A dunnage system for processing material into dunnage is herein described. The system includes a crumpling mechanism to crumple material for providing dunnage.
Products to be transported and/or stored often are packed within a box or other container. In many instances, however, the shape of the product does not match the shape of the container. Most containers utilized for transporting products have the general shape of a square rectangular box and, of course, products can be any shape or size. To fit a product within a container and to safely transport and/or store the product without damage to the product, the void space within the container is typically filled with a packing or cushioning material.
The protective-packing material utilized to fill void space within a container is often a lightweight, air-filled material that may act as a pillow or cushion to protect the product within the container. Many types of protective packaging have been used. These include, for example, foam products, inflatable pillows, and paper dunnage.
In the context of paper-based protective packaging, rolls of paper sheet are crumpled to produce the dunnage. Most commonly, this type of dunnage is created by running a generally continuous strip of paper into a machine and then cutting the crumpled sheet material into a desired length to effectively fill void space within a container holding a product. Typically, paper material is crumpled longitudinally so as to form a long strip of dunnage having many folds or pleats. Because the paper has fold spaces and/or pleats, the crumpled paper can be very effective at protecting and cushioning a product contained within the container, and may effectively prevent damage to the product during transport and/or storage.
Various machines for dunnage conversion have been developed. US 2009/0023570 discloses a machine for converting sheet material into a dunnage product. The machine includes a forming assembly for shaping the sheet material into a continuous strip of dunnage having a three-dimensional shape, a pulling assembly for advancing the sheet material through the forming assembly, and a severing assembly for severing the dunnage strip into a severed section of dunnage.
US 2009/0082187 discloses a dunnage conversion machine that converts a sheet stock material into a multi-ply dunnage product. The machine includes a feed mechanism that advances a sheet stock material and a connecting mechanism downstream of the feed mechanism that retards the passage of the sheet stock material by feeding the stock material therethrough at a slower rate than the feed mechanism. The connecting mechanism connects multiple overlapping layers of sheet stock material together as they pass therethrough, including connecting at least one crumpled sheet to one side of another sheet.
Each of U.S. Pat. No. 7,258,657, U.S. Pat. No. 6,783,489, and U.S. Pat. No. 6,019,715 disclose cushioning conversion machines that convert material from a stock supply roll to dunnage. These patents disclose a cushioning conversion machine that converts a two-dimensional stock material into a three-dimensional cushioning product. The machine generally comprises a housing through which the stock material passes along a path; and a feeding/connecting assembly which advances the stock material from a source thereof along said path, crumples the stock material, and connects the crumpled stock material to produce a strip of cushioning. The feeding/connecting assembly includes upstream and downstream components disposed along the path of the stock material through the housing, at least the upstream component being driven to advance the stock material toward the downstream component at a rate faster than the sheet-like stock material can pass from the downstream component to effect crumpling of the stock material therebetween to form a strip of cushioning. Additionally, at least one of the upstream and downstream components includes opposed members between which the stock material is passed and pinched by the opposed members with a pinch pressure; and a tension control mechanism is provided for adjusting the amount of pinch pressure applied by the opposed members to the stock material. The machine may include a turner bar to enable alternative positioning of a stock supply roll.
a is a side view of the third pivoting guide plate, third fixed guide plate, and associated high-speed roller and low-speed rollers, in accordance with one embodiment;
b is an alternate side view of the third pivoting guide plate, third fixed guide plate, and associated high-speed roller and low-speed rollers, in accordance with one embodiment;
The dunnage system provided herein may be used to process sheet material, such as a roll or, preferably, a stack of paper, into dunnage. Commonly, the unprocessed material type may be pulp based virgin and recycled papers, newsprint, cellulose and starch compositions, and poly or synthetic material. The type, thickness, and weight of material may be considerations for the speed of operation. For example, thicker material takes up more space and thus cannot be packed as tightly into the crumpling zone.
Referring to the dunnage system of
The pick-up system 14 functions to pick material up from a supply and to feed the material to the crumpling mechanism 16. The components of the crumpling mechanism 16 are provided interior to the crumpling mechanism 16 and thus are not shown in
The dunnage handler may be positioned adjacent to, or may form a portion of, the dunnage machine. Generally, the dunnage handler controls an outfeed of dunnage from the crumpling mechanism. Thus, the dunnage handler may be adapted to accumulate or discharge dunnage received from the outfeed of the crumpling mechanism. The dunnage handler may include a bottom support and a top support each positioned downstream from the crumpling mechanism and on opposing sides of the dunnage stream. In some embodiments, the top and/or bottom support may include a plurality of rails for supporting the dunnage, each having an accumulation feature on a trailing end. As such, the top and bottom rails together may form a cage.
