Not Applicable.
The present invention relates to cruciate ligament retaining knee implants, and instruments and methods for implanting cruciate ligament retaining knee implants.
Implants used for knee replacement surgery generally comprise one or more femoral components 111, 121, 131 and one or more tibial components (see
The preservation of the ACL allows these implants to better restore the normal motion patterns (kinematics) of the knee following surgery, compared to ACL sacrificing implants. Nonetheless, kinematics of the native knee are not fully restored with these implants. When both medial and lateral compartments of the native tibia are to be replaced, a Bi-Uni or BCR tibial implant component may be used. The advantages of a Bi-Uni tibial implant relative to a BCR tibial implant is that is allows greater flexibility in positioning the medial/lateral tibial components according to the native anatomy of the medial and lateral compartments of the native tibia. However, this flexibility raises the challenge of accurately placing the medial and lateral tibial components relative to each other. The advantage of a BCR implant is that, since a single-piece tibial component (insert and/or baseplate) is used, the relative position of the medial and lateral compartments is maintained and joint loads can be shared between the medial and lateral tibial components. However, the use of a single-piece component requires removal of bone from the anterior region of the tibial eminence to accommodate the anterior-bridge of the BCR tibial implant (
Accordingly, there remains a need for improved knee implants and instruments to enable accurate placement of knee implants.
The present invention relates to cruciate ligament retaining knee implants, instruments and methods for implanting cruciate ligament retaining knee implants.
In one aspect, the invention provides an orthopedic implant having a femoral implant. The femoral implant includes one or both of a medial condyle and a lateral condyle. At least one of the medial condyle and the lateral condyle has a surface region joining a mesial edge and a femur-facing inner surface of the medial condyle or the lateral condyle. The surface region, when viewed in a plane transversely extending from an outer articular surface to the inner surface of the medial condyle or the lateral condyle, has a concave, convex, or chamfered geometry.
In one version of this aspect of the invention, the orthopedic implant is a unicompartmental implant which includes a femoral implant including a medial condyle. A surface region joins a mesial edge and a femur-facing inner surface of the medial condyle. The surface region, when viewed in a plane transversely extending from an outer articular surface to the inner surface of the medial condyle, has a concave, convex, or chamfered geometry.
In one version of this aspect of the invention, the orthopedic implant is a unicompartmental implant that includes a femoral implant having a lateral condyle. A surface region that joins a mesial edge and a femur-facing inner surface of the lateral condyle. The surface region, when viewed in a plane transversely extending from an outer articular surface to the inner surface of the lateral condyle, has a concave, convex, or chamfered geometry.
In one version of this aspect of the invention, the orthopedic implant is a bi-unicompartmental implant configured to replace both medial and lateral compartments of a native tibia. The bi-unicompartmental implant includes the femoral implant which includes a medial condyle and a lateral condyle. A surface region joins a mesial edge and a femur-facing inner surface of the medial condyle. The surface region, when viewed in a plane transversely extending from an outer articular surface to the inner surface of the medial condyle, has a concave, convex, or chamfered geometry.
In one version of this aspect of the invention, the orthopedic implant is a bi-unicompartmental implant configured to replace both medial and lateral compartments of a native tibia. The bi-unicompartmental implant includes a femoral implant which includes a medial condyle and a lateral condyle. A surface region joins a mesial edge and a femur-facing inner surface of the lateral condyle. The surface region, when viewed in a plane transversely extending from an outer articular surface to the inner surface of the lateral condyle, has a concave, convex, or chamfered geometry.
In one version of this aspect of the invention, the orthopedic implant is a bi-unicompartmental implant configured to replace both medial and lateral compartments of a native tibia. The bi-unicompartmental implant includes a femoral implant which includes a medial condyle and a lateral condyle. A surface region joins a mesial edge and a femur-facing inner surface of the medial condyle. The surface region, when viewed in a plane transversely extending from an outer articular surface to the inner surface of the medial condyle, has a concave, convex, or chamfered geometry. A second surface region joins a mesial edge and a femur-facing inner surface of the lateral condyle. The surface region, when viewed in a plane transversely extending from an outer articular surface to the inner surface of the lateral condyle, has a concave, convex, or chamfered geometry.
In one version of this aspect of the invention, the orthopedic implant is a bi-cruciate implant configured to replace both medial and lateral compartments of a native tibia. The bi-cruciate implant includes a femoral implant that includes a medial condyle and a lateral condyle. A surface region joins a mesial edge and a femur-facing inner surface of the medial condyle. The surface region, when viewed in a plane transversely extending from an outer articular surface to the inner surface of the medial condyle, has a concave, convex, or chamfered geometry.
In one version of this aspect of the invention, the orthopedic implant is a bi-cruciate implant configured to replace both medial and lateral compartments of a native tibia. The bi-cruciate implant includes a femoral implant that includes a medial condyle and a lateral condyle. A surface region joins a mesial edge and a femur-facing inner surface of the lateral condyle. The surface region, when viewed in a plane transversely extending from an outer articular surface to the inner surface of the lateral condyle, has a concave, convex, or chamfered geometry.
