The invention relates to a cathode ray tube (CRT) display having a single plane beam bender and video corrections.
The popularity of HDTV has prompted an increased demand for television sets capable of displaying HDTV images. Such demand has prompted an increase in demand for larger aspect ratio, true flat screen displays having a shallower depth, increased deflection angle and improved visual resolution performance.
The demand for shallow, flat screen displays has led to efforts to improve spot performance so that spot size and shape exhibit greater uniformity across the entire screen for improved visual resolution performance. To this end, most displays now make use of dynamic focus. Increasing the deflection angle also yields an improvement in spot performance in the central area of the screen because increasing the deflection angle results in a decreased gun-to-screen distance, hereinafter referred to as the “throw” distance.
As the deflection angle increases, the throw distance decreases and spot size decreases in a non-linear relationship. The following formula mathematically approximates relationship between spot size and throw distance:
Spot Size≈B*Throw1.4 (Equation 1)
where the exponent 1.4 represents an approximation taking into consideration the effects of magnification and space charge effects over a useful range of beam current. The term B represents a system-related proportionality constant. Considering this relationship, for a tube having a diagonal dimension of 760 mm, increasing the deflection angle from 100 degrees to 120 degrees while decreasing the center throw distance, for example, from 413 mm to 313 mm yields a 32% reduction in spot size at the center of the screen.
Increasing the deflection angle in these displays gives rise to increases in obliquity, which is defined as the effect of a beam intercepting the screen at an oblique angle, thereby causing an elongation of the spot. The problem of obliquity becomes especially apparent in CRTs having a standard horizontal gun orientation, i.e., a CRT whose guns have a horizontal alignment along the major axis of the screen. As obliquity increases, a spot having a generally circular shape at the center of the screen becomes oblong or elongated as the spot moves toward edges of the screen. Based on this geometrical relationship, in a large aspect ratio screen, such as a 16×9 screen, the spot appears most elongated at the edges of the major axis and at the screen corners. The obliquity effect causes the spot size to grow. The following equation defines the spot size radius SSradial:
SS
radial
=SS
normal/cos(A) (Equation 2)
where A represents deflection angle, as measured from Dc to De as shown in
In addition to the obliquity effect, yoke deflection effects in self-converging CRTs having a horizontal gun orientation can compromise spot shape uniformity. To achieve self-convergence, CRT's typically include a horizontal yoke that generates a pincushion shaped field and a vertical yoke that generates a barrel shaped field. These yoke fields cause the spot shape to become elongated. This elongation adds to the obliquity effect by further increasing spot distortion at the three-o'clock and nine o'clock positions (referred to as the “3/9” positions) and at corner positions on the screen.
Various attempts have been made to address spot distortion and obliquity. For example, U.S. Pat. No. 5,170,102 describes a CRT with a vertical electron gun orientation whose undeflected beams appear parallel to the short axis of the display screen. The deflection system described in this patent includes a signal generator for causing scanning of the display screen in a raster-scan fashion, thereby yielding a plurality of lines oriented along the short axis of the display screen. The deflection system also comprises a first set of coils for generating a substantially pincushion-shaped deflection field for deflecting the beams in the direction of the short axis of the display screen. A second set of coils generates a substantially barrel shaped deflection field for deflecting the beams in the direction in the long axis of the display screen. The deflection system's coils generally distort spots by elongating them vertically. This vertical elongation compensates for obliquity effects, thereby reducing spot distortion at the 3/9 and corner positions on the screen. The barrel shaped field required to achieve self convergence at 3/9 screen locations overcompensates for obliquity and vertically elongates the spot at the 3/9 and corner locations as shown in FIG. 10 of the U.S. Pat. No. 5,170,102. (In effect, the barrel shaped field overcompensates, thus making the spot shape at the 3/9 position and the screen corners a vertically oriented ellipse.) Orienting the electron guns along the vertical or minor axis will yield improvements in a self-converging system, but spot distortion remains problematic at the 3/9 positions and at the corner screen locations.
Another problem with current CRTs relates to the overall length of the CRT. As flat panel TVs become more popular, the overall depth of a CRT TV becomes a major negative factor on the sales floor. One approach is to increase the customer appeal by increasing the deflection angle of the CRT as described in sections herein. An alternate approach is to reduce the depth of the neck components that are part of the CRT, hence allowing a reduction in the depth of the CRT.
