The present invention relates in general to compositions and methods for producing materials for soft tissue augmentation. More specifically, the invention provides a cross-linked hyaluronic acid (HA) and collagen (Cgn) implant of improved composition and stability (“persistence”) for augmenting soft tissue in mammals.
Both collagen and HA are naturally found in the skin. Although the collagen:HA ratios vary with age, sun exposure, type of skin, and other factors, matching the skin's composition could have a positive effect on duration and biocompatibility of a dermal filler.
The present invention relates to cross-linked HA and collagen implants for augmenting soft tissue in mammals. In one aspect, the invention features a method for preparing an implant. The method comprises contacting HA with a cross-linker to allow cross-linking of the HA by the cross-linker, thereby forming a first composition; contacting the first composition with collagen to allow cross-linking of the collagen by the cross-linker, thereby forming a second composition; and contacting the second composition with a HA solution to allow cross-linking of the HA in the solution by the cross-linker, thereby producing an implant.
Many cross-linkers may be used in a method of the invention, including and not limited to divinyl sulfone (VS), 1,4-butanediol diglycidyl ether (BDDE), ultraviolet radiation, gamma radiation, electron beam radiation, and glutaraldehyde. For example, when VS is used as the cross-linker, the concentration of the VS for forming the first composition may be about 500-10,000 ppm, and preferably about 5000 ppm. The cross-linking of HA with VS for forming the first composition may occur at about 50-60° C.
When practicing the method of the invention, the concentration and the pH of the HA for forming the first composition may be about 30 mg/ml or higher and about 9-12, respectively. In some embodiments, the collagen for contacting the first composition is soluble; in some embodiments, the concentration of the collagen for contacting the first composition is about 10-50 mg/ml, preferably about 30 mg/ml; in some embodiments, the pH of the collagen for contacting the first composition is about 2-3; in some embodiments, the collagen for contacting the first composition is type I, II, III, IV, or V collagen, or a combination thereof. In some embodiments, the pH of the second composition is about 6-8, and preferably about 7. The concentration of the HA solution for contacting the second composition may be about 3-15% weight/volume, and preferably about 5-10% weight/volume. The cross-linking of the HA in the solution by the cross-linker may occur at a pH of about 7.0-7.6.
A method of the invention may further comprise contacting the second composition with a local anesthetic agent such as lidocaine. The concentration of the lidocaine may be about 1-7 mg/ml, and preferably about 2.7-3.3 mg/ml, in the implant.
An implant prepared according to a method described above is within the invention. In particular, the present invention provides an implant comprising a core of HA cross-linked by a cross-linker, a middle layer of collagen surrounding and cross-linked by the cross-linker to the core, and an outer layer of HA surrounding and cross-linked by the cross-linker to the collagen layer. As mentioned above, the cross-linker may be VS, BDDE, ultraviolet radiation, gamma radiation, electron beam radiation, or glutaraldehyde. The implant may further comprise about 10 ppm or less of cross-linker not cross-linked to the HA or collagen. In some embodiments, about 5-50% of the amine groups on the collagen are modified by the cross-linker. In some embodiments, the elastic modulus of the implant is higher than about 200 Pascals or the implant may have an extrusion force through a 24 or larger gauge needle of about 50 Newtons or less.
The invention is also directed to an implant prepared by the method described above, wherein the crosslinker is VS or BDDE, wherein the concentration of the VS for forming the first composition is about 500-10,000 ppm, preferably about 5000 ppm, and wherein the cross-linking of the HA by the VS for forming the first composition occurs at about 50-60° C. In some embodiments of the implant prepared by the method described above, the concentration of the HA for forming the first composition is about 30 mg/ml or higher and the pH of the HA for forming the first composition is about 9-12. In some embodiments of the implant prepared by the method described above, the collagen for contacting the first composition is soluble and the concentration of the collagen for contacting the first composition is about 10-50 mg/ml, preferably about 30 mg/ml. In some embodiments of the implant prepared by the method described above, the pH of the collagen for contacting the first composition is about 2-3 and the collagen for contacting the first composition is type I, II, III, IV, or V collagen, or a combination thereof. In some embodiments of the implant prepared by the method described above, the pH of the second composition is about 6-8, preferably about 7. In some embodiments of the implant prepared by the method described above, the concentration of the HA solution for contacting the second composition is about 3-15% weight/volume, preferably about 5-10% weight/volume. In some embodiments of the implant prepared by the method described above, the cross-linking of the HA in the solution by the cross-linker occurs at a pH of about 7.0-7.6.
The present invention also features a packaged product. The product comprises a syringe and a needle. The syringe is loaded with an implant of the invention.
The invention further provides a method for filling voids and defects and increasing tissue volume in a mammal. The method comprises administering to a mammal an implant of the invention. The implant may be administered by intradermal or subcutaneous injection.
The above mentioned and other features of this invention and the manner of obtaining and using them will become more apparent, and will be best understood, by reference to the following description, taken in conjunction with the accompanying drawings. The drawings depict only typical embodiments of the invention and do not therefore limit its scope.
The present invention is based, at least in part, on the unexpected discovery that HA cross-linked at a high concentration and then coated with collagen and HA produces a long lasting implant. More specifically, the invention relates to HA and collagen cross-linked using VS to formulate a physiologically-matched wrinkle corrector, which is referred to as HAVSCgn.
In general, HA is first cross-linked at a high concentration. The residual cross-linker is then reacted with collagen followed by the addition of a HA solution for complete utilization of the cross-linker and a laminating effect. The resulting gel has a high elastic modulus yet can still be extruded through a fine gauge needle with minimal force. The HA and collagen combination mimics the natural components of the skin and is an ideal composition for augmenting soft tissue in mammals. The HA and collagen gel of the present invention has improved rheological properties and volume stability or persistence compared to a single component formulation of HA, such as Captique™, or a single component formulation of collagen, such as CosmoPlast®.
The process of the present invention involves obtaining HA either in solid or liquid form and cross-linking HA as a concentrated solution, followed by the addition of collagen and finally more HA. The collagen of the present invention primarily derives from mammalian source materials, such as bovine or porcine corium or tendon or human placental tissue. Collagen produced from human fibroblast cell culture, or recombinantly-produced collagen expressed from a cell line may also be used.