In one version of this aspect of the invention, the orthopedic implant is a bi-cruciate implant configured to replace both medial and lateral compartments of a native tibia. The bi-cruciate implant includes a femoral implant that includes a medial condyle and a lateral condyle. A surface region joins a mesial edge and a femur-facing inner surface of the medial condyle. The surface region, when viewed in a plane transversely extending from an outer articular surface to the inner surface of the medial condyle, has a concave, convex, or chamfered geometry. A second surface region joins a mesial edge and a femur-facing inner surface of the lateral condyle. The surface region, when viewed in a plane transversely extending from an outer articular surface to the inner surface of the lateral condyle, has a concave, convex, or chamfered geometry.
In one version of this aspect of the invention, the surface region, when viewed in the plane, has a straight line profile.
In one version of this aspect of the invention, the surface region, when viewed in the plane, has a concave curvilinear profile.
In one version of this aspect of the invention, the surface region, when viewed in the plane, has a convex curvilinear profile.
In one version of this aspect of the invention, the surface region, when viewed in the plane, has a concave profile includes a plurality of connected line segments.
In one version of this aspect of the invention, a distance, measured perpendicularly from the inner surface to a normal line to a junction of the surface region and the mesial edge, is in a range of range 0.5 to 7 millimeters.
In one version of this aspect of the invention, a distance, measured perpendicularly from the mesial edge to a normal line to a junction of the surface region and the inner surface, is in a range of range 0.5 to 7 millimeters.
In another aspect, the invention provides an orthopedic implant. The orthopedic implant includes a femoral implant including one or both of a medial condyle and a lateral condyle. At least one of the medial condyle and the lateral condyle is configured such that a posterior thickness and/or a posterodistal condyle thickness of the medial condyle or the lateral condyle is less than a distal condyle thickness of the medial condyle or the lateral condyle.
In one version of this aspect of the invention, the orthopedic implant is a unicompartmental implant that includes a femoral implant including a medial condyle. The medial condyle is configured such that a posterior thickness and/or a posterodistal condyle thickness of the medial condyle is less than a distal condyle thickness of the medial condyle.
In one version of this aspect of the invention, the orthopedic implant is a unicompartmental implant that includes a femoral implant including a lateral condyle. The lateral condyle is configured such that a posterior thickness and/or a posterodistal condyle thickness of the lateral condyle is less than a distal condyle thickness of the lateral condyle.
In one version of this aspect of the invention, the orthopedic implant is a bi-unicompartmental implant configured to replace both medial and lateral compartments of a native tibia. The bi-unicompartmental implant includes a femoral implant including a medial condyle and a lateral condyle. The medial condyle is configured such that a posterior thickness and/or a posterodistal condyle thickness of the medial condyle is less than a distal condyle thickness of the medial condyle.
In one version of this aspect of the invention, the orthopedic implant is a bi-unicompartmental implant configured to replace both medial and lateral compartments of a native tibia. The bi-unicompartmental implant includes a femoral implant including a medial condyle and a lateral condyle. The lateral condyle is configured such that a posterior thickness and/or a posterodistal condyle thickness of the lateral condyle is less than a distal condyle thickness of the lateral condyle.
In one version of this aspect of the invention, the orthopedic implant is a bi-unicompartmental implant configured to replace both medial and lateral compartments of a native tibia. The bi-unicompartmental implant includes a femoral implant including a medial condyle and a lateral condyle. The medial condyle is configured such that a posterior thickness and/or a posterodistal condyle thickness of the medial condyle is less than a distal condyle thickness of the medial condyle. The lateral condyle is configured such that a posterior thickness and/or a posterodistal condyle thickness of the lateral condyle is less than a distal condyle thickness of the lateral condyle.
In one version of this aspect of the invention, the orthopedic implant is a bi-cruciate implant configured to replace both medial and lateral compartments of a native tibia. The bi-cruciate implant includes a femoral implant including a medial condyle and a lateral condyle. The medial condyle is configured such that a posterior thickness and/or a posterodistal condyle thickness of the medial condyle is less than a distal condyle thickness of the medial condyle.
In one version of this aspect of the invention, the orthopedic implant is a bi-cruciate implant configured to replace both medial and lateral compartments of a native tibia. The bi-cruciate implant includes a femoral implant including a medial condyle and a lateral condyle. The lateral condyle is configured such that a posterior thickness and/or a posterodistal condyle thickness of the lateral condyle is less than a distal condyle thickness of the lateral condyle.
In one version of this aspect of the invention, the orthopedic implant is a bi-cruciate implant configured to replace both medial and lateral compartments of a native tibia. The bi-cruciate implant includes a femoral implant including a medial condyle and a lateral condyle. The medial condyle is configured such that a posterior thickness and/or a posterodistal condyle thickness of the medial condyle is less than a distal condyle thickness of the medial condyle. The lateral condyle is configured such that a posterior thickness and/or a posterodistal condyle thickness of the lateral condyle is less than a distal condyle thickness of the lateral condyle.
In one version of this aspect of the invention, a posterior thickness of the medial condyle or the lateral condyle is less than a distal condyle thickness of the medial condyle or the lateral condyle.
In one version of this aspect of the invention, a posterodistal condyle thickness of the medial condyle or the lateral condyle is less than a distal condyle thickness of the medial condyle or the lateral condyle.
