This is advantageous as the core segments could be manufactured without the need for post-processing, such as grinding, to refine the gap. The material could be a single homogeneous mass of ferrite material.
These and other aspects of the invention will now be further described, by way of example only, with reference to the accompanying figures in which:
a and 3b show a plan view of another core structure according to the prior art and a view along axis A-A of adjoining core segments.
a and 8b show a view along axis B-B of
In one specific embodiment of the present invention shown in
In
An advantage of such an arrangement is that the likelihood of incorrectly mixing cores is essentially prevented, since two of the same core segments can be mated in only one possible orientation to form the inductor core structure 700 depicted in
Ridge 508 of leg 504 and ridge 508′ of leg 504′ form an X- or cross-shaped configuration, resulting in a quadrilateral contact area 802. This arrangement ensures that any lateral or longitudinal misalignment of the mated core segments minimally affects the shape of the contact area 802′, as is evident from
For non-contacting ridges, the resulting swing in inductance is typically less pronounced than that for contacting ridges, and usually less variable. In other words, the inductance of the core is generally sensitive to any air gap, even microscopic gaps where two contacting legs aren't substantially smooth and flat. Typically, in cores having contacting ridges there may be a 25% variation in inductance due to small air inclusions and non-ideal contact. In cores with non-contacting ridges the fine variability of the structure has less effect on inductance, which may vary by, for example, 5%.
It will be apparent that ridges need not form an X- or cross-shaped configuration running from corners of the leg face. For example, opposed ridges could be at some other angle with respect to each other (and could be asymmetric), and/or the ridges could extend in length only for a portion of the thickness of the legs. Similarly, the legs of the core segments need not be rectangular in cross-section, but could be tubular shaped for example, nor do all of the legs need to be of the same shape. It will also be apparent to the skilled reader that the design of the ridges can be of any configuration permitting relative movement of the core segments whilst maintaining overlap or contact over substantially the same surface area, for example substantially perpendicular ridges.
It will be further understood that while the invention has been described in the context of E-shaped core, embodiments of the present invention could employ any two core segments from, for example, E-, I- and U-shaped types to form EI, EE, UI and UU-shaped type inductor cores for example. In addition, although the foregoing discussion has made reference to cores of relatively small size, it will be apparent that the described invention is not limited to particular core sizes.
No doubt many other effective alternatives will occur to the skilled person. It will be understood that the invention is not limited to the described embodiments and encompasses modifications apparent to those skilled in the art lying within the spirit and scope of the claims appended hereto.
Number | Date | Country | Kind |
---|---|---|---|
0816921.1 | Sep 2008 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
3587020 | Waasner | Jun 1971 | A |
3603864 | Thaler et al. | Sep 1971 | A |
3659191 | Spreadbury | Apr 1972 | A |
3942069 | Kaneda | Mar 1976 | A |
4138636 | Liberman | Feb 1979 | A |
4594295 | Waasner et al. | Jun 1986 | A |
4602236 | Shelby et al. | Jul 1986 | A |
4728918 | Neusser et al. | Mar 1988 | A |
5155676 | Spreen | Oct 1992 | A |
5440225 | Kojima | Aug 1995 | A |
5469053 | Laughlin | Nov 1995 | A |
5506560 | Takeuchi et al. | Apr 1996 | A |
5816894 | Hosozawa et al. | Oct 1998 | A |
5847518 | Ishiwaki | Dec 1998 | A |
5861792 | Ueda et al. | Jan 1999 | A |
6232864 | Hosozawa et al. | May 2001 | B1 |
6281776 | Davidson | Aug 2001 | B1 |
6657528 | Tang | Dec 2003 | B1 |
6717504 | Fujiwara et al. | Apr 2004 | B2 |
6753751 | Fujiwara et al. | Jun 2004 | B2 |
6856231 | Fujiwara et al. | Feb 2005 | B2 |
6958673 | Suzuki | Oct 2005 | B2 |
20030048644 | Nagai et al. | Mar 2003 | A1 |
Number | Date | Country |
---|---|---|
0518421 | Dec 1992 | EP |
0577334 | Jan 1994 | EP |
Number | Date | Country | |
---|---|---|---|
20100085138 A1 | Apr 2010 | US |