Base (e.g., NaOH) is first added to HA to adjust the pH to 9-12. A cross-linker is added to the HA and the reaction is allowed to proceed. Collagen (pH 2-3) is then added. The collagen reacts with the cross-linker to covalently bind to HA. The cross-linker is consumed lightly in cross-linking the collagen. A HA solution is added as a lubricant and cross-linker scavenger. The final formulation has a core of cross-linked HA with collagen lightly cross-linked and surrounding the HA core. The additional soluble HA consumes the residual cross-linker and adds a lubrication benefit. Generally, any cross-linker that induces covalent bonds linking HA and collagen molecules may be used. Examples of such cross-linkers include but are not limited to VS, BDDE, ultraviolet radiation, gamma radiation, electron beam radiation, and glutaraldehyde.
Cross-linking of HA and collagen with VS is provided here as an example. Base is added to HA (30 mg/ml or higher) to raise the pH to 9-12. VS (500-10,000 ppm, and preferably 5000 ppm) is added. Cross-linking of HA by VS is allowed to proceed at an elevated temperature from 50° C. to 60° C. for about 1 hour. The cross-linked HA is cooled and acidic collagen (10-50 mg/ml, and preferably 30 mg/ml; pH 2-3) is added to bring the pH to ˜7 (e.g., 6-8). The reaction is allowed to proceed overnight at room temperature. Soluble HA (3-15% weight/volume, and preferably 5-10% weight/volume) is added. Optionally, lidocaine can be added for a final lidocaine concentration of 2.7-3.3 mg/ml. The reaction is allowed to proceed for 8 hours-2 weeks at room temperature and pH 7.0-7.6. The scavenger HA not only decreases the amount of the residual VS but also functions as a coating agent which in turn reduces the extrusion force of the resulting implant (HAVSCgn). The HAVSCgn contains low residual VS (10 ppm or less) and has low extrusion force (e.g., 50 Newtons or less) through a fine gauge needle (>24 gauge). 5-50% amine groups on the collagen are modified by VS (i.e., loss of free amine groups) in the implant.
The HAVSCgn is a formulation with a high elastic modulus (>200 Pascals) yet low extrusion plateau. The elastic modulus (G′) may be determined with a Bohlin Rheometer by measuring the ratio of the stress to the strain multiplied by the cosine of the phase angle. The extrusion force may be determined as follows: The implant is filled into a 1 cc Universal Syringe. A needle (e.g., 30 G½ needle, Becton Dickinson Precision Glide) is then fit into the syringe and luer locked. The syringe filled with the implant and equipped with the needle is placed into the grip of Instron, Model 4201, and the plunger is displaced at a constant speed of 50 mm/minute. The force plateau is then calculated and reported in Newtons.
A cross-linked HA-collagen implant of the invention can be further homogenized and screened by forcing the formulation through a screen of defined pore size. The formulation can also be filled into syringes fitted with a #25 or larger gauge needle for injection. In the case of formulations used for dermal augmentation, the term “injectable” means that the formulation can be dispensed from syringes having a gauge as low as #25 under normal manual pressure with a smooth extrusion plateau.
The steps described above for preparing cross-linked HA-collagen and filling the implant into syringes are preferably carried out in sterile conditions using sterile materials.
The invention provides a soft tissue augmentation injectable that mimics the natural components of the skin. The composition of the present invention may be injected intradermally or subcutaneously to augment soft tissue and to repair or correct congenital anomalies, acquired defects, or cosmetic defects. Examples of such conditions include congenital anomalies such as hemifacial microsomia, malar and zygomatic hypoplasia, unilateral mammary hypoplasia, pectus excavatum, pectoralis agenesis (Poland's anomaly), and velopharyngeal incompetence secondary to cleft palate repair or submucous cleft palate (as a retropharyngeal implant); acquired defects (post traumatic, post surgical, or post infectious) such as depressed scars, subcutaneous atrophy (e.g., secondary to discoid lupus erythematosus), keratotic lesions, enophthalmos in the enucleated eye (also superior sulcus syndrome), acne pitting of the face, linear scleroderma with subcutaneous atrophy, saddle-nose deformity, Romberg's disease, and unilateral vocal cord paralysis; and cosmetic defects such as glabellar frown lines, deep nasolabial creases, circum-oral geographical wrinkles, sunken cheeks, and mammary hypoplasia.
The present invention provides a HA-collagen filler for augmenting and filling soft tissue defects and voids with a material that plumps and bulks the soft tissue. The cross-linked HA-collagen of the invention is particularly useful for deep dermal correction and sculpting. The superior composition and persistence makes it ideal for areas that are hard to correct and where a biocompatible bolus can provide mechanical strength to the body.
The following example is intended to illustrate, but not to limit, the scope of the invention. While such example is typical of those that might be used, other procedures known to those skilled in the art may alternatively be utilized. Indeed, those of ordinary skill in the art can readily envision and produce further embodiments, based on the teachings herein, without undue experimentation.
HA was obtained from Lifecore Biomedical, Chaska, Minn. Base (NaOH) was added to HA to adjust the pH to a range of 9-12. Chemically pure VS (TCI AMERICA, 9211 N. Harborgate Street, Portland, Oreg. 97203, U.S.A) was then added to HA to allow the cross-linking reaction to proceed at an elevated temperature between 50° C. and 60° C. The cross-linked HA was cooled and collagen added.
Purified, type I, pepsin-digested human collagen was obtained from Inamed Biomaterials, 48490 Milmont Drive, Fremont, Calif. 94538. It was precipitated by raising the pH to 7.0-7.6 with a sodium phosphate solution and then centrifuging at 17000×g for 5-7 minutes. The supernatant was aseptically decanted from the centrifuge bottle. The collagen pellet was aseptically suctioned into a homogenization vessel and homogenized. 0.05 M HCl buffer and sterile filtered WFI (water for injection) were mixed with the homogenate to lower the final pH to 2-3.
The collagen was added to the cross-linked HA while the collagen was soluble. The VS was consumed and as a result the collagen was lightly cross-linked to collagen and HA. Additional HA in a solution was added at the end to consume the residual VS and to add a lubrication benefit. The final formulation had a core of cross-linked HA with collagen lightly cross-linked to the HA core. The additional HA was cross-linked to collagen and HA to enhance the formulation. The residual VS after addition of the free HA solution, as detected by reversed-phase HPLC, is indicated in Table 1.
