Crown assembly for an electronic watch

Information

  • Patent Grant
  • 11194298
  • Patent Number
    11,194,298
  • Date Filed
    Monday, December 10, 2018
    5 years ago
  • Date Issued
    Tuesday, December 7, 2021
    2 years ago
Abstract
An electronic watch may include a housing defining a side wall having a through-hole and a crown assembly including an actuation member. The actuation member may include a crown shaft extending through the through-hole and having an exterior portion defining an input surface and a crown ring coupled to the exterior portion of the crown shaft and electrically isolated from the crown shaft. The crown assembly may further include an optical encoder component attached to the actuation member and defining a group of optical features. The electronic watch may further include an optical detector configured to detect rotation of the crown assembly by detecting motion of the group of optical features and an electrocardiograph sensor comprising a sensing component. The sensing component may be conductively coupled to the actuation member via a conductive path at least partially defined by the crown shaft.
Description
FIELD

The described embodiments relate generally to electronic devices, and more particularly to a crown for a wearable electronic device.


BACKGROUND

Electronic devices frequently use physical input devices to facilitate user interaction. For example, buttons, keys, dials, and the like can be physically manipulated by users to control operations of the device. Physical input devices may use various types of sensing mechanisms to translate the physical manipulation to signals usable by the electronic device. For example, buttons and keys may use collapsible dome switches to detect presses, while dials and other rotating input devices may use encoders or resolvers to detect rotational movements.


SUMMARY

An electronic watch may include a housing defining a side wall having a through-hole and a crown assembly including an actuation member. The actuation member may include a crown shaft extending through the through-hole and having an exterior portion defining an input surface and a crown ring coupled to the exterior portion of the crown shaft and electrically isolated from the crown shaft. The crown assembly may further include an optical encoder component attached to the actuation member and defining a group of optical features. The electronic watch may further include an optical detector configured to detect rotation of the crown assembly by detecting motion of the group of optical features and an electrocardiograph sensor comprising a sensing component. The sensing component may be conductively coupled to the actuation member via a conductive path at least partially defined by the crown shaft.


The electronic watch may further include a switch configured to be actuated by the crown assembly in response to an axial input applied to the crown assembly, a friction guard having a shear plate positioned between the switch and the optical encoder component and conductively coupled to the optical encoder component, and a bracket comprising a body structure and a conductor coupled to the body structure. The conductive path may be further defined by the optical encoder component and the conductor and may be configured to carry electrical signals from a user in contact with the input surface to the electrocardiograph sensor. The body structure may include a polymer material, and the conductor may be at least partially encapsulated by the polymer material.


The electronic watch may further include a switch configured to be actuated by the crown assembly in response to an axial force applied to the crown assembly, and a friction guard at least partially positioned between the switch and the optical encoder component and conductively coupled to the optical encoder component. The axial force may be transferred from the crown assembly to the switch through the friction guard, and the conductive path may be further defined by the friction guard. The crown assembly may be rotatable relative to the housing, the crown assembly may rotate against the friction guard when the crown assembly is rotated, and the friction guard may protect the switch from rotational friction from the crown assembly.


The electronic watch may further include, within an internal volume of the housing, a bracket, a frame coupled to the bracket and attached to the housing, and a wear plate positioned between an inner surface of the frame and configured to electrically isolate the optical encoder component from the frame.


The electronic watch may further include a display positioned at least partially within the housing and configured to display a graphical output, a transparent cover coupled to the housing, and a touch sensor positioned below the transparent cover and configured to detect touch inputs applied to the transparent cover, and the electronic watch may be configured to modify the graphical output in accordance with a detected rotation of the crown assembly.


An electronic watch may include a housing at least partially defining an internal volume, biometric sensing circuitry within the internal volume, and a crown assembly configured to rotate and translate relative to the housing. The crown assembly may include a crown shaft defining an axial end surface, a crown ring coupled to the crown shaft and defining a series of tactile features arranged around a circumference of the crown ring, and an optical encoder component attached to the crown shaft and defining a group of optical features. The crown shaft and the optical encoder component may define a conductive path configured to conductively couple the crown assembly to the biometric sensing circuitry. The biometric sensing circuitry may be part of an electrocardiograph sensor.


The electronic watch may further include a switch and a friction guard having a shear plate positioned between the crown assembly and the switch and configured to transfer axial forces from the crown assembly to the switch. The electronic watch may further include a bracket positioned in the internal volume and comprising a metal flange, a polymer body structure, and a conductor coupled to the polymer body structure and electrically isolated from the metal flange by the polymer body structure. The friction guard may be in contact with the conductor, and the conductive path may be further defined by the friction guard and the conductor. The electronic watch may further include a conductive lubricant at an interface between the crown assembly and the friction guard.


The optical encoder component may be attached to the crown shaft via a threaded connection. The axial end surface of the crown shaft may define an input surface for the biometric sensing circuitry.


An electronic device may include a housing at least partially defining an internal volume, an electrocardiograph sensor within the internal volume and comprising a sensing component, a frame within the internal volume and attached to the housing, and a bracket attached to the frame. The bracket may include a body structure and a conductor at least partially encapsulated in the body structure. The electronic device may also include a crown assembly having an external portion positioned outside of the internal volume and configured to rotate and translate relative to the housing. The bracket and the frame may at least partially enclose a portion of the crown assembly, and the crown assembly and the conductor may define a conductive path configured to conductively couple the sensing component to an object in contact with the external portion of the crown assembly.


The electronic device may further include a band coupled to the housing, a display at least partially within the internal volume of the housing, a transparent cover coupled to the housing and positioned such that the display is visible through the transparent cover, and a touch sensor at least partially within the internal volume and configured to detect touch inputs applied to the transparent cover.


The crown assembly may include a crown shaft having an internal portion within the internal volume and an optical encoder component attached to the internal portion of the crown shaft and defining a group of optical features. The electronic device may further include an optical detector configured to detect rotation of the crown assembly by detecting motion of the group of optical features, and the optical encoder component may define part of the conductive path.


The electronic device may include a friction guard in contact with the bracket and the crown assembly and a switch positioned between the friction guard and the bracket and configured to be actuated in response to axial translation of the crown assembly. The friction guard may include a shear plate and a support leg configured to allow the shear plate to deflect relative to the bracket. The friction guard may be a single piece of conductive material.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:



FIG. 1 depicts an example wearable electronic device;



FIG. 2 depicts a schematic cross-sectional view of a portion of a wearable electronic device;



FIG. 3A depicts a portion of an input system for a wearable electronic device;



FIG. 3B depicts an exploded view of an input system for a wearable electronic device;



FIG. 3C depicts a component of the input system of FIG. 3B;



FIG. 4 depicts a cross-sectional view of an input system for a wearable electronic device; and



FIG. 5 depicts example components of a wearable electronic device.





DETAILED DESCRIPTION

Reference will now be made in detail to representative embodiments illustrated in the accompanying drawings. It should be understood that the following description is not intended to limit the embodiments to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as can be included within the spirit and scope of the described embodiments as defined by the appended claims.


The embodiments herein are generally directed to a crown of a wearable electronic device, such as an electronic watch (also referred to as a “smart watch” or simply a “watch”), and more particularly to a crown that acts as a contact point for a sensor, such as a biometric sensor, of the watch. For example, a smart watch may include a heart rate sensor, an electrocardiograph sensor, a thermometer, a photoplethysmograph sensor, a fingerprint sensor, or the like, all of which are examples of biometric sensors that measure or detect some aspect of a user's body. Such sensors may require direct contact with the user's body, such as via a finger. Accordingly, a device may include an external button, window, electrode, or other input feature or surface that a user may touch in order to allow the sensor to take a reading or measurement.


In some cases, the portion of the sensor that a user contacts to provide input to the sensor may be integrated with another input system of the watch. For example, as described herein, a watch may include a crown that accepts one or more types of inputs, such as rotational inputs (e.g., twisting, turning, or spinning the crown) and/or translational inputs (e.g., pressing axially on the crown). Such inputs may allow the user to provide inputs to the watch, such as to interact with a graphical user interface (e.g., by modifying a graphical output of a display in accordance with a direction of rotation of the crown), setting the time, or the like. In some cases, the crown itself, or a portion thereof, may also define an input surface for providing inputs to biometric sensing circuitry of a biometric sensor. This may provide several advantages. For example, because the crown is a familiar input mechanism for a watch, users will be familiar with providing inputs using the crown. Further, assuming the user has provided appropriate permissions, biometric sensing may be performed while the user is providing other types of inputs to the device.


In some cases, a biometric sensor may need to conductively couple to a user's body in order to function. For example, a heart rate monitor, electrocardiograph sensor, fingerprint sensor, or the like may need to conductively couple to the user's body (e.g., via a finger) in order to measure or detect the user's heart rate, heart rhythm, or other biometric information or data. Accordingly, in order to provide input to biometric sensing circuitry via a crown, a conductive path may be formed through the crown and into the watch housing. In this way, the user may simply contact the crown (or a portion thereof) in order to provide an input to the biometric sensor. Forming a conductive path through the crown may be difficult, however, because crowns may include numerous intricate components to facilitate the detection of rotational and axial inputs, and because it may be necessary or desirable to electrically isolate the crown so that it is not conductively coupled to the housing or another grounded component (which may reduce or destroy the effectiveness of the crown as an input feature.


As described herein, a conductive path may be formed through multiple components of a crown input system, while preventing the crown from being grounded by a housing or internal structure of the electronic watch. For example, a rotatable component of a crown may be formed of a conductive material. An end of the rotatable component, such as the end of a shaft, may contact a friction guard or other physical shield within the watch. In some cases, as described herein, the rotatable component is coupled to or includes an optical encoder component (e.g., a component of an optical encoder), such as a barrel that defines reflective features and also is formed of or includes a conductive material. Where an optical component is included, the optical component may contact the friction guard instead of or in addition to the shaft. The friction guard may prevent friction from the rotating component from damaging other internal components of the input system (such as a switch). The friction guard may also be formed of or include a conductive material. Because the rotatable component and the friction guard are in direct contact with one another and are each formed from or include conducive materials, these components may define at least part of a conductive path through the crown input system. This conductive path may conductively couple the user's finger to biometric sensing circuitry of a biometric sensor (while also isolating the conductive path from other conductive components such as a housing), thus allowing the crown to act as an input member not only for rotational and translational inputs, but also for the biometric sensor. Accordingly, the crown (or portions thereof) may be considered part of a biometric sensor, along with biometric sensing circuitry and/or other components.


As described herein, a crown input system may include structural components such as brackets, shrouds, frames, and the like, which may be formed of or include conductive materials and which may be secured to other conductive components, such as a metal housing. These components may form an internal enclosure that at least partially encloses or surrounds a rotatable component of the crown input system. In order to provide a conductive path that is not grounded to or otherwise conductively coupled to components that would have a deleterious effect on the operation of the biometric sensor, the crown input system may provide a conductive path through the structural components. For example, a conductor may be at least partially encapsulated in a polymer material of a bracket and provide an internal contact area (e.g., within the internal enclosure) that contacts the friction guard, and an external contact area (e.g., accessible via an outer surface of the internal enclosure) that is coupled to biometric sensing circuitry. The polymer material may electrically insulate or isolate the conductor so that the conductive path through the rotatable component and the friction guard can be passed through the enclosure without being grounded to the housing of the watch.



FIG. 1 depicts an electronic device 100. The electronic device 100 is depicted as a watch, though this is merely one example embodiment of an electronic device, and the concepts discussed herein may apply equally or by analogy to other electronic devices, including mobile phones (e.g., smartphones), tablet computers, notebook computers, head-mounted displays, digital media players (e.g., mp3 players), or the like.


