The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
The present invention provides substantially water-insoluble, water-swellable, crosslinked carboxyalkyl cellulose fibers; and substantially water-insoluble, water-swellable, crosslinked carboxyalkyl cellulose fiber bundles. Methods for making the substantially water-insoluble, water-swellable fibers and fiber bundles are described.
In one aspect, the present invention provides substantially water-insoluble, water-swellable, non-regenerated, carboxyalkyl cellulose fibers. The fibers have a surface having the appearance of the surface of a cellulose fiber and include a plurality of non-permanent intra-fiber metal crosslinks. As can be seen in
The fibers of the invention are cellulosic fibers that have been modified by carboxyalkylation and crosslinking. Water swellability is imparted to the fibers through carboxyalkylation and crosslinking renders the fibers substantially insoluble in water. The fibers have a degree of carboxyl group substitution effective to provide advantageous water swellability. The fibers are crosslinked to an extent sufficient to render the fiber water insoluble. The fibers have a liquid absorption capacity that is increased compared to unmodified fluff pulp fibers.
The fibers are substantially insoluble in water. As used herein, fibers are considered to be water soluble when they substantially dissolve in excess water to form a solution, losing their fiber form and becoming essentially evenly dispersed throughout the water solution. Sufficiently carboxyalkylated cellulosic fibers that are free from a substantial degree of crosslinking will be water soluble, whereas the fibers of the invention, carboxyalkylated and crosslinked fibers, are substantially water insoluble.
The fibers of the invention are substantially water-insoluble, water-swellable fibers. As used herein, the term “substantially water-insoluble, water-swellable” refers to fibers that, when exposed to an excess of an aqueous medium (e.g., bodily fluids such as urine or blood, water, synthetic urine, or 0.9 weight percent solution of sodium chloride in water), swell to an equilibrium volume, but do not dissolve into solution.
The water-swellable, water-insoluble fibers of the invention have a surface having the appearance of the surface of a cellulose fiber. Like native fibers, the fibers have a surface that includes striations, pits, and pores. The fibers of the invention retain the surface structure of cellulose fibers because the fibers of the invention are prepared by methods that do not include dissolving the fibers into solution and then regenerating those fibers from the solution. Fibers that are prepared by regeneration from solution substantially lack typical fiber structures present in native fibers. Regenerated fibers lack, among other structural features, surface structure (e.g., striations, pits, and pores).
As used herein, the term “regenerated fiber” refers to a fiber that has been prepared by regeneration (i.e., return to solid form) from a solution that includes dissolved fiber. The term “non-regenerated” refers to a fiber that has not been dissolved into solution and then regenerated (i.e., returned to solid form) from that solution. As noted above, whereas the non-regenerated fibers of the invention substantially retain the surface structure of the cellulose fibers from which they are made, regenerated fibers do not.
The fibers of the invention include non-permanent intra-fiber crosslinks. The non-permanent intra-fiber crosslink is a metal-cellulose crosslink formed using a multi-valent metal ion. The non-permanent crosslinks can unform and reform in use (e.g., dissociate and re-associate on liquid insult in a personal care absorbent product). The fibers of the invention further include temporary intra-fiber crosslinks. Temporary intra-fiber crosslinks are not stable in use over time and decompose over time on liquid insult in a personal care absorbent product. The fibers of the invention can be used to make absorbent fibrous composites having useful bulk due, at least in part, to the temporary intra-fiber crosslinks. Through their advantageous wet bulk, these absorbent composites have the capacity to acquire and store liquid on insult, including multiple liquid insults that occur during use of personal care absorbent products such as infant diapers.
The fibers of the invention are substantially insoluble in water while being capable of absorbing water. The fibers of the invention are rendered water insoluble by virtue of a plurality of non-permanent intra-fiber metal crosslinks. As used herein, the term “non-permanent intra-fiber metal crosslinks” refers to the nature of the crosslinking that occurs within individual fibers of the invention (i.e., intra-fiber) and among and between each fiber's constituent cellulose polymers.
The fibers of the invention are intra-fiber crosslinked with a metal crosslink. The metal crosslink arises as a consequence of an associative interaction (e.g., bonding) between functional groups on the fiber's cellulose polymers (e.g., carboxy, carboxylate, or hydroxyl groups) and a multi-valent metal species. Suitable multi-valent metal species include metal ions having a valency of two or greater and that are capable of forming an associative interaction with a cellulose polymer (e.g., reactive toward associative interaction with the polymer's carboxy, carboxylate, or hydroxyl groups). The cellulose polymers are crosslinked when the multi-valent metal species forms an associative interaction with functional groups on the cellulose polymer. A crosslink may be formed within a cellulose polymer or may be formed between two or more cellulose polymers within a fiber. The extent of crosslinking affects the water solubility of the fibers and the ability of the fiber to swell on contact with an aqueous liquid (i.e., the greater the crosslinking, the greater the insolubility).