VS primarily reacts with the amine groups on collagen and the hydroxyl groups on HA. The percentage of modified amine groups on collagen was determined by a free amine assay using TNBS (trinitrobenzene sulfonate). Unmodified collagen was used as a control. The HAVSCgn, 2674-1, formulation had about 15% of the amine groups modified.
The reaction of VS with HA proceeds predominately with the hydroxyl groups of HA and the vinyl groups of VS and results in the formation of an ether bond.
R—OH+CH2=CH—SO2-CH═CH2→R—O—CH2-CH2—SO2-CH2-CH2—O—R (2)
Hyaluronidase effect on elastic modulus was studied for HAVSCgn and Captique™ (a formulation of HA cross-linked with VS). Hyaluronidase was obtained from Worthington Biochemical Corporation (730 Vassar Avenue, Lakewood, N.J. 08701; catalog number L5002592). Implants were weighed to about 2±0.1 gram. 5 mg hyaluronidase was diluted with 10 ml PBS solution to ˜50 U/ml. 0.020 ml hyaluronidase solution was added to each 2 gram implant sample. The samples were incubated at 37° C. for 30 minutes, 1.5 hours, 3 hours, and 5 hours. The elastic modulus and phase angle were tested at 5 Hz using a Bohlin Rheometer CVO-100 at 20° C. with a gap of 500 mm and a parallel plate (PP20). As shown in
The biocompatibility of HAVSCgn was tested and demonstrated to be biocompatible. The safety of the HAVSCgn was assessed through a cytotoxicity study and multiple rabbit subcutaneous implantation studies. The cytotoxicity study was performed using the ISO Elution Method. As shown in Table 2, HAVSCgn caused no cell lysis or toxicity.
A rat subcutaneous implantation study was performed to determine the persistence of HAVSCgn. As part of the rat implantation study, a macroscopic evaluation of the implant site was performed. There was no capsule formation or adverse reaction for all time points studied (Table 3).
To assess effectiveness, the persistence of HAVSCgn (2674-1) relative to CosmoPlast® and Captique™ was evaluated using wet weight recovery in the rat subcutaneous model which is considered to be a good measure of an implant's ability to maintain wrinkle correction (McPherson et al., 1988, Development and Biochemical Characterization of Injectable Collagen, J Dermatol Surg Oncol 14, Suppl 1). As shown in
All patents and articles cited herein are incorporated by reference in their entirety.
This application is a continuation of U.S. patent application Ser. No. 12/247,175, filed on Oct. 7, 2008, which claims priority to U.S. Provisional Patent Application Ser. No. 60/978,423 filed on Oct. 9, 2007, each of which is incorporated herein by this specific reference.
Number | Name | Date | Kind |
---|---|---|---|
2128827 | Killian | Aug 1938 | A |
3548056 | Eigen et al. | Dec 1970 | A |
3763009 | Suzuki | Oct 1973 | A |
3949073 | Daniels et al. | Apr 1976 | A |
4060081 | Yannnas et al. | Nov 1977 | A |
4140537 | Luck et al. | Feb 1979 | A |
4233360 | Luck et al. | Nov 1980 | A |
4273705 | Kato | Jun 1981 | A |
4279812 | Cioca | Jul 1981 | A |
4282954 | Hill | Aug 1981 | A |
4424208 | Wallace et al. | Jan 1984 | A |
4501306 | Chu et al. | Feb 1985 | A |
4582640 | Smestad et al. | Apr 1986 | A |
4582865 | Balazs et al. | Apr 1986 | A |
4605691 | Balazs et al. | Aug 1986 | A |
4636524 | Balazs | Jan 1987 | A |
4642117 | Nguyen et al. | Feb 1987 | A |
4713448 | Balazs | Dec 1987 | A |
4716154 | Malson et al. | Dec 1987 | A |
4772419 | Malson et al. | Sep 1988 | A |
4803075 | Wallace et al. | Feb 1989 | A |
4886787 | De Belder et al. | Dec 1989 | A |
4896787 | Delamour et al. | Jan 1990 | A |
5009013 | Wiklund | Apr 1991 | A |
5087446 | Suzuki et al. | Feb 1992 | A |
5091171 | Yu et al. | Feb 1992 | A |
5143724 | Leshchiner et al. | Sep 1992 | A |
5246698 | Leshchiner et al. | Sep 1993 | A |
5314874 | Miyata et al. | May 1994 | A |
5328955 | Rhee et al. | Jul 1994 | A |
5356883 | Kuo et al. | Oct 1994 | A |
5399351 | Leshchiner et al. | Mar 1995 | A |
5428024 | Chu et al. | Jun 1995 | A |
5531716 | Luzio et al. | Jul 1996 | A |
5565519 | Rhee et al. | Oct 1996 | A |
5571503 | Mausner | Nov 1996 | A |
5614587 | Rhee et al. | Mar 1997 | A |
5616568 | Pouyani et al. | Apr 1997 | A |
5616611 | Yamamoto | Apr 1997 | A |
5616689 | Shenoy et al. | Apr 1997 | A |
5633001 | Agerup | May 1997 | A |
5643464 | Rhee et al. | Jul 1997 | A |
5676964 | della Valle | Oct 1997 | A |
5716404 | Vacanti | Feb 1998 | A |
5823671 | Mitchell et al. | Oct 1998 | A |
5824333 | Scopelianos et al. | Oct 1998 | A |
5827529 | Ono et al. | Oct 1998 | A |
5843907 | Sakai | Dec 1998 | A |
5886042 | Yu et al. | Mar 1999 | A |
5935164 | Iversen | Aug 1999 | A |
5972385 | Liu et al. | Oct 1999 | A |
5980930 | Fenton et al. | Nov 1999 | A |
6013679 | Kuo et al. | Jan 2000 | A |
6066325 | Wallace et al. | May 2000 | A |
6129761 | Hubbell | Oct 2000 | A |
6224857 | Romeo et al. | May 2001 | B1 |