The electronic device 100 includes a housing 102 and a band 104 coupled to the housing. The housing 102 may at least partially define an internal volume in which components of the device 100 may be positioned. The band 104 may be configured to attach the electronic device 100 to a user, such as to the user's arm or wrist.


The electronic device 100 also includes a transparent cover 108 coupled to the housing 102. The cover 108 may define a front face of the electronic device 100. For example, in some cases, the cover 108 defines substantially the entire front face and/or front surface of the electronic device. The cover 108 may also define an input surface of the device 100. For example, as described herein, the device 100 may include touch and/or force sensors that detect inputs applied to the cover 108. The cover may be formed from or include glass, sapphire, a polymer, a dielectric, or any other suitable material.


The cover 108 may overlie at least part of a display 109 that is positioned at least partially within the internal volume of the housing 102. The display 109 may define an output region in which graphical outputs are displayed. Graphical outputs may include graphical user interfaces, user interface elements (e.g., buttons, sliders, etc.), text, lists, photographs, videos, or the like. The display 109 may include a liquid crystal display (LCD), organic light emitting diode display (OLED), or any other suitable components or display technologies.


The display 109 may include or be associated with touch sensors and/or force sensors that extend along the output region of the display and which may use any suitable sensing elements and/or sensing systems and/or techniques. Using touch sensors, the device 100 may detect touch inputs applied to the cover 108, including detecting locations of touch inputs, motions of touch inputs (e.g., the speed, direction, or other parameters of a gesture applied to the cover 108), or the like. Using force sensors, the device 100 may detect amounts or magnitudes of force associated with touch events applied to the cover 108. The touch and/or force sensors may detect various types of user inputs to control or modify the operation of the device, including taps, swipes, multi-finger inputs, single- or multi-finger touch gestures, presses, and the like. Further, as described herein, the touch and/or force sensors may detect motion of an object (e.g., a user's finger) as it is interacting with a crown 112 of the electronic device 100. Touch and/or force sensors usable with wearable electronic devices, such as the device 100, are described herein with respect to FIG. 5.


The electronic device 100 also includes a crown 112 (also referred to herein as a crown assembly) having a knob, external portion, or component(s) or feature(s) positioned along a side wall 101 of the housing 102. At least a portion of the crown 112 (e.g., a knob 208, FIG. 2) may protrude from the housing 102, and may define a generally circular shape or a circular exterior surface. The exterior surface of the crown 112 (or a portion thereof) may be textured, knurled, grooved, or may otherwise have features that may improve the tactile feel of the crown 112 and/or facilitate rotation sensing. At least a portion of the exterior surface of the crown 112 may also be conductively coupled to biometric sensing circuitry (or circuitry of another sensor that uses a conductive path to an exterior surface), as described herein.


The crown 112 may facilitate a variety of potential user interactions. For example, the crown 112 may be rotated by a user (e.g., the crown may receive rotational inputs). The arrow 114 in FIG. 1 illustrates example direction(s) of rotational inputs to the crown 112. Rotational inputs to the crown 112 may zoom, scroll, rotate, or otherwise manipulate a user interface or other object displayed on the display 109 (among other possible functions). The crown 112 may also be translated or pressed (e.g., axially) by the user, as indicated by arrow 116. Translational or axial inputs may select highlighted objects or icons, cause a user interface to return to a previous menu or display, or activate or deactivate functions (among other possible functions). In some cases, the device 100 may sense touch inputs or gestures applied to the crown 112, such as a finger sliding along a surface of the crown 112 (which may occur when the crown 112 is configured to not rotate relative to the housing 102) or a finger touching an end face of the crown 112. In such cases, sliding gestures may cause operations similar to the rotational inputs, and touches on an end face may cause operations similar to the translational inputs. As used herein, rotational inputs may include both rotational movements of the crown (e.g., where the crown is free to rotate), as well as sliding inputs that are produced when a user slides a finger or object along the surface of a crown in a manner that resembles a rotation (e.g., where the crown is fixed and/or does not freely rotate).


The crown 112 may also include or define an input feature 118 that facilitates input to biometric sensing circuitry or other sensing circuitry within the device 100. The input feature 118 may be a conductive surface that is conductively coupled, via one or more components of the device 100, to the biometric sensing circuitry. In some cases, the input feature 118 and/or the component(s) that define the input feature 118 are electrically isolated from other components of the device 100. For example, the input feature 118 may be electrically isolated from the housing 102. In this way, the conductive path from the input feature 118 to the biometric sensing circuitry may be isolated from other components that may otherwise reduce the effectiveness of the biometric sensor.


The input feature 118 may be an exterior surface of a component of a crown assembly, such as an exterior portion of a crown shaft (e.g., an exterior surface of the crown shaft 406, FIG. 4). In order to provide an input to the biometric sensor, a user may place a finger or other body part on the input feature 118. The biometric sensor may be configured to take a reading or measurement in response to detecting that the user has placed a finger or other body part on the input feature 118. In some cases, the biometric sensor may only take a reading or measurement when a sensing function is separately initiated by a user (e.g., by activating the function via a graphical user interface). In other cases, a reading or measurement is taken any time the user contacts the input feature 118 (e.g., to provide a rotational or translational input to the crown 112). The user may have full control over when the biometric sensor takes measurements or readings, and may even have the option to turn off the biometric sensing functionality entirely.


The device 100 may also include one or more haptic actuators that are configured to produce a tactile output through the crown 112. For example, the haptic actuator may be coupled to the crown 112 and may be configured to impart a force to the crown 112. The force may cause the crown 112 to move (e.g., to oscillate or vibrate translationally and/or rotationally, or to otherwise move to produce a tactile output), which may be detectable by a user when the user is contacting the crown 112. The haptic actuator may produce tactile output by moving the crown 112 in any suitable way. For example, the crown 112 (or a component thereof) may be rotated (e.g., rotated in a single direction, rotationally oscillated, or the like), translated (e.g., moved along a single axis), or pivoted (e.g., rocked about a pivot point). In other cases, the haptic actuator may produce tactile outputs using other techniques, such as by imparting a force to the housing 102 (e.g., to produce an oscillation, vibration, impulse, or other motion), which may be perceptible to a user through the crown 112 and/or through other surfaces of the device 100, such as the cover 108, the housing 102, or the like. Any suitable type of haptic actuator and/or technique for producing tactile output may be used to produce these or other types of tactile outputs, including electrostatics, piezoelectric actuators, oscillating or rotating masses, ultrasonic actuators, reluctance force actuators, voice coil motors, Lorentz force actuators, or the like.


Tactile outputs may be used for various purposes. For example, tactile outputs may be produced when a user presses the crown 112 (e.g., applies an axial force to the crown 112) to indicate that the device 100 has registered the press as an input to the device 100. As another example, tactile outputs may be used to provide feedback when the device 100 detects a rotation of the crown 112 or a gesture being applied to the crown 112. For example, a tactile output may produce a repetitive “click” sensation as the user rotates the crown 112 or applies a gesture to the crown 112. Tactile outputs may be used for other purposes as well.


The electronic device 100 may also include other inputs, switches, buttons, or the like. For example, the electronic device 100 includes a button 110. The button 110 may be a movable button (as depicted) or a touch-sensitive region of the housing 102. The button 110 may control various aspects of the electronic device 100. For example, the button 110 may be used to select icons, items, or other objects displayed on the display 109, to activate or deactivate functions (e.g., to silence an alarm or alert), or the like.



FIG. 2 depicts a partial cross-sectional view of an example electronic device 200 having an input system in which a conductive path 220 is defined through a crown assembly 203, as well as other components of the input system. For example, the conductive path 220 extends through the crown assembly 203, through a friction guard 222, through a bracket 218 via an embedded conductor 229, and to biometric sensing circuitry 232.


The input system shown in FIG. 2 uses the friction guard 222 to define part of the conductive path 220 while also allowing the crown assembly 203 to rotate and translate to accept rotational and translational inputs. The friction guard 222 also protects a switch 216 (which may detect axial inputs) from damage due to the rotation and translation of the crown. Thus, the crown input system defines a sufficiently isolated electrical path through the crown input system while also facilitating numerous other input functions and providing a robust and durable system.


The device 200 may be an embodiment of the device 100, and may include the same or similar components and may provide the same or similar functions as the device 100. Accordingly, details of the device 100 described above may apply to the device 200, and for brevity will not be repeated here.


As used herein, an “input system” may refer to and/or include mechanisms, systems, components, circuitry, and/or other components that together provide one or more input functions to a device. For example, the input system shown and described with respect to FIG. 2 (which may also be referred to as a crown input system) may include components such as an actuation member 204, an optical detector 212, a bracket 218, biometric sensing circuitry 232, an optical encoder component 210, a switch 216, a friction guard 222, and the like.


The device 200 includes a housing that defines a side wall 201 (e.g., which may correspond to the side wall 101, FIG. 1). The side wall 201 defines a through-hole 202, and an actuation member 204 may extend through the through-hole 202. The actuation member 204 may be a component of a crown assembly that extends through the housing and has a portion that is inside the housing and another portion that is outside the housing. The actuation member 204 defines a crown shaft 206 (at least a portion of which is inside the housing) and a knob 208 (at least a portion of which defines an exterior portion of the shaft that is outside the housing). As shown, the crown shaft 206 and the knob 208 may be formed as a unitary structure, though other actuation members may have different components and/or configurations, and may be defined by several different components that are attached together. The actuation member 204 may be formed from or include a conductive material (e.g., metal, carbon fiber, conductive polymer, conductive ceramics, or the like). Accordingly, an exterior surface of the actuation member 204 (e.g., the portion of the actuation member 204 that is outside of the device housing and is contactable by a user), and optionally other surfaces of the actuation member 204, form an input surface for a biometric sensor. More particularly, the electrical conductivity of the exterior surface facilitates a conductive path from a user's finger in contact with the actuation member 204.


The crown assembly 203 also includes an optical encoder component 210 (e.g., a barrel, sleeve, cylinder, or other component) attached to the actuation member 204. The optical encoder component 210 may be fixed to the actuation member 204 in such a way that the optical encoder component 210 moves with the actuation member 204. More particularly, when the actuation member 204 is rotated, the optical encoder component 210 rotates as well, and when the actuation member 204 is translated (e.g., axially, as a result of an axial input force), the optical encoder component 210 translates as well. While the crown assembly 203 shows the optical encoder component 210 as a barrel-shaped component, a different type or configuration of optical encoder component may be used, such as a sleeve, a cylinder, a nut, a splined component, a group of reflective members defining multiple facets, or the like.


The optical encoder component 210 may be a component of an optical encoder that determines one or more properties of a rotational input applied to the crown assembly 203. For example, the optical encoder component 210 define a group of optical features along an outer surface of the optical encoder component 210, and an optical detector 212 (which may also be considered a component of the optical encoder) may be configured to detect rotation of the crown assembly 203 by detecting motion of the group of optical features (via an optical path represented by arrow 213). In some cases, the optical detector 212 may include or may be associated with a light source or optical emitter that directs light (e.g., infrared light, laser light, visible light, or any other suitable radiation type) onto the outer surface of the optical encoder component 210, which may reflect the light onto the optical detector 212. The optical detector 212 may determine a property of motion of the crown assembly 203 based on the detected reflected light, such as a speed and/or direction of the motion of the crown assembly 203.