In one version of this aspect of the invention, a posterior thickness and a posterodistal condyle thickness of the medial condyle or the lateral condyle are less than a distal condyle thickness of the medial condyle or the lateral condyle.
In another aspect, the invention provides an orthopedic implant. The orthopedic implant includes a femoral implant including one or both of a medial condyle and a lateral condyle. The medial condyle and/or the lateral condyle is configured such that each of a posterior thickness, a posterodistal thickness, and a distal condyle thickness of the medial condyle or the lateral condyle is less than 8 millimeters. The medial condyle and/or the lateral condyle includes a reinforcing structure that extends away from the inner surface of the medial condyle or the lateral condyle. The reinforcing structure is configured to interface with femoral bone.
In one version of this aspect of the invention, the orthopedic implant is a unicompartmental implant that includes a femoral implant having a medial condyle. The medial condyle includes the reinforcing structure.
In one version of this aspect of the invention, the orthopedic implant is a unicompartmental implant that includes a femoral implant having a lateral condyle. The lateral condyle includes the reinforcing structure.
In one version of this aspect of the invention, the orthopedic implant is a bi-unicompartmental implant configured to replace both medial and lateral compartments of a native tibia. The bi-unicompartmental implant includes a femoral implant having a medial condyle and a lateral condyle. The medial condyle includes the reinforcing structure.
In one version of this aspect of the invention, the orthopedic implant is a bi-unicompartmental implant configured to replace both medial and lateral compartments of a native tibia. The bi-unicompartmental implant includes a femoral implant having a medial condyle and a lateral condyle. The lateral condyle includes the reinforcing structure.
In one version of this aspect of the invention, the orthopedic implant is a bi-cruciate implant configured to replace both medial and lateral compartments of a native tibia. The bi-cruciate implant includes a femoral implant having a medial condyle and a lateral condyle. The medial condyle includes the reinforcing structure.
In one version of this aspect of the invention, the orthopedic implant is a bi-cruciate implant configured to replace both medial and lateral compartments of a native tibia. The bi-cruciate implant includes a femoral implant having a medial condyle and a lateral condyle. The lateral condyle includes the reinforcing structure.
In one version of this aspect of the invention, the reinforcing structure comprises a rectangular fin.
In one version of this aspect of the invention, the reinforcing structure comprises a partially cylindrical fin.
In another aspect, the invention provides an orthopedic implant, wherein the orthopedic implant includes a tibial implant including one or both of a medial tibial component and a lateral tibial component. At least one of the medial tibial component and the lateral tibial component is configured such a surface region joining a mesial edge and a tibial-facing surface of the medial tibial component or the lateral tibial component has a rounded profile or a chamfered profile when viewed in a plane coronally extending from an outer edge of the medial tibial component or the lateral tibial component to the mesial edge of the medial tibial component or the lateral tibial component.
In one version of this aspect of the invention, the orthopedic implant is a unicompartmental implant that includes a tibial implant having a medial tibial component. A surface region joins a mesial edge and a tibial-facing surface of the medial tibial component. The surface region has a rounded profile or a chamfered profile when viewed in a plane coronally extending from an outer edge of the medial tibial component to the mesial edge of the medial tibial component.
In one version of this aspect of the invention, the orthopedic implant is a unicompartmental implant that includes a tibial implant having a lateral tibial component. A surface region joins a mesial edge and a tibial-facing surface of the lateral tibial component. The surface region has a rounded profile or a chamfered profile when viewed in a plane coronally extending from an outer edge of the lateral tibial component to the mesial edge of the lateral tibial component.
In one version of this aspect of the invention, the orthopedic implant is a bi-unicompartmental implant configured to replace both medial and lateral compartments of a native tibia. The bi-unicompartmental implant includes a tibial implant having a medial tibial component and a lateral tibial component. A surface region joins a mesial edge and a tibial-facing surface of the medial tibial component. The surface region has a rounded profile or a chamfered profile when viewed in a plane coronally extending from an outer edge of the medial tibial component to the mesial edge of the medial tibial component. The tibial implant includes a second surface region that joins a mesial edge and a tibial-facing surface of the lateral tibial component. The surface region has a rounded profile or a chamfered profile when viewed in a plane coronally extending from an outer edge of the lateral tibial component to the mesial edge of the lateral tibial component.
In one version of this aspect of the invention, the orthopedic implant is a bi-cruciate implant configured to replace both medial and lateral compartments of a native tibia. The bi-cruciate implant includes a tibial implant having a medial tibial component and a lateral tibial component. A surface region joins a mesial edge and a tibial-facing surface of the medial tibial component. The surface region has a rounded profile or a chamfered profile when viewed in a plane coronally extending from an outer edge of the medial tibial component to the mesial edge of the medial tibial component. The tibial implant includes a second surface region that joins a mesial edge and a tibial-facing surface of the lateral tibial component. The second surface region has a rounded profile or a chamfered profile when viewed in a plane coronally extending from an outer edge of the lateral tibial component to the mesial edge of the lateral tibial component.
In one version of this aspect of the invention, the surface region, when viewed in the plane, has a straight line profile.
In one version of this aspect of the invention, the surface region, when viewed in the plane, has a concave curvilinear profile.