The fibers of the invention include non-permanent intra-fiber metal crosslinks. As used herein, the term “non-permanent” refers to the metal-cellulose crosslink. Crosslinked cellulose fibers are well known and it is generally understood that the crosslinks of such fibers are generally permanent in nature (i.e., crosslinks that are stable to ordinary use conditions, such as cellulose wetting on liquid insult occurring in a personal care absorbent product). Permanent crosslinks are those that do not dissociate during the fibers' use and are typically covalent crosslinks derived from reaction of an organic compound having at least two functional groups capable of reacting with at least one functional group of a cellulose polymer (e.g., a diether crosslink derived from crosslinking cellulose with a dihalide such as 1,3-dichloro-2-propanol, or a diester crosslink derived from crosslinking cellulose with citric acid). A non-permanent crosslink is a crosslink that provides a crosslink within or between a fiber's cellulose polymers, but is reactive toward liquid insult. The non-permanent crosslinks of the fibers of the present invention can be unformed and reformed on liquid insult. The metal crosslinks of the fibers of the invention have the characteristic of dissociation on liquid insult, which allow the fibers to expand and swell during liquid acquisition. Once liquid acquisition is complete (i.e., insult terminated), re-association between the dissociated multi-valent metal ion species and the cellulose polymer occurs to re-establish a crosslink. In such an instance, the new crosslink is formed in fibers now swollen with acquired liquid. It will be appreciated that the process of dissociating and re-associating (breaking and reforming crosslinks) the multi-valent metal ion and cellulose polymer is dynamic and also occurs during liquid acquisition. By virtue of the non-permanent crosslinks, the fibers of the invention have the unique property of maintaining structural integrity while swelling on liquid insult.
The fibers of the invention include non-permanent intra-fiber metal crosslinks. The metal crosslinks include multi-valent metal ion crosslinks that include one or more metal ions selected from aluminum, boron, bismuth, cerium, chromium, titanium, zirconium, and mixtures thereof. In one embodiment, the crosslinks are formed through the use of an aluminum crosslinking agent. Suitable aluminum crosslinking agents include aluminum acetates, aluminum sulfate, aluminum chloride, and aluminum lactate. Representative aluminum acetates include aluminum monoacetate, aluminum diacetate, aluminum triacetate, aluminum hemiacetate, aluminum subacetate, and mixtures of aluminum acetates made from non-stoichiometric amounts of acetate and hydroxide in an organic solvent that is water miscible. In one embodiment, the aluminum crosslinking agent is aluminum monoacetate stabilized with boric acid (aluminum acetate, basic, containing boric acid as stabilizer, CH3CO2Al(OH)2.1/3H3BO3, Aldrich Chemical Co.). In another embodiment, the aluminum crosslinking agent is prepared immediately prior to use (see Examples 5 and 6).
Methods for making the fibers of the invention are described in Examples 1-4. The absorbent properties of the fibers are also summarized in these examples.
The fibers of the invention, which include non-permanent metal ion crosslinks, also include temporary intra-fiber crosslinks. Temporary intra-fiber crosslinks are crosslinks that are not stable over time in use (e.g., not stable over time to liquid insult when in use in a personal care absorbent product, such as an infant diaper). Temporary crosslinks are unstable over time and decompose under extended use conditions.
Temporary intra-fiber crosslinks can be made by crosslinking the fibers with an organic compound having at least two functional groups capable of reacting with at least one functional group selected from the group consisting of carboxyl, carboxylic acid, and hydroxyl groups. Temporary intra-fiber crosslinks include acetal and hemiacetal crosslinks.
Suitable crosslinking agents useful for making temporary crosslinks include aldehydes, dialdehydes, and related derivatives (e.g., formaldehyde, glyoxal, glutaraldehyde, glyceraldehyde).
In some embodiments, mixtures and/or blends of crosslinking agents can also be used.
The crosslinking agent can include a catalyst to accelerate the bonding reaction between the crosslinking agent and cellulosic fiber. Suitable catalysts include acidic salts, such as ammonium chloride, ammonium sulfate, aluminum chloride, magnesium chloride, and alkali metal salts of phosphorous-containing acids.
The amount of crosslinking agent applied to the cellulosic fiber will depend on the particular crosslinking agent and is suitably in the range of from about 0.01 to about 10.0 percent by weight based on the total weight of cellulosic fiber. In one embodiment, the amount of crosslinking agent applied to the fibers is in the range from about 1.0 to about 8.0 percent by weight based on the total weight of fibers.
In one embodiment, the crosslinking agent can be applied to the cellulosic fibers as an aqueous alcoholic solution. Water is present in the solution in an amount sufficient swell the fiber to an extent to allow for crosslinking within the fiber's cell wall. However, the solution does not include enough water to dissolve the fiber. Suitable alcohols include those alcohols in which the crosslinking agent is soluble and the fiber to be crosslinked (i.e., unmodified or carboxyalkylated cellulosic fiber) is not. Representative alcohols include alcohols that include from 1 to 5 carbon atoms, for example, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, s-butanol, and pentanols. In one embodiment, the alcohol is ethanol. In another embodiment, the alcohol is methanol.
It will be appreciated that due to their fibers' structure, the fibers of the invention can have a distribution of carboxyl and/or crosslinking groups along the fiber's length and through the fiber's cell wall. Generally, there can be greater carboxyalkylation and/or crosslinking on or near the fiber surface than at or near the fiber core. Surface crosslinking may be advantageous to improve fiber dryness and provide a better balance of total absorbent capacity and surface dryness. Fiber swelling and soak time can also effect the carboxyalkylation and crosslinking gradients. Such gradients may be due to the fiber structure and can be adjusted and optimized through control of carboxyalkylation and/or crosslinking reaction conditions.
The substantially water-insoluble, water-swellable, non-regenerated, carboxyalkyl cellulose fibers are absorbent fibers and may be used in a variety of applications. The fibers of the invention can be incorporated into personal care absorbent products (e.g., infant diapers, adult incontinence products, and feminine care products).