The optical features on the optical encoder component 210 may be any suitable features, such as grooves (e.g., parallel to the axis of the crown shaft 206), prisms, concave features, facets, threads, scratches, splines, recesses, or the like. The optical features may be arranged in an evenly spaced pattern around the optical encoder component 210 (e.g., the features may be separated by substantially a same distance). The regular arrangement may aid in the operation of the optical detector 212 and allow the optical detector 212 to determine properties of the motion and/or position of the crown assembly 203 (e.g., speed, direction, position, acceleration, or the like). In some cases, the optical features are not arranged in an evenly spaced pattern, but instead are arranged in an irregular pattern, a random pattern, or the like.


The optical encoder component 210 may be attached to the actuation member 204 in any suitable way, including a threaded connection (as shown in FIG. 2), adhesive, mechanical interlock structures, fasteners, pins, or the like. The optical encoder component 210 may be conductively coupled to the actuation member 204 to further define the conductive path 220 that conductively couples a user to a biometric (or other) sensing component 232. The optical encoder component 210 may be conductively coupled to the actuation member 204 via the threads, as shown, and/or via other conductive couplings (e.g., a wire or other conductive component that is conductively coupled to both the optical encoder component 210 and the actuation member 204).


In some cases the optical encoder component 210 may be omitted. In such cases the actuation member 204 itself may include optical features such as those described above as being on the optical encoder component 210, and the optical detector 212 may determine properties of the motion and/or position of the crown assembly 203 by directly sensing or detecting the optical features on the actuation member 204.


As noted above, the crown assembly 203 (which includes the actuation member 204 and the optical encoder component 210) may be translatable along an axis of the crown assembly 203 to provide an input to the device 200. In order to detect the axial input, the device 200 may include a switch 216 positioned between a bracket 218 and an end of the crown assembly 203. The switch 216 may be a dome switch, which may provide electrical switching functionality (e.g., closing a circuit upon actuation by the crown assembly 203) as well as a tactile output that may be felt or otherwise perceived by the user. For example, the user may feel a click, detent, or other sensation upon the collapse of the dome switch, thus indicating to the user that an input has been successfully provided to the device 200. In some cases, other types of switches or force sensing components may be used to detect axial inputs, which may be positioned similarly to the switch 216 in FIG. 2.


When the crown assembly 203 is rotated to provide a rotational input, the end of the crown assembly 203 that applies a force to actuate the switch 216 may slide, scrape, or shear against surfaces that support or are otherwise in contact with the crown assembly 203. If the crown assembly 203 were in contact directly with the switch 216, for example, an end of the optical encoder component 210 would apply a shearing or rotational friction on the surface of the switch 216 (due to the optical encoder component 210 rotating against the stationary switch 216). This friction may cause damage to the switch 216 and/or the optical encoder component 210. In some cases a friction guard 222 (or a portion thereof) is positioned between the switch 216 and the optical encoder component 210 (or between the switch 216 and the actuation member 204 in implementations where the optical encoder component 210 is omitted). The portion of the friction guard 222 that is between the optical encoder component 210 and the switch 216 (or between the actuation member 204 and the switch 216 in implementations where the optical encoder component 210 is omitted) is referred to as a shear plate 226.


Axial forces from the crown assembly 203 may be transferred to the switch 216 through the friction guard 222. For example, the friction guard 222 may be flexible so that the portion of the friction guard 222 that is between the optical encoder component 210 and the switch 216 can translate in response to an axial force applied by the crown assembly 203 and apply a corresponding force onto the switch 216 to actuate the switch 216. Because the friction guard 222 does not rotate, however, any friction due to rotation of the crown assembly 203 is applied to the friction guard 222 and not to the switch 216. This may help extend the life of the switch 216 by preventing the friction from damaging the outer surface of the switch 216, for example.


In order to support the friction guard 222 and maintain it in a desired position, the friction guard 222 may define support legs 224 that contact the bracket 218 and maintain the shear plate 226 in a desired position. In some cases, the support legs 224 are flexible and act as springs that allow the shear plate 226 to deflect (relative to the bracket 218) in response to an axial force applied to the crown assembly, and then return the shear plate 226 to a neutral or rest position after the axial force is removed. In some cases, the support legs 224 may bias the shear plate 226 against the end of the optical encoder component 210. This may help maintain physical contact with the optical encoder component 210, which may help reduce wear on the shear plate 226 and the optical encoder component 210.


The friction guard 222 may also define part of the conductive path 220 that may conductively couple the user's finger to a sensing component 232 through the crown assembly 203. Accordingly, the friction guard 222 may be formed of or include a conductive material, such as metal, metal alloy, carbon fiber, conductive polymers, or the like. In some cases, the friction guard 222 is a single piece of metal that defines the shear plate 226 and the support legs 224. One or more of the support legs 224 may define a contact portion 227 that is conductively coupled to another conductor 229 in the bracket 218, as described herein. The spring function of the support legs 224 may help maintain physical contact between the contact portion 227 and a corresponding contact portion 228 of the conductor 229, as well as between the shear plate 226 and the optical encoder component 210. Accordingly, the conductive path 220 is maintained during both rotational and axial movements of the crown assembly 203, allowing the sensing component 232 to take readings and/or measurements despite incidental or intentional movements of the crown assembly 203. As described herein, in order to reduce electrical noise introduced into the conductive path 220 when the crown assembly 203 is rotated, a conductive lubricant (e.g., a conductive grease) may be applied at the interface between the end of the optical encoder component 210 and the shear plate 226.


The bracket 218 may define a structural support for one or more components of the device 200. For example, the bracket 218 may be attached to the housing to provide a stable mounting structure for the switch 216 and the friction guard 222. The bracket 218 may also include a conductor 229, which may define a contact portion 228 (which is in contact with the support leg 224 of the friction guard 222) and a contact portion 230 that is accessible via the outside of the bracket 218. The contact portion 230 may be conductively coupled to the sensing component 232 (e.g., by a conductive trace, wire, flexible circuit component, or the like), thus defining part of the conductive path 220 between the crown assembly 203 and the sensing component 232. The conductor 229 may be a piece of metal that is coupled to a polymer body structure 234 of the bracket 218. In some cases the conductor 229 is at least partially encapsulated in the body structure 234 (e.g., by insert molding).


As shown in FIG. 2, components such as the bracket 218, the optical encoder component 210, the friction guard 222, a portion of the actuation member 204, and the switch 216 may be positioned within the internal volume of the device. Another portion of the actuation member 204, such as the knob 208, may be positioned outside of the internal volume (e.g., it may be an external portion of the actuation member 204 that is on the side of the device and is accessible to a user).


The input system described with respect to FIG. 2 may be used to carry electrical signals from a user to a sensing component 232. The sensing component 232 may be a component of any suitable type of sensor, such as a heart rate sensor, electrocardiograph sensor, temperature sensor, or the like. In some cases, the sensing component 232 may be coupled to or associated with other components that together form a sensor or sensing system, such as a processor, circuitry, a power source, or the like.



FIG. 3A depicts a sub-assembly 300 of a crown input system, showing components in an assembled configuration. The sub-assembly 300 may include a frame 302 and a bracket 318 (which may be an embodiment of the bracket 218, described with respect to FIG. 2). Together, the frame 302 and the bracket 318 may at least partially enclose a portion of a crown assembly. For example, as shown in FIG. 3A, an optical encoder component 310, which may be attached to a crown shaft, may be positioned within an internal volume defined by the frame 302 and the bracket 318.


The sub-assembly 300 may also include a friction guard 322 (which may be an embodiment of the friction guard 222) and an optical encoder component 310 (which may be an embodiment of the optical encoder component 210). The bracket 318, friction guard 322, and optical encoder component 310 may include the same or similar components and may provide the same or similar functions as the corresponding components described with respect to FIG. 2. Accordingly, details of the components described with respect to FIG. 2 may apply equally to those in FIG. 3A, and for brevity will not be repeated here.


In some cases the portion of the input system shown in FIG. 3A may be a self-contained subassembly. For example, the components shown in FIG. 3A may be assembled together separately from other components, and then integrated with other components of the device, such as a housing, an actuation member, and the like. In this way, components that require tight tolerances and high assembly precision (e.g., the friction guard, the barrel, the frame, and the switch) may be pre-assembled into a secure sub-assembly 300 that can then be incorporated into a device without requiring separate alignment or re-alignment of the components of the sub-assembly 300.


The frame 302 may be attached to a housing of a device, for example via a mounting portion 308. The mounting portion 308 may include openings for receiving fasteners that secure the frame 302 to the housing (e.g., screws, bolts, posts, rivets, welds, stakes, or the like). In some cases, the frame 302 is instead or additionally secured to the housing using adhesives, anchor structures, or any other suitable coupling technique or component. The frame 302 may be formed from or include any suitable material, such as metal, metal alloy, polymer, carbon fiber, or the like. The frame 302 may be a monolithic component, or it may comprise multiple different components that are attached together.


The frame 302 may define an opening 306 that is configured to receive a locking member (e.g., a locking member 404, FIG. 4). The locking member may engage threads in the opening 306 and may capture a portion of a side wall of a housing between a mounting face 304 of the frame 302 and the locking member. An example arrangement of a frame, locking member, and side wall of a housing is shown in FIG. 4.


The bracket 318 may include a body structure 334 (which may be an embodiment of the body structure 234, FIG. 2), and a support structure 336. The body structure 334 may be formed of a polymer material, and may at least partially encapsulate the support structure 336, which may be formed of or include a metal. For example, the support structure 336 may be inserted into a mold cavity, and a polymer or other moldable material may be injected into the mold cavity to partially encapsulate the support structure 336.


The bracket 318 may be attached to the frame 302. For example, the support structure 336 may define flanges 338 that overlap and are secured to a portion of the frame 302. The flanges 338, which may be metal, may be secured to the portion of the frame 302 via any suitable technique, such as welding, brazing, soldering, adhesive, fasteners, or the like. In some cases, the bracket 318 and the frame 302 are carefully aligned, prior to being secured together, to establish the proper alignment and tolerances of the components within the assembly. For example, the positioning of the frame 302 relative to the bracket may define the inner dimension of the assembly, which may define parameters such as the biasing force applied by the friction guard 322 on the optical encoder component 310, the distance between the friction guard 322 and the switch (e.g., the switch 216, FIG. 2), and so forth. Once the frame 302 and the bracket 318 are satisfactorily aligned, they may be secured together (e.g., via welds along the flanges 338, which may be formed of or include metal).



FIG. 3B is an exploded view of the sub-assembly 300, illustrating additional details of the various components and their arrangement. FIG. 3B includes an actuation member 339 (which may be an embodiment of the actuation member 204, FIG. 2). The actuation member 339 may include a threaded region 352 that engages a threaded opening 354 of the optical encoder component 310. The actuation member 339 may be threaded to the optical encoder component 310 after the optical encoder component 310 is assembled into the configuration shown in FIG. 3A.


The sub-assembly 300 may also include a wear plate 340 that is positioned between an inner surface of the frame 302 and a surface of the optical encoder component 310. The wear plate 340 may be configured to reduce friction on the frame 302 due to the rotation of the optical encoder component 310 during rotational inputs to the actuation member 339. The wear plate 340 may also electrically isolate the optical encoder component 310 from the frame 302. More particularly, as noted above, the optical encoder component 310 may define part of the conductive path between the actuation member 339 and biometric sensing circuitry. Thus, the optical encoder component 310 may need to be electrically isolated from conductive components that do not define the conductive path (e.g., components that may be grounded or otherwise interfere with the propagation of signals along the conductive path). Accordingly, the wear plate 340 may be formed of or include an insulating material. In one example construction, the wear plate 340 includes a first metal layer that contacts the optical encoder component 310, a second metal layer that contacts (and is optionally welded to) an inner surface of the frame 302, and an insulating layer between the first and second metal layers. The first and second metal layers may be secured to the insulating layer (which may be a plastic, rubber, foam, or any other suitable material) by adhesive (e.g., a pressure-sensitive adhesive (PSA), heat-sensitive adhesive (HSA), epoxy, cyanoacrylate, or any other suitable adhesive). FIG. 4 shows an example cross-section of a wear plate having multiple layers as described herein.