In one embodiment, the top support may be pivotally adapted and the bottom support may be fixed. In this embodiment, the top support may allow for expansion of the space between the top and bottom support to accommodate accumulation of dunnage. In another embodiment, the bottom support may be rotatably disposed to allow it to be rotated between an accumulation position and a discharge position. With the bottom support in the accumulation position, dunnage may be collected by the dunnage handler and packing personnel may retrieve the dunnage by reaching into the dunnage handler, grasping dunnage, and pulling it through the cage. With the bottom support in a discharge position, the dunnage handler may be positioned to discharge dunnage into a container or into or onto a transport device such as a hopper or conveyor.
The first and second entry-side crumpling rollers 302, 304 define an entry therebetween while the first and second exit-side crumpling rollers 306, 308 define an exit therebetween. The first entry-side crumpling roller may be configured for moving at an first rate and may be associated with the second entry-side crumpling roller for moving sheet material through the entry in a first direction along a longitudinal path at an entry rate. The exit is disposed along the longitudinal path downstream of the entry in the first direction. The first exit-side crumpling roller may be configured for moving at a second rate and may be associated with the second exit-side crumpling roller for moving the sheet material through the exit in the first direction along the longitudinal rate at an exit rate that is slower than the entry rate to crumple the sheet material for producing dunnage.
A crumpling zone 310 is defined between the entry and the exit. It is generally within this crumpling zone 310 that the material is processed from raw material to dunnage. The entry-side crumpling rollers 302, 304 and the exit-side crumpling rollers 306, 308 may be displaced laterally along the path with respect to each other to cause shearing of the material within the crumpling zone. More specifically, the entry-side crumpling rollers 302, 304 and the exit-side crumpling rollers 306, 308 may be displaced laterally such that the shearing creates crumpling along axes at a non-orthogonal angle with respect to the longitudinal path. Such non-orthogonal angle may be any angle less than 91°. The exit-side crumpling rollers 306, 308 may be provided generally interior of the dunnage system while the entry-side crumpling rollers 302, 304 may be provided generally exterior of the dunnage system (shown in
It is to be appreciated that relative spatial orientations may vary in different orientations and/or configurations. In some embodiments, all of the low-speed rollers 306, 308 and the high-speed rollers 302, 304 have the same diameter.
As shown, a stage eye 314 may be provided for determining when the in-feed path, or path from the transfer roller 150 to the crumpling mechanism 16, is clear. The optical path 315 of the stage eye 314 is shown in dashed lines. It is to be appreciated that this path is not a structural element of the figure. A reflective element may be provided on the pick up roller 140 or on the pick up roller shaft 30 such that the reflective element reflects light back to the stage eye 314 when the optical path 315 from the stage eye 314 is not obstructed by material. In some embodiments, the reflective element may be a reflective sticker. The reflective element is provided generally in line with the stage eye 314. The stage eye facilitates maintenance of steady state production. While optical sensing is herein described, mechanical or alternative sensing methods may alternatively be used.
A path clear eye 320 may be provided for determining when an end of the preceding sheet of processed material has passed through the high-speed rollers 302, 304. A reflective element thus may be provided on the fixed guide plate high-speed roller 302 or the fixed guide plate high-speed roller shaft 328 such that the reflective element reflects light back to the path clear eye 320 when the optical path 322 from the path clear eye 320 is not obstructed by material. The path clear eye reduces the possibility of inadvertent jamming that may occur. While optical sensing is herein described, mechanical or alternative sensing methods may alternatively be used.
The in-feed system may be configured such that a sheet of material is picked up and fed towards the crumpling mechanism only when the stage eye 314 and the path clear eye 320 are clear. Thus, the subsequent sheet of material is fed when the preceding sheet is in the crumpling zone but passed the path clear eye 320.
The transfer roller 150 feeds material into the crumpling mechanism 16. In some embodiments, a guide may be provided with the transfer roller 150 for more effectively guiding the material to the crumpling mechanism 16. The unprocessed material is fed into the crumpling mechanism 16 between the two high-speed rollers 302, 304. An entry-guide 305 may be provided along the in-feed path to assist in guiding the material into the entry formed by the entry-side rollers 302, 304. In a preferred embodiment, the entry-guide 305 is offset from the entry and is spaced from the entry-side roller 302 by the thickness being used to guide the material. This spacing places the material in the proper position for feeding into the entry. The unprocessed material then enters the crumpling zone 310. The processed material, or dunnage, exits the crumpling zone 310 through the two low-speed rollers 306, 308. At least because the exit-side rollers 306, 308 operate at a lower speed than the entry-side rollers 302, 304, the material crumples in, the crumpling zone 310. Thus, the two low-speed rollers 306, 308 and the two high-speed rollers 302, 304 work together to create a crumpling zone 310.
