The embodiments herein relate to elevator systems and, more particularly, to crowd sensing for elevator systems.
Elevators can vary in usage as occupancy levels at lobby areas change over time. Some advanced elevator systems enable passengers to remotely call for an elevator using an application on a mobile device. However, variability of crowd size can make it difficult to accurately predict an elevator car arrival time and may result in other passengers in the crowd taking an elevator car called by someone else. Further, crowds arriving at unexpected times can result in less efficient elevator car dispatching for systems that rely upon time-based priority scheduling of elevator cars.
According to an embodiment, a method includes capturing crowd data associated with a lobby area of an elevator system. A dispatching schedule of one or more elevator cars of the elevator system is adjusted based on the crowd data. A notification of the adjustment to the dispatching schedule is output.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include where the crowd data is captured by a sensing system.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include where adjusting the dispatching schedule is selectively enabled on-demand in response to an enable command.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include where adjusting the dispatching schedule is selectively enabled based on one or more of a predetermined schedule and an artificial intelligence algorithm configured to predict formation of a crowd.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include where adjusting the dispatching schedule is selectively enabled based on verification of an active subscription to a crowd control service.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include providing a priority request to schedule an empty elevator car targeting a selected user, and adjusting the dispatching schedule to incorporate the priority request.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include where the notification of the adjustment to the dispatching schedule includes a message transmitted to one or more mobile devices associated with one or more targeted users.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include determining a travel impact on a user based on the crowd data, and outputting a notification of a travel plan adjustment for the user based on the travel plan.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include where the travel impact comprises an estimated delay for crowd reduction at the lobby area, and the notification of the travel plan adjustment includes a message indicating that a subsequent notification will be sent based on a crowd size reduction dropping below a predetermined threshold.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include where the notification of the travel plan adjustment includes an identification of a priority elevator car dispatched for the user.
According to an embodiment, a system includes a sensing system configured to capture crowd data associated with a lobby area of an elevator system. The system also includes a dispatching system configured to adjust a dispatching schedule of one or more elevator cars of the elevator system based on the crowd data and output a notification of the adjustment to the dispatching schedule.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include where adjustment of the dispatching schedule is selectively enabled on-demand in response to an enable command.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include where adjustment of the dispatching schedule is selectively enabled based on one or more of a predetermined schedule and an artificial intelligence algorithm configured to predict formation of a crowd.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include where adjustment of the dispatching schedule is selectively enabled based on verification of an active subscription to a crowd control service.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include where the dispatching system is configured to provide a priority request to schedule an empty elevator car targeting a selected user and adjust the dispatching schedule to incorporate the priority request.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include where the notification of the adjustment to the dispatching schedule includes a message transmitted to one or more mobile devices associated with one or more targeted users.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include where the dispatching system is configured to determine a travel impact on a user based on the crowd data and output a notification of a travel plan adjustment for the user based on the travel plan.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include where the travel impact comprises an estimated delay for crowd reduction at the lobby area, and the notification of the travel plan adjustment includes a message indicating that a subsequent notification will be sent based on a crowd size reduction dropping below a predetermined threshold.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include where the notification of the travel plan adjustment includes an identification of a priority elevator car dispatched for the user.
According to an embodiment, a method includes capturing crowd data associated with a lobby area of an elevator system, determining a travel impact for a user based on the crowd data, and outputting a notification of a travel plan adjustment for the user based on the travel impact.
Technical effects of embodiments of the present disclosure include monitoring and adjusting elevator dispatch scheduling based on crowd data.
The foregoing features and elements may be combined in various combinations without exclusivity, unless expressly indicated otherwise. These features and elements as well as the operation thereof will become more apparent in light of the following description and the accompanying drawings. It should be understood, however, that the following description and drawings are intended to be illustrative and explanatory in nature and non-limiting.
The present disclosure is illustrated by way of example and not limited in the accompanying figures in which like reference numerals indicate similar elements.