In another aspect, the invention provides an orthopedic implant includes a tibial implant including one or both of a medial tibial component and a lateral tibial component. At least one of the medial tibial component and the lateral tibial component has a non-straight mesial edge when viewed in a plane transversely extending from an outer edge of the medial tibial component or the lateral tibial component to the mesial edge of the medial tibial component or the lateral tibial component.
In one version of this aspect of the invention, the orthopedic implant is a unicompartmental implant that includes a tibial implant having a medial tibial component. The medial tibial component has a non-straight mesial edge when viewed in a plane transversely extending from an outer edge of the medial tibial component to the mesial edge of the medial tibial component.
In one version of this aspect of the invention, the orthopedic implant is a unicompartmental implant that includes the tibial implant including the lateral tibial component. The lateral tibial component has a non-straight mesial edge when viewed in a plane transversely extending from an outer edge of the lateral tibial component to the mesial edge of the lateral tibial component.
In one version of this aspect of the invention, the orthopedic implant is a bi-unicompartmental implant configured to replace both medial and lateral compartments of a native tibia. The bi-unicompartmental implant includes a tibial implant having a medial tibial component and a lateral tibial component. The medial tibial component and the lateral tibial component have the non-straight mesial edge.
In one version of this aspect of the invention, the non-straight mesial edge has a concave curvilinear profile.
In one version of this aspect of the invention, the non-straight mesial edge has a concave profile includes a plurality of connected straight line segments.
In one version of this aspect of the invention, the medial tibial component and the lateral tibial component each comprise a tibial baseplate.
In one version of this aspect of the invention, the medial tibial component and the lateral tibial component each comprise a tibial insert.
In another aspect, the invention provides an orthopedic implant including a tibial implant having a medial tibial component and a lateral tibial component. The medial tibial component has a distal surface and a proximal surface. The lateral tibial component has a distal surface and a proximal surface. The proximal surface of the medial compartment has a different posterior slope than the proximal surface of the lateral compartment. In one version of this aspect of the invention, the distal surface of the medial tibial component and the distal surface of the lateral tibial component have the same posterior slope. In another version of this aspect of the invention, the distal surface of the medial compartment has a different posterior slope than the distal surface of the lateral compartment. In another version of this aspect of the invention, the tibial implant is a tibial baseplate that includes the medial tibial component and the lateral tibial component.
In another aspect, the invention provides an orthopedic implant including a tibial implant having one or both of a medial tibial component and a lateral tibial component. At least one of the medial tibial component and the lateral tibial component includes a distal surface having a convex geometry.
In one version of this aspect of the invention, the orthopedic implant is a unicompartmental implant that includes a tibial implant having a medial tibial component. The medial tibial component and the lateral tibial component include a distal surface having a convex geometry.
In one version of this aspect of the invention, the orthopedic implant is a unicompartmental implant that includes a tibial implant having a lateral tibial component. The lateral tibial component includes a distal surface having a convex geometry.
In one version of this aspect of the invention, the orthopedic implant is a bi-unicompartmental implant configured to replace both medial and lateral compartments of a native tibia. The bi-unicompartmental implant includes a tibial implant having a medial tibial component and a lateral tibial component. Each of the medial tibial component and the lateral tibial component includes a distal surface having a convex geometry.
In one version of this aspect of the invention, the orthopedic implant is a bi-cruciate implant configured to replace both medial and lateral compartments of a native tibia. The bi-cruciate implant includes a tibial implant having a medial tibial component and a lateral tibial component. Each of the medial tibial component and the lateral tibial component includes a distal surface having a convex geometry.
In another aspect, the invention provides an orthopedic implant including a tibial implant having a medial tibial component, a lateral tibial component, and an anterior bridge joining the medial tibial component and the lateral tibial component. The anterior bridge is configured such that a superior portion of the anterior bridge drapes over a portion of a tibial eminence. The anterior bridge is configured such that a portion of the anterior-bridge is distal to a distal surface of the medial tibial component and/or a distal surface of the lateral tibial component. In one version of this aspect of the invention, a cavity is formed underneath the anterior bridge. In another version of this aspect of the invention, the tibial implant is configured such that a distal end of the anterior bridge seats in a notch in a tibia when the tibial implant is implanted on the tibia. In another version of this aspect of the invention, the anterior bridge includes a curvilinear outer surface.
In another aspect, the invention provides an orthopedic instrument designed to aid in cutting native tibia bone to accommodate a knee implant. The instrument includes a medial cutting guide and a lateral cutting guide. The instrument is configured to allow relative rotation between the medial cutting guide and lateral cutting guide in at least one of a sagittal, coronal or transverse plane.
In one version of this aspect of the invention, the medial cutting guide includes a medial transverse cutting slot, and the lateral cutting guide includes a lateral transverse cutting slot.
In one version of this aspect of the invention, the medial cutting guide includes a medial tibial eminence cutting slot, and the lateral cutting guide includes a lateral tibial eminence cutting slot.
In one version of this aspect of the invention, one of the medial cutting guide and the lateral cutting guide includes a base section that extends away from a lower section. The other of the medial cutting guide and the lateral cutting guide engages the base section and pivots in a transverse plane with respect to the base section.