Cellulosic fibers are a starting material for preparing the fibers of the invention. Although available from other sources, suitable cellulosic fibers are derived primarily from wood pulp. Suitable wood pulp fibers for use with the invention can be obtained from well-known chemical processes such as the kraft and sulfite processes, with or without subsequent bleaching. Pulp fibers can also be processed by thermomechanical, chemithermomechanical methods, or combinations thereof. A high alpha cellulose pulp is also a suitable wood pulp fiber. The preferred pulp fiber is produced by chemical methods. Ground wood fibers, recycled or secondary wood pulp fibers, and bleached and unbleached wood pulp fibers can be used. Softwoods and hardwoods can be used. Suitable fibers are commercially available from a number of companies, including Weyerhaeuser Company. For example, suitable cellulosic fibers produced from southern pine that are usable with the present invention are available from Weyerhaeuser Company under the designations CF416, NF405, PL416, FR516, and NB416. Other suitable fibers include northern softwood and eucalyptus fibers. Suitable non-wood fibers include rye grass fibers and cotton linters.
Cellulosic fibers having a wide range of degree of polymerization are suitable for forming the fiber of the invention. In one embodiment, the cellulosic fiber has a relatively high degree of polymerization, greater than about 1000, and in another embodiment, about 1500 to about 2500.
In one embodiment, the fibers have an average length greater than about 1.0 mm. Consequently, the fibers are suitably prepared from fibers having lengths greater than about 1.0 mm. Fibers having lengths suitable for preparing the fibers include southern pine, northern softwood, and eucalyptus fibers, the average length of which is about 2.8 mm, about 2.0 mm, and about 1.0 mm, respectively.
The fibers of the invention are carboxyalkylated cellulosic fibers. As used herein, “carboxyalkylated cellulosic fibers” refer to cellulosic fibers that have been carboxyalkylated by reaction of cellulosic fibers with a carboxyalkylating agent. It will be appreciated that the term “carboxyalkylated cellulosic fibers” include free acid and salt forms of the carboxyalkylated fibers. Suitable metal salts include sodium, potassium, and lithium salt, among others. Carboxyalkylated cellulosic fibers can be produced by reacting a hydroxyl group of the cellulosic fiber with a carboxyalkylating agent to provide a carboxyalkyl cellulose.
Suitable carboxyalkylating agents include monochloroacetic acid and its salts, 3-chloropropionic acid and its salts, and acrylamide. The carboxyalkyl celluloses useful in preparing the fibers of the invention include carboxymethyl celluloses and carboxyethyl celluloses.
The fibers of the invention can be characterized as having an average degree of carboxyl group substitution of from about 0.5 to about 1.5. In one embodiment, the fibers have an average degree of carboxyl group substitution of from about 0.8 to about 1.2. In another embodiment, the fibers have an average degree of carboxyl group substitution of about 1.0. As used herein, the “average degree of carboxyl group substitution” refers to the average number of moles of carboxyl groups per mole of glucose unit in the fiber. It will be appreciated that the fibers of the present invention include a distribution of carboxyl fibers having an average degree of carboxyl substitution as noted above.
As noted above, the fibers of the invention are highly absorptive.
The fibers of the invention have a liquid absorbent capacity of from about 8 to about 40 g/g as measured by the centrifuge retention capacity (CRC) test described below. In one embodiment, the fibers have a capacity of at least about 20 g/g. In another embodiment, the fibers have a capacity of at least about 25 g/g.
The fibers of the invention have a liquid absorbent capacity of from about 30 to about 70 g/g as measured by the free swell capacity test described below. In one embodiment, the fibers have a capacity of at least about 50 g/g. In another embodiment, the fibers have a capacity of at least about 60 g/g.
The fibers of the invention have a liquid absorbent capacity of from about 10 to about 40 g/g as measured by the absorbency under load (AUL) test described below. In one embodiment, the fibers have a capacity of at least about 20 g/g. In another embodiment, the fibers have a capacity of at least about 30 g/g.
The fibers of the invention can be formed into pads by, for example, conventional air-laying techniques and the performance characteristics of those pads determined. An advantageous property of the fibers of the invention is that pads formed from these fibers demonstrate rapid liquid acquisition times for multiple insults. For certain pads subjected to multiple insults, liquid acquisition times for subsequent insults actually decreases. The liquid acquisition times for subsequent insults for pads made from fibers of the invention are measured by the fluid intake flowback evaluation (FIFE) described below. The FIFE results for pads formed from the fibers of the invention are presented in Examples 2-4.
In addition to advantageous liquid acquisition, pads formed from the fibers of the invention demonstrate significant strength and integrity after being subject to multiple insults. Pad wet strength results for pads formed from the fibers of the invention are presented in Examples 2-4.
In another aspect of the invention, fiber bundles are provided. The fiber bundles are an aggregate (or plurality) of the fibers of the invention described above. In the fiber bundles, adjacent fibers are in contact with each other. The bundle is an aggregate of the fibers in which contact between adjacent fibers is maintained mechanically by, for example, friction or entanglement; or chemically by, for example, hydrogen bonding or crosslinking.
The fiber bundle can have a diameter of from about 50 to about 2000 μm, a basis weight of from about 200 to about 2000 g/m2, and a density of from about 0.03 to about 1.5 g/cm3.
Like their component fibers, the fiber bundles of the invention exhibit significant absorbent capacity.
In one embodiment, the method includes carboxyalkylating cellulose fibers by treating cellulose fibers with a carboxyalkylating agent in a carboxyalkylating medium to provide carboxyalkyl cellulose fibers; and treating the carboxyalkyl cellulose fibers with the crosslinking agents to provide substantially water-insoluble, water-swellable, carboxyalkyl cellulose fibers. In the method, the carboxyalkyl cellulose fibers are not dissolved and therefore retain their fibrous form throughout the method steps.
The sequence of crosslinking can be varied. In one embodiment, the carboxyalkyl cellulose fibers are treated with the multi-valent metal ion crosslinking agent and crosslinking agent that provides the temporary crosslink at the same time. In one embodiment, the carboxyalkyl cellulose fibers are treated with the multi-valent metal ion crosslinking agent followed by treatment with the crosslinking agent that provides the temporary crosslink. In one embodiment, the carboxyalkyl cellulose fibers are treated with the multi-valent metal ion crosslinking agent after treatment with the crosslinking agent that provides the temporary crosslink.