6335035 | Drizen et al. | Jan 2002 | B1 |
6372494 | Naughton et al. | Apr 2002 | B1 |
6383218 | Sourdille et al. | May 2002 | B1 |
6383219 | Telandro et al. | May 2002 | B1 |
6418934 | Chin | Jul 2002 | B1 |
6521223 | Calias et al. | Feb 2003 | B1 |
6544503 | Vanderhoff et al. | Apr 2003 | B1 |
6627620 | Nielsen | Sep 2003 | B1 |
6630486 | Royer | Oct 2003 | B1 |
5880107 | Khan | Nov 2003 | A1 |
6685963 | Taupin et al. | Feb 2004 | B1 |
6716251 | Asius et al. | Apr 2004 | B1 |
6734298 | Barbucci | May 2004 | B1 |
6767924 | Yu et al. | Jul 2004 | B2 |
6767928 | Murphy et al. | Jul 2004 | B1 |
6852255 | Yang | Feb 2005 | B2 |
6893466 | Trieu | May 2005 | B2 |
6903199 | Moon | Jun 2005 | B2 |
6921819 | Piron et al. | Jul 2005 | B2 |
6924273 | Pierce | Aug 2005 | B2 |
6939562 | Spiro et al. | Sep 2005 | B2 |
6979440 | Shefer et al. | Dec 2005 | B2 |
6991652 | Burg | Jan 2006 | B2 |
7119062 | Alvis et al. | Oct 2006 | B1 |
7129209 | Rhee | Oct 2006 | B2 |
7166570 | Hunter et al. | Jan 2007 | B2 |
7192984 | Berg | Mar 2007 | B2 |
7196180 | Aeschlimann | Mar 2007 | B2 |
7314636 | Caseres et al. | Jan 2008 | B2 |
7316822 | Binette | Jan 2008 | B2 |
7491709 | Carey | Feb 2009 | B2 |
7741476 | Lebreton | Jun 2010 | B2 |
7767452 | Kleinsek | Aug 2010 | B2 |
7799767 | Lamberti et al. | Sep 2010 | B2 |
7875296 | Binette | Jan 2011 | B2 |
7902171 | Reinmuller et al. | Mar 2011 | B2 |
8053423 | Lamberti et al. | Nov 2011 | B2 |
8124120 | Sadozai | Feb 2012 | B2 |
8137702 | Binette et al. | Mar 2012 | B2 |
8153591 | Masters et al. | Apr 2012 | B2 |
8246947 | Hedrick et al. | Aug 2012 | B2 |
8318695 | Stroumpoulis et al. | Nov 2012 | B2 |
8338375 | Schroeder et al. | Dec 2012 | B2 |
8338388 | Lebreton | Dec 2012 | B2 |
8357795 | Lebreton | Jan 2013 | B2 |
20020102311 | Gustavsson et al. | Aug 2002 | A1 |
20020160109 | Yeo et al. | Oct 2002 | A1 |
20030031638 | Joshi et al. | Feb 2003 | A1 |
20030093157 | Casares et al. | May 2003 | A1 |
20030119985 | Sehl et al. | Jun 2003 | A1 |
20030148995 | Piron et al. | Aug 2003 | A1 |
20040032056 | Vang et al. | Feb 2004 | A1 |
20040101959 | Marko et al. | May 2004 | A1 |
20040127698 | Tsai et al. | Jul 2004 | A1 |
20040127699 | Zhao et al. | Jul 2004 | A1 |
20040199241 | Gravett et al. | Oct 2004 | A1 |
20040265389 | Yui et al. | Dec 2004 | A1 |
20050101582 | Lyons et al. | May 2005 | A1 |
20050136122 | Sadozai et al. | Jun 2005 | A1 |
20050142152 | Leschchiner et al. | Jun 2005 | A1 |
20050181007 | Hunter | Aug 2005 | A1 |
20050186261 | Avelar | Aug 2005 | A1 |
20050186673 | Geistlich et al. | Aug 2005 | A1 |
20050226936 | Agerup | Oct 2005 | A1 |
20050271729 | Wang | Dec 2005 | A1 |
20050281880 | Wang | Dec 2005 | A1 |
20050287180 | Chen | Dec 2005 | A1 |
20060029578 | Hoemann et al. | Feb 2006 | A1 |
20060040894 | Hunter et al. | Feb 2006 | A1 |
20060095137 | Chung et al. | May 2006 | A1 |
20060122147 | Wohlrab | Jun 2006 | A1 |
20060141049 | Lyons et al. | Jun 2006 | A1 |
20060147483 | Chaouk et al. | Jul 2006 | A1 |
20060189516 | Yang | Aug 2006 | A1 |
20060194758 | Lebreton | Aug 2006 | A1 |
20060246137 | Hermitte et al. | Nov 2006 | A1 |
20060257488 | Hubbard | Nov 2006 | A1 |
20060286769 | Tsuchiya et al. | Dec 2006 | A1 |
20070026070 | Vonwiller et al. | Feb 2007 | A1 |
20070066816 | Tsai et al. | Mar 2007 | A1 |
20070077292 | Pinsky | Apr 2007 | A1 |
20070104692 | Quijano et al. | May 2007 | A1 |
20070104693 | Quijano et al. | May 2007 | A1 |
20070203095 | Sadozai et al. | Aug 2007 | A1 |
20070212385 | David | Sep 2007 | A1 |
20070224247 | Chudzik | Sep 2007 | A1 |
20070224278 | Lyons et al. | Sep 2007 | A1 |
20070298005 | Thibault | Dec 2007 | A1 |
20080044476 | Lyons et al. | Feb 2008 | A1 |
20080057091 | Abdellaoui | Mar 2008 | A1 |
20080089918 | Lebreton | Apr 2008 | A1 |
20080188416 | Bernstein | Aug 2008 | A1 |
20080193538 | Kitazono et al. | Aug 2008 | A1 |
20080200430 | Bitterman et al. | Aug 2008 | A1 |
20080207794 | Wright et al. | Aug 2008 | A1 |
20080241252 | Lyons | Oct 2008 | A1 |
20080268051 | Lyons | Oct 2008 | A1 |
20080274946 | Gimpapa | Nov 2008 | A1 |
20080279806 | Cho | Nov 2008 | A1 |
20080293637 | Schroeder et al. | Nov 2008 | A1 |
20090018102 | Moutet | Jan 2009 | A1 |
20090022808 | Champion | Jan 2009 | A1 |
20090028817 | Niklason et al. | Jan 2009 | A1 |
20090036403 | Stroumpolis | Feb 2009 | A1 |
20090042834 | Karageozian et al. | Feb 2009 | A1 |
20090093755 | Schroeder et al. | Apr 2009 | A1 |
20090098177 | Werkmeister et al. | Apr 2009 | A1 |
20090110671 | Miyata et al. | Apr 2009 | A1 |
20090110736 | Boutros | Apr 2009 | A1 |
20090123547 | Hill et al. | May 2009 | A1 |
20090124552 | Hill et al. | May 2009 | A1 |
20090143331 | Stroumpoulis et al. | Jun 2009 | A1 |
20090143348 | Tezel et al. | Jun 2009 | A1 |
20090148527 | Robinson | Jun 2009 | A1 |