FIG. 3B also shows additional details of the friction guard 322 and the bracket 318 from FIG. 3A. For example, the friction guard 322 includes a shear plate 344 (which may be an embodiment of the shear plate 226, FIG. 2) and support legs 342 (which may be embodiments of the support legs 224, FIG. 2). The support legs 342 may be flexible and/or deformable, and may act as spring members that support the shear plate 344 and apply a biasing force against the optical encoder component 310 when the sub-assembly 320 is assembled. The support legs 342 may contact a contact portion 350 of a conductor in the bracket 318 to further define the conductive path to the sensing component. The friction guard 322 may be secured to the bracket 318 via adhesive, welding, soldering, brazing, mechanical interlocks, heat staking, or the like. For example, the support legs 342 may be soldered to the contact portion 350 of the bracket 318. The friction guard 322 may also be configured so that the shear plate 344 does not contact the top of the switch 348 when the crown is in an unactuated state (e.g., it is in a rest position and is not being actuated axially). This may help prevent unnecessary wear on the switch 348 and the other components of the crown input system.


The body structure 334 of the bracket 318, which may be formed of an electrical insulator such as a polymer, may extend at least part way up the flanges 338, as shown in FIG. 3B. This extended portion 337 of the body structure 334 may be adjacent the friction guard 322, thus ensuring electrical isolation between the friction guard 322 and the conductive (e.g., metal) support structure 336. The body structure 334 of the bracket 318 may also electrically isolate the flanges 338 (and/or other conductive portions of the bracket 318) from a conductor that is at least partially encapsulated in the body structure 334 and that defines the contact portions 350, 353 (e.g., the conductor 229 or an embodiment thereof). More particularly, the body structure 334 may electrically insulate the conductor from other metallic or conductive components that may otherwise ground or otherwise disrupt the conductive path through the crown input system.



FIG. 3C shows an underside view of the bracket 318 of FIGS. 3A-3B. As described above, the bracket 318 may include a conductor (e.g., the conductor 229, FIG. 2) that is at least partially encapsulated in the body structure 334. As shown in FIG. 3C, a portion of the conductor may be exposed along an exterior surface of the bracket 318 to define an exterior contact portion 353. The exterior contact portion 353 may be conductively coupled to biometric sensing circuitry. More particularly, the exterior contact portion 353 may provide convenient access to the conductive path of the crown, which may otherwise be difficult to physically access as many of the components that define the conductive path may be at least partially encased and/or enclosed in other components (e.g., the frame 302, the bracket 318, etc.) and thus may be otherwise difficult to access in order to complete the conductive path to the biometric sensing circuitry. The contact portion 350 (FIG. 3B) and the exterior contact portion 353 (FIG. 3C) may be portions of a single conductor, such as a metal member.



FIG. 4 is a cross-sectional view of a crown input system installed in a housing. For example, FIG. 4 shows the components of the sub-assembly 300, shown in FIGS. 3A-3B, in a housing defining a side wall 402. The cross-sectional view may correspond to a view through line A-A in FIG. 1.



FIG. 4 illustrates how a mounting face 304 of the frame 302 contacts an inner surface of the side wall 402 of the housing, and a locking member 404 engages with the threads of the frame 302 to capture and/or compress the side wall 402 between the mounting face 304 and a flange of the locking member 404. A seal 412 may be positioned at an interface between the locking member 404 and the side wall 402 to help prevent ingress of water, dust, debris, or other contaminants into the internal volume of the device.



FIG. 4 also illustrates an example crown assembly that is formed from multiple discrete components. For example, the crown assembly may include the optical encoder component 310 and an actuation member that includes a crown shaft 406 and a crown ring 408 coupled to the crown shaft and electrically isolated from the crown shaft (e.g., by an electrical insulating assembly 410, which may be formed from a polymer or other suitable insulating material(s)). In this example, the crown ring 408 may not define part of the conductive path through the crown assembly, and instead the axial end surface of the crown shaft 406 (which is external to the housing and therefore accessible by a user) may define the input surface for the biometric sensor. The actuation member may be coupled to the optical encoder component 310 via threads on the crown shaft 406, as described herein.


The crown ring 408 may include tactile features such as grooves, splines, ridges, textures, or the like, formed on an exterior surface of the crown ring 408 (e.g., the portion of the crown ring that a user touches when providing rotational inputs). The tactile features may be positioned around a circumference of the crown ring 408. For example, the tactile features may include a series of tactile features (e.g., grooves, channels) spaced regularly around a circumferential surface of the crown ring 408. The tactile features may improve a tactile feel of the crown during rotational inputs. For example, the tactile features may provide greater grip or friction between the crown ring 408 and a user's finger, as compared to a smooth or un-featured crown ring 408.


The crown shaft 406 may be electrically isolated from the locking member 404 via one or more bushings 413. The bushings 413 may be formed from a rubber, polymer, or other electrically insulating material. The bushings 413 may also act as guides for the crown shaft 406 to provide smooth operation and maintain alignment, and also to seal the assembly and prevent ingress of water or other contaminants.



FIG. 4 also shows the overlap between the frame 302 and the flanges 338, where the flanges 338 may be affixed to the frame 302. Also, FIG. 4 shows how a three-layer wear plate 340 may be positioned between an inner surface of the frame 302 and the optical encoder component 310 to prevent frictional contact between the optical encoder component 310 and the frame 302 and to maintain electrical separation between the frame 302 and the optical encoder component 310. FIG. 4 further shows an electrically conductive lubricant 414 (e.g., conductive grease) applied at the interface between the shear plate 344 of the friction guard and the end of the optical encoder component 310.



FIG. 5 depicts an example schematic diagram of an electronic device 500. By way of example, the device 500 of FIG. 5 may correspond to the wearable electronic device 100 shown in FIG. 1 (or any other wearable electronic device described herein). To the extent that multiple functionalities, operations, and structures are disclosed as being part of, incorporated into, or performed by the device 500, it should be understood that various embodiments may omit any or all such described functionalities, operations, and structures. Thus, different embodiments of the device 500 may have some, none, or all of the various capabilities, apparatuses, physical features, modes, and operating parameters discussed herein.


As shown in FIG. 5, a device 500 includes a processing unit 502 operatively connected to computer memory 504 and/or computer-readable media 506. The processing unit 502 may be operatively connected to the memory 504 and computer-readable media 506 components via an electronic bus or bridge. The processing unit 502 may include one or more computer processors or microcontrollers that are configured to perform operations in response to computer-readable instructions. The processing unit 502 may include the central processing unit (CPU) of the device. Additionally or alternatively, the processing unit 502 may include other processors within the device including application specific integrated chips (ASIC) and other microcontroller devices.


The memory 504 may include a variety of types of non-transitory computer-readable storage media, including, for example, read access memory (RAM), read-only memory (ROM), erasable programmable memory (e.g., EPROM and EEPROM), or flash memory. The memory 504 is configured to store computer-readable instructions, sensor values, and other persistent software elements. Computer-readable media 506 also includes a variety of types of non-transitory computer-readable storage media including, for example, a hard-drive storage device, a solid-state storage device, a portable magnetic storage device, or other similar device. The computer-readable media 506 may also be configured to store computer-readable instructions, sensor values, and other persistent software elements.


In this example, the processing unit 502 is operable to read computer-readable instructions stored on the memory 504 and/or computer-readable media 506. The computer-readable instructions may adapt the processing unit 502 to perform the operations or functions described above with respect to FIGS. 1-4. In particular, the processing unit 502, the memory 504, and/or the computer-readable media 506 may be configured to cooperate with a sensor 524 (e.g., a rotation sensor that senses rotation of a crown component or a sensor that senses motion of a user's finger) to control the operation of a device in response to an input applied to a crown of a device (e.g., the crown 112). The computer-readable instructions may be provided as a computer-program product, software application, or the like.


As shown in FIG. 5, the device 500 also includes a display 508. The display 508 may include a liquid-crystal display (LCD), organic light emitting diode (OLED) display, light emitting diode (LED) display, or the like. If the display 508 is an LCD, the display 508 may also include a backlight component that can be controlled to provide variable levels of display brightness. If the display 508 is an OLED or LED type display, the brightness of the display 508 may be controlled by modifying the electrical signals that are provided to display elements. The display 508 may correspond to any of the displays shown or described herein.


The device 500 may also include a battery 509 that is configured to provide electrical power to the components of the device 500. The battery 509 may include one or more power storage cells that are linked together to provide an internal supply of electrical power. The battery 509 may be operatively coupled to power management circuitry that is configured to provide appropriate voltage and power levels for individual components or groups of components within the device 500. The battery 509, via power management circuitry, may be configured to receive power from an external source, such as an AC power outlet. The battery 509 may store received power so that the device 500 may operate without connection to an external power source for an extended period of time, which may range from several hours to several days.


In some embodiments, the device 500 includes one or more input devices 510. An input device 510 is a device that is configured to receive user input. The one or more input devices 510 may include, for example, a crown input system, a push button, a touch-activated button, a keyboard, a key pad, or the like (including any combination of these or other components). In some embodiments, the input device 510 may provide a dedicated or primary function, including, for example, a power button, volume buttons, home buttons, scroll wheels, and camera buttons.


The device 500 may also include a sensor 524. The sensor 524 may detect inputs provided by a user to a crown of the device (e.g., the crown 112). As described above, the sensor 524 may include sensing circuitry and other sensing components that facilitate sensing of rotational motion of a crown, as well as sensing circuitry and other sensing components (optionally including a switch) that facilitate sensing of axial motion of the crown. The sensor 524 may include components such as an optical detector (e.g., the optical detector 212), a barrel (e.g., the barrels 210, 310), a tactile or dome switch (e.g., the switches 216, 348), or any other suitable components or sensors that may be used to provide the sensing functions described herein. The sensor 524 may also be a biometric sensor, such as a heart rate sensor, electrocardiograph sensor, temperature sensor, or any other sensor that conductively couples to user and/or to the external environment through a crown input system, as described herein. In cases where the sensor 524 is a biometric sensor, it may include biometric sensing circuitry, as well as portions of a crown that conductively couple a user's body to the biometric sensing circuitry. Biometric sensing circuitry may include components such as processors, capacitors, inductors, transistors, analog-to-digital converters, or the like.


The device 500 may also include a touch sensor 520 that is configured to determine a location of a touch on a touch-sensitive surface of the device 500 (e.g., an input surface defined by the portion of a cover 108 over a display 109). The touch sensor 520 may use or include capacitive sensors, resistive sensors, surface acoustic wave sensors, piezoelectric sensors, strain gauges, or the like. In some cases the touch sensor 520 associated with a touch-sensitive surface of the device 500 may include a capacitive array of electrodes or nodes that operate in accordance with a mutual-capacitance or self-capacitance scheme. The touch sensor 520 may be integrated with one or more layers of a display stack (e.g., the display 109) to provide the touch-sensing functionality of a touchscreen. Moreover, the touch sensor 520, or a portion thereof, may be used to sense motion of a user's finger as it slides along a surface of a crown, as described herein.