These and other drawbacks and disadvantages of the prior art are addressed by the present invention, which is directed to a cathode ray tube (CRT) display having a single plane beam bender and video corrections.
According to an aspect of the present invention, there is provided a CRT display system. The CRT display system includes an electron gun assembly, a single plane sheath beam bender, and a digital processor. The electron gun assembly is configured to emit electron beams. The single plane sheath beam bender is configured to apply a deflection force to the electron beams. The digital processor is configured to receive and process an incoming video signal stream to provide signals there from to be delivered to individual cathodes of the electron gun assembly. The provided signals have a distortion applied thereto to effect a predetermined converged image. The applied distortion at least relates to a blue-bow convergence error.
According to another aspect of the present invention, there is provided a CRT display system. The CRT display system includes an electron gun assembly, a single plane sheath beam bender, an input source, a receiver, a converted, an image processing unit, and a sync processor. The electron gun assembly is configured to emit electron beams. The single plane sheath beam bender is configured to cause a deflection of the electron beams. The input source is configured to provide horizontal and vertical progressive sync signals and R,G,B analog signals. The receiver is configured to perform analog-to-digital conversion, video correction, and digital-to-analog conversion of the R,G,B analog signals to provide interlaced R,G,B analog signals, and to provide H and V interlaced sync signals based on the horizontal and vertical progressive sync signals and a timing associated with the interlaced R,G,B analog signals. The converter is configured to convert the interlaced R,G,B analog signals to signals in a second component analog format, using at least one matrix operation. The image processing unit is configured to convert the signals in the second component analog format to signals in a R,G,B format for input to the electron guns, using at least one matrix operation. The sync processor is configured to receive the H and V interlaced sync signals from the receiver and provide processed sync signals there from, the processed sync signals for providing a desired raster geometry, a desired electron beam convergence, and a desired electron beam spot shape during a scanning of the electron beams. The receiver is further configured to correct a blue-bow convergence error.
According to yet another aspect of the present invention, there is provided a CRT display system. The CRT display system includes an electron gun assembly, a single plane sheath beam bender, an input source, a transpose module, an image processing module, a format converter, a video correction module, and a digital-to-analog converter. The electron gun assembly has vertically aligned inline guns configured to emit electron beams. The single plane sheath beam bender is configured to cause a deflection of the electron beams. The input source is configured to provide digital component video signals. The transpose module is configured to transpose the digital component video signals to progressively vertically scanned digital component video signals. The image processing module is configured to process the progressively vertically scanned digital component video signals. The format converter is configured to convert the processed progressively vertically scanned digital component video signals to R,G,B progressively vertically scanned signals. The video correction module is configured to correct geometry and convergence errors in the R,G,B progressively vertically scanned signals and to convert the R,G,B progressively vertically scanned signals to interlaced vertically scanned R,G,B digital signals. The digital-to-analog converter is configured to convert the interlaced vertically scanned R,G,B digital signals to interlaced R,G,B analog signals. The convergence errors corrected by the video correction module include a blue-bow convergence error.
According to a further aspect of the present invention, there is provided a CRT display system. The CRT display system includes an electron gun assembly, an electronic deflection system, a transposition module, a video correction module, and one or more image processors. The electron gun assembly has vertically aligned inline guns configured to emit electron beams. The electronic deflection system has a single plane sheath beam bender configured to apply a deflection force to the electron beams. The transposition module is configured to transpose an incoming video signal using a transposition operation. The video correction module is configured to perform video correction of the incoming video signal including correcting for a blue-bow convergence error. The one or more image processors are configured to perform enhancement operations to improve perceived image quality in a displayed image corresponding to the incoming video signal.
These and other aspects, features and advantages of the present invention will become apparent from the following detailed description of exemplary embodiments, which is to be read in connection with the accompanying drawings.
The invention will now be described by way of example with reference to the accompanying figures of which:
The present invention is directed to a cathode ray tube (CRT) display having a single plane sheath beam bender (SBB) and video corrections. The present invention may be used for analog or digital standard definition televisions and for High Definition Televisions (HDTVs). Moreover, the present invention may be used for televisions operating in a standard horizontal scan mode or a vertical scan mode.