20090155314 | Tezel | Jun 2009 | A1 |
20090155362 | Longin | Jun 2009 | A1 |
20090162415 | Huang et al. | Jun 2009 | A1 |
20090169615 | Pinsky | Jul 2009 | A1 |
20090263447 | Asius et al. | Oct 2009 | A1 |
20090291986 | Pappas et al. | Nov 2009 | A1 |
20090297632 | Waugh | Dec 2009 | A1 |
20090317376 | Zukowska et al. | Dec 2009 | A1 |
20100004198 | Stroumpoulis et al. | Jan 2010 | A1 |
20100028437 | Lebreton | Feb 2010 | A1 |
20100035838 | Heber et al. | Feb 2010 | A1 |
20100041788 | Voigts et al. | Feb 2010 | A1 |
20100098764 | Stroumpoulis et al. | Apr 2010 | A1 |
20100098794 | Armand | Apr 2010 | A1 |
20100099623 | Schroeder et al. | Apr 2010 | A1 |
20100111919 | Abuzaina et al. | May 2010 | A1 |
20100136070 | Dobak et al. | Jun 2010 | A1 |
20100226988 | Lebreton | Sep 2010 | A1 |
20100255068 | Stroumpoulis et al. | Oct 2010 | A1 |
20100316683 | Piron | Dec 2010 | A1 |
20110034684 | Yokokawa | Feb 2011 | A1 |
20110070281 | Altman | Mar 2011 | A1 |
20110077737 | Stroumpoulis et al. | Mar 2011 | A1 |
20110097381 | Binette | Apr 2011 | A1 |
20110118206 | Lebreton | May 2011 | A1 |
20110150823 | Huang | Jun 2011 | A1 |
20110171286 | Cecile et al. | Jul 2011 | A1 |
20110171311 | Gousse et al. | Jul 2011 | A1 |
20110172180 | Gousse et al. | Jul 2011 | A1 |
20110183001 | Rosson et al. | Jul 2011 | A1 |
20110224164 | Lebreton | Sep 2011 | A1 |
20110229574 | Guilen et al. | Sep 2011 | A1 |
20120010146 | Han et al. | Jan 2012 | A1 |
20120034462 | Stroumpoulis et al. | Feb 2012 | A1 |
20120071437 | Stroumpoulis et al. | Mar 2012 | A1 |
20120076868 | Lamberti et al. | Mar 2012 | A1 |
20120156265 | Binette et al. | Jun 2012 | A1 |
20120172328 | Lebreton | Jul 2012 | A1 |
20120189589 | Van Epps et al. | Jul 2012 | A1 |
20120189590 | Van Epps et al. | Jul 2012 | A1 |
20120189699 | Stroumpoulis et al. | Jul 2012 | A1 |
20120189708 | Van Epps et al. | Jul 2012 | A1 |
20120208890 | Gousse et al. | Aug 2012 | A1 |
20120225842 | Cecile et al. | Sep 2012 | A1 |
20120232030 | Gousse et al. | Sep 2012 | A1 |
20120295870 | Lebreton | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
949965 | Jun 1974 | CA |
0273823 | Jul 1988 | EP |
0416250 | Mar 1991 | EP |
0416846 | Mar 1991 | EP |
1247522 | Oct 2002 | EP |
1419792 | Apr 2003 | EP |
1398131 | Mar 2004 | EP |
1532991 | May 2005 | EP |
1726299 | Nov 2006 | EP |
2236523 | Oct 2010 | EP |
2733427 | Oct 1996 | FR |
2920000 | Feb 2009 | FR |
2924615 | Jun 2009 | FR |
55-153711 | Nov 1980 | JP |
2007063177 | Mar 2007 | JP |
WO 8600079 | Jan 1986 | WO |
WO 8600912 | Feb 1986 | WO |
WO 9200105 | Jan 1992 | WO |
WO 9220349 | Nov 1992 | WO |
WO 9401468 | Jan 1994 | WO |
WO 9402517 | Feb 1994 | WO |
WO 9633751 | Jan 1996 | WO |
WO 9704012 | Feb 1997 | WO |
WO 9835639 | Aug 1998 | WO |
WO 9835640 | Aug 1998 | WO |
WO 0001428 | Jan 2000 | WO |
WO 0179342 | Oct 2001 | WO |
WO 0205753 | Jan 2002 | WO |
WO 0206350 | Jan 2002 | WO |
WO 0209792 | Feb 2002 | WO |
WO 0217713 | Mar 2002 | WO |
WO 03007782 | Jan 2003 | WO |
WO 2004020473 | Mar 2004 | WO |
WO 2004022603 | Mar 2004 | WO |
WO 2004073759 | Sep 2004 | WO |
WO 2004092223 | Oct 2004 | WO |
WO 2005040224 | May 2005 | WO |
WO 2005067944 | Jul 2005 | WO |
WO 2005074913 | Aug 2005 | WO |
WO 2005112888 | Dec 2005 | WO |
WO 2006023645 | Mar 2006 | WO |
WO 2006067608 | Jun 2006 | WO |
WO 2007018124 | Feb 2007 | WO |
WO 2007070617 | Jun 2007 | WO |
WO 2007077399 | Jul 2007 | WO |
2007136738 | Nov 2007 | WO |
WO 2007128923 | Nov 2007 | WO |
WO 2008034176 | Mar 2008 | WO |
WO 2008068297 | Jun 2008 | WO |
WO 2008072230 | Jun 2008 | WO |
WO 2008077172 | Jul 2008 | WO |
WO 2008098019 | Aug 2008 | WO |
WO 2008139122 | Nov 2008 | WO |
2008148071 | Dec 2008 | WO |
2009003135 | Dec 2008 | WO |
WO 2008148967 | Dec 2008 | WO |
WO 2008157608 | Dec 2008 | WO |
WO 2009024719 | Feb 2009 | WO |
WO 2009026158 | Feb 2009 | WO |
WO 2009028764 | Mar 2009 | WO |
WO 2009034559 | Mar 2009 | WO |
WO 2009073437 | Jun 2009 | WO |
WO 2010003797 | Jan 2010 | WO |
WO 2010015900 | Feb 2010 | WO |
WO 2010027471 | Mar 2010 | WO |
WO 2010028025 | Mar 2010 | WO |
WO 2010029344 | Mar 2010 | WO |
WO 2010038771 | Apr 2010 | WO |
WO 2010051641 | May 2010 | WO |
WO 2010052430 | May 2010 | WO |
WO 2010053918 | May 2010 | WO |
WO 2010061005 | Jun 2010 | WO |
2011072399 | Jun 2011 | WO |
Entry |
---|
Millay et al.; “Vasoconstrictors in Facial Plastic Surgery”; Archives of Otolaryngology—Head & Neck Surgery; vol. 117; pp. 160-163; Feb. 1991. |
Wahl, “European Evaluation of a New Hyaluronic Acid Filler Incorporating Lidocaine”, Journal of Cosmetic Dermatology; vol. 7; pp. 298-303; 2008. |
Aesthetic Buyers Guide, “Juvéderm Raises Standards”; Jan./Feb. 2007 (5 pp.), www.miinews.com. |
Adams; “An Analysis of Clinical Studies of the Uses of Crosslinked Hyaluronan, Hylan, in the Treatment of Osteoarthritis”; J. Rheumatol Suppl. ; vol. 39; pp. 16-18; Aug. 1993. |