Speed of crumpling rollers 302, 304, 306, 308 refers to the surface speed or linear speed of the rollers. Generally, the exit-side (or upper) rollers 306, 308 move slower than the entry-side (or lower) rollers 302, 304. In embodiments in which the diameter of the exit-side rollers 306, 308 and the entry-side rollers 302, 304 is the same, to achieve a faster speed, the entry-side rollers 302, 304 rotate at a higher velocity than the exit-side rollers 306, 308. In other embodiments, the diameter of the exit-side rollers 306, 308 may be larger than the diameter of the entry-side rollers 302, 304 such that, at the same velocity of rotation, the entry-side rollers 302, 304 have a higher linear speed than the exit-side rollers 306, 308. The speed and relative orientation of the rollers 302, 304, 306, 308 together facilitate compression or crumpling of the unprocessed material into dunnage. More specifically, the crumpling mechanism 16 creates dunnage having a configuration including pleats and crimped regions.
As shown, the dunnage system includes support structures. Suitable support structures can include, for example, a base, a plate, a bracket, or a mounting surface. Other suitable support structures can be provided. As shown, in
A pick up roller 140 is provided generally centrally of the pulley end 20 and the motor end 22. The pick up roller 140 works with a transfer roller 150 to move unprocessed material from the material source to the crumpling mechanism 16. A pick up roller shaft 30 is provided through the pick up roller 140 and, in this embodiment, through the frames. The pick up roller shaft 30 is driven by an electromechanical clutch on the pulley end of the dunnage system and in turn drives the pick up roller 140.
As discussed, in the embodiment shown, the crumpling mechanism 16 of the dunnage system 10 includes two sets of exit-side rollers 306, 308 and two sets of entry-side rollers 302, 304. Each set of exit-side rollers includes a pivoting guide plate exit-side roller 308 (coupled to a respective pivoting guide plate 24) and a fixed guide plate exit-side roller 306 (provided proximate or coupled to a respective fixed guide plate 26). Each set of entry-side rollers includes a pivoting guide plate entry-side roller 304 (provided proximate or coupled to a respective pivoting guide plate 24) and a fixed guide plate entry-side roller 302 (provided proximate or coupled to a respective fixed guide plate 26).
Accordingly, the first set of entry-side rollers 302, 304 and the first set of exit-side rollers 306, 308 are provided proximate the first pivoting guide plate 24a, with a first pivoting guide plate exit-side roller 308 being coupled to the first pivoting guide plate 24a. The second set of entry-side rollers 302, 304 and the second set of exit-side rollers 306, 308 are provided proximate the third pivoting guide plate 24c, with a second pivoting guide plate exit-side roller 308 being coupled to the third pivoting guide plate 24c. In other embodiments, where more creasing of pleats in the dunnage (described below) is desired, further sets of entry-side rollers and exit-side rollers may be provided.
A pivoting guide plate low-speed roller shaft 322 is provided coupling the pivoting guide plate exit-side rollers 308. A fixed guide plate low-speed roller shaft 324 is provided coupling the fixed guide plate exit-side rollers 306. A pivoting guide plate high-speed roller shaft 326 is provided coupling the pivoting guide plate entry-side rollers 304. A fixed guide plate high-speed roller shaft 328 is provided coupling the fixed guide plate entry-side rollers 302. The optional center roller may be provided on one of the pivoting guide plate high-speed roller shaft 326 or the fixed guide plate high-speed roller shaft 328. In the embodiment shown, the center roller is provided on the fixed guide plate high speed roller shaft 328. The shafts 322, 324, 326, 328 assist in communicating movement to the rollers 308, 306, 304, 302.
A motor 32 is provided in a suitable location for driving the dunnage mechanism 16, and preferably also the intake mechanism 14. The motor is preferably provided on the motor side 22 of the dunnage system 10 for driving various components of the dunnage system 10. The motor 32 is coupled to the fixed guide plate high-speed roller shaft 328 and thus drives the fixed guide shaft high-speed rollers 304. A pulley 34, or other transmission, is provided for communicating power from the motor 32 to the fixed guide plate low-speed roller shaft 324, Accordingly, the motor 32 powers the pulley 34 which in turn powers the fixed guide speed roller shaft 324 to rotate the fixed guide shaft low-speed rollers 306.
In the preferred embodiment, an electromechanical clutch 36 is provided on the pulley end 20 of the dunnage system 10 for driving various components of the dunnage system 10. The electromechanical clutch 36 drives the pick up roller shaft 30, which in turn drives the pick up roller 140. A belt drives the pulley along the pick-up roller shaft 30. The electromechanical clutch 36 has an electrconnector that is associated with an adaptive control system 50 or controller. The controller 50 indicates to the clutch when to engage the pick-up roller shaft 30 and when to disengage the pick-up roller shaft 30. When the pick-up roller shaft 30 is disengaged, the pulley may rotate but it will not rotate the pick-up roller shaft 30. The controller 50 indicates information to the clutch based on data from the stage eye and the path-clear eye. When the stage eye and the path-clear eye are clear, the controller 50 indicates to the electromechanical clutch 36 to engage the pick-up roller shaft 30. In some embodiments, the system may have a variable speed to reduce starting and stopping of the system.
In alternative embodiments, no electromechanical clutch may be provided and the dunnage system may be driven in a timed manner. For example, the dunnage system may engage the pick-up roller shaft on a timed basis such as by engaging the pick-up roller shaft every 15 seconds.