The device 500 may also include a force sensor 522 that is configured to receive and/or detect force inputs applied to a user input surface of the device 500 (e.g., the display 109). The force sensor 522 may use or include capacitive sensors, resistive sensors, surface acoustic wave sensors, piezoelectric sensors, strain gauges, or the like. In some cases, the force sensor 522 may include or be coupled to capacitive sensing elements that facilitate the detection of changes in relative positions of the components of the force sensor (e.g., deflections caused by a force input). The force sensor 522 may be integrated with one or more layers of a display stack (e.g., the display 109) to provide force-sensing functionality of a touchscreen.


The device 500 may also include a communication port 528 that is configured to transmit and/or receive signals or electrical communication from an external or separate device. The communication port 528 may be configured to couple to an external device via a cable, adaptor, or other type of electrical connector. In some embodiments, the communication port 528 may be used to couple the device 500 to an accessory, including a dock or case, a stylus or other input device, smart cover, smart stand, keyboard, or other device configured to send and/or receive electrical signals.


As described above, one aspect of the present technology is the gathering and use of data available from a user. The present disclosure contemplates that in some instances, this gathered data may include personal information data that uniquely identifies or can be used to contact or locate a specific person. Such personal information data can include demographic data, location-based data, telephone numbers, email addresses, twitter ID's, home addresses, data or records relating to a user's health or level of fitness (e.g., vital signs measurements, medication information, exercise information), date of birth, or any other identifying or personal information. For example, where the sensor described above is a biometric sensor, sensitive and/or personal information may be captured about a user (e.g., health-related data).


The present disclosure recognizes that the use of such personal information data, in the present technology, can be used to the benefit of users. For example, the personal information data can be used to deliver targeted content that is of greater interest to the user. Accordingly, use of such personal information data enables users to calculated control of the delivered content. Further, other uses for personal information data that benefit the user are also contemplated by the present disclosure. For instance, health and fitness data may be used to provide insights into a user's general wellness, or may be used as positive feedback to individuals using technology to pursue wellness goals.


The present disclosure contemplates that the entities responsible for the collection, analysis, disclosure, transfer, storage, or other use of such personal information data will comply with well-established privacy policies and/or privacy practices. In particular, such entities should implement and consistently use privacy policies and practices that are generally recognized as meeting or exceeding industry or governmental requirements for maintaining personal information data private and secure. Such policies should be easily accessible by users, and should be updated as the collection and/or use of data changes. Personal information from users should be collected for legitimate and reasonable uses of the entity and not shared or sold outside of those legitimate uses. Further, such collection/sharing should occur after receiving the informed consent of the users. Additionally, such entities should consider taking any needed steps for safeguarding and securing access to such personal information data and ensuring that others with access to the personal information data adhere to their privacy policies and procedures. Further, such entities can subject themselves to evaluation by third parties to certify their adherence to widely accepted privacy policies and practices. In addition, policies and practices should be adapted for the particular types of personal information data being collected and/or accessed and adapted to applicable laws and standards, including jurisdiction-specific considerations. For instance, in the US, collection of or access to certain health data may be governed by federal and/or state laws, such as the Health Insurance Portability and Accountability Act (HIPAA); whereas health data in other countries may be subject to other regulations and policies and should be handled accordingly. Hence different privacy practices should be maintained for different personal data types in each country.


Despite the foregoing, the present disclosure also contemplates embodiments in which users selectively block the use of, or access to, personal information data. That is, the present disclosure contemplates that hardware and/or software elements can be provided to prevent or block access to such personal information data. For example, in the case of advertisement delivery services, the present technology can be configured to allow users to select to “opt in” or “opt out” of participation in the collection of personal information data during registration for services or anytime thereafter. In another example, users can select not to provide mood-associated data for targeted content delivery services. In yet another example, users can select to limit the length of time mood-associated data is maintained or entirely prohibit the development of a baseline mood profile. In addition to providing “opt in” and “opt out” options, the present disclosure contemplates providing notifications relating to the access or use of personal information. For instance, a user may be notified upon downloading an app that their personal information data will be accessed and then reminded again just before personal information data is accessed by the app.


Moreover, it is the intent of the present disclosure that personal information data should be managed and handled in a way to minimize risks of unintentional or unauthorized access or use. Risk can be minimized by limiting the collection of data and deleting data once it is no longer needed. In addition, and when applicable, including in certain health related applications, data de-identification can be used to protect a user's privacy. De-identification may be facilitated, when appropriate, by removing specific identifiers (e.g., date of birth, etc.), controlling the amount or specificity of data stored (e.g., collecting location data a city level rather than at an address level), controlling how data is stored (e.g., aggregating data across users), and/or other methods.


Therefore, although the present disclosure broadly covers use of personal information data to implement one or more various disclosed embodiments, the present disclosure also contemplates that the various embodiments can also be implemented without the need for accessing such personal information data. That is, the various embodiments of the present technology are not rendered inoperable due to the lack of all or a portion of such personal information data. For example, content can be selected and delivered to users by inferring preferences based on non-personal information data or a bare minimum amount of personal information, such as the content being requested by the device associated with a user, other non-personal information available to the content delivery services, or publicly available information.


The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of the specific embodiments described herein are presented for purposes of illustration and description. They are not targeted to be exhaustive or to limit the embodiments to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings. Also, when used herein to refer to positions of components, the terms above and below, or their synonyms, do not necessarily refer to an absolute position relative to an external reference, but instead refer to the relative position of components with reference to the figures.

