The present invention relates to a crossed roller bearing, and, in particular, to an improvement of the roller insertion groove formed in the inner ring of the bearing, into which cylindrical rollers are inserted.
A crossed roller bearing is, as is known, provided with inner and outer rings, an annular roller raceway that has a rectangular cross-section and is formed between the rings, a plurality of cylindrical rollers inserted rollably into the roller raceway so that they are alternately orthogonal with each other in the circumferential direction of the raceway. In a crossed roller bearing having an integral inner ring and an integral outer ring, a roller insertion groove or roller insertion hole is formed in the inner ring or outer ring in order to insert the cylindrical rollers into the roller raceway. The roller insertion groove or hole is sealed by a plug after the cylindrical rollers have been inserted. Crossed roller bearings having an inner ring formed with a roller insertion groove are proposed in Patent documents 1 and 2.
Patent Document 1: JP H11-280757 A
Patent Document 2: JP 2001-56024 A
In a crossed roller bearing having an inner ring formed with a roller insertion groove, there is a possibility that the corners of the opening edge portion of the roller insertion groove opening to the roller raceway side become a starting point of fracture due to metal fatigue.
Specifically, as shown in
Especially, in a case of a crossed roller bearing in which a roller insertion groove is formed in an inner ring which is thin in thickness in the radial direction, the corners of the roller insertion groove tend to easily become a starting point of fracture due to metal fatigue, which may lead to a significant decrease in the fatigue strength.
An object of the present invention is to provide a crossed roller bearing which is capable of improving the fatigue strength by mitigating the stress concentration occurred in the corners of the roller insertion groove formed in the inner ring.
In order to solve the above problems, a crossed roller bearing according to the present invention has:
The roller insertion groove is open to the inner ring-side V-groove in the inner-ring outer circumferential surface. The opening or outer circumferential surface-side groove opening is defined by the circumferential direction opening extending in the circumferential direction along the inner ring-side V-groove and the pair of side opening edges extending from the both ends of the circumferential direction opening edge to the ring-shaped end faces of the inner ring. Concentration of stress occurs in the corners of the inner ring-side V-groove of the inner ring where the circumferential direction opening edge intersects the side opening edges.
The inventors of the present invention et al focused on the groove depth of the roller insertion groove formed in the inner ring, specifically, the groove depth measured from the ring-shaped end face of the inner ring along the direction of the inner-ring center axis line. The location of the circumferential direction opening edge of the outer circumferential surface-side groove opening formed in the inner ring-side V-groove is shifted in the direction of the inner-ring center axis by changing the groove depth. In the present invention, the groove depth is set so that the circumferential direction opening edge is located at a position deviated from the minimum outer diameter section. The present inventors et al confirmed that the concentration of stress occurred in the corners in the outer circumferential surface-side groove opening can be mitigated significantly in comparison with a case in which the circumferential direction opening edge coincides with the minimum outer diameter section of the inner ring-side V-groove.
The circumferential direction opening edge of the roller insertion groove is formed at an opposite position to the ring-shaped end face with respect to the minimum outer diameter section, for example.
For example, the roller insertion groove may be such a groove that is provided with:
In the crossed roller bearing of the present invention, the concentration of stress that occurs in the corners of the outer circumferential surface-side groove opening of the roller insertion groove in the inner-ring outer circumferential surface can be significantly mitigated. Accordingly, the inner ring can be prevented from decreasing in the fatigue strength caused by the provision of the roller insertion groove. In addition, the fatigue strength of a crossed roller bearing having an inner ring formed with a roller insertion groove can be increased in comparison with the conventional one, so that the load capacity of the crossed roller bearing can be improved. Furthermore, since the strength of the inner ring can be improved by mitigating the stress concentration due to the provision of the roller insertion groove, it is possible to reduce the weight of the crossed roller bearing by making the thickness of the inner ring thinner than the conventional one.
An embodiment of a crossed roller bearing according to the present invention will be described below with reference to the drawings.
As illustrated in these drawings, a crossed roller bearing 1 is provided with an integral outer ring 2 and an integral inner ring 3. The outer ring 2 has a circular outer-ring inner circumferential surface 21 formed with an outer ring-side V-groove 22 which is open to the inner side. The inner ring 3 has a circular inner-ring outer circumferential surface 31 formed with an inner ring-side V-groove 32 opening to the outer side. A roller raceway 4, which is an annular roller insertion section having a rectangular cross-section, is defined by the outer ring-side V-groove 22 and the inner ring-side V-groove 32. A plurality of columnar rollers 5 are inserted in a rotatable state into the roller raceway 4 along the circumferential direction thereof. The rollers 5 are arranged in a state in which the center axes thereof are alternately orthogonal to each other.
The inner ring 3 is formed with a roller insertion groove 6. The roller insertion groove 6 is formed by cutting out a part of one ring-shaped end face 33 of the inner ring 3. The roller insertion groove 6 of the present example is a groove that extends with a fixed width in the radial direction from the inner-ring outer circumferential surface 31 to the vicinity of the inner-ring inner circumferential surface 34. The roller insertion groove 6 is sealed by a plug 7. The plug 7 is fastened and fixed to the side of the inner ring 3 by a fastening bolt 8.