Thus, in a preferred embodiment, an adaptive control system 50 or controller may be provided to coordinate the timing of the ingress of the subsequent sheet to the crumpling zone with the egress of the preceding sheet from the crumpling zone to facilitate steady state operation of the dunnage system. It is to be appreciated that
The lateral spacing 309 (shown in
The longitudinal spacing of the rollers may be selected such that the exit-side rollers overlap the entry-side rollers. More specifically, as shown, the axes of the exit-side rollers and the axes of the entry-side rollers are positioned closer together than the radii of the exit-side rollers and the entry-side rollers.
The spacing of the entry-side rollers with respect to one another, the spacing of the exit-side rollers with respect to one another, and the spacing of the entry-side rollers with respect to the exit-side rollers determines the size and shape of the crumpling zone. The relative spacing and size of the rollers further determine the path through which the material is fed. It is to be appreciated that the paper is fed from the in-take area by the in-take roller 140, around the transfer roller 150, and to the entry-side rollers 302, 304. More specifically, in the embodiment shown, the paper is fed around the forward entry-side roller 302. As discussed, an entry-guide 305 may be provided to facilitate feeding of the paper into the entry formed by the entry-side rollers 302, 304.
Referring to
The crumpling zone may be considered as having 3 sub-zones. The first sub-zone is the entry-zone, where the material enters the crumpling zone. The second sub-zone is the fill-zone. The fill-zone is the area where, when the trailing edge of the preceding sheet of the material enters, it is ideal for the leading edge of the subsequent sheet to enter the entry-zone. The third sub-zone is the exit-zone, where the material enters the crumpling zone. In the embodiment shown, the crumpling zone has been divided into 15 sections 334 starting at section 15 where the material enters the crumpling zone 310 (between the high-speed rollers) and ending at section 1 where the material exits the crumpling zone (between the low-speed rollers) to the dunnage handler. Sections 15-11 comprise the entry-zone, sections 6-10 comprise the fill-zone, and sections 5-1 comprise the exit-zone. Generally, the sections of the fill-zone have a greater area per unit height.
As the time interval between sheets (preceding processed material to subsequent unprocessed material) decreases the ratio of velocities (between the entry-side rollers and the exit-side rollers) may be increased to reduce the, likelihood of the crumpling zone filling too quickly. Generally, the time interval for a given ratio may be such that dunnage pitch is approximately equal to the maximum width of the crumpling zone. It was found that if only half of the crumpling zone sections (sections 1-8 in the embodiment shown) are full, the utilized area of the crumpling zone has a positive rate of change. If the time interval decreases, the crumpling zone sections operating (sections 8 or higher in the embodiment shown) have a negative rate of change and there is a propensity to jam. Thus, the ingress of the next sheet may be regulated to maintain the level at a relatively constant state. In some operational parameters, for example where the time duration is too high, the packing of the crumpling zone may be insufficient for effective packing to maintain the desired crimped region pattern. Similarly, the first sheet in any given processing generally has significantly less crumpling.
The size of the crumpling zone 310 may be varied for producing variations of pleat dimensions and characteristics in the produced dunnage. For example, the size and shape of the crumpling zone 310 may be changed for alternate material characteristics or basis weights. In one embodiment, the crumpling zone 310 may be varied by truncating one or more sections (for example from section 6 to section 11) with one or more guide plates. Generally, the support structures may be used to help control the shape of the crumpling zone 310. In a preferred embodiment, the roller supports are positioned between the entry-side rollers and the exit-side rollers and narrow the space where the rollers begin to overlap (near the center of the crumpling zone).
In some embodiments, the subsequent sheet is fed into the crumpling zone when the trailing edge of the preceding sheet is in one of section 7-10 (depending on the material characteristics). Generally, a subsequent sheet of unprocessed material may be fed into the crumpling zone 310 before the previous sheet of material exits the crumpling zone. The subsequent sheet of material aids in the crumpling of the preceding sheet of material due to the subsequent sheet compressing the preceding sheet in the crumpling zone 310. More specifically, the subsequent sheet of material thus assists in compressing the preceding sheet into the smaller profile of the upper sections of the crumpling zone 310.
The crumpling zone 310 is described and oriented in a vertical orientation with flow being from the bottom (section 15) to top (section 1). In other embodiments, the longitudinal orientation and direction of flow may be varied. This embodiment further describes material following an approximately straight line. In alternative embodiments, the material may follow an arc path, an S-shaped path, or other generally non-linear path. In yet further embodiments, a created dunnage product be fed to a further crumpling-zone to progressively form pleats in the material.
As shown, the processed material, or dunnage 40, includes a central area comprising a tight set of common folds 42 that are locked into place with a crimped region 44 on either end thereof. The dunnage 40 includes end areas 46 laterally outside of the crimped region 44. The end areas 46 may comprise folds generally similar to the common folds of the central area but having a more relaxed configuration at least because they have a free side of the sheet. In some embodiments, a center crimped region 48 may be provided.