Claims
  • 1. An electronic watch comprising: a housing defining a side wall having a through-hole;a crown assembly comprising: an actuation member comprising: a crown shaft extending through the through-hole and having an exterior portion defining an input surface; anda crown ring coupled to the exterior portion of the crown shaft and electrically isolated from the crown shaft; andan optical encoder component attached to the actuation member and defining a group of optical features;an optical detector configured to detect rotation of the crown assembly by detecting motion of the group of optical features; andan electrocardiograph sensor comprising a sensing component; whereinthe sensing component is conductively coupled to the actuation member via a conductive path at least partially defined by the crown shaft.
  • 2. The electronic watch of claim 1, wherein: the electronic watch further comprises: a switch configured to be actuated by the crown assembly in response to an axial input applied to the crown assembly;a friction guard having a shear plate positioned between the switch and the optical encoder component and conductively coupled to the optical encoder component; anda bracket comprising: a body structure; anda conductor coupled to the body structure; andthe conductive path is further defined by the optical encoder component and the conductor and is configured to carry electrical signals from a user in contact with the input surface to the electrocardiograph sensor.
  • 3. The electronic watch of claim 2, wherein: the body structure comprises a polymer material; andthe conductor is at least partially encapsulated by the polymer material.
  • 4. The electronic watch of claim 1, wherein: the electronic watch further comprises: a switch configured to be actuated by the crown assembly in response to an axial force applied to the crown assembly; anda friction guard at least partially positioned between the switch and the optical encoder component and conductively coupled to the optical encoder component;the axial force is transferred from the crown assembly to the switch through the friction guard; andthe conductive path is further defined by the friction guard.
  • 5. The electronic watch of claim 4, wherein: the crown assembly is rotatable relative to the housing;the crown assembly rotates against the friction guard when the crown assembly is rotated; andthe friction guard protects the switch from rotational friction from the crown assembly.
  • 6. The electronic watch of claim 1, further comprising, within an internal volume of the housing: a bracket;a frame coupled to the bracket and attached to the housing; anda wear plate positioned between an inner surface of the frame and configured to electrically isolate the optical encoder component from the frame.
  • 7. The electronic watch of claim 1, wherein: the electronic watch further comprises: a display positioned at least partially within the housing and configured to display a graphical output;a transparent cover coupled to the housing; anda touch sensor positioned below the transparent cover and configured to detect touch inputs applied to the transparent cover; andthe electronic watch is configured to modify the graphical output in accordance with a detected rotation of the crown assembly.
  • 8. An electronic watch comprising: a housing at least partially defining an internal volume;biometric sensing circuitry within the internal volume; anda crown assembly configured to rotate and translate relative to the housing and comprising: a crown shaft defining an axial end surface;a crown ring coupled to the crown shaft and defining a series of tactile features arranged around a circumference of the crown ring; andan optical encoder component attached to the crown shaft and defining a group of optical features, whereinthe crown shaft and the optical encoder component define a conductive path configured to conductively couple the crown assembly to the biometric sensing circuitry.
  • 9. The electronic watch of claim 8, wherein the biometric sensing circuitry is part of an electrocardiograph sensor.
  • 10. The electronic watch of claim 8, further comprising: a switch; anda friction guard having a shear plate positioned between the crown assembly and the switch and configured to transfer axial forces from the crown assembly to the switch.
  • 11. The electronic watch of claim 10, wherein: the electronic watch further comprises: a bracket positioned in the internal volume and comprising: a metal flange;a polymer body structure; anda conductor coupled to the polymer body structure and electrically isolated from the metal flange by the polymer body structure;the friction guard is in contact with the conductor; andthe conductive path is further defined by the friction guard and the conductor.
  • 12. The electronic watch of claim 10, further comprising a conductive lubricant at an interface between the crown assembly and the friction guard.
  • 13. The electronic watch of claim 8, wherein the optical encoder component is attached to the crown shaft via a threaded connection.
  • 14. The electronic watch of claim 8, wherein the axial end surface of the crown shaft defines an input surface for the biometric sensing circuitry.
  • 15. An electronic device comprising: a housing at least partially defining an internal volume;an electrocardiograph sensor within the internal volume and comprising a sensing component;a frame within the internal volume and attached to the housing;a bracket attached to the frame and comprising: a body structure; anda conductor at least partially encapsulated in the body structure;a crown assembly having an external portion positioned outside of the internal volume and configured to rotate and translate relative to the housing, whereinthe bracket and the frame at least partially enclose a portion of the crown assembly; andthe crown assembly and the conductor define a conductive path configured to conductively couple the sensing component to an object in contact with the external portion of the crown assembly.
  • 16. The electronic device of claim 15, further comprising: a band coupled to the housing;a display at least partially within the internal volume of the housing;a transparent cover coupled to the housing and positioned such that the display is visible through the transparent cover; anda touch sensor at least partially within the internal volume and configured to detect touch inputs applied to the transparent cover.
  • 17. The electronic device of claim 15, wherein: the crown assembly comprises: a crown shaft having an internal portion within the internal volume; andan optical encoder component attached to the internal portion of the crown shaft and defining a group of optical features;the electronic device further comprises an optical detector configured to detect rotation of the crown assembly by detecting motion of the group of optical features; andthe optical encoder component defines part of the conductive path.
  • 18. The electronic device of claim 15, further comprising: a friction guard in contact with the bracket and the crown assembly; anda switch positioned between the friction guard and the bracket and configured to be actuated in response to axial translation of the crown assembly.
  • 19. The electronic device of claim 18, wherein the friction guard comprises: a shear plate; anda support leg configured to allow the shear plate to deflect relative to the bracket.
  • 20. The electronic device of claim 19, wherein the friction guard is a single piece of conductive material.
US Referenced Citations (482)
Number Name Date Kind
2237860 Bolle Apr 1941 A
2288215 Taubert et al. Jun 1942 A
2497935 Feurer Feb 1950 A
2771734 Morf Nov 1956 A
2788236 Kafowi Apr 1957 A
2797592 Marrapese Jul 1957 A
3040514 Dinstman Jun 1962 A
3056030 Kelchner Sep 1962 A
3130539 Davis Apr 1964 A
3355873 Morf Dec 1967 A
3362154 Perret Jan 1968 A
3410247 Dronberger Nov 1968 A
3495398 Widmer et al. Feb 1970 A
3577876 Spadini May 1971 A
3621649 Vulcan et al. Nov 1971 A
3662618 Kroll et al. May 1972 A
3733803 Hiraga May 1973 A
4007347 Haber Feb 1977 A
4031341 Wuthrich et al. Jun 1977 A
4037068 Gaynor Jul 1977 A
4077200 Schneider Mar 1978 A
4133404 Griffin Jan 1979 A
4170104 Yamagata Oct 1979 A
4258096 LaMarche Mar 1981 A
4287400 Kitik Sep 1981 A
4289400 Kubola et al. Sep 1981 A
4311026 Ochoa Jan 1982 A
4311990 Burke Jan 1982 A
4324956 Sakakino et al. Apr 1982 A
4345119 Latasiewicz Aug 1982 A
4364674 Tesch Dec 1982 A
4379642 Meyrat Apr 1983 A
4395134 Luce Jul 1983 A
4396298 Ripley Aug 1983 A
4417824 Paterson et al. Nov 1983 A
4448199 Schmid May 1984 A
4520306 Kirby May 1985 A
4581509 Sanford et al. Apr 1986 A
4600316 Besson Jul 1986 A
4617461 Subbarao et al. Oct 1986 A
4634861 Ching et al. Jan 1987 A
4641026 Garcia, Jr. Feb 1987 A
4670737 Rilling Jun 1987 A
4766642 Gaffney et al. Aug 1988 A
4783772 Umemoto et al. Nov 1988 A
4884073 Souloumiac Nov 1989 A
4914831 Kanezashi et al. Apr 1990 A
4922070 Dorkinski May 1990 A
4931794 Haag Jun 1990 A
4952799 Loewen Aug 1990 A
4980685 Souloumiac et al. Dec 1990 A
4987299 Kobayashi et al. Jan 1991 A
5034602 Garcia et al. Jul 1991 A
5177355 Branan Jan 1993 A
5214278 Banda May 1993 A
5258592 Nishikawa et al. Nov 1993 A
5288993 Bidiville et al. Feb 1994 A
5347123 Jackson et al. Sep 1994 A
5383166 Gallay Jan 1995 A
5471054 Watanabe Nov 1995 A
5477508 Will Dec 1995 A
5509174 Worrell Apr 1996 A
5559761 Frenkel et al. Sep 1996 A
5572314 Hyman et al. Nov 1996 A
5583560 Florin et al. Dec 1996 A
5631881 Pessey et al. May 1997 A
5726645 Kamon et al. Mar 1998 A
5748111 Bates May 1998 A
5825353 Will Oct 1998 A
5841050 Clift et al. Nov 1998 A
5847335 Sugahara et al. Dec 1998 A
5867082 Van Zeeland Feb 1999 A
5943233 Ebina Aug 1999 A
5953001 Challener et al. Sep 1999 A
5960366 Duwaer et al. Sep 1999 A
5963332 Feldman et al. Oct 1999 A
5999168 Rosenberg et al. Dec 1999 A
6069567 Zawilski May 2000 A
6128006 Rosenberg et al. Oct 2000 A
6134189 Carrard Oct 2000 A
6154201 Levin et al. Nov 2000 A
6175679 Veligdan et al. Jan 2001 B1
6203190 Stotz Mar 2001 B1
6241684 Amano Jun 2001 B1
6246050 Tullis et al. Jun 2001 B1
6252825 Perotto Jun 2001 B1
6304247 Black Oct 2001 B1
6355891 Ikunami Mar 2002 B1
6361502 Puolakanaho et al. Mar 2002 B1
6377239 Isikawa Apr 2002 B1
6392640 Will May 2002 B1
6396006 Yokoji et al. May 2002 B1