In one version of this aspect of the invention, one of the medial cutting guide and the lateral cutting guide engages the other of the medial cutting guide and the lateral cutting guide and pivots in a sagittal plane with respect to the other of the medial cutting guide and the lateral cutting guide.
In one version of this aspect of the invention, one of the medial cutting guide and the lateral cutting guide engages the other of the medial cutting guide and the lateral cutting guide and pivots in a coronal plane with respect to the other of the medial cutting guide and the lateral cutting guide.
In one version of this aspect of the invention, there is provided a saw blade dimensioned to slide within the medial transverse cutting slot, the lateral transverse cutting slot, the medial tibial eminence cutting slot, and the lateral tibial eminence cutting slot.
In another aspect, the invention provides an orthopedic instrument designed to aid in cutting native tibia bone to accommodate a knee implant. The instrument includes a medial cutting guide, a lateral cutting guide, and a base block. The instrument is configured to allow relative rotation between the block base and at least one of the medial cutting guide and the lateral cutting guide in at least one of a sagittal, coronal or transverse plane.
In one version of this aspect of the invention, the instrument is configured to allow relative rotation between the block base and the medial cutting guide in a sagittal plane.
In one version of this aspect of the invention, the instrument is configured to allow relative rotation between the block base and the medial cutting guide in a transverse plane.
In one version of this aspect of the invention, the instrument is configured to allow relative rotation between the block base and the lateral cutting guide in a sagittal plane.
In one version of this aspect of the invention, the instrument is configured to allow relative rotation between the block base and the lateral cutting guide in a transverse plane.
In one version of this aspect of the invention, the medial cutting guide includes a medial transverse cutting slot, and the lateral cutting guide includes a lateral transverse cutting slot.
In one version of this aspect of the invention, the medial cutting guide includes a medial tibial eminence cutting slot, and the lateral cutting guide includes a lateral tibial eminence cutting slot.
In one version of this aspect of the invention, there is provided a saw blade dimensioned to slide within the medial transverse cutting slot, the lateral transverse cutting slot, the medial tibial eminence cutting slot, and the lateral tibial eminence cutting slot.
In another aspect, the invention provides an orthopedic instrument designed to aid in cutting native tibia bone to accommodate a knee implant. The instrument includes a medial cutting guide and a lateral cutting guide. The instrument is configured to allow relative translation between the medial cutting guide and the lateral cutting guide in at least one of a mediolateral, anteroposterior or superoinferior direction.
In one version of this aspect of the invention, the instrument is configured to allow relative translation between the medial cutting guide and the lateral cutting guide in a mediolateral direction.
In one version of this aspect of the invention, the instrument is configured to allow relative translation between the medial cutting guide and the lateral cutting guide in an anteroposterior direction.
In one version of this aspect of the invention, the instrument is configured to allow relative translation between the medial cutting guide and the lateral cutting guide in a superoinferior direction.
In one version of this aspect of the invention, the medial cutting guide includes a medial transverse cutting slot, and the lateral cutting guide includes a lateral transverse cutting slot.
In one version of this aspect of the invention, the medial cutting guide includes a medial tibial eminence cutting slot, and the lateral cutting guide includes a lateral tibial eminence cutting slot.
In one version of this aspect of the invention, there is provided a saw blade dimensioned to slide within the medial transverse cutting slot, the lateral transverse cutting slot, the medial tibial eminence cutting slot, and the lateral tibial eminence cutting slot.
In another aspect, the invention provides an orthopedic instrument designed to aid in cutting native tibia bone to accommodate a knee implant. The instrument includes a medial cutting guide, a lateral cutting guide, and a base block. The instrument is configured to allow relative translation between the block base and at least one of the medial cutting guide and the lateral cutting guide in at least one of a mediolateral, anteroposterior or superoinferior direction.
In one version of this aspect of the invention, the instrument is configured to allow relative translation between the block base and the medial cutting guide in a mediolateral direction.
In one version of this aspect of the invention, the instrument is configured to allow relative translation between the block base and the medial cutting guide in an anteroposterior direction.
In one version of this aspect of the invention, the instrument is configured to allow relative translation between the block base and the medial cutting guide in a superoinferior direction.
In one version of this aspect of the invention, the instrument is configured to allow relative translation between the block base and the lateral cutting guide in a mediolateral direction.
In one version of this aspect of the invention, the instrument is configured to allow relative translation between the block base and the lateral cutting guide in an anteroposterior direction.
In one version of this aspect of the invention, the instrument is configured to allow relative translation between the block base and the lateral cutting guide in a superoinferior direction.
In one version of this aspect of the invention, the medial cutting guide includes a medial transverse cutting slot, and the lateral cutting guide includes a lateral transverse cutting slot.
In one version of this aspect of the invention, the medial cutting guide includes a medial tibial eminence cutting slot. The lateral cutting guide includes a lateral tibial eminence cutting slot.
In one version of this aspect of the invention, there is provided a saw blade dimensioned to slide within the medial transverse cutting slot, the lateral transverse cutting slot, the medial tibial eminence cutting slot, and the lateral tibial eminence cutting slot.