Albano et al.; “Hyroxyethyl Radicals in Ethanol Hepatotoxicity”; Frontiers in Bioscience; vol. 4; pp. 533-540; 1999. |
Allemann et al.; “Hyaluronic acid gel (JUVADERM) preparations in the treatment of facial wrinkles and folds”; Clinical Interventions in Aging; vol. 3, No. 4; pp. 629-634; 2008. |
Antunes et al.; “Efficacy of Intrarectal Lidocaine Hydrochloride Gel for Pain control in Patients Undergoing Transrectal Prostate Biopsy”; International Braz J Urol; vol. 30, No. 5; pp. 380-383; Sep.-Oct. 2004. |
Atanassoff et al.; “The Effect of Intradermal Administration of Lidocaine and Morphine on the Response to Thermal Stimulation”; Anesth Analg; vol. 84; pp. 1340-1343; 1997. |
Baumann et al.; “Comparison of smooth-gel hyaluronic acid dermal fillers with cross-linked bovine collagen: a multicenter, double-masked, randomized, within-subject study”; Dermatol. Surg.; vol. 33(Suppl 2); pp. S128-S135 2007. |
Beasley et al.; “Hyaluronic acid fillers: a comprehensive review”; Facial Plast. Surg.; vol. 25, No. 2; pp. 86-94; 2009. |
Beer; “Dermal fillers and combinations of fillers for facial rejuvenation”; Dermatol. Clin.; vol. 27, No. 4; pp. 427-432; 2009. |
Belda et al.; “Hyaluronic acid combined with mannitol to improve protection against free-radical endothelial damage: Experimental Model”; J.Cataract Refract Surg; Vo. 31; pp. 1213-1218; 2005. |
Bircher, et al.; “Delayed-Type Hypersensitivity to Subcutaneous Lidocaine With Tolerance to Articaine: Confirmation by In Vivo and In Vitro Tests”; Contact Dermatitis; vol. 34; pp. 387-389; 1996. |
Bluel et al.; “Evaluation of Reconstituted Collagen Tape as a Model for Chemically Modified Soft Tissues”, Biomat. Med. Dev. Art. Org.; vol. 9(1); pp. 37-46; 1981. |
Capozzi et al., “Distant Migration of Silicone Gel From a Ruptured Breast Implant”, Plastic and Reconstructive Surgery; vol. 62; pp. 302-303; 1978. |
Carlin et al., “Effect of anti-inflammatory drugs on xanthine oxidase and xanthine oxidase induced depolymerization of hyaluronic acid”; Agents and Actions; vol. 16 (5); pp. 377-384; 1985. |
Carruthers et al.; “The science and art of dermal fillers for soft-tissue augmentation”; J. Drugs Dermatol; vol. 8(4); pp. 335-350; 2009. |
Champion et al., “Role of Target Geometry in Phagocytosis”; S. Proc. Nat. Acad. Sci.; vol. 103; No. 13; pp. 4930-4934; Mar. 28, 2006. |
Chin et al., “Allergic Hypersensitivity to Lidocaine Hydrochloride”, International journal of Dermatology, vol. 19; pp. 147-148; Apr. 1980. |
Chvapil, “Collagen Sponge: Theory and Practice of Medical Applications”, J. Biomed Mater. Res., vol. II, pp. 721-741; 1977. |
Clark et al., “The Influence of Triamcinolone Acetonide on Joint Stiffness in the Rat”, J Bone Joint Surg; vol. 53-A; pp. 1409-1414; Oct. 1971. |
Cohen et al., “Organization and Adhesive Properties of the Hyaluronan Pericellular Coat of Chrondrocytes and Epithelial Cells”, Biophys J.; vol. 85; pp. 1996-2005; Sep. 2003. |
Deland, “Intrathecal Toxicity Studies with Benzyl Alcohol”, Toxicol Appl Pharmacol; vol. 25; pp. 153-156; 1973. |
Desai et al., J Pharm Sci Abstract only; 84 (2): 212-215; Feb. 1995. |
Eyre et al., Top Curr. Chem., vol. 247, pp. 207-229; 2005. |
Falcone et al.; “Crosslinked hyaluronic acid dermal fillers: a comparison of rheological properties.” J Biomed Mater Res; vol. 87(1); pp. 264-271; 2008. |
Falcone et al.; “Temporary polysaccharide dermal fillers: a model for persistence based on physical properties.” Dermatol Surg.; vol. 35(8); pp. 1238-1243; 2009. |
Farley et al., “Diluting Lidocaine and Mepivacaine in Balanced Salt Solution Reduces the Pain of Intradermal Injection”, Regional Anesthesia; vol. 19(1); pp. 48-51; 1994. |
Frati et al., “Degradation of hyaluronic acid by photosensitized riboflavin in vitro. Modulation of the effect by transition metals, radical quenchers, and metal chelators”; Free Radical Biology Medicine; vol. 22 (7); pp. 1139-1144 1997. |
Fujinaga et al., “Reproductive and Teratogenic Effects of Lidocaine in Sprague-Dawley Rats”; Anesthesiology vol. 65; pp. 626-632; 1986. |
Gammaitoni et al., “Pharmacokinetics and safety of continuously applied lidocaine patches 5%”, Am J Health Syst Pharm; vol. 59; pp. 2215-2220; Nov. 15, 2002. |
GinShiCel MH Hydroxy Propyl methyl Cellulose, Web Page http://www.ginshicel.cn/MHPC.html, Nov. 12, 2008. |
Gold; “Use of Hyaluronic acid fillers for the treatment of the aging face”; Clin. Interventions Aging; vol. 2(3); pp. 369-376; 2007. |
Goldberg; “Breakthroughs in US dermal fillers for facial soft-tissue augmentation”; J Cosmet Laser Ther; vol. 11; pp. 240-247; 2009. |
Graefe et al., “Sensitive and specific photometric determination of mannitol in human serum”; Clin Chem Lab Med; vol. 41, No. 8; pp. 1049-1055; 2003. |