In one embodiment, the method further includes drying the substantially water-insoluble, water-swellable, carboxyalkyl cellulose fibers.
In one embodiment, the substantially water-insoluble, water-swellable, carboxyalkyl cellulose fibers are fiberized to provide individualized fibers. In another embodiment, the substantially water-insoluble, water-swellable, carboxyalkyl cellulose fibers are fiberized to provide fiber bundles comprising substantially water-insoluble, water-swellable, carboxyalkyl cellulose fibers.
The carboxyalkylating agent can be monochloroacetic acid or its salts, 3-chloropropionic acid or its salts, or acrylamide.
The carboxyalkylating medium comprises a mixture of one or more alcohols and water. In one embodiment, the alcohol is ethanol. In another embodiment, the alcohol is isopropanol.
The fibers of the invention include non-permanent intra-fiber crosslinks formed through the use of multi-valent metal ion crosslinking agents. These crosslinking agents include a metal ion selected from aluminum, boron, bismuth, titanium, zirconium, cerium, or chromium ions. Mixtures can also be used. The multi-valent metal ion crosslinking agent is applied in an amount from about 0.1 to about 10 percent by weight based on the weight of fibers. The amount of crosslinking agent will depend on the nature of the crosslinking agent and the desired absorbent properties in the product fiber.
In one embodiment, the multi-valent metal ion crosslinking agent is an aluminum compound. Suitable aluminum crosslinking agents include aluminum acetates, aluminum sulfate, aluminum chloride, and aluminum lactate. Representative aluminum acetates include aluminum monoacetate, aluminum diacetate, aluminum triacetate, aluminum hemiacetate, aluminum subacetate, and mixtures of aluminum acetates made from non-stoichiometric amounts of acetate and hydroxide in an organic solvent that is water miscible. In one embodiment, the aluminum crosslinking agent is aluminum monoacetate stabilized with boric acid (aluminum acetate, basic, containing boric acid as stabilizer, CH3CO2Al(OH)2.1/3H3BO3, Aldrich Chemical Co.). In another embodiment, the aluminum crosslinking agent is prepared immediately prior to use.
The fibers of the invention, which include non-permanent metal ion crosslinks, also include temporary intra-fiber crosslinks. Temporary intra-fiber crosslinks can be made by crosslinking the fibers with an organic compound having at least two functional groups capable of reacting with at least one functional group selected from the group consisting of carboxyl, carboxylic acid, and hydroxyl groups. Temporary intra-fiber crosslinks include acetal and hemiacetal crosslinks. Suitable crosslinking agents useful for making temporary crosslinks include aldehydes, dialdehydes, and related derivatives (e.g., formaldehyde, glyoxal, glutaraldehyde, glyceraldehyde).
In one embodiment, the method includes treating the cellulose fibers with each crosslinking agent at the same time after carboxyalkylating the cellulose fibers. In this embodiment, the carboxyalkylated, crosslinked cellulose fibers are treated with the multi-valent metal ion crosslinking agent and the crosslinking agent that provides temporary crosslinks.
In one embodiment, the method includes treating the fibers with a multi-valent metal ion crosslinking agent before treatment with the crosslinking agent that provides temporary crosslinks.
In one embodiment, the method includes treating the fibers with a multi-valent metal ion crosslinking agent after treatment with the crosslinking agent that provides temporary crosslinks.
The multi-valent metal ion crosslinking agent is applied to the fibers in an amount from about 0.1 to about 10 percent by weight based on the weight of fibers and the crosslinking agent for making temporary crosslinks (e.g., organic compound) is applied to the fibers in an amount from about 0.1 to about 5 percent by weight based on the weight of fibers. In one embodiment, the multi-valent metal ion crosslinking agent is applied in an amount from about 1 to about 8 percent by weight based on the weight of fibers and the crosslinking agent for making temporary crosslinks is applied in an amount from about 0.5 to about 2 percent by weight based on the weight of fibers.
A schematic diagram illustrating a representative method for making substantially water-insoluble, water-swellable, crosslinked carboxyalkyl cellulose fibers and fiber bundles is illustrated in
Wood pulp fibers are the starting material for the preparation of the fibers and fiber bundles of the present invention. In a representative method, hardwood or softwood chips are cooked in a conventional or modified continuous digester to provide pulp having a Kappa number between 20 and 40. The kraft pulp can then be delignified in an oxygen delignification reactor and then subsequently partially or fully bleached by conventional bleaching processes (e.g., elemental chlorine-free bleaching) and bleaching sequences (DEopD or DEopDED). The pulp capillary viscosity produced by the pulping, delignification, and bleaching steps is greater than about 25 cps and the pulp has a brightness of up to about 87% ISO. The bleached pulp at a consistency of from about 10 to 15% is then dewatered (e.g., press or centrifuge) to provide pulp at a consistency of 30-35%. The dewatered pulp is then further dried to a consistency of 50-60% (i.e., never-dry dried pulp) or 85-90% (air-dried pulp) by, for example, a through-air dryer. The dry pulp is then ready for carboxyalkyl cellulose formation.