In another aspect, the invention provides an orthopedic instrument designed to aid in cutting native tibia bone to accommodate a knee implant. The instrument includes a cutting guide that is configured to allow varying relative resection depths and/or relative posterior slopes between a medial bone resection and a lateral bone resection.
In one version of this aspect of the invention, the cutting guide includes a medial transverse cutting slot and a lateral transverse cutting slot. The medial transverse cutting slot is a first distance from a base wall of the cutting guide. The lateral transverse cutting slot is a second distance from the base wall of the cutting guide. The first distance and the second distance are different.
In one version of this aspect of the invention, the cutting guide includes a medial transverse cutting slot and a lateral transverse cutting slot. At least one the medial transverse cutting slot and the lateral transverse cutting slot includes an inlet at a first distance from a first end of a base wall of the cutting guide and an outlet at a second distance from a second end the base wall of the cutting guide. The first distance and the second distance are different.
In one version of this aspect of the invention, the cutting guide includes a medial tibial eminence cutting slot and a lateral tibial eminence cutting slot.
In another aspect, the invention provides an orthopedic instrument designed to aid in cutting native tibia bone to accommodate a knee implant. The instrument comprises a cutting guide including a first section having an edge and a second section having a transverse cutting slot. The edge is configured to use a cut of one of a medial tibial surface or a lateral tibial surface as a reference to guide resection of the other of the medial tibial surface or the lateral tibial surface.
In one version of this aspect of the invention, the second section includes a tibial eminence cutting slot.
In one version of this aspect of the invention, the transverse cutting slot includes an inlet at a first distance from a first end of a base wall of the cutting guide and an outlet at a second distance from a second end the base wall of the cutting guide. The first distance and the second distance are different.
In another aspect, the invention provides an orthopedic instrument for use with an implant including a medial tibial component and a separate lateral tibial component. The instrument includes a holder configured to temporarily hold the medial tibial component and the lateral tibial component in a desired relative orientation to each other.
In one version of this aspect of the invention, the holder includes a handle, a first arm connected to the handle and configured to temporarily hold the medial tibial component, and a second arm connected to the handle and configured to temporarily hold the lateral tibial component.
In one version of this aspect of the invention, the first arm is pivotable with respect to the handle such that the medial tibial component can be adjusted in a transverse plane, and the second arm is pivotable with respect to the handle such that the lateral tibial component can be adjusted in the transverse plane.
In one version of this aspect of the invention, the first arm is pivotable with respect to the handle such that the medial tibial component can be adjusted in a sagittal plane, and the second arm is pivotable with respect to the handle such that the lateral tibial component can be adjusted in the sagittal plane.
These and other features, aspects, and advantages of the present invention will become better understood upon consideration of the following detailed description, drawings and appended claims.
Like reference numerals will be used to refer to like or similar parts from Figure to Figure in the following description.
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention. Further, while the invention is described in terms of knee implant and knee instrument designs that retain or permit the retention of the anterior cruciate ligament, these designs may also be used for knee implants and instruments that do not retain or do not permit the retention of the anterior cruciate ligament. The definitions of various terms used to describe the present invention are provided below.
The term “native” is used herein to imply natural or naturally occurring in the body. Examples of native structures include musculoskeletal structures such as the tibia bone (or tibia), femoral bone (or femur), tendon, muscle, ligament, etc.
The term “implant” is used herein to refer to a prosthetic component designed to augment or replace one or more native structures of the body. For example, a knee implant refers to a prosthetic component designed to augment or replace one or more native structures of the knee.
The term “slope” or “posterior slope” is used herein to refer to an angle relative to a tibial long axis measured in a sagittal plane. For example, “slope” or “posterior slope” of a tibial component is the angle between a surface, such as superior or inferior surface, and a tibial mechanical axis projected onto a sagittal plane.
The term “long axis” used herein in relation to the tibia bone or a femoral bone and refers to an axis parallel to the length of the bone such as an “anatomical” or “mechanical” axis. The “anatomical” axis refers to a line drawn along the length of the intramedullary canal of the bone. The “mechanical” axis of the femur bone refers to a line joining the center of the femoral head to a point where the “anatomic” axis meets intercondylar notch. The “mechanical” axis of the tibia refers to a line joining the medial tibial spine to the center of the ankle.
The term “resection depth” or “depth” refers to distance between native surface of a bone, such as tibia, and a cut surface of the bone generally measured in a superior-inferior direction.
The term “tibial eminence” or “tibial spine” is used herein to refer to the native structure of the proximal tibia between the medial and lateral articular surfaces which includes a central prominence and the attachment sites of the anterior cruciate ligament, posterior cruciate ligament, and the menisci.
The term “mesial” when used in reference to an implant refers to a portion of an implant situated near or directed towards the median or middle plane of the native bone when the implant is mounted on the native bone.
The terms “coronal”/“frontal”, “sagittal” and “transverse”/“axial” planes as used herein refer to anatomical “coronal”/“frontal”, “sagittal” and “transverse”/“axial” planes of the body or the native anatomical structure such as the tibia or femur. The descriptions of form, function or position of an implant or instrument with reference to such planes are intended to represent the form, function or position of the implant or instrument when it is placed/positioned against the anatomical structure in a generally intended manner.