6422740 Leuenberger Jul 2002 B1
6477117 Narayanaswami et al. Nov 2002 B1
6502982 Bach et al. Jan 2003 B1
6525278 Villain et al. Feb 2003 B2
6556222 Narayanaswami Apr 2003 B1
6575618 Inoue et al. Jun 2003 B1
6587400 Line Jul 2003 B1
6636197 Goldenberg et al. Oct 2003 B1
6646635 Pogatetz et al. Nov 2003 B2
6661438 Shiraishi et al. Nov 2003 B1
6672758 Ehrsam et al. Jan 2004 B2
6794992 Rogers Sep 2004 B1
6809275 Cheng et al. Oct 2004 B1
6834430 Worrell Dec 2004 B2
6846998 Hasumi et al. Jan 2005 B2
6882596 Guanter Apr 2005 B2
6888076 Hetherington May 2005 B2
6896403 Gau May 2005 B1
6909378 Lambrechts et al. Jun 2005 B1
6914551 Vidal Jul 2005 B2
6961099 Takano et al. Nov 2005 B2
6963039 Weng et al. Nov 2005 B1
6967903 Guanter Nov 2005 B2
6977868 Brewer et al. Dec 2005 B2
6982930 Hung Jan 2006 B1
6985107 Anson Jan 2006 B2
6987568 Dana Jan 2006 B2
6998553 Hisamune et al. Feb 2006 B2
7016263 Gueissaz et al. Mar 2006 B2
7021442 Borgerson Apr 2006 B2
7031228 Born et al. Apr 2006 B2
7034237 Ferri et al. Apr 2006 B2
7081905 Raghunath et al. Jul 2006 B1
7102626 Denny, III Sep 2006 B2
7111365 Howie, Jr. Sep 2006 B1
7113450 Plancon et al. Sep 2006 B2
7119289 Lacroix Oct 2006 B2
7135673 Saint Clair Nov 2006 B2
7167083 Giles Jan 2007 B2
7244927 Huynh Jul 2007 B2
7255473 Hiranuma et al. Aug 2007 B2
7265336 Hataguchi et al. Sep 2007 B2
7274303 Dresti et al. Sep 2007 B2
7285738 Lavigne et al. Oct 2007 B2
7286063 Gauthey Oct 2007 B2
7292741 Ishiyama et al. Nov 2007 B2
7358481 Yeoh et al. Apr 2008 B2
7369308 Tsuruta et al. May 2008 B2
7371745 Ebright et al. May 2008 B2
7385874 Vuilleumier Jun 2008 B2
7404667 Born et al. Jul 2008 B2
7465917 Chin et al. Dec 2008 B2
7468036 Rulkov et al. Dec 2008 B1
7506269 Lang et al. Mar 2009 B2
7520664 Wai Apr 2009 B2
7528824 Kong May 2009 B2
7545367 Sunda et al. Jun 2009 B2
7591582 Hiranuma et al. Sep 2009 B2
7593755 Colando et al. Sep 2009 B2
7605846 Watanabe Oct 2009 B2
7634263 Louch et al. Dec 2009 B2
7646677 Nakamura Jan 2010 B2
7655874 Akieda Feb 2010 B2
7682070 Burton Mar 2010 B2
7708457 Girardin May 2010 B2
7710456 Koshiba et al. May 2010 B2
7732724 Otani et al. Jun 2010 B2
7761246 Matsui Jul 2010 B2
7763819 Ieda et al. Jul 2010 B2
7772507 Orr Aug 2010 B2
7778115 Ruchonnet Aug 2010 B2
7781726 Matsui et al. Aug 2010 B2
RE41637 O'Hara et al. Sep 2010 E
7791588 Tierling et al. Sep 2010 B2
7791597 Silverstein et al. Sep 2010 B2
7822469 Lo Oct 2010 B2
7856255 Tsuchiya et al. Dec 2010 B2
7858583 Schmidt et al. Dec 2010 B2
7865324 Lindberg Jan 2011 B2
7894957 Carlson Feb 2011 B2
7946758 Mooring May 2011 B2
8063892 Shahoian et al. Nov 2011 B2
8138488 Grot Mar 2012 B2
8143981 Washizu et al. Mar 2012 B2
8167126 Stiehl May 2012 B2
8169402 Shahoian et al. May 2012 B2
8188989 Levin et al. May 2012 B2
8195313 Fadell et al. Jun 2012 B1
8229535 Mensinger et al. Jul 2012 B2
8248815 Yang et al. Aug 2012 B2
8263886 Lin et al. Sep 2012 B2
8263889 Takahashi et al. Sep 2012 B2
8275327 Yi et al. Sep 2012 B2
8294670 Griffin et al. Oct 2012 B2
8312495 Vanderhoff Nov 2012 B2
8318340 Stimits Nov 2012 B2
8368677 Yamamoto Feb 2013 B2
8371745 Manni Feb 2013 B2
8373661 Lan et al. Feb 2013 B2
8410971 Friedlander Apr 2013 B2
8432368 Momeyer et al. Apr 2013 B2
8439559 Luk et al. May 2013 B2
8441450 Degner et al. May 2013 B2
8446713 Lai May 2013 B2
8456430 Oliver et al. Jun 2013 B2
8477118 Lan et al. Jul 2013 B2
8493190 Periquet et al. Jul 2013 B2
8508511 Tanaka et al. Aug 2013 B2
8525777 Stavely et al. Sep 2013 B2
8562489 Burton et al. Oct 2013 B2
8568313 Sadhu Oct 2013 B2
8576044 Chapman Nov 2013 B2
8593598 Chen et al. Nov 2013 B2
8607662 Huang Dec 2013 B2
8614881 Yoo Dec 2013 B2
8666682 LaVigne et al. Mar 2014 B2
8677285 Tsern et al. Mar 2014 B2
8704787 Yamamoto Apr 2014 B2
8711093 Ong et al. Apr 2014 B2
8724087 Van De Kerkhof et al. May 2014 B2
8730167 Ming et al. May 2014 B2
8743088 Watanabe Jun 2014 B2
8783944 Doi Jul 2014 B2
8797153 Vanhelle et al. Aug 2014 B2
8804993 Shukla et al. Aug 2014 B2
8816962 Obermeyer et al. Aug 2014 B2
8824245 Lau et al. Sep 2014 B2
8847741 Birnbaum et al. Sep 2014 B2
8859971 Weber Oct 2014 B2
8860674 Lee et al. Oct 2014 B2
8863219 Brown et al. Oct 2014 B2
D717679 Anderssen Nov 2014 S
8878657 Periquet et al. Nov 2014 B2
8885856 Sacha Nov 2014 B2
8895911 Takahashi Nov 2014 B2
8905631 Sakurazawa et al. Dec 2014 B2
8908477 Peters Dec 2014 B2
8920022 Ishida et al. Dec 2014 B2
8922399 Bajaj et al. Dec 2014 B2
8928452 Kim et al. Jan 2015 B2
8948832 Hong et al. Feb 2015 B2
8954135 Yuen et al. Feb 2015 B2
8975543 Hakemeyer Mar 2015 B2
8994827 Mistry et al. Mar 2015 B2
9001625 Essery et al. Apr 2015 B2
9024733 Wouters May 2015 B2
9028134 Koshoji et al. May 2015 B2
9030446 Mistry et al. May 2015 B2
9034666 Vaganov et al. May 2015 B2
9039614 Yuen et al. May 2015 B2
9041663 Westerman May 2015 B2
9042971 Brumback et al. May 2015 B2
9049998 Brumback et al. Jun 2015 B2
9052696 Breuillot et al. Jun 2015 B2
9086717 Meerovitsch Jul 2015 B2
9086738 Leung et al. Jul 2015 B2
9100493 Zhou Aug 2015 B1
9101184 Wilson Aug 2015 B2
9105413 Hiranuma et al. Aug 2015 B2
9123483 Ferri et al. Sep 2015 B2
9134807 Shaw et al. Sep 2015 B2
9141087 Brown et al. Sep 2015 B2
9176577 Jangaard et al. Nov 2015 B2
9176598 Sweetser et al. Nov 2015 B2
9202372 Reams et al. Dec 2015 B2
9213409 Redelsheimer et al. Dec 2015 B2
9223296 Yang et al. Dec 2015 B2
9241635 Yuen et al. Jan 2016 B2
9244438 Hoover et al. Jan 2016 B2
9256209 Yang et al. Feb 2016 B2
9277156 Bennett et al. Mar 2016 B2
9350850 Pope et al. May 2016 B2
9386932 Chatterjee et al. Jul 2016 B2
9426275 Eim et al. Aug 2016 B2
9430042 Levin Aug 2016 B2
9437357 Furuki et al. Sep 2016 B2
9449770 Sanford et al. Sep 2016 B2
9501044 Jackson et al. Nov 2016 B2
9520100 Houjou et al. Dec 2016 B2
9532723 Kim Jan 2017 B2
9542016 Armstrong-Muntner Jan 2017 B2
9545541 Aragones et al. Jan 2017 B2
9552023 Joo et al. Jan 2017 B2
9599964 Gracia Mar 2017 B2
9607505 Rothkopf et al. Mar 2017 B2
9620312 Ely et al. Apr 2017 B2
9627163 Ely Apr 2017 B2
9632318 Goto et al. Apr 2017 B2
9638587 Marquas et al. May 2017 B2
9651922 Hysek et al. May 2017 B2
9659482 Yang et al. May 2017 B2
9680831 Jooste et al. Jun 2017 B2
9709956 Ely et al. Jul 2017 B1
9753436 Ely et al. Sep 2017 B2
D800172 Akana Oct 2017 S
9800717 Ma et al. Oct 2017 B2
9836025 Ely et al. Dec 2017 B2
9873711 Hoover et al. Jan 2018 B2
9874945 Fukumoto Jan 2018 B2
9886006 Ely et al. Feb 2018 B2
9891590 Shim et al. Feb 2018 B2
9891651 Jackson et al. Feb 2018 B2
9898032 Hafez et al. Feb 2018 B2
9927902 Burr et al. Mar 2018 B2
9939923 Sharma Apr 2018 B2
9946297 Nazzaro et al. Apr 2018 B2
9952558 Ely Apr 2018 B2
9952682 Zhang et al. Apr 2018 B2
9971305 Ely et al. May 2018 B2
9971405 Holenarsipur et al. May 2018 B2
9971407 Holenarsipur et al. May 2018 B2
9979426 Na et al. May 2018 B2
10001817 Zambetti et al. Jun 2018 B2
10012550 Yang Jul 2018 B2
10018966 Ely et al. Jul 2018 B2
10019097 Ely et al. Jul 2018 B2
10037006 Ely Jul 2018 B2
10048802 Shedletsky Aug 2018 B2
10061399 Bushnell et al. Aug 2018 B2
10066970 Gowreesunker et al. Sep 2018 B2
10092203 Mirov Oct 2018 B2
10114342 Kim et al. Oct 2018 B2
10190891 Rothkopf Jan 2019 B1
10203662 Lin et al. Feb 2019 B1
10209148 Lyon et al. Feb 2019 B2
10222909 Shedletsky et al. Mar 2019 B2
10241593 Chen Mar 2019 B2
10296125 Ely et al. May 2019 B2
10331081 Ely Jun 2019 B2
10331082 Ely et al. Jun 2019 B2
10353487 Chung et al. Jul 2019 B2
10379629 Bushnell et al. Aug 2019 B2
10429959 Battlogg Oct 2019 B2
10474194 Ell et al. Nov 2019 B1
10503258 Holenarsipur et al. Dec 2019 B2
10509486 Bushnell et al. Dec 2019 B2
10524671 Lamego Jan 2020 B2
10534320 Ferri et al. Jan 2020 B2
10551798 Bushnell et al. Feb 2020 B1
10572053 Ely et al. Feb 2020 B2
10599101 Rothkopf et al. Mar 2020 B2
10845764 Ely et al. Nov 2020 B2
10852855 Niu Dec 2020 B2
10871385 Kok Dec 2020 B2
10936071 Pandya et al. Mar 2021 B2
10987054 Pandya et al. Apr 2021 B2
11029831 Block et al. Jun 2021 B2
20030174590 Arikawa et al. Sep 2003 A1
20040047244 Iino et al. Mar 2004 A1
20040082414 Knox Apr 2004 A1
20040130971 Ecoffet et al. Jul 2004 A1
20040264301 Howard et al. Dec 2004 A1
20050075558 Vecerina et al. Apr 2005 A1
20050088417 Mulligan Apr 2005 A1
20060250377 Zadesky et al. Nov 2006 A1
20070013775 Shin Jan 2007 A1
20070050054 Sambandam Guruparan et al. Mar 2007 A1
20070182708 Poupyrev et al. Aug 2007 A1
20070211042 Kim et al. Sep 2007 A1
20070222756 Wu et al. Sep 2007 A1
20070229671 Takeshita et al. Oct 2007 A1
20070247421 Orsley et al. Oct 2007 A1
20080130914 Cho Jun 2008 A1
20090051649 Rondel Feb 2009 A1
20090073119 Le et al. Mar 2009 A1
20090122656 Bonnet et al. May 2009 A1
20090146975 Chang Jun 2009 A1
20090152452 Lee et al. Jun 2009 A1
20090217207 Kagermeier et al. Aug 2009 A1
20090285443 Camp et al. Nov 2009 A1
20090312051 Hansson et al. Dec 2009 A1
20100033430 Kakutani et al. Feb 2010 A1
20100053468 Havrill Mar 2010 A1
20100081375 Rosenblatt et al. Apr 2010 A1
20100149099 Elias Jun 2010 A1
20110007468 Burton et al. Jan 2011 A1
20110090148 Li et al. Apr 2011 A1
20110158057 Brewer et al. Jun 2011 A1
20110242064 Ono et al. Oct 2011 A1
20110270358 Davis et al. Nov 2011 A1
20120067711 Yang Mar 2012 A1
20120068857 Rothkopf et al. Mar 2012 A1
20120075082 Rothkopf et al. Mar 2012 A1
20120112859 Park et al. May 2012 A1
20120113044 Strazisar et al. May 2012 A1
20120206248 Biggs Aug 2012 A1
20120272784 Bailey et al. Nov 2012 A1
20130037396 Yu Feb 2013 A1
20130087443 Kikuchi Apr 2013 A1
20130191220 Dent et al. Jul 2013 A1
20130235704 Grinberg Sep 2013 A1
20130261405 Lee et al. Oct 2013 A1
20130335196 Zhang et al. Dec 2013 A1
20140009397 Gillespie Jan 2014 A1
20140045547 Singamsetty et al. Feb 2014 A1
20140071098 You Mar 2014 A1
20140073486 Ahmed et al. Mar 2014 A1
20140132516 Tsai et al. May 2014 A1
20140197936 Biggs et al. Jul 2014 A1
20140340318 Stringer et al. Nov 2014 A1
20140347289 Suh et al. Nov 2014 A1
20140368442 Vahtola Dec 2014 A1
20140375579 Fujiwara Dec 2014 A1
20150049059 Zadesky et al. Feb 2015 A1
20150098309 Adams et al. Apr 2015 A1
20150124415 Goyal et al. May 2015 A1
20150186609 Utter, II Jul 2015 A1
20150221460 Teplitxky et al. Aug 2015 A1
20150320346 Chen Nov 2015 A1
20150338642 Sanford Nov 2015 A1
20150366098 Lapetina et al. Dec 2015 A1
20160018846 Zenoff Jan 2016 A1
20160054813 Shediwy et al. Feb 2016 A1
20160058375 Rothkopf et al. Mar 2016 A1
20160061636 Gowreesunker et al. Mar 2016 A1
20160062623 Howard et al. Mar 2016 A1