The SBB in accordance with the present principles eliminates the multiple planes of prior-art devices. While such elimination also eliminates a capability of the SBB to correct for a typical convergence error known as blue-bow, the video correction capabilities of a CRT system in accordance with the present principles provide the means for correcting blue-bow convergence errors. Accordingly, an overall CRT system in accordance with the present principles provides a shorter length (i.e., shorter depth) system, while still correcting for blue-bow convergence errors. Moreover, another advantage is that a corresponding Yoke Adjustment Machine (YAM) process is simplified by eliminating the time-consuming blue-bow setup of the prior art SBB.
The present description illustrates the principles of the present invention. It will thus be appreciated that those skilled in the art will be able to devise various arrangements that, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope.
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the principles of the invention and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions.
Moreover, all statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.
Thus, for example, it will be appreciated by those skilled in the art that the block diagrams presented herein represent conceptual views of illustrative circuitry embodying the principles of the invention. Similarly, it will be appreciated that any flow charts, flow diagrams, state transition diagrams, pseudocode, and the like represent various processes which may be substantially represented in computer readable media and so executed by a computer or processor, whether or not such computer or processor is explicitly shown.
The functions of the various elements shown in the figures may be provided through the use of dedicated hardware as well as hardware capable of executing software in association with appropriate software. When provided by a processor, the functions may be provided by a single dedicated processor, by a single shared processor, or by a plurality of individual processors, some of which may be shared. Moreover, explicit use of the term “processor” or “controller” should not be construed to refer exclusively to hardware capable of executing software, and may implicitly include, without limitation, digital signal processor (“DSP”) hardware, read-only memory (“ROM”) for storing software, random access memory (“RAM”), and non-volatile storage.
Other hardware, conventional and/or custom, may also be included. Similarly, any switches shown in the figures are conceptual only. Their function may be carried out through the operation of program logic, through dedicated logic, through the interaction of program control and dedicated logic, or even manually, the particular technique being selectable by the implementer as more specifically understood from the context.
In the claims hereof, any element expressed as a means for performing a specified function is intended to encompass any way of performing that function including, for example, a) a combination of circuit elements that performs that function or b) software in any form, including, therefore, firmware, microcode or the like, combined with appropriate circuitry for executing that software to perform the function. The invention as defined by such claims resides in the fact that the functionalities provided by the various recited means are combined and brought together in the manner which the claims call for. It is thus regarded that any means that can provide those functionalities are equivalent to those shown herein.
Prior to discussing the CRT display system of the present principles, a brief discussion of the facets of a typical cathode ray tube will prove helpful.
A mask assembly 10 lies in a predetermined spaced relation with the screen 12. The mask assembly 10 has a multiplicity of elongated slits extending generally parallel to the major axis of the screen 12. An electron gun assembly 13, shown schematically by dashed lines in
The CRT 1 employs an external magnetic deflection system comprised of a yoke 14 situated in the neighborhood of the funnel-to-neck junction. When activated with a drive signal in a manner discussed hereinafter, the yoke 14 generates magnetic fields that cause the beams to scan over the screen 12 vertically and horizontally in a rectangular raster. The external magnetic system or electronic deflection system can be driven by drive circuits and applies a high frequency deflection in a short direction to electron beams emitted from the electron guns of the electron gun assembly 13.
1. Electron Beam Spot Shaping and Convergence with Yoke Fields and Quadrupole Coils
A. Yoke Fields
In accordance with one aspect of the present principles, the electron beam undergoes spot shaping. To understand spot shaping, a discussion of the yoke 14 and the effect of the yoke fields will prove helpful. As discussed, the yoke 14 lies in the neighborhood of the funnel-to-neck junction on the CRT 1 as shown in
The field reduction that results in improved spot shape from self-convergence actually causes mis-convergence at certain locations on the screen.
b. Multipole Coils
The addition of multipole coils, such as the quadrupole coils 16 shown in
Operating under dynamic control, the quadrupole coils 16 create a correction field for adjusting miscovergence on the screen. The quadrupole coils 16 in this embodiment are driven in synchronism with the horizontal deflection. The signal driving the quadrupole coils 16 has a magnitude selected to correct the overconvergence described above. In an illustrated embodiment, the quadrupole coil signal has a waveform whose shape approximates a parabola.