In contemporary Uni, Bi-Uni, and BCR implants, a sagittal plane cross-section of both the medial and lateral tibial articular surfaces of the tibial insert has a concave geometry composed of a single radius Rsag of about 200 mm, and a coronal plane cross-section has a concave or flat geometry (see
In another embodiment of the invention, the medial or lateral tibial articular surface 246 of the tibial insert 240 has a concave sagittal geometry (i.e. sagittal plane cross-section geometry) composed of an anterior concave radius (R′sag4) and a different posterior concave radius (R′sag5,
Further, the coronal geometry (i.e., coronal plane cross-section geometry) of the medial/lateral articular surface 216a, 216b. 216c of the tibial insert 210 may be concave (216a), flat (216b), or convex (216c) composed of one or more radii and/or flat sections (
During preparation of the tibial bone for a Uni implant, a unicompartmental tibial cutting block 300 is used to resect the bone at the desired resection depth and posterior slope (see
To address this, in one embodiment of the invention, the tibial cutting block 400 may comprise a medial cutting guide 402 and lateral cutting guide 404, wherein the medial cutting guide 402 or the lateral cutting guide 404 can pivot/rotate in a plane relative to the other side, such as in a sagittal plane when mounted on the tibia, to allow accurate control of medial/lateral slope relative to the fixed side (see
In another embodiment, the tibial cutting block 500 may comprise a medial cutting guide 502 and a lateral cutting guide 504, wherein the medial or lateral cutting guide can slide in a plane relative to the fixed side, such as along a superior-inferior direction S-I in a sagittal or coronal plane when mounted on the tibia, to allow desired resection depth relative to the fixed side (see
In another embodiment, the tibial cutting block 600 may comprise a medial cutting guide 602 and a lateral cutting guide 604, wherein the medial or lateral cutting guide can pivot in a plane relative to the fixed side, such as a transverse plane when mounted on the native tibia T, to allow resection of the tibial eminence along a desired direction relative to the fixed side (see
In another embodiment, the tibial cutting block 700 may comprise a medial cutting guide 702 and a lateral cutting guide 704, wherein the medial cutting guide 702 can pivot and slide in a transverse plane relative to a fixed block base 701, while the lateral cutting guide can pivot in a transverse and a sagittal plane relative to a fixed block base 701. See
In another embodiment shown in
In another embodiment of
In
In
In
In some embodiments of the invention, the medial or lateral tibial bone can be cut first, and then a cutting guide or cutting block configured to use the cut tibial surface as reference may be used to guide the resection of the other side (medial or lateral). For example, in the embodiment shown in
In relation to the above inventions, it is understood that the location of the axis about which a cutting guide pivots/rotates or translates/shifts can differ from those shown in the specific non-limiting embodiments above.
In bi-unicompartmental surgery, it may be advantageous to maintain the desired relative positions of the medial and lateral tibial components during the surgical procedure. Therefore, in one embodiment of the invention, an instrument handle is provided to temporarily hold the medial and lateral tibial components in the desired relative positions, such as during cementing and/or seating of the components into the bone, to prevent or minimize relative shift in component positions from their desired or planned positions. The instrument handle can be detached from the medial and lateral tibial components prior to end of the surgical procedure. In another embodiment, an instrument handle is provided to temporarily hold the medial and lateral tibial trial components in the desired relative positions, such as for marking location of tibial implant fixation pegs or location of tibial eminence resections. This would aid in minimizing or preventing relative shift in final implant component positions from the desired or planned locations.
In one embodiment, the instrument handle 1110 is a single-piece component that is fabricated to hold the medial tibial component (implant or trial) 1114 and the lateral tibial component (implant or trial) 1112 (e.g., via clamping) in pre-determined positions relative to each other (see
In other embodiments, an instrument handle 1210 can be configured during surgery, such as via aid of adjustable arms 1222,1224, to achieve desired orientation of the medial tibial component (implant or trial) 1214 and the lateral tibial component (implant or trial) 1212 in 3D space (see
In another embodiment of the invention, a clip 1310 is provided to temporarily hold (e.g., via clamping) the medial tibial component (implant or trial) 1314 and the lateral tibial component (implant or trial) 1312 in pre-determined relative positions (see
In another embodiment, a single-piece tibial trial component 1410 with a handle 1412 and trial tibial baseplate 1414 is provided, wherein the medial compartment 1415 and the lateral compartment 1416 are configured according to the desired location of the medial and lateral tibial implant components. The single-piece tibial trial may include features (tibial fixation peg guide holes 1417) to guide the creation of holes/slots in the tibial bone to receive fixation features such as fixation pegs or keels of the tibial implant component (see
In conventional unicompartmental, bi-unicompartmental or bi-cruciate retaining surgical procedure, the medial/lateral surface of the native tibial eminence is resected perpendicular to the transverse tibial bone cuts to match the rectangular coronal geometry of conventional tibial components (see
In a conventional BCR tibial component 1600A (tibial baseplate and/or tibial insert) shown in
In a transverse plane, the conventional Uni, Bi-Uni and BCR lateral tibial component 1710 and medial tibial component 1712 have a straight mesial edges 1711, 1713 respectively (see