Grecomoro et al., “Intra-Articular Treatment with Sodium Hyaluronate in Gonarthosis: A Controlled Clinical Trial Versus Placebo”, Pharmatherapeutica, vol. 5(2); pp. 137-141; 1987. |
Grillo et al., “Thermal Reconstitution of Collagen from Solution and the Response to Its Heterologous Implantation”, JSR; vol. II, No. 1, pp. 69-82; Jan. 1962. |
Hassan et al., “Effects of Adjuvants to local anaesthetics on their duration. III. Experimental studies of hyaluronic acid”; Abstract Pub Med [Acta Anesthesiol Scand; vol. 29(4); pp. 384-388; May 1985. |
Hayashibara, “AA2G”; Sep. 23, 2007, http://web.archive.org/web/2007923072010/http://www.hayashibara-intl.com/cosmetics/aa2g.html. |
Helliwell, “Use of an Objective Measure of Articular Stiffness to Record Changes in Finger Joints After Intra-Articular Injection of Corticosteroid”, An Theum Dis; vol. 56; pp. 71-73; 1997. |
Hertzberger-Ten Cate et al., “Intra-Articular Steroids in Pauciarticular Juvenile Chronic Arthritis”, Type I, Eur J Pediatr; vol. 150; pp. 170-172; 1991. |
Hetherington, “Potential for Patient Harm From Intrathecal Administration of Preserved Solutions”, Abstract only Med J; vol. 173(3); p. 141; Aug. 2000. |
Hurst, “Adhesive Arachnoiditis and Vascular Blockage Caused by Detergents and Other Chemical Irritants: an Experimental Study”, J Path Bact, vol. LXX, No. 70; pp. 167-177; 1955. |
Intramed Mannitol 20% m/v Infusion, package insert, pp. 1-2 (2010) http://home.intekom.com/pharm/intramed/manitl20.html. |
Jones et al., “Intra-Articular Hyaluronic Acid Compared to Intra-Articular Triamcinolone Hexacetonide in Inflammatory Knee Osteoarthritis”, Osteoarthritis Cartilage, vol. 3; pp. 269-273; 1995. |
Kablik et al. “Comparative physical properties of hyaluronic acid dermal fillers.” Dermatol. Surg.; vol. 35(Suppl. 1); pp. 302-312; 2009. |
Klein, “Skin Filling Collagen and Other Injectables of the Skin”, Dermatologic Clinics; vol. 19, No. 3, pp. 491-588; Jul. 2001. |
Kopp et al., “The Short-Term Effect of Intra-Articular Injections of Sodium Hyaluronate and Corticosteroid on Temporomandibular Joint Pain and Dysfunction”; J. Oral Maxillofac Surg.; V. 43; pp. 429-435; 1985. |
Kulicke et al., “Visco-Elastic Properties of Sodium Hyaluronate Solutions,” American Institue of Physics; 3 pages; 2008. |
Laeschke, “Biocompatibility of Microparticles into Soft Tissue Fillers”, Semin. Cutan. Med. Surg., vol. 23; pp. 214-217; 2004. |
Lamar et al., “Antifibrosis Effect of Novel Gels in Anterior Ciliary Slerotomy (ACS),” ARVO 2002 abstract only. |
Levy et al., “Lidocaine hypersensitivity after subconjunctival injection”, Can J Ophthalmol 2006; vol. 41, No. 2; pp. 204-206. |
Lupo; “Hyaluronic acid fillers in facial rejuvenation.” Semin. Cutan. Med. Surg.; vol. 25; pp. 122-126; 2006. |
Mackley et al., “Delayed-Type Hypersensitivity to Lidocaine”, Arch Dermatol, vol. 139; pp. 343-346; Mar. 2003. |
Mancinelli et al., “Intramuscular High-Dose Triamcinolone Acetonide in the Treatment of Severe Chronic Asthma”, West J. Med; vol. 167(5); pp. 322-329; Nov. 1997. |
Matsumoto et al., “Reducing the Discomfort of Lidocaine Administration through pH Buffering,” Journal of Vascular and Interventional Radiology; vol. 5, No. 1; pp. 171-175; Nov. 1997. |
McCarty et al., “Inflammatory Reaction After Intrasynovial Injection of Microcrystalline Adrenocorticosteroid Esters”, Arthritis and Rheuymatism; vol. 7(4); pp. 359-367; 1964. |
McCleland et al.; “Evlaution of Artecoll Polymethacrylate Implant for Soft-Tissue Augmentation: Biocompatibility and Chemical Chartacterization”; Plastric Reconstructive Surgery; vol. 100(6); pp. 1466-1474; Nov. 1997. |
McPherson et al; “Development and Biochemical Characterization of Injectable Collagen,” J. Dermatol Surg Oncol; vol. 14 (Suppl1); pp. 13-20; Jul. 7, 1988. |
Orvisky et al., “High-molecular-weight hyaluronan—a valuable tool in testing the antioxidative activity of amphiphilic drugs stobadine and vinpocetine”; J. Pharm. Biomed. Anal.; vol. 16; pp. 419-424; 1997. |
Osmitrol (generic name Mannitol),Official FDA Information, side effects and uses, pp. 1-10 (2010) http://www.drugs.com/pro/osmitrol.html. |
Prestwich; “Evaluating drug efficacy and toxicology in three dimensions: using synthetic extracellular matrices in drug discovery”; Accounts of Chemical Research; vol. 41, No. 1; pp. 139-148; Jan. 2008. |
Rehakova et al.; “Properties of collagen and hyaluronic acid composite materials and their modifications by chemical crosslinking,” Journal of Biomedical Materials Research; vol. 30; pp. 369-372; 1996. |
Remington's Pharmaceutical Science Mac Publishing Company, Easton, PA 16th Edition 1980; 1-page. |
Rosenblatt et al., “The Effect of Collagen Fiber Size Distribution on the Release Rate of Proteins from Collagen Matrices by Diffusion”, J. Controlled Rel., vol. 9; pp. 195-203; 1989. |