The central area includes large, mostly parallel folds 42. The offset of the entry-side rollers to the exit-side roller creates shearing at the crimped regions 44, 48. The crumpling in these regions thus is not purely along the longitudinal axis. The higher the shearing, the smaller the spacing between folds. The peaks of the folds in the crimped regions 44, 48 relative to the folds in the central area thus may be on the order of 2:1 to 20:1, with a preferred range being 5:1 to 8:1. The crimped regions 44, 48 include compressed folds having a higher frequency than the parallel folds 42 of the central area. Further, the folds in the crimped regions 44, 48 may not be aligned an may be offset by an angle, for example up to 10 to 20°. Some of the folds in the crimped regions 44, 48 do not extend fully across, some of the folds in the crimped, region 44, 48 may intersect other folds in the crimped regions 44, 48, some of the folds in the crimped regions 44, 48 terminate within the crimped regions 44, 48. The pattern in the crimped regions 44, 48 thus may be referred to as a criss-crossing pattern. The folds in the crimped regions 44, 48 thus lock in the pattern of the folds throughout the dunnage. In some embodiments, the dunnage material has a length approximately equal to the length of the unprocessed material and a width that is approximately 15 to 25% of the length of the unprocessed material. In some embodiments, the dunnage material is approximately symmetrical and the outer sections comprise gathered end areas 46 up to the crimped regions 44. In some embodiments, a further crimped region may be formed generally centrally of the common pleat an optional center roller.
To create the dunnage shown in
As discussed, the cross-crumpled dunnage 40 can be a relatively elongate crumpled sheet of paper formed from an individual sheet of preprocessed paper. As shown, the long dimension 602 of the processed paper can be oriented substantially in a transverse direction 573 relative to the handling direction 522 and the short dimension 604 of the paper can be oriented substantially parallel to the handling direction 522. The common folds or pleats 42 extend between the crimped regions 44. Ruffled areas 48 extend outwardly from the crimped regions 44.
a and 9b illustrate a side view of the third pivoting guide plate 24c, third fixed guide plate 26c, and associated entry-side rollers 302, 304 and exit-side 306, 308, looking towards the motor end.
As shown, the exit-side rollers 306, 308 are provided at an location vertically above the entry-side rollers 302, 304. The entry-side rollers 306, 308 are generally inboard and the exit-side rollers 302, 304 are generally outboard. In some embodiments, these orientations may be varied.
The reduction mechanism 351 of the preferred embodiment is an eccentric assembly 351 including an eccentric bearing 340, eccentric bearing crank 342, first and second one-way clutch bearings 344 and 346, and an oscillating crank 348. The reduction mechanism 351 governs the rotation ratio between one or both of the exit-side roller shaft, preferably the forward exit-side roller shaft 324, and at least one of the entry-side roller shafts, preferably the forward entry-side roller shaft 328.
In the example shown, an eccentric bearing 340 is mounted on the forward entry-side roller shaft 328. An eccentric bearing crank 342 is associated with the eccentric bearing 340, mounted thereby eccentrically to the forward entry-side roller shaft 328.
A first one-way clutch bearing 344 is mounted on the forward exit-side roller shaft 324. An oscillating crank 348 is associated with the first one-way clutch bearing 344 and is connected thereby to the forward exit-side roller shaft 324. The first one-way clutch bearing 344 is configured to allow relative rotation between the oscillating crank 348 and the forward entry-side roller shaft 328 when the oscillating crank 348 rotates with respect to the shaft 328 in a backwards direction (counterclockwise when viewed as in
A second one-way clutch bearing 349 is associated with the forward exit-side roller 306 and the forward exit-side roller shaft 324 to connect the forward exit-side rollers 306 to the forward exit-side roller shaft 324. The second one-way clutch bearing 349 is configured to allow the forward exit-side roller 306 to rotate in the forward direction (clockwise when viewed as in
The forward entry-side roller shaft 328 is connected to the motor and is driven via the belt. Rotation of the forward entry-side roller shaft 328 causes rotation of the forward entry-side roller 302 and of the eccentric bearing 340. As the eccentric bearing 340 is rotated, the eccentric bearing crank 342 is reciprocated towards and away from the forward exit-side roller shaft 324. This reciprocating motion reciprocates the oscillating crank 348 and intermittently causes the forward exit-side roller shaft 324 to rotate in the forward direction, each time the eccentric bearing 340 pulls the eccentric bearing crank 342 downwards, away from the exit-side roller shaft 324 since the first and second one-way clutch bearings 344, 349 are in an engaged condition, coupling the rotation of the oscillating crank 348 to the forward exit-side roller 306. Upwards movement of the eccentric bearing crank 342, towards the forward exit-side roller shaft 324, does not cause rotation of the roller shaft 324 in the embodiment shown, since the first o both the first and second one-way clutch bearings 344, 349 are disengaged, allowing relative movement between the parts. In alternative embodiments, other portions of the eccentric bearing 351 stroke can cause the rotation of the forward exit-side roller shaft 324. The second one-way clutch bearing 349 also can be used to help keep the forward exit-side roller 306 from rotating backwards.