In other embodiments, the arcuate geometry may be approximated with three straight lines 1741, 1742, 1743 for the lateral tibial component 1740 and three straight lines 1745, 1746, 1747 for the medial tibial component 1744 (see
In other embodiments, in a transverse plane, the mesial edge 1751 for the lateral tibial component 1750 and the mesial edge 1753 for the medial tibial component 1754 may include one or more convex/concave arcs, or multiple line segments (see
In other embodiments, the mesial edge 1761 for the lateral tibial component 1760 and the mesial edge 1763 for the medial tibial component 1764 may include a rectangular notch/cutout extending over a portion of the mesial edge (see
In conventional bi-unicompartmental knee surgery using a lateral tibial component 1810 and a medial tibial component 1812, the medial and/or lateral tibial bone is resected with a transverse cut going across/through the anteroposterior extent of the medial/lateral tibial compartment, and the tibial eminence is resected with a sagittal cut going across/through the anteroposterior extent of the tibial eminence (see
Looking at
Referring to
Referring now to
In conventional knee implants, the distal surface 2012 of the tibial component 2010 interfacing with the tibial bone has a flat/planar geometry, and the corresponding tibial bone cut is also planar (see
The insertion of the native ACL on the femoral side lies along the mesial side of the lateral condyle 2110 of the femoral component (see
To address this, in one set of embodiments, the geometry of the femoral component is modified to remove material along a mesial edge of the lateral condyle of the femoral component. In
In a conventional femoral component, the posterior and distal condyle thickness (tpc and tdc) are generally equal and about 8 mm or greater (range 8 to 12 mm). In some embodiments of the invention, the thickness of the posterior femoral condyle may be reduced, resulting in modification of the sagittal plane geometry of the inner surface of the femoral implant interfacing with the femoral bone. In some embodiments (see
Specifically, in
Reduction in thickness of the femoral condyles may reduce strength of the condyle. To address this, in further embodiments of the invention, reinforcing structures such as rectangular fins or semi-cylindrical fins, may be added to the inner surface of one or both of the femoral condyles interfacing with the femoral bone (see
The insertion of the native PCL on the femoral side lies along the mesial side of the medial femoral condyle 2514 (see
To address this, in one set of embodiments, the geometry of the femoral component is modified to remove material along a mesial edge of the medial condyle (see
In a conventional femoral component, the posterior, distal and posterodistal condyle thickness (tp, tdc and tpdc) are generally equal and about 8 mm or greater (range 8 to 12 mm). In some embodiments of the invention, the thickness of the femoral condyle may be reduced, resulting in modification of the sagittal plane geometry of the inner surface of the femoral implant interfacing with the femoral bone. In some embodiments (
Specifically,
Reduction in thickness of the femoral medial condyles may reduce strength of the condyle. To address this, in further embodiments of the invention, the reinforcing structures such as rectangular or cylindrical fins may be added to the inner surface of the femoral medial condyles interfacing with the femoral bone as in the embodiments of the invention shown in
The prosthetic components can be constructed in various sizes to fit a range of typical patients, or the components can be custom-designed for a specific patient based on data provided by a surgeon, e.g., after physical and radiography examination of the specific patient. The implants described herein can be constructed in various manners and can be made from one or more materials. Implant components (e.g., tibial insert, tibial baseplate, femoral component, tibial cutting block, instrument handle) can be machined, cast, forged, molded, or otherwise constructed out of a medical grade, physiologically acceptable material such as a cobalt chromium alloy, a titanium alloy, stainless steel, ceramic, etc. Other examples of materials for the implants include polyolefins, polyethylene, ultra-high molecular weight polyethylene, medium-density polyethylene, high-density polyethylene, medium-density polyethylene, highly cross-linked ultra-high molecular weight polyethylene (UHMWPE), etc. Exemplary embodiments of UHMWPE prosthesis materials and manufacturing processes are described in U.S. Pat. No. 5,879,400 filed Feb. 13, 1996 entitled “Melt-Irradiated Ultra High Molecular Weight Polyethylene Prosthetic Devices”; U.S. Patent Application Publication No. 2009/0105364 filed Dec. 12, 2008, entitled “Radiation And Melt Treated Ultra High Molecular Weight Polyethylene Prosthetic Devices”; U.S. Pat. No. 7,906,064 filed Nov. 29, 2006 entitled “Methods For Making Oxidation Resistant Polymeric Material”; U.S. Pat. No. 8,293,811 filed Apr. 5, 2010 entitled “Methods For Making Oxidation-Resistant Cross-Linked Polymeric Materials”; U.S. Pat. No. 7,166,650 filed Jan. 7, 2005 entitled “High Modulus Crosslinked Polyethylene With Reduced Residual Free Radical Concentration Prepared Below The Melt”; and U.S. Patent Application Publication No. 2008/0215142 filed Mar. 3, 2008 entitled “Cross-Linking Of Antioxidant-Containing Polymers”, which are hereby incorporated by reference in their entireties.
The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to or during a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
One skilled in the art will appreciate further features and advantages of the invention based on the above-described non-limiting embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.
All publications and references cited herein are expressly incorporated herein by reference in their entirety.
This application claims priority from U.S. Patent Application No. 62/091,974 filed Dec. 15, 2014.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US15/65688 | 12/15/2015 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62091974 | Dec 2014 | US |