The electron gun assembly 13 of the CRT 1 has electrostatic dynamic focus astigmatism correction to achieve optimum focus in both the horizontal and vertical directions of each of the three beams. This electrostatic dynamic astigmatism correction occurs separately for each beam, thereby allowing for correction of the horizontal-to-vertical focus voltage differences without affecting convergence. Although the quadrupole coils 16 affect beam focus, their location near the dynamic astigmatism point of the guns of the electron gun assembly 13 allows for correction of this effect by adjusting the electrostatic dynamic astigmatism voltage so that there is a minimal effect on the spot. This enables correction of misconvergence at selected locations on the screen without affecting the spot shape. Advantageously, modification of the yoke field design can optimize spot shape and the dynamically driven quadrupole coils 16 can correct for any resultant misconvergence.
c. Yoke Field and Quadrupole Coils
The center column of Table 1 lists the spot dimensions for a prior art standard horizontal gun orientation CRT with self-convergent beams, whereas the right-hand column represents the results for a CRT with vertical gun alignment in accordance with the present principles wherein the beams undergo dynamically controlled convergence. Although spot shape suffers a slight compromise at the 6 O'clock and 12 O'clock screen positions (6/12 or otherwise as the top and bottom), spot size uniformity shows great improvement at the 3 O'clock and 9 O'clock positions (3/9 or otherwise as the side) and at the corner locations. The present technique advantageously provides more uniform spot shape across the screen, thus enhancing visual resolution. Although the invention is applicable to CRTs having deflection angles at 100 or above, the invention has particular applicability to much larger deflection angles such as systems exceeding 120 degrees.
Another facet of the CRT display system of the present principles involves the timing of the electron beam scanning in the CRT display. In this regard Table 2 provides a comparison of the clock frequency, scan line count, and pixel per scan line value for a conventional CRT having horizontal aligned electron guns versus a vertical scan CRT display in accordance with the present principles.
The number of scan lines and pixel data listed in the Table 2 under the heading “Timing and circuit considerations” exceed the visual scan lines and pixel data, respectively, and take account of overscan and retrace. For the vertical gun alignment CRT in the Table 2, the visible image field contains 1280 vertical scan lines with 720 addressable points (i.e. 720 pixels/line) on each scan line.
The three different scan systems in Table 2 afford excellent visual performance. Any visual differences due to the number of scan lines or pixels appear insignificant on a screen size having a diagonal dimension of less than 1 meter at normal viewing distances of larger than 1 meter. The vertical scan system, however, provides a significantly better image because of the better spot size/resolution of the electron beam. While the high speed scan frequency remains about the same for all systems, the vertical scan system requires significantly less scan power because the deflection angle in the vertical direction is much smaller than horizontal direction for a 16×9 aspect ratio systems. Further, the pixel clock rate for the vertical scan system is much less than the other systems. A particularly advantageous arrangement utilizes 1280 interlaced visual scan lines, which significantly reduces the deflection power requirements with no detrimental effect when displaying HDTV images.
The CRT display system of the present principles can operate at scan rates other than those listed in Table 2. A scan rate that yields vertical scan lines in the range of approximately 700 to 3000 for 16:9 format tubes in the diagonal dimensional range between approximately 20 cm and 1 m provide excellent HDTV displays under normal home viewing conditions (approximately 2 meter viewing distance).
As described in greater detail with respect to
Employing video correction to yield improved convergence affords the possibility of eliminating multipole correction, by obviating the use of the quadrupole coils 16 of
Conventional video signal transmission assumes a pixel-by-pixel time sequence such that transmission of Red, Green and Blue images effectively occurs as a series of scan lines proceeding from the left edge to the right edge of the image along a scan line and then moving down to the next scan line where again the signal sequence proceeds from left to right. This process continues from top to bottom, in either a progressive scan mode or an interlaced scan mode, as is known in the art. To achieve a vertical scan display, the image must undergo a translation into a vertical scan pattern such that the signal sequence starts at the upper left hand corner of the image. The subsequent signal elements then follow along a vertical line from top to bottom along the left edge. After an appropriate blanking interval, generation of a signal element at the top edge of the image at the second scan line occurs, followed by the signal elements corresponding to a sequence from top to bottom along the second scan line. Similarly the third scan line starts at the top and proceeds to the bottom of the image, and thus the corresponding top to bottom signal element must be provided. This process continues through the last scan line at right vertical edge of the image.
To effect vertical scanning, a horizontal scan sequence must undergo a change from a conventional left-to-right and stepwise top-to-bottom regimen to a top-to-bottom and stepwise left to right transposed sequence. For the purposes of the following discussion, the terms “Digital Orthogonal Scan” or DOS refer to the above-described transposition operation.