The ratio of speed reduction between the forward entry-side roller shaft 328 (and thus the entry-side rollers 302, 304) and the forward exit-side roller shaft 324 (and thus the low-speed rollers 306, 308) may be controlled by adjusting the length of the cranks 342,348 or their attachment points. For example, relocating the pivotal connection between the cranks closer to the exit-side roller shaft 324 along the oscillating crank 348 would decrease the reduction ratio by increasing the angle of rotation imparted on the exit-side roller shaft 324 during each reciprocation. Conversely, placing the pivotal connection further from the exit-side roller shaft 324 along the oscillating crank would increase the ratio.
The preferred embodiment of the reduction mechanism allows a very large reduction in a small space and using relatively inexpensive components Other embodiments may drive the rear exit-side roller shaft 322 via a large pulley or a set of gears. Thus, in one embodiment, a single motor drives both the high-speed rollers and the low-speed rollers with the high-speed rollers being directly driven and the low-speed rollers being driven via the eccentric gear reducer. The eccentric gear reducer provides a simple form of speed reduction between the high-speed rollers and the low-speed rollers to effect crumpling in the crumpling zone. The eccentric and bellcrank-oscillating arm geometry govern the ratio between upper and lower common shafts.
In some embodiments, the motor may run at speeds of up to approximately 2000 rpm with a primary reduction from the entry-side rollers 302, 304 to the exit-side rollers 306, 308 as shown in Tables 1 and 2, below. In some embodiments, the rollers may be approximately 1-5″ in diameter, with one embodiment having 2.25″ diameter rollers 302, 304, 306, 308. In such embodiments, Tables 1 and 2 show exemplary relationships of tangential velocities vs. ratios.
Effective ratios of high-speed roller velocity to low-speed roller velocity to create dunnage product have been found within the range of 15 and 35:1. This range may be increased when more than one stage or different materials or papers are used. When used to crumple sheet material of paper having 18×24×30 pound paper, such ratios create a dunnage product having cross directional flow pleats with a pitch of 10-20 mm in width and that are creased by the shearing action of the tangential velocity differential of the high-speed rollers and the low-speed rollers. The material used may have any suitable finish, such as recycled MS or MG finish. The lateral spacing, the height of the crumpling zone, and the dimensions of the zone may be altered. The creased areas aid the dunnage in maintaining a defined v-shaped pattern in the pitches of the pleats or folds. Further, when only one stage is used, the following formulas may be used to develop an appropriate ratio of high-speed roller velocity to low-speed roller velocity.
In some embodiments, the rollers 302, 304, 306, 308 may have structural characteristics to further aid in production of dunnage. For example, the rollers may be provided with cogs, pins (such as a plurality of radial mounted pins), or other structure to interact with a similar structure or complementary structure (such as a groove) in the adjacent roller. Further, the rollers may be provided of any suitable material. In some embodiments, the rollers may be provided in a combination of selective surfaces ranging from hard to soft and smooth to rough. In some embodiments, the rollers comprise a medium to hard durometer elastomeric and metallic and/or plastic mating rollers.
Referring now to
Discussion will now be made of the infeed mechanism for feeding material from a material source into the crumpling mechanism. As shown in
The tray 110 can be a pivoting tray, such that it pivots about a pivot pin 112 on one or both lateral sides of the tray. The pivot pin 112 can hold the tray 110 to frame 118, and can comprise a screw, pin, nail, or other suitable connection or linkage. The pin 112 is preferably oriented with it axis extending laterally with respect to the crumpling device, and is preferably disposed slightly off-center from the center of gravity of the portion pivoted therefrom. In one embodiment, a lengthwise distance 115 between a pivoting axis 119 of the pin 112 and a proximal end 114 of the tray 110 is less than a lengthwise distance 117 between the pivoting axis 119 of the pin 112 and a distal end 116 of the tray 110. The pivot pin 112 is engaged against the frame 118 such that it is strong enough to hold the pivoting sheet supply 110 against the frame 118, but yet allows the pivoting sheet supply 110 to pivot about the pivot axis 119 in a clockwise direction 122 and a counter-clockwise direction 124.