High consistency pulp (e.g., 50-90%) is introduced into either a batch or a continuous carboxyalkyl cellulose reactor at about room temperature under nitrogen. The pulp fibers are then treated with 50% by weight sodium hydroxide in water (i.e., mercerization) at about 25 degrees for 0.5 to 1 hour. The alkalized pulp is then treated with a carboxyalkylation agent in alcohol (e.g., 50% by weight monochloroacetic acid in ethanol) at a temperature of between about 55-75° C. for three to four hours. During this time the consistency of pulp in the reactor is from about 15 to about 25% with the ratio of alcohol solvent to water less than about 2. Once the carboxyalkylation (i.e., etherization) is complete, the carboxyalkyl cellulose fibers are neutralized by the addition of acid (e.g., 33% by weight hydrogen chloride in water).
In the process, the carboxyalkyl cellulose (e.g., carboxymethyl cellulose, CMC) is produced, having a degree of substitution (DS) of from about 0.5 to about 1.5. The degree of substitution is defined as the moles of carboxyl groups introduced to the fiber per mol of anhydroglucose units. In a continuous process, the alkylization and etherification chemicals are mixed with the pulp in a mixer and the mixture is transported to the reactor without stirring. For a batch process, the chemicals are mixed with the pulp in the reactor with continuous stirring.
As noted above, the carboxyalkyl cellulose preparation includes three stages: (1) alkylization (i.e., mercerization); (2) carboxyalkylation (i.e., etherification); and (3) neutralization and washing.
Representative process conditions for the alkylization stage include a temperature from about 0 to 30° C., a time of about 0.5 to 1.5 hour, a liquor (i.e., alcohol solvent and water) to pulp ratio of from about 2 to about 50, a solvent (ethanol or isopropanol) to water ratio of about 1 to about 10, and a sodium hydroxide charge rate of about 2-4 mol/mol cellulose.
Representative process parameters for the carboxyalkylation reaction stage include a temperature of from about 50 to about 80° C., a process time of from about 2 to about 4 hours, a liquor to pulp ratio of from about 2 to about 20, a solvent to water ratio of from about 1 to about 25, and a carboxyalkylating agent (monochloroacetic acid) charge rate of about 1 to 2 mol/mol cellulose.
After neutralization, the carboxyalkylated cellulose fibers are washed (e.g., belt washer or centrifuge) with a mixture of an alcohol (e.g., ethanol) and water (concentration 60-80% mass). In the process, residual salt is less than 5% mass. During the washing step, acetic acid is used to neutralize the carboxyalkyl cellulose fibers.
The carboxyalkyl cellulose fibers so produced are ready for crosslinking.
Carboxyalkyl cellulose fibers from the carboxyalkylation reactor are introduced to a continuous reactor at a consistency of about 30%. In the reactor, the carboxyalkyl cellulose fibers are treated with a crosslinking agent or agents at a consistency of about 5-25% at a temperature of from about 20 to about 75° C., and for a time of from 0.2 to 2 hours. The temperature and time may depend on the nature of the crosslinking agent. In a representative crosslinking reactor, the liquor (i.e., organic solvent and water) to pulp ratio is from about 2 to 20, the organic solvent to water ratio is from about 1 to about 2, and the crosslinking agent charge rate is from about 2 to about 7% mass based on the weight of carboxyalkyl cellulose fibers.
Ethanol for solvent in the carboxyalkylation reaction can be fed from an ethanol storage tank in liquid communication with an ethanol distillation column for receiving and recycling ethanol from other steps in the process.
Ethanol for the crosslinking step as a solvent for the crosslinking agent can be fed to the crosslinking reactor from ethanol storage.
The substantially ethanol-free fibers can be further defiberized in a fluffer (e.g., pin fluffer or shredder) to provide crosslinked carboxyalkyl cellulose fibers and related crosslinked carboxyalkylated cellulose fiber bundles.
The substantially ethanol-free carboxyalkylated cellulose fibers crosslinked with a first crosslinking agent (or combination) may be optionally further crosslinked by applying a second crosslinking agent to the crosslinked carboxyalkylated cellulose fibers and then drying the treated crosslinked carboxyalkylated cellulose fibers to provide crosslinked carboxyalkylated cellulose fibers. The optional additional crosslinking occurs during drying, which can be carried out using, for example, fluidized bed dryer, flash dryer, belt conveyor dryer, or drum dryer.
The dried crosslinked carboxyalkyl cellulose fibers and/or fiber bundles can be screened to select particular size distributions. The final fiber and/or fiber bundle product can be sheeted by air-laying processes and the final product packaged in rolls. Alternatively, the fiber and/or fiber bundle products can be baled.
The filtrate from the carboxyalkyl cellulose reactor wash and the off gases from the stripper and dryer can be sent to a solvent recovery process. Solvent (e.g., ethanol) can be recovered from the filtrate using a distillation device. Solvent recovered can be recycled to the process. The distillation device residue can be sent to salt recovery process. Residual filtrate can be sent to waste treatment.
The absorbent properties of the crosslinked carboxyalkyl cellulose fibers and fiber bundles can be determined directly or by forming the fibers and/or bundles into pads by air-laying techniques and then testing the pad performance.
The materials, procedure, and calculations to determine free swell capacity (g/g) and centrifuge retention capacity (CRC) (g/g) were as follows.
Test Materials:
Japanese pre-made empty tea bags (available from Drugstore.com, IN PURSUIT OF TEA polyester tea bags 93 mm×70 mm with fold-over flap) (http:www.mesh.ne.jp/tokiwa/).
Balance (4 decimal place accuracy, 0.0001 g for air-dried superabsorbent polymer (ADS SAP) and tea bag weights); timer; 1% saline; drip rack with clips (NLM 211); and lab centrifuge (NLM 211, Spin-X spin extractor, model 776S, 3,300 RPM, 120 v).
Test Procedure:
1. Determine solids content of ADS.
2. Pre-weigh tea bags to nearest 0.0001 g and record.
3. Accurately weigh 0.2025 g+/−0.0025 g of test material (SAP), record and place into pre-weighed tea bag (air-dried (AD) bag weight). (ADS weight+AD bag weight=total dry weight).