In general, CRT displays exhibit raster distortions. The commonest raster distortions pertain to geometric errors and to convergence errors. A geometric error results from non-linearities in the scanned positions of the beams as the raster traverses the screen. Convergence errors occur in a CRT display when the Red, Green and Blue rasters do not align perfectly such that over some portion of the image, a Red sub-image appears offset with respect to the Green sub-image and the Blue sub-image appears offset to the right of the Green sub-image. Convergence errors of this type can occur in any direction and can appear anywhere in the displayed image.
With known color CRT displays, both convergence and geometric errors occur despite perfect alignment of the center region during the original manufacture of the CRT display, assuming that the deflection signals applied to the deflection coils ramp linearly. Traditional, analog circuit techniques compensate for such distortions by modifying the deflection signals from linear ramps to more complex wave shapes. Also, adjustment in the details of the yoke design can reduce convergence errors and geometry errors. As the deflection angle increases beyond 100°, traditional methods of geometry and convergence corrections become more difficult to implement.
The basic idea of Video Correction (VC) relies on the assumption that the CRT causes geometry and/or convergence distortion of the incoming image. If prior to display, the incoming signal undergoes processing in a manner to actually distort the signal inverse to the distortion inherent in the CRT, then the signal, when displayed, will appear distortion-free. With reference to the example given above for convergence errors, VC performs inverse distortion by displacing the Red sub-image in the opposite direction (e.g., to the right) by the same amount with respect to the Green sub-image to counteract the CRT distortion which effectively displaces the Red Sub-image to the left and similarly displaces the Blue sub-image to the left, resulting in good Red-to-Green convergence. Similarly, the VC displaces the Blue sub-image to the left, compensating for the CRT convergence distortion. It should be appreciated that VC can also be used to reshape all sub-images (including the Green sub-image) to reshape the entire overall raster geometry. Further, VC can be used in conjunction with the yoke field to achieved desired raster geometries.
Prior art optimized CRT display systems commonly employ Image Processing (IP) techniques which cause the displayed image, as seen by the human eye, to appear superior to the same image in the absence of any processing. Edge enhancement constitutes a typical example of image processing, and serves to enhance brightness transition gradients so that the image appears sharper.
The foregoing DOS and VC operations according to the invention herein described are preferentially executed in the digital domain. IP operations can be executed in analog or digital forms. The digital form for IP is preferred when digital signals are available in the signal path. The various signal processing tasks associated with DOS, VC and IP operations can be effectively executed in a programmable gate array and associated memory. The programmable gate array can take several alternative forms including field programmable gate arrays (which are commonly referred to as FPGAs), mask programmable gate arrays, and Application-specific Integrated Circuits and other forms of circuits suitable for digital signal processing.
Element 120 comprises firmware, typically in the form of a programmable gate array that operates on the RGB(p) signal set to perform VC operations described in greater detail with respect to
Element 130 in
An image processing unit 150 receives the DOS-modified component video from the matrix operator 140. The image processing element 150 performs image processing and optimization operations known in the art, such as edge enhancement. Further, the image processing element 150 possesses the ability to convert the YPbPr format signals back to an RGB format to adjust CRT parameters such as contrast, brightness, Automatic Kine Bias (AKB), and Automatic Beam Limit (ABL). Each of the R, G, and B signals from the image processing element 150 passes to a separate one of a set of video output amplifiers 160 that provides the input signals to the electron gun assembly of the CRT 170. The sync signals produced by the gate array 120 undergo further processing by sync processor 180 prior to input to the dynamic focus element 190 to generate a dynamic focus signal. A quad drive circuit 200 receives the processed sync signals from the sync processor 180 to generate the CRT deflection yoke signals. A deflection signal generator 210 processes the sync signals from the sync processor 180 to generate the H and V signals that drive the deflection coils of CRT 170.
A video amplifier element 370 drives the three electron guns of CRT 380 in accordance with the RGB(i) signals from the image processor 360. A sync processor 390 provides sync signals to the dynamic focus generator 400, quad drive 410, and deflection signal generator 420 in accordance with the H&V(i) signals received by the sync processor from the video correction element 340.