The plug 7 has a shape complementary to the roller insertion groove 6, and is provided with an end face 71 defining a part of the ring-shaped end face 33 of the inner ring 3 and with a raceway surface portion 72 defining a part of the inner ring-side V-groove 32, as illustrated in
The inner ring-side V-groove 32 is provided with a pair of inclined raceway surface 35 and 36 on which the rollers 5 roll as illustrated in
The roller insertion groove 6 is a groove which is formed by cutting out a part of the inner ring 3 into a rectangular shape as a whole and which is open in two directions of the inner-ring end face direction (along the direction of the inner-ring center axis 3a) and the inner-ring radial direction. Specifically, the roller insertion groove 6 is provided with an end face-side groove opening 61 exposed to the ring-shaped end face 33 of the inner ring 3 and an outer circumferential surface-side groove opening 62 which continues to the end surface-side groove opening 61 and exposes to the inner ring-side V-groove 32 of the inner-ring outer circumferential surface 31.
The end face-side groove opening 61 is defined by a pair of straight-line end-surface opening edges 61a and 61b, and a curved end-face opening edge 61c which connects these end-face opening edges 61a and 61b. The end-face opening edges 61a and 61b extend in parallel at a constant gap from the inner-ring outer circumferential surface 31 toward the inner-ring inner circumferential surface 34 along the inner-ring radial direction. The curved end-face opening edge 61c is smoothly connected to the radially inner ends of the straight-line end-face opening edges 61a and 61b.
The outer circumferential surface-side groove opening 62 is defined by a circular arc-shaped circumferential direction opening edge 62a and a pair of side opening edges 62b and 62c extending from the both ends of the circumferential direction opening edge 62a to the ring-shaped end face 33.
The roller insertion groove 6 thus opening in the two directions is defined by a flat groove bottom surface 63 extending from the circumferential direction opening edge 62a to a direction orthogonal to the inner-ring center axis line 3a (the inner side of the inner-ring radial direction); a pair of flat groove side surfaces 64 and 65 respectively extending from the side opening edges 62b and 62c in a direction orthogonal to the inner-ring center axis line 3a; and a groove end surface 66 having a curved surface and connecting the radially inner side ends of the groove side surfaces 64 and 65 with each other. A bolt hole 63a is open in the groove bottom surface 63.
Here, as illustrated in
Therefore, the circumferential direction opening edge 62a, which is an end of the groove bottom surface 63 on the side of the inner ring-side V-groove 32, is formed at a position deviated from the minimum outer diameter section 38 on the concave surface 37. Specifically, the inner corner between the circumferential direction opening edge 62a of the outer circumferential-side groove opening 62 and the side opening edge 62b and the inner corner between the circumferential direction opening edge 62 and the other side opening edge 62c are both formed at positions deviated from the minimum outer diameter section 38.
Where the distance from the ring-shaped end face 33 to the minimum outer diameter section 38 is D38, the width of the curved surface 37 is W37, the groove depth of the roller insertion groove 6 (which is the distance from the ring-shaped end face 33 to the groove bottom surface 63 or the circumferential direction opening edge 62a) is D6, the values thereof satisfy the following two conditions:
D38−W37/2≤D6≤D38+W37/2
D6≠D38
In the present example, as shown in
D38<D6<D38+W37/2
In the inner ring 3 having the roller insertion groove 6, the stress appeared in the portion where the roller insertion groove 6 is formed (cross-section defective part) is increased due to the formation of the roller insertion groove 6. The stress is also concentrated on the inner corners of the cross-section defective part where the roller insertion groove 6 is formed.
In the inner ring 3 of the present example, the outer diameter of the groove bottom section of the roller insertion groove 6, which is the outer diameter of the circumferential direction opening edge 62a, is greater than that of the minimum outer diameter section 38 of the inner ring 3. Accordingly, increase in stress caused by the removal of material from the inner ring 3 for the formation of the roller insertion groove 6 will not occur on the same location where the concentration of stress occurs due to the notched state of the roller insertion groove 6.
As a result, the concentration of stress, which occurs in the inner corners of the outer circumferential surface-side groove opening 62 in the roller insertion groove 6, is mitigated, whereby suppressing the fatigue fracture staring from the inner corners. Accordingly, the fatigue strength of the inner ring 3 can be enhanced.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/085623 | 12/21/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/109826 | 6/29/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5218764 | Suzuki | Jun 1993 | A |
20070076997 | Kunimoto | Apr 2007 | A1 |
20120308169 | Kuo | Dec 2012 | A1 |
Number | Date | Country |
---|---|---|
102008011060 | Sep 2008 | DE |
H11-280757 | Oct 1999 | JP |
2001-56024 | Feb 2001 | JP |
2001-116040 | Apr 2001 | JP |
2001116040 | Apr 2001 | JP |
2005036916 | Feb 2005 | JP |
2010-151152 | Jul 2010 | JP |
2011-106544 | Jun 2011 | JP |
WO-2012157021 | Nov 2012 | WO |
Entry |
---|
International Search Report (PCT/ISA/210) dated Mar. 22, 2016, by the Japan Patent Office as the International Searching Authority for International Application No. PCT/JP2015/085623. |
Written Opinion (PCT/ISA/237) dated Mar. 22, 2016, by the Japan Patent Office as the International Searching Authority for International Application No. PCT/JP2015/085623. |
Number | Date | Country | |
---|---|---|---|
20190003525 A1 | Jan 2019 | US |