The pivot pin 112 can be slightly off-center with respect to the length of the pivoting sheet supply 110. In
The center of gravity of the tray 110 is preferably disposed with respect to the pivoting axis 119 thereof such that the tray 110 will tend to push downwards at the distal end 116 and upwards at the proximal end 114. This retains the stack 132 of sheeting material in the tray in contact with an engagement portion 140 of the infeed mechanism 100. The engagement portion 140 of the embodiment shown includes one or more rollers, such as pick-up wheel 140 of the infeed mechanism 100, against which the top sheet 130 of the stack 132 is biased into abutment. The geometry and pivot axis can be selected so that an approximately constant force is maintained against the pick-up wheel 140 as the stack 132 is depleted to help pick up a single sheet of paper from the stack 132. The geometry and pivot axis can be selected such that such that the tray 110 and the engagement portion 140 are biased towards each other for biasing the engagement portion 140 against the sheets for gripping the sheets in the stack 132. The tray 110 and the engagement portion 140 can be biased based on gravity. The center of gravity of the tray 110 allows the tray to pivot toward the engagement portion 140. The engagement portion 140 can be located above, or directly above, the supply mechanism or tray 110. The engagement portion 140 can be located directly above a first edge of the top sheet of the stack 132.
The sheet stock can comprise a stack of paper sheets which can be of any suitable size, and preferably of roughly 24″×18″, although other dimensions can be utilized, as will be apparent to one having ordinary skill in the art, to be fed into the pick-up wheel 140. It should be noted that any size paper sheeting material, or other substrate, is contemplated by the present disclosure, although paper is preferred. In one embodiment, the sheeting material can be around 24″×48″. The sheeting material may be smaller or larger, such as up to a full pallet size (about 40″×48″), although larger sheets can be used in other embodiments. Moreover, the sheeting material may be of various densities, such as between 20 lb and 70 lb. Kraft paper. The sheeting material may be virgin or recycled. Moreover, the sheeting material may be intermixed so as to deliver 2 sheets or more at once of the same basis weight, or a combination of basis weights. A single sheet selector 30 can be placed inside a paper guide 144 so that only a single sheet of paper travels from the pick-up wheel 140 to the transfer roller 150. Therefore, if two (or more) sheets of paper are picked up by the pick-up wheel 140, the bottom sheet(s) will be blocked so that only one sheet (the top sheet) travels along the path to the transfer roller along the paper guide 144. The single sheet selector 30 can be adjusted so that two, three or more sheets travel along the paper guide 144 to the transfer roller 150.
The pick-up wheel 140 is preferably located at or near the lateral center of the stack on the tray and preferably includes only a single wheel or a plurality of wheels that are spaced close together. The central location of the pick-up wheel 140 and narrow lateral width thereof allow the paper sheet 130 that is drawn into the intake path 134 to rotate generally in plane, laterally with respect to the path. Lateral guide walls, which can be a continuous and/or curved, are provided by the sheet guide 144, which are disposed so that if the paper sheet 130 in the stack 132 on the tray 110, or other supply device, is not straight, it can be picked up by the pick-up wheel 140 and as it travels along the paper guide in contact with the sidewalls of the sheet guide 144, the pick-up wheel 140 will cause the sheet to straighten out as it travels along the sheet guide 144, preferably so it is straight with respect to the intake path 134 when it reaches the transfer roller 150 and crumpling zone 310. An electromechanical clutch 179 can be provided that allows for intermittent control of the engagement portion 140 for engagement of a sheet 130 from the sheet supply 110.
Referring back to
The paper sheet 130 then travels along second direction 138 over a third roller, such as traction bearing 165 that again changes the direction of the paper sheet 130 from the second direction 138 to a third direction 139, which can be opposite than the intake path reversal upon itself. The traction bearing 165 can be driven, and can be above the first roller. The third direction can be approximately 70-110° from the second direction, and can be approximately greater than 80°, and can be 90° from the second direction. The paper sheet 130 then enters the crumpling zone 310, and can enter the crumpling zone in a third direction 139 that can be a crumpling direction. The crumpling direction can lead vertically upward into the crumpling zone 310. The crumpling zone 310 can be above or directly above the traction bearing 165. Such arrangement of the infeed mechanism being below the crumpling mechanism saves space, and particularly, horizontal space.
Now referring back to
Further, as shown in
Because the weight of the stack 132 and the weight of the pivoting sheet supply 110 push the proximal end 114 of the pivoting sheet supply 110 in an upwards direction 128, this allows the stack 132 of sheeting material in the tray 110 to be in contact with one or more rollers, such as the pick-up wheel 140. The geometry and pivot pin 112 location is such that an approximately constant force is maintained against the pick-up wheel 140 to help pick up a single sheet of paper, or more than one sheet, if preferable. As one or more paper sheets 130 come off the stack 132 by the pick-up wheel 140 the pivoting sheet supply 110 pivots about the pivot pin 112 and moves slightly in an upwards direction 128 at the proximal end 114 of the pivoting sheet supply 110, such that the pick-up wheel 140 is constantly in touch with a top paper sheet 130 of the stack 132. Other devices besides the pick-up wheel can be used as a pick-up member for engaging the top sheet 130 of the stack.