While the CRT display systems of
An advantage can arise by doing some image pre-processing prior to preparing the signals for the specific addressing requirements associated with a particular display. Within the CRT display system of
A particular type of image pre-processing of general interest involves the pre-processing of 50 Hz HDTV images for display on a CRT operated in the transposed vertical scan mode. To minimize flicker, 50 Hz interlaced images commonly undergo conversion into another format. Digital signal processing methods allow conversion from 50 Hz to 60 Hz. The utilization of a pre-processor for accomplishing 50 Hz to 60 Hz conversion would allow the CRT display system of the present principles to operate at 60 Hz worldwide irrespective of whether the incoming signal utilizes a frequency of 50 Hz or 60 Hz. Alternatively, 50 Hz signals often undergo conversion to 75 Hz to eliminate flicker. Such a conversion to 75 Hz could occur within the first image processor 320′ in
The CRT display system of
In a generalized embodiment of the invention the CRT comprises a plurality of image processors to accomplish image enhancement operations to improve perceived image quality with respect to one or more attributes like edge sharpness, reduce noise, adjust color, and contrast in the displayed image. A first image processor receives an input signal and then feeds the signal to the transposition operation, and such first image processor may be an analog processor operating on an analog component YPbPr signal which, after processing, is fed to an analog-to-digital converter preceding the transposition operation, or such first processor could be a digital circuit operating on a digital component YCbCr signal, in which case first image processor input is either a component digital signal or a component analog signal which is then passed through an analog-to-digital converter which precedes first image processor. A second image processor following the digital transposition operation and preceding the video correction operation is utilized to cause further image enhancements subsequent to the image transposition, such second image processor is implemented in digital circuitry and operates on a transposed component video stream like YCbCr and such second image processor output is fed to a digital matrixing means which converts the digital component YCbCr signal to a digital RGB signal, which then is operated on by the video correction system. Further, a third image processor may be utilized and such third image processor is located in the signal stream subsequent to the video correction operation and such third image processor executes image enhancement operations on the individual RGB transposed and video corrected color signals; such third image processor may be of an analog type, in which case the digital RGB outputs are first converted by a digital-to-analog converter to analog RGB signals, or it may be of a digital type, in which case the digital RGB signals are directly fed to such third image processor and the output of this third image processor is then fed to a digital-to-analog converter whose RGB analog output is then available as input to the final elements in the video chain that drive the CRT and provide the appropriate signal levels to obtain optimized brightness, contrast, beam cut-off, and black level. Appropriate horizontal and vertical sync signals associated with the transposed and appropriately scanned image can be generated, and such sync signals provide input to a sync processor, which in turn provides appropriate inputs for sub-systems associated with the focusing, scanning, and other functions required for the operation and performance optimization functions of the vertically scanned CRT.
As discussed above, the CRT display systems of
To better understand the process by which such video correction occurs, refer to
The result of the interpolation is a distortion vector comprising integer and non-integer components in both the x and y direction. The re-sampling filter 404 consists of a simple remapping of the pixels for the integer component of the distortion vector and of a polyphase filter for the non-integer component. The remapping is conveniently accomplished by reading out a video source memory with adjusted addresses, whereas the integer part of the above interpolation, typically cubic interpolation, is used for the address adjustment.
For performing the non-integer component of the re-sampling operation, filter 404 of
Regarding the physical dimensions of the various parts, it is known to mount a sleeve—that includes a magnetic material such as strontium-ferrite onto a neck of a CRT for correcting static convergence, color purity and geometry errors in the CRT. A manufacturer of the magnetic material could extrude a heated magnetic material through a rectangular slit die, roll the material into sheets which are then cut into strips, or extrude the material in long tubes which are then cut into short cylinders. In the first two cases, long coils of belt-like sheath material are provided to the manufacturer, which are then cut into short strips of a desired length. The edges of a given strip are spliced, using a securing tape, to form a spliced cylindrical shape that is mounted on a funnel of the CRT to form a sleeve or sheath. In the third case, the material is provided to the manufacturer as short cylinders one of which is then mounted on a funnel of the CRT as a sleeve or sheath. This sleeve or sheath is known as a sheath beam bender. In all cases, the sheath beam bender could be mounted on a carrier that would then be mounted on the funnel.