4. Fold tea bag edge over closing bag.
5. Fill a container (at least 3 inches deep) with at least 2 inches with 1% saline.
6. Hold tea bag (with test sample) flat and shake to distribute test material evenly through bag.
7. Lay tea bag onto surface of saline and start timer.
8. Soak bags for specified time (e.g., 30 minutes).
9. Remove tea bags carefully, being careful not to spill any contents from bags, hang from a clip on drip rack for 3 minutes.
10. Carefully remove each bag, weigh, and record (drip weight).
11. Place tea bags onto centrifuge walls, being careful not to let them touch and careful to balance evenly around wall.
12. Lock down lid and start timer. Spin for 75 seconds.
13. Unlock lid and remove bags. Weigh each bag and record weight (centrifuge weight)
Calculations:
The tea bag material has an absorbency determined as follows:
Free Swell Capacity, factor=5.78
Centrifuge Capacity, factor=0.50
Z=Oven dry SAP wt (g)/Air dry SAP wt (g)
Free Capacity (g/g):
Centrifuge Retention Capacity (g/g):
The materials, procedure, and calculations to determine AUL were as follows.
Test Materials:
Mettler Toledo PB 3002 balance and BALANCE-LINK software or other compatible balance and software. Software set-up: record weight from balance every 30 sec (this will be a negative number. Software can place each value into EXCEL spreadsheet.
Kontes 90 mm ULTRA-WARE filter set up with fritted glass (coarse) filter plate. clamped to stand; 2 L glass bottle with outlet tube near bottom of bottle; rubber stopper with glass tube through the stopper that fits the bottle (air inlet); TYGON tubing; stainless steel rod/plexiglass plunger assembly (71 mm diameter); stainless steel weight with hole drill through to place over plunger (plunger and weight=867 g); VWR 9.0 cm filter papers (Qualitative 413 catalog number 28310-048) cut down to 80 mm size; double-stick SCOTCH tape; and 0.9% saline.
Test Procedure:
1. Level filter set-up with small level.
2. Adjust filter height or fluid level in bottle so that fritted glass filter and saline level in bottle are at same height.
3. Make sure that there are no kinks in tubing or air bubbles in tubing or under fritted glass filter plate.
4. Place filter paper into filter and place stainless steel weight onto filter paper.
5. Wait for 5-10 min while filter paper becomes fully wetted and reaches equilibrium with applied weight.
6. Zero balance.
7. While waiting for filter paper to reach equilibrium prepare plunger with double stick tape on bottom.
8. Place plunger (with tape) onto separate scale and zero scale.
9. Place plunger into dry test material so that a monolayer of material is stuck to the bottom by the double stick tape.
10. Weigh the plunger and test material on zeroed scale and record weight of dry test material (dry material weight 0.15 g+/−0.05 g).
11. Filter paper should be at equilibrium by now, zero scale.
12. Start balance recording software.
13. Remove weight and place plunger and test material into filter assembly.
14. Place weight onto plunger assembly.
15. Wait for test to complete (30 or 60 min)
16. Stop balance recording software.
Calculations:
A=balance reading (g)*−1 (weight of saline absorbed by test material)
B=dry weight of test material (this can be corrected for moisture by multiplying the AD weight by solids %).
AUL (g/g)=A/B (g 1% saline/1 g test material)
The saturated retention capacity is a measure of the total absorbent capacity of an absorbent garment, an absorbent structure, containment means and superabsorbent material, or a superabsorbent material. The saturated retention capacity is determined as follows. The material to be tested, having a moisture content of less than about 7 weight percent, is then weighed and submerged in an excess quantity of the room temperature (about 23° C.) 0.9% saline. The material is allowed to remain submerged for 20 minutes. After 20 minutes the material is removed from the urine and placed on a TEFLON coated fiberglass screen having 0.25 inch openings (commercially available from Taconic Plastics Inc. Petersburg, N.Y.) which, in turn, is placed on a vacuum box and covered with a flexible rubber dam material. A vacuum of 3.5 kilopascals (0.5 pounds per square inch) is drawn in the vacuum box for a period of 5 minutes. The material is weighed. The amount of fluid retained by the material being tested is determined by subtracting the dry weight of the material from the wet weight of the material (after application of the vacuum) and is reported as the saturated retention capacity in grams of fluid retained. For relative comparisons, this value can be divided by the weight of the material to give the saturated retention capacity in grams of fluid retained per gram of tested material. If material, such as superabsorbent material or fiber, is drawn through the fiberglass screen while on the vacuum box, a screen having smaller openings should be used. Alternatively, a piece of the tea bag material described below can be placed between the material and the screen and the final value adjusted for the fluid retained by the material as described below.
When the material to be tested is superabsorbent material, the test is run as set forth above with the following exceptions. A bag is prepared from heal sealable tea bag material (grade 542, commercially available from the Kimberley-Clark Corporation). A six inch by three inch sample of the material is folded in half and heat sealed along two edges to form a generally square pouch. 0.2 grams of the superabsorbent material to be tested (in the form of particles having a size within the range of from about 300 to about 600 μm, and a moisture content of less than about 5 weight percent) is placed in the pouch and the third side is heat sealed. The test is performed as described with the amount of the fluid absorbed by the bag material being subtracted from the amount of fluid retained by the bag and superabsorbent material. The amount of fluid absorbed by the bag material is determined by performing the saturated retention capacity test on an empty bag.