The tension member 107 engages the machine 111, which is part of an overhead structure of the elevator system 101. The machine 111 is configured to control movement between the elevator car 103 and the counterweight 105. The position reference system 113 may be mounted on a fixed part at the top of the elevator hoistway 117, such as on a support or guide rail, and may be configured to provide position signals related to a position of the elevator car 103 within the elevator hoistway 117. In other embodiments, the position reference system 113 may be directly mounted to a moving component of the machine 111, or may be located in other positions and/or configurations as known in the art. The position reference system 113 can be any device or mechanism for monitoring a position of an elevator car and/or counter weight, as known in the art. For example, without limitation, the position reference system 113 can be an encoder, sensor, or other system and can include velocity sensing, absolute position sensing, etc., as will be appreciated by those of skill in the art.
The controller 115 is located, as shown, in a controller room 121 of the elevator hoistway 117 and is configured to control the operation of the elevator system 101, and particularly the elevator car 103. For example, the controller 115 may provide drive signals to the machine 111 to control the acceleration, deceleration, leveling, stopping, etc. of the elevator car 103. The controller 115 may also be configured to receive position signals from the position reference system 113 or any other desired position reference device. When moving up or down within the elevator hoistway 117 along guide rail 109, the elevator car 103 may stop at one or more landings 125 as controlled by the controller 115. Although shown in a controller room 121, those of skill in the art will appreciate that the controller 115 can be located and/or configured in other locations or positions within the elevator system 101. In one embodiment, the controller may be located remotely or in the cloud.
The machine 111 may include a motor or similar driving mechanism. In accordance with embodiments of the disclosure, the machine 111 is configured to include an electrically driven motor. The power supply for the motor may be any power source, including a power grid, which, in combination with other components, is supplied to the motor. The machine 111 may include a traction sheave that imparts force to tension member 107 to move the elevator car 103 within elevator hoistway 117.
Although shown and described with a roping system including tension member 107, elevator systems that employ other methods and mechanisms of moving an elevator car within an elevator hoistway may employ embodiments of the present disclosure. For example, embodiments may be employed in ropeless elevator systems using a linear motor to impart motion to an elevator car. Embodiments may also be employed in ropeless elevator systems using a hydraulic lift to impart motion to an elevator car.
Turning now to
The system 200 can also include an elevator dispatch control 214 that is configured to receive the crowd data from the sensor control 212. The elevator dispatch control 214 can adjust a dispatching schedule 216 of one or more elevator cars 103 of the elevator group 202 of elevator systems 101 based on the crowd data. For example, the dispatching schedule 216 can be adjusted to position an increased number of elevator cars 103 in close proximity to floors of the lobby area 204 with increased crowds. Elevator dispatch control 214 can interface with controllers 115 of
The network 218 can also communicate with a plurality of user devices, such as mobile devices 222, that can be associated with the crowd 206 or a manager/supervisor system. Examples of mobile devices 222 can include a phone, a laptop, a tablet, smartwatch, etc. One or more of the mobile devices 222 may be associated with a particular user. The user may use his/her mobile device(s) 222 to request an elevator car 103 of
The request for an elevator car 103 may be conveyed or transmitted from the mobile device 222 over one or more networks 218. For example, the request may be transmitted via the Internet and/or a cellular network. The request may then be routed through server 220 to the elevator dispatch control 214.
The elevator dispatch control 214 may select a resource (e.g., an elevator system 101 or elevator car 103) that is suited to fulfill a service request, potentially based on one or more considerations, such as power consumption/efficiency, quality of service (e.g., reduction in waiting time until a user or passenger arrives at a destination floor or landing), etc.