The pivot pin 112 can be positioned so that the pivoting sheet supply 110 hangs therefrom, but other arrangements can be used to provide a similar arrangement. The pivot axis 119 can be disposed above the sheet supply 155 such that when the sheet supply 155 is full, the center of gravity of the loaded sheet supply 110 is below the pivot axis 119. Gravity is preferably used to pivot the tray 110 to retain the sheets in association with the infeed mechanism. However, other embodiments can be used that can control the pivot movement of the pivoting tray 110, such as, but not limited to, use of weights on both sides of the pivoting tray 110. Between a fully loaded condition of the tray 110, and an empty condition of the tray 110, the tray 110 can pivot away from and towards the infeed mechanism/engagement portion 140. In an exemplary embodiment, in the full position, the distal side 116 of the tray 110 is higher than the proximal side 114, and, in the empty position the proximal side 114 is higher than the distal side 116. In a middle position, the tray 110 can be substantially level. The pivoting axis 119 is eccentric to the center of gravity and to the sheet supply area 155 in a preferred embodiment.
The engagement portion 140 can be configured for feeding more than one of sheet from the pivoting sheet supply 110 in an overlapping arrangement into the paper crumpling mechanism. The tray 110 can be configured and dimensioned for the individual sheets arranged as a stack, and the engagement portion 140 can be configured for picking up the top sheet in the stack. The engagement portion 140 can be configured for drawing one or more paper sheets from a top of the stack to the paper crumpling mechanism. The engagement portion can also be configured for engaging or picking up a sheet 130 that is not the top sheet.
Discussion will now be made of the dunnage handler for controlling outfeed of the dunnage from the crumpling mechanism.
Referring now to
The bottom holding portion 502 can be in the form of one or more bottom rails 508 each extending from a support structure on a dunnage machine along the handling direction 522. The bottom rail 508 can include a first portion 524, which extends from a head end at the support structure to a trailing end. The trailing end of the first portion 524 leads to an accumulating feature 510. The rail 508 can further include a second portion 526, which returns from the trailing end to the head end at the support structure. The first portion 524 of the rail 508 can be arranged parallel to the second portion 526 or in another suitable orientation. The second portion 526 can be positioned below the first portion 524, and the accumulating feature 510 can be connected there between. While the rails 508 shown are made from bent, cylindrical rods, alternative rails can have other cross-sections and be made of other materials and by other methods. Suitable rail materials include materials that are sufficiently rigid to support the full load of dunnage and pressures caused by packing the dunnage into the accumulation space 517, such as steel and aluminum alloys and other metals, plastics, and composite materials. In a preferred embodiment, the bottom rail 508 can be a steel rod or tube. Alternative bottom holding portions can be configured as a shelf or tray for receiving and supporting the dunnage fed out of the dunnage machine.
The preferred bottom rail 508 includes a first portion 524 and an accumulating feature 510. The accumulating feature 510 is shaped to keep the dunnage 40 passing along an upper surface of the bottom rail 508 from falling or being pushed out of the accumulation space 517 during the normal operation of the dunnage machine 17, without intentionally being removed, such as by a user or another device. The accumulating feature 510 can include an accumulating portion 511 that extends from the first portion 524 of the bottom rail 508 to partially close off or narrow the retrieval port 519. As shown, the accumulating portion 511 can extend in the same direction as the first portion 524 of the bottom rail 508 and gradually turn into the accumulation space 517. This gradual turn can be a radius turn or some other arcuate or segmentally sloped shape. Alternatively, the accumulating portion 511 can extend in the same direction as the first portion, but turn more abruptly in the accumulation space 517. In yet another alternative, the accumulating portion can extend directly into the accumulation space 517 rather than extending initially in the same direction as the first portion 524. Material being advanced along the upper surface of the bottom rail 508 through the dunnage handler 18 can encounter the accumulating portion 511 of the accumulation feature 510 which can resist the continued travel of the material. However, the gradual turn of the accumulating portion 511 may allow dunnage 40 to be pulled out of the retrieval port 519 of the accumulator without getting hung up or snagged on the accumulating feature 510. Preferably, the rails 508 are smoothed and/or rounded to keep from snagging or tearing the dunnage 40.
The accumulations feature 510 can also include a transition portion 513 connected to the trailing end of the second portion 526 of the bottom rail 508 and the second portion 526 can return to the dunnage machine 17. This transition portion 513 may be any shape and may be adapted to accommodate any position of the second portion 526 of the bottom rail 508. The transition portion 513 may abruptly return to the trailing end of the second portion 526 or it may gradually return via an arcuate or radiused shape to the trailing end of the second portion 526. As shown in
Suitable support structures can be included such as, for example, a base, a plate, a bracket, or a mounting surface. Other suitable support structures can be provided. As shown in
As mentioned, and as shown in
Referring to
As such, and as shown best in
The arcuate shape of the rail 514 described can accommodate a pile of dunnage 40 and the path of travel of the dunnage 40 can be closed off by the interaction of the top and bottom holding portions 504, 502. The natural tendency of accumulating dunnage 40 can be to form a heap of dunnage 40. That is, as multiple units of dunnage 40 enter the accumulation space 517 and are arrested from continuing through the retrieval port 519, the multiple units of dunnage 40 may pile up into a heap. The arcuate shape described