The fluid intake flowback evaluation (FIFE) test determines the amount of time required for an absorbent composite to intake a predetermined amount of liquid. A suitable apparatus for performing the FIFE test is shown in
The samples for testing are prepared from fibers to be tested by distributing by hand approximately 2.5 g fiber into a 3 inch circular mold to form a uniform pad. A plunger is placed on top of the pad and the pad pressed to a final caliper of approximately 2.5 mm. The 3 inch circular pads including forming tissue on the top and bottom of the pad sample (composite 600).
Composite 600 is centered on FIFE test plate 601. Top 602 is then placed onto plate 601 with composite 600 centered under insult cylinder 603. Top 602 weighs 360 g providing a testing load of 0.11 psi on the sample when top 602 is in place for the test. Plate 601 and top 602 with cylinder 603 are made from PLEXIGLAS (approximate dimensions of 7 inches X 7 inches). Insult cylinder 603 has an inner diameter of one inch, a length sufficient to receive at least 15 g liquid, and provides for communication of liquid to composite 601.
Prior to testing, the sample (composite 601) is weighed and its weight recorded, and the sample's bulk is measured at 0.05 psi and recorded.
In the test procedure, the sample (composite 601) is centered on plate 601 and top 602 applied. Once the sample is in place and the apparatus assembled, 15 g of 0.9% saline (first insult) is added to cylinder 603. Time zero is the time that the liquid first contacts the sample. The first insult time is measured as the time required for the first added liquid to be absorbed by the sample (i.e., liquid level drops below upper forming tissue of sample). After 15 minutes, a second insult is delivered by adding 15 g of 0.9% saline (second insult) to the cylinder and the sample. The second insult time is measured as the time required for the second added liquid to be absorbed by the sample. After 30 minutes, the third insult (15 g of 0.9% saline) is delivered and the third insult time measured, and after 45 minutes, the fourth insult (15 g of 0.9% saline) is delivered and the fourth insult time measured.
The following examples are provided for the purposes of illustrating, not limiting, the present invention.
In this example, the preparation of representative crosslinked carboxymethyl cellulose fibers of the invention is described using various ethanol/water ratios.
5 grams of dry carboxymethyl cellulose fibers from never-dried NKS pulp (DS 0.95) was mixed in a plastic bag with the following solution for crosslinking. After mixing for 10 minutes, 52 ml liquid was squeezed out and the mixture in the bag was put in an oven at 80° C. for 30 minutes. After 30 minutes, the liquid in the bag will be squeezed out completely and the samples will be dried at 86° C. for 30 minutes.
Table 1 summarizes the composition and absorbent properties of representative crosslinked carboxyalkyl cellulose fibers.
Higher ethanol/water ratio slurry produced product fibers having higher centrifuge capacity.
In this example, the preparation of representative crosslinked carboxymethyl cellulose fibers of the invention from softwood pulp at high consistency is described.
60 grams of never-dried carboxymethyl cellulose fibers from NKS pulp (the carboxymethyl cellulose fibers were was neutralized in 70/30 ethanol/water, filtered and washed with 70/30 ethanol/water, filtered, then washed with 100% ethanol and filtered and air dried to 60 grams) (oven dried 20 grams) was sprayed with a solution containing 20 grams of ethanol, 30 grams of water, 1.2 grams aluminum acetate dibasic/boric acid (boric acid as stabilizer), 0.14 grams of aluminum sulfate, and 0.8 grams of 40% glyoxal. The wet sample was pin mill fluffed to obtain fiber bundle. The wet fiber bundle was oven dried at about 60° C. for one hour to obtain dry product fiber bundles.
The sample had free swell capacity of 46 g/g and a CRC of 14 g/g. The product fibers have 11000, 1300, and 1170 ppm of aluminum, boron and sulfur, respectively. The FIFE insult times for pads made from the product fibers were 9, 48, 42, and 58 seconds, respectively. The pads after four insults showed medium leaks and the wet pads maintained their integrity.
In this example, the preparation of representative crosslinked carboxymethyl cellulose fibers of the invention from cotton linter pulp at high consistency is described.
315 grams of never-dried carboxymethyl cellulose fibers prepared from cotton linter pulp (the carboxymethyl cellulose fibers were neutralized in 70/30 ethanol/water, filtered, and washed with 70/30 ethanol/water, filtered, then washed with 100% ethanol and filtered to 315 grams) (oven dried 70 grams) was mixed in a solution containing 600 grams of ethanol, 960 grams of water, 53.6 grams aluminum acetate dibasic/boric acid (boric acid as stabilizer), and 3.5 grams of 40% glyoxal for one hour. After the reaction, the slurry was filtered to obtain 240 grams of wet sample. The sample was pin mill fluffed to obtain fiber bundle. Part of the wet fiber bundle was oven dried at about 60° C. for one hour to obtain dry product fiber bundles.
The sample had free swell capacity of 58 g/g and a CRC of 16 g/g. The FIFE insult times for the pads made from the product fibers were 6, 4, 20, and 6 seconds, respectively. The pads after four insults showed medium leaks and the wet pads maintained their integrity.
In this example, the wet integrity of pads made from representative crosslinked carboxyalkyl cellulose fibers of the invention is described.
409 grams of never-dried carboxymethyl cellulose fibers from softwood (fir and pine) pulp (the carboxymethyl cellulose was neutralized in 70/30 ethanol/water, filtered and washed with 70/30 ethanol/water, filtered, then washed with 100% ethanol and filtered to 409 grams) (oven dried 70 grams) was mixed in a solution containing 515 grams of ethanol, 960 grams of water, 53.6 grams aluminum acetate dibasic/boric acid (boric acid as stabilizer, 33 percent by weight), 0.6 grams of aluminum sulfate, and 3.8 grams of 40% glyoxal for one hour. After the reaction, the slurry was filtered to obtain 240 grams of wet sample. The sample was pin mill fluffed to obtain fiber bundle. Part of the wet fiber bundle was oven dried at about 60° C. for one hour to obtain dry product fiber bundles (Sample 4-1). The same procedure was used for the same carboxymethyl cellulose fibers with only 50% of aluminum acetate/boric acid used (Sample 4-2).