In embodiments, a system, such as the elevator dispatch control 214 or server 220, can use crowd data to alert passengers, use in-car space data to dispatch empty elevator cars 103 to users and communicate assignments to a management system. Elevator cars 103 with empty space can be identified and allocated through the dispatching schedule 216 to help users move themselves, luggage, companions, and the like to a desired location. In some embodiments, crowd data is used to determine when a lobby area 204 is sufficiently clear to notify a user to proceed to the lobby area 204. In other embodiments, where a user is in position to ride an elevator car 103 from the lobby area 204 to a desired area, the system 200 (e.g., elevator dispatch control 214 or server 220) can prioritize the user to send a premium elevator car 103 to a location of the user in the lobby area 204, e.g., an empty or substantially empty elevator car 103. People counting techniques can be used to measure wait times to improve the user experience.
Further, crowd sensing features can be a subscription-based service that an operator of the elevator systems 101, e.g., a building owner pays for to ensure an improved user experience. For example, crowd sensing can be selectively enabled for certain locations within a building, such as the lobby area 204. Further, timing of enablement of crowd sensing can change over time. For instance, if a large conference is scheduled, the elevator dispatching schedule 216 can be predictively adjusted based on schedule data. Further, on-demand crowd sensing can be selectively enabled for particular floors or any floors. Trending data can also be captured to better understand a history of user movement and crowds 206.
At block 304, a dispatching schedule 216 of one or more elevator cars 103 of the elevator system 101 can be adjusted, for instance, by the elevator dispatch control 214 based on the crowd data. Adjusting the dispatching schedule 216 can be selectively enabled on-demand in response to an enable command, for instance, through a graphical user interface. Adjusting the dispatching schedule 216 can be selectively enabled based on a predetermined schedule. Adjusting the dispatching schedule can be selectively enabled based on verification of an active subscription to a crowd control service. At block 306, the system 200 can output a notification of the adjustment to the dispatching schedule 216.
In embodiments, the system 200 can provide a priority request to schedule an empty elevator car 103 targeting a selected user, and the dispatching schedule 216 to incorporate the priority request can be adjusted. The notification of the adjustment to the dispatching schedule 216 can include a message transmitted to one or more mobile devices 222 associated with one or more targeted users, e.g., which can be part of crowd 206. In some embodiments, a travel impact on a user can be determined based on the crowd data. A notification of a travel plan adjustment for the user can be output based on the travel plan. The travel impact can include an estimated delay for crowd reduction at the lobby area 204. The notification of the travel plan adjustment can include a message indicating that a subsequent notification will be sent based on a crowd size reduction dropping below a predetermined threshold. The notification of the travel plan adjustment can include an identification of a priority elevator car 103 dispatched for the user.
As described above, embodiments can be in the form of processor-implemented processes and devices for practicing those processes, such as the elevator controller, access server and/or monitoring server. Embodiments can also be in the form of computer program code containing instructions embodied in tangible media, such as network cloud storage, SD cards, flash drives, floppy diskettes, CD ROMs, hard drives, or any other computer-readable storage medium, wherein, when the computer program code is loaded into and executed by a computer, the computer becomes a device for practicing the embodiments. Embodiments can also be in the form of computer program code, for example, whether stored in a storage medium, loaded into and/or executed by a computer, or transmitted over some transmission medium, such as over electrical wiring or cabling, through fiber optics, or via electromagnetic radiation, wherein, when the computer program code is loaded into an executed by a computer, the computer becomes an device for practicing the embodiments. When implemented on a general-purpose microprocessor, the computer program code segments configure the microprocessor to create specific logic circuits.
The term “about” is intended to include the degree of error associated with measurement of the particular quantity and/or manufacturing tolerances based upon the equipment available at the time of filing the application.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, element components, and/or groups thereof.
Those of skill in the art will appreciate that various example embodiments are shown and described herein, each having certain features in the particular embodiments, but the present disclosure is not thus limited. Rather, the present disclosure can be modified to incorporate any number of variations, alterations, substitutions, combinations, sub-combinations, or equivalent arrangements not heretofore described, but which are commensurate with the scope of the present disclosure. Additionally, while various embodiments of the present disclosure have been described, it is to be understood that aspects of the present disclosure may include only some of the described embodiments. Accordingly, the present disclosure is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.