Rosenblatt et al., “Chain Rigidity and Diffusional Release in Biopolymer Gels”, Proceed. Inter. Symp. Control. Rel. Bioact. Mater.; vol. 20; pp. 264-265; 1993; Controlled Release Society, Inc. |
Sannino et al., “Crosslinking of Cellulose Derivatives and Hyaluronic Acid with Water-Soluble Carbodiimide,” Polymer; vol. 46; pp. 11206-11212 ; 2005. |
SCULPTRA® Aesthetic (injectable poly-L-lactic acid) Directions for Use, Dermik Laboratories product insert (Jul. 2009), sanofi-aventis U.S. LLC; 10 pages. |
Segura et al. “Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern.” Biomaterials; vol. 26; pp. 359-371; 2005. |
Selvi et al, “Arthritis Induced by Corticosteroid Crystals”, J. Rheumatology; vol. 34:3; 1 page; 2004. |
Serban et al., “Modular Extracellular Matrices: Solutions for the Puzzle”; Methods; vol. 45(1)pp. 93-98; 2008. |
Shu et al., “Synthesis and evaluation of injectable, in situ crosslinkable synthetic extracellular matrices for tissue engineering”; J. Biomed. Mater. Res. A.; vol. 79(4); pp. 902-912; 2006. |
Silver et al., “Physical Properties of Hyaluronic Acid and Hydroxypropylmethylcellulose in Solution: Evaluation of Coating Ability”; Journal of Applied Biomaterials; vol. 5; pp. 89-98; 1994. |
Smith et al., “Five Percent Lidocaine Cream Applied Simultaneously to Skin and Mucosa of the Lips Creates Excellent Anesthesia for Filler Injections”, Dermatol Surg; vol. 31; pp. 1635-1637; 2005. |
Tezel et al.,, “The science of hyaluronic acid dermal fillers”, J. Cosmet. Laser Ther.; vol. 10; pp. 35-42; 2008. |
TRB Chemedica Ophthalmic Line, VISIOL, product info., pp. 1-2; No date, 2012. |
VISIOL, Viscoelstic gel for use in ocular surgery, (2010) p. 1, htt://www.trbchemedica.com/index.php/option=com—content&tas. |
Waraszkiewicz et al., “Stability-Indicating High-Performance Liquid Chromatographic Analysis of Lidocaine Hydrochloride and Lidocaine Hydrochloride with Epinephrine Injectable Solutions”, Journal of Pharmaceutical Sciences, vol. 70, No. 11, pp. 1215-1218, Nov. 1981. |
Xia et al., “Comparison of Effects of Lidocaine Hydrochloride, Buffered Lidocaine, Diphenhydramine, and Normal Saline After Intradermal Injection”, Journal of Clinical Anesthesia 14:339-343, 2002. |
Yeom et al., “Effect of Cross-Linking Reagents for Hyaluronic Acid Hydrogel Dermal Fillers on Tissue Augmentation and Regeneration”, Bioconjugate Chem., vol. 21; pp. 240-247; 2010. |
Yui, et al., “Inflammation responsive degradation of crosslinked hyaluronic acid gels,” Journal of Controlled Release, vol. 22; pp. 105-116; 1992. |
Yui et al., “Photo-responsive degradation of heterogeneous hydrogels comprising crosslinked hyaluronic acid and lipid microspheres for temporal drug delivery,” Journal of Controlled Release; vol. 26; pp. 141-145; 1993. |
Yun et al., “Hyaluronan Microspheres for Sustained Gene Delivery and Site-Specific Targeting”, Biomaterials, vol. 25, pp. 147-157, 2004. |
Zheng Shu et al., “In situ crosslinkable hyaluronan hydrogels for tissue engineering.” Biomaterials; vol. 25; pp. 1339-1348; 2004. |
Zulian et al., “Triamcinolone Acetonide and Hexacetonide Intra-Articular Treatment of Symmetrical Joints in Juvenile Idiopathic Arthritis: a Double-Blind Trial”, Rheumatology; vol. 43; No. 10; pp. 1288-1291; 2004. |
Powell; “Stability of Lidocaine in Aqueous Solution: Effect of Temperature, pH, Buffer, and Metal Ions on Amide Hydrolysis”; Pharmaceutical Research; vol. 4, No. 1, 1987. |
Cui et al; “The Comparison of Physicochemical Properties of Four Cross-Linked Sodium Hyaluronate Gels with Different Cross-Linking Agents”; Advanced Material Research; vols. 396-398; pp. 1506-1512; 2012. |
Lindvall et al.; “Influcence of Various Compounds on the Degradation of Hyaluronic Acid by a Myeloperoxidase System”; Chemcio-Biological Interactions; vol. 90; pp. 1-12; 1994. |
Weidmann; “New Hyaluronic Acid Filler for Subdermal and Long-Lasting Volume Restoration of the Face”; European Dermatology; pp. 65-68; 2009. |
Skardal etal “Bioprinting Vessel-Like Constructs Using Hyaluronan Hydrogels Crosslinkedwith Tetrahedral Polyethylene Glyol Tetracrylates”; BioMaterials. Elsevier Science Publishers BV; vol. 31, No. 24; pp. 6173-6181; Aug. 1, 2010. |
Buck et al, “Injectable Fillers for our Facial Rejuvenation: a Review”, Journal of Plastic, Reconstructive and Aesthetic Surgery, (2009), 62:11-18, XP002668828. |
Park et al., “Biological Characterization of EDC-crosslinked Collagen-Hyaluronic Acid Matrix in Dermal Tissue Restoration”, Biomaterials 24 (2003) 1631-1641. |
Park et al., “Characerization of Prous Collagen/Hyaluronic Acid Scaffold Modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking”, Biomaterials 23 (2002): 1205-1212. |
Number | Date | Country | |
---|---|---|---|
20120164098 A1 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
60978423 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12247175 | Oct 2008 | US |
Child | 13415733 | US |