The same procedure was applied to the same carboxymethyl cellulose fibers with no aluminum acetate/boric acid was added. Instead, 10 times more aluminum sulfate, 1.3 grams boric acid, and 2.5 grams of sodium citrate were added (Sample 4-3).
Table 2 summarizes the absorbent properties of representative crosslinked carboxyalkyl cellulose fibers and pads made from the fibers, and fiber metal content.
This example describes the treatment of carboxymethyl cellulose fibers with aluminum subacetate, an aluminum crosslinking agent prepared immediately prior to use, to provide crosslinked carboxyalkyl cellulose fibers. This example describes a method for crosslinking carboxyalkyl cellulose fibers with this aluminum crosslinking agent.
7.9 gram of aluminum sulfate hexadecahydrate was dissolved in 69.3 grams of water and 7 grams of calcium carbonate was added slowly with stirring. After completion of CO2 evolution, 16 grams of acetic acid was added slowly with stirring until CO2 release is complete. The mixture was stirred and set for overnight to form a clear solution over a white precipitate. The top layer solution was collected through filtration to obtain 67 grams of clear liquid with a pH of 4.2. Into the liquid, 86 grams of ethanol was added and another 14 grams of water was added. The final solution (MA) has a pH of 5.25. 16.5 gram of solution MA was mixed with 15 grams of ethanol/water (6/4 wt) solution in a spray bottle and the solution was sprayed evenly on 27 grams of never dried cotton linter carboxymethyl cellulose fibers with DS of 0.95 in a plastic bag (OD weight CMC is 10 grams). The carboxymethyl cellulose fibers with solution MA was mixed by hand for half an hour and then dried in a aluminum tray at 66° C. for one hour. The dried product fibers have 4000 ppm of aluminum and no detectable boron.
The solution MA has 1800 ppm of aluminum and no boron and an IR spectrum different from aluminum acetate stabilized with boric acid or aluminum acetate basic.
This example describes the treatment of carboxymethyl cellulose fibers with aluminum subacetate, an aluminum crosslinking agent prepared immediately prior to use, to provide crosslinked carboxyalkyl cellulose fibers. This example describes a method for crosslinking carboxyalkyl cellulose fibers with this aluminum crosslinking agent.
Solution, Reagent and Admixture Preparations
The aluminum acetate solution used in this process is prepared by modification of the process described in United States Pharmacopoeia (26 p 93) for aluminum subacetate topical solution, described as the diacetate, Al(O2CCH3)2OH. In contrast, the solution described herein is for a solution described as the monoacetate, Al(O2CCH3)(OH)2.
Aluminum acetate solution is prepared as follows:
Aluminum sulfate octadecahydrate (490 g) is dissolved in cold water (560 g, 1-10° C.). Calcium carbonate (244 g) is added in portions with mixing until a stiff slurry is formed. The slurry is diluted with 113 g cold water and any remaining CaCO3 is added. Glacial acetic acid (256 mL) is added with stirring. The mixture is kept cold for 1-2 hours and then filtered under vacuum to give approximately 820 g solution (d=1.0996 g/mL at 20° C.). The concentration of aluminum acetate, dibasic in the solution is 23.4% (w/w). Other solutions of lower concentrations may be produced from this solution by weight/weight serial dilution. The salt solution is unstable to heat and must be kept cold. The best results are obtained if the solution is used within 4 hours.
The following is a balanced chemical reaction for the basic chemistry involved in making aluminum acetate solution:
Al2(SO4)3+2CH3CO2H+3CaCO3+H2O−>2Al(CH3CO2)(OH)2+3CaSO4+3CO2
The chemical reaction above is illustrative only, as the recipe uses more than three-times the equivalent amount of acetic acid called for by the stoichiometry given.
Reagents made from aluminum acetate solution are produced as follows:
Reagent 1: Concentrated (23.4% w/w) aluminum acetate, dibasic solution (226 g) is diluted with methanol (620 g) and denatured alcohol (250 g) to afford a cocktail containing 4.8% aluminum acetate, dibasic.
Reagent 2: Diluted (14% w/w) aluminum acetate, dibasic solution (247 g) is diluted with methanol (832 g) and denatured alcohol (325 g) to afford a cocktail containing 2.5% aluminum acetate, dibasic.
Admixtures of the carboxymethyl cellulose fibers and aluminum salts are produced as follows:
Three samples of carboxymethyl cellulose fibers prepared from NKS pulp (DS about 0.9-1.0) in denatured alcohol (13 g fibers and 53 g alcohol) were treated separately with 260-320 g of Reagent 1 in a container sized such that the fibers were completely immersed in the reagent. The mixtures were covered and allowed to stand with occasional stirring for 1 hour. The samples were suction filtered to give a series of samples with varying retention ratios (R) of 5, 4 and 3, where R=(total wet weight/(fibers-dry weight). The samples were partially dried in a convection oven equipped with an induced draft for 10-20 minutes at 66-68° C. The samples were then pin-milled and returned to the oven for another 60-80 minutes.
Three samples of carboxymethyl cellulose fibers in denatured alcohol, each containing 15 g fibers and 62 g alcohol, are treated separately with 280-350 g of Reagent 2 in a container sized such that the fibers were completely immersed in the reagent. The samples are worked up in identical fashion to those in Example 6A.
While illustrative embodiments have been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.