Beam landing correction is accomplished by the creation of various combinations of magnetic poles in the magnetic material that produce static or permanent magnetic fields in the sheath beam bender. The magnetic fields vary the beam landing location in the CRT. The sheath beam bender can correct for mount seal rotation in the CRT, among other factors. A magnetizer head is used at the factory for magnetizing the sheath beam bender. Traditionally, a magnetizer head, not shown, is placed in the factory close to an exterior surface of a sheath beam bender to create various planes of two, four and six magnetic pole groups. The various combinations of magnetic poles in the magnetic material of the sheath beam bender vary the beam path within the CRT to provide convergence correction and vertical and horizontal location corrections to the electron beams, not shown, of the CRT.
The sheath beam bender can be used to create two, four and six pole vertical and horizontal corrections to the electron beams at different planes perpendicular to the electron beam path. For example, one correction called Blue Bow and is generated by two pairs of physically separated four pole vertical corrections.
It should be noted that in an embodiment, the sheath beam bender according to the present principles may be used along with an auxiliary Beam Scan Velocity Modulation (BSVM) coil, which is not shown in
It should also be noted that in conventional CRTs the sheath beam bender unit typically has a width of about 24 mm. However, with the sheath beam bender 1320 according to the present principles, the sheath beam bender 1320 is now between 4 and 12 mm, which results in a shortening of the space needed by the CRT neck components. As such, the invention provides a way of allowing a CRT designer to reduce the depth of the CRT by about 16 mm in the case where the SBB is 8 mm. This invention is particularly useful in CRTs with increased deflection angles (e.g., 118 degrees or greater). Further, an embodiment includes incorporating the sheath beam bender 1320 in CRTs having vertically scanned electron beams (i.e., the inline electron guns aligned vertically and the luminescent line of the screen oriented horizontally).
An additional advantage to using the sheath beam bender according to the present principles is that it eliminates the time to accomplish Blue Bow setup in the CRT manufacturing locations. That is, a corresponding Yoke Adjustment Machine (YAM) process is simplified by eliminating the time-consuming blue-bow setup of the prior art SBB.
While the foregoing describes sheath beam bender and a High Definition Television (HDTV) CRT display primarily operating in a vertical scan mode it should be understood that these principles may be applied to other types of CRTs and that the foregoing only illustrates some of the possibilities for practicing the invention. For example, the invention is applicable to a 16:9 screen aspect ratio, but can be applied to systems having a wide variety of aspect ratios like 4:3 or even higher than 16:9, such as 2:1. Moreover, the present invention may be applied to both analog or digital standard definition televisions. Many other embodiments are possible within the scope and spirit of the invention. It is, therefore, intended that the foregoing description be regarded as illustrative rather than limiting, and that the scope of the invention is given by the appended claims together with their full range of equivalents.
These and other features and advantages of the present invention may be readily ascertained by one of ordinary skill in the pertinent art based on the teachings herein. It is to be understood that the teachings of the present invention may be implemented in various forms of hardware, software, firmware, special purpose processors, or combinations thereof.
Most preferably, the teachings of the present invention are implemented as a combination of hardware and software. The various processes and functions described herein may be either part of the microinstruction code or part of an application program, or any combination thereof, which may be executed by a CPU.
It is to be further understood that, because some of the constituent system components and methods depicted in the accompanying drawings may be implemented in software, the actual connections between the system components or the process function blocks may differ depending upon the manner in which the present invention is programmed. Given the teachings herein, one of ordinary skill in the pertinent art will be able to contemplate these and similar implementations or configurations of the present invention.
Although the illustrative embodiments have been described herein with reference to the accompanying drawings, it is to be understood that the present invention is not limited to those precise embodiments, and that various changes and modifications may be effected therein by one of ordinary skill in the pertinent art without departing from the scope or spirit of the present invention. All such changes and modifications are intended to be included within the scope of the present invention as set forth in the appended claims.
This is a non-provisional application claiming the benefit of provisional application Ser. No. U.S. 60/713,142, entitled “A VERTICAL SCAN HDTV CRT DISPLAY HAVING A SINGLE PLANE SHEATH BEAM BENDER AND VIDEO CORRECTION”, filed on Aug. 31, 2005, and incorporated by reference herein. Further, this application is related to a U.S. patent application, Attorney Docket No. PU050212, entitled “METHOD FOR REDUCED SHEATH BEAM BENDER WIDTH AND VIDEO CORRECTION IN A CRT DISPLAY”, filed concurrently herewith, and incorporated by reference herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2006/006703 | 2/27/2006 | WO | 00 | 2/14/2008 |
Number | Date | Country | |
---|---|---|---|
60713142 | Aug 2005 | US |