20160069713 Ruh et al. Mar 2016 A1
20160109861 Kim et al. Apr 2016 A1
20160116306 Ferri et al. Apr 2016 A1
20160147432 Shi et al. May 2016 A1
20160170598 Zambetti et al. Jun 2016 A1
20160170608 Zambetti et al. Jun 2016 A1
20160170624 Zambetti et al. Jun 2016 A1
20160241688 Vossoughi et al. Aug 2016 A1
20160253487 Sarkar et al. Sep 2016 A1
20160258784 Boonsom et al. Sep 2016 A1
20160306446 Chung et al. Oct 2016 A1
20160320583 Hall, Jr. Nov 2016 A1
20160327911 Eim et al. Nov 2016 A1
20160338642 Parara et al. Nov 2016 A1
20160378069 Rothkopf et al. Dec 2016 A1
20160378070 Rothkopf et al. Dec 2016 A1
20160378071 Rothkopf et al. Dec 2016 A1
20170011210 Cheong et al. Jan 2017 A1
20170027461 Shin et al. Feb 2017 A1
20170031449 Karsten et al. Feb 2017 A1
20170045958 Battlogg et al. Feb 2017 A1
20170061863 Eguchi Mar 2017 A1
20170069443 Wang et al. Mar 2017 A1
20170069444 Wang et al. Mar 2017 A1
20170069447 Wang et al. Mar 2017 A1
20170090599 Kuboyama Mar 2017 A1
20170104902 Kim et al. Apr 2017 A1
20170139489 Chen et al. May 2017 A1
20170216519 Vouillamoz Aug 2017 A1
20170216668 Burton et al. Aug 2017 A1
20170238138 Aminzade Aug 2017 A1
20170251561 Fleck et al. Aug 2017 A1
20170269715 Kim et al. Sep 2017 A1
20170285404 Kubota et al. Oct 2017 A1
20170301314 Kim et al. Oct 2017 A1
20170307414 Ferri et al. Oct 2017 A1
20170331869 Bendahan et al. Nov 2017 A1
20170357465 Dzeryn et al. Dec 2017 A1
20180018026 Bushnell et al. Jan 2018 A1
20180136613 Ely et al. May 2018 A1
20180136686 Jackson et al. May 2018 A1
20180196517 Tan et al. Jul 2018 A1
20180225701 Han Aug 2018 A1
20180235491 Bayley et al. Aug 2018 A1
20180239306 Ely Aug 2018 A1
20180246469 Ely et al. Aug 2018 A1
20180299834 Ely et al. Oct 2018 A1
20180307363 Ely et al. Oct 2018 A1
20180329368 Ely et al. Nov 2018 A1
20180335891 Shedletsky et al. Nov 2018 A1
20180341342 Bushnell et al. Nov 2018 A1
20180364815 Moussette et al. Dec 2018 A1
20190017846 Boonsom et al. Jan 2019 A1
20190072911 Ely et al. Mar 2019 A1
20190072912 Pandya et al. Mar 2019 A1
20190163324 Shedletsky May 2019 A1
20190278232 Ely et al. Sep 2019 A1
20190294117 Ely et al. Sep 2019 A1
20190317454 Holenarsipur et al. Oct 2019 A1
20190391539 Perkins et al. Dec 2019 A1
20200064774 Ely et al. Feb 2020 A1
20200064779 Pandya et al. Feb 2020 A1
20200110473 Bushnell et al. Apr 2020 A1
20200159172 Bushnell et al. May 2020 A1
20200233380 Rothkopf Jul 2020 A1
20200233529 Shedletsky et al. Jul 2020 A1
20200271483 Boonsom Aug 2020 A1
20200326659 Ely et al. Oct 2020 A1
20210181682 Ely et al. Jun 2021 A1
20210181688 Ely et al. Jun 2021 A1
20210181690 Rothkopf et al. Jun 2021 A1
20210181691 Rothkopf et al. Jun 2021 A1
20210181692 Rothkopf et al. Jun 2021 A1
20210181865 Bushnell et al. Jun 2021 A1
Foreign Referenced Citations (172)
Number Date Country
1888928 Jan 1937 CH
1302740 Sep 2001 CN
1445627 Oct 2003 CN
1504843 Jun 2004 CN
1601408 Mar 2005 CN
1624427 Jun 2005 CN
1792295 Jun 2006 CN
1825224 Aug 2006 CN
101035148 Sep 2007 CN
101201587 Jun 2008 CN
201081979 Jul 2008 CN
201262741 Jun 2009 CN
101750958 Jun 2010 CN
201638168 Nov 2010 CN
101923314 Dec 2010 CN
102216959 Oct 2011 CN
202008579 Oct 2011 CN
102590925 Jul 2012 CN
102890443 Jan 2013 CN
202710937 Jan 2013 CN
103177891 Jun 2013 CN
103191557 Jul 2013 CN
103253067 Aug 2013 CN
103645804 Mar 2014 CN
203564224 Apr 2014 CN
103852090 Jun 2014 CN
203630524 Jun 2014 CN
103956006 Jul 2014 CN
203693601 Jul 2014 CN
203705837 Jul 2014 CN
203732900 Jul 2014 CN
103995456 Aug 2014 CN
104020660 Sep 2014 CN
203941395 Nov 2014 CN
104777987 Apr 2015 CN
104685794 Jun 2015 CN
204479929 Jul 2015 CN
204496177 Jul 2015 CN
104880937 Sep 2015 CN
104898406 Sep 2015 CN
204650147 Sep 2015 CN
105022947 Nov 2015 CN
105096979 Nov 2015 CN
105339871 Feb 2016 CN
105547146 May 2016 CN
105556433 May 2016 CN
105683876 Jun 2016 CN
105955519 Sep 2016 CN
205645648 Oct 2016 CN
205721636 Nov 2016 CN
205750744 Nov 2016 CN
106236051 Dec 2016 CN
106557218 Apr 2017 CN
206209589 May 2017 CN
107111342 Aug 2017 CN
107122088 Sep 2017 CN
107966895 Apr 2018 CN
3706194 Sep 1988 DE
102008023651 Nov 2009 DE
102016215087 Mar 2017 DE
0556155 Aug 1993 EP
1345095 Sep 2003 EP
1519452 Mar 2005 EP
1669724 Jun 2006 EP
1832969 Sep 2007 EP
2375295 Oct 2011 EP
2720129 Apr 2014 EP
2884239 Jun 2015 EP
2030093 Oct 1970 FR
2801402 May 2001 FR
2433211 Jun 2007 GB
S52151058 Dec 1977 JP
S52164551 Dec 1977 JP
S53093067 Aug 1978 JP
S54087779 Jun 1979 JP
55708582 Jan 1982 JP
S5734457 Feb 1982 JP
S60103936 Jun 1985 JP
S60103937 Jun 1985 JP
H02285214 Nov 1990 JP
H04093719 Mar 1992 JP
H04157319 May 1992 JP
H05203465 Aug 1993 JP
H05312595 Nov 1993 JP
H06050927 Dec 1994 JP
H06331761 Dec 1994 JP
H06347293 Dec 1994 JP
H07116141 May 1995 JP
H10161811 Jun 1998 JP
H11121210 Apr 1999 JP
H11191508 Jul 1999 JP
2000258559 Sep 2000 JP
2000316824 Nov 2000 JP
2000337892 Dec 2000 JP
2001084934 Mar 2001 JP
2001167651 Jun 2001 JP
2001202178 Jul 2001 JP
2001524206 Nov 2001 JP
2002165768 Jun 2002 JP
2003050668 Feb 2003 JP
2003151410 May 2003 JP
2003331693 Nov 2003 JP
2004184396 Jul 2004 JP
2005017011 Jan 2005 JP
2005063200 Mar 2005 JP
2005099023 Apr 2005 JP
2005108630 Apr 2005 JP
2006164275 Jun 2006 JP
2007101380 Apr 2007 JP
2007149620 Jun 2007 JP
2007248176 Sep 2007 JP
2007311153 Nov 2007 JP
2008053980 Mar 2008 JP
2008122124 May 2008 JP
2008122377 May 2008 JP
2008170436 Jul 2008 JP
2008235226 Oct 2008 JP
2009009382 Jan 2009 JP
2009070657 Apr 2009 JP
2009519737 May 2009 JP
2009540399 Nov 2009 JP
2010032545 Feb 2010 JP
2010515153 May 2010 JP
2010165001 Jul 2010 JP
2010186572 Aug 2010 JP
2010243344 Oct 2010 JP
2010244797 Oct 2010 JP
2011021929 Feb 2011 JP
2011165468 Aug 2011 JP
2011221659 Nov 2011 JP
2013057516 Mar 2013 JP
2013079961 May 2013 JP
2013524189 Jun 2013 JP
3190075 Apr 2014 JP
5477393 Apr 2014 JP
2014512556 May 2014 JP
2014174031 Sep 2014 JP
2018510451 Apr 2018 JP
20010030477 Apr 2001 KR
200278568 Mar 2002 KR
20070011685 Jan 2007 KR
20070014247 Feb 2007 KR
100754674 Sep 2007 KR
20080045397 May 2008 KR
2020100007563 Jul 2010 KR
20110011393 Feb 2011 KR
20110012784 Feb 2011 KR
20110113368 Oct 2011 KR
20130036038 Apr 2013 KR
20130131873 Dec 2013 KR
20140051391 Apr 2014 KR
20140104388 Aug 2014 KR
20160017070 Feb 2016 KR
1040225 Nov 2014 NL
0129033 Nov 2013 RO
200633681 Oct 2006 TW
WO2001022038 Mar 2001 WO
WO2001069567 Sep 2001 WO
WO2003032538 Apr 2003 WO
WO2010058376 May 2010 WO
WO2012083380 Jun 2012 WO
WO2012094805 Jul 2012 WO
WO2014018118 Jan 2014 WO
WO2014200766 Dec 2014 WO
WO2015147756 Oct 2015 WO
WO2016080669 May 2016 WO
WO2016104922 Jun 2016 WO
WO2016155761 Oct 2016 WO
WO2016196171 Dec 2016 WO
WO2016208835 Dec 2016 WO
WO2017013278 Jan 2017 WO
WO2020173085 Sep 2020 WO
Non-Patent Literature Citations (22)
Entry
Author Unknown, “Desirable Android Wear smartwatch from LG,” Gulf News, Dubai, 3 pages, Jan. 30, 2015.
Author Unknown, “Fossil Q ups smartwatch game with handsome design and build,” Business Mirror, Makati City, Philippines, 3 pages, Dec. 20, 2016.
Author Unknown, “How Vesag Helps Kids Women and Visitors,” http://www.sooperarticles.com/health-fitness-articles/children-health-articles/how-vesag-helps-kids-women-visitors-218542.html, 2 pages, at least as early as May 20, 2015.
Author Unknown, “mHealth,” http://mhealth.vesag.com/?m=201012, 7 pages, Dec. 23, 2010.
Author Unknown, “mHealth Summit 2010,” http://www.virtualpressoffice.com/eventsSubmenu.do?page=exhibitorPage&showId=1551&companyId=5394, 5 pages, Nov. 18, 2010.
Author Unknown, “MyKronoz ZeTime: World's Most Funded Hybrid Smartwatch Raised over $3M on Kickstarter, Running until Apr. 27th,” Business Wire, New York, New York, 3 pages, Apr. 21, 2017.
Author Unknown, “RedEye mini Plug-in Universal Remote Adapter for iPhone, iPod touch and iPad,” Amazon.com, 4 pages, date unknown.
Author Unknown, “Re iPhone Universal Remote Control—Infrared Remote Control Accessory for iPhone and iPod touch,” http://www.amazon.com/iPhone-Universal-Remote-Control-Accessory/dp/tech-data/B0038Z4 . . . , 2 pages, at least as early as Jul. 15, 2010.
Author Unknown, “Vesag Wrist Watch for Dementia Care from VYZIN,” http://vyasa-kaaranam-ketkadey.blogspot.com/2011/03/vesag-wrist-watch-for-dementia-care.html, 2 pages, Mar. 31, 2011.
Author Unknown, “Vyzin Electronics Private Limited launches Vesag Watch,” http://www.virtualpressoffice.com/showJointPage.do?page=jp&showId=1544, 5 pages, Jan. 6, 2011.
Author Unknown, “Vyzin Unveiled Personal Emergency Response System (PERS) with Remote Health Monitoring That Can Be Used for Entire Family,” http://www.24-7pressrelease.com/press-release/vyzin-unveiled-personal-emergency-response-system-pers-with-remote-health-monitoring-that-can-be-used-for-entire-family-219317.php, 2 pages, Jun. 17, 2011.
Author Unknown, “DeskThorityNet, Optical Switch Keyboards,” http://deskthority.net/keyboards-f2/optical-switch-keyboards-t1474.html, 22 pages, Jul. 11, 2015.
Epstein et al., “Economical, High-Performance Optical Encoders,” Hewlett-Packard Journal, pp. 99-106, Oct. 1988. [text only version].
GreyB, “Google Watch: Convert your arm into a keyboard,” http://www.whatafuture.com/2014/02/28/google-smartwatch/#sthash.Yk35cDXK.dpbs, 3 pages, Feb. 28, 2014.
IBM, “Additional Functionality Added to Cell Phone via “Learning” Function Button,” www.ip.com, 2 pages, Feb. 21, 2007.
Kim, Joseph, “2010 mHealth Summit Emerges as Major One-Stop U.S. Venue for Mobile Health,” http://www.medicineandtechnology.com/2010/08/2010-mhealth-summit-emerges-as-major.html, 3 pages, Aug. 26, 2010.
Krishnan et al., “A Miniature Surface Mount Reflective Optical Shaft Encoder,” Hewlett-Packard Journal, Article 8, pp. 1-6, Dec. 1996.
Rick, “How VESAG Helps Health Conscious Citizens,” http://sensetekgroup.com/2010/11/29/wireless-health-monitoring-system/, 2 pages, Nov. 29, 2010.
Sadhu, Rajendra, “How VESAG Helps People Who Want to ‘Be There’?,” http://ezinearticles.com/?How-Vesag-Helps-People-Who-Want-to-Be-There?&id-5423873, 1 page, Nov. 22, 2010.
Sadhu, Rajendra, “Mobile Innovation Helps Dementia and Alzheimer's Patients,” http://www.itnewsafrica.com/2010/11/mobile-innovation-helps-dementia-andalzheimer%E2%80%99s-patients/, 3 pages, Nov. 22, 2010.
Sherr, Sol, “Input Devices,” p. 55, Mar. 1988.
Tran et al., “Universal Programmable Remote Control/Telephone,” www.ip.com, 2 pages, May 1, 1992.
Related Publications (1)
Number Date Country
20200073339 A1 Mar 2020 US
Provisional Applications (1)
Number Date Country
62725239 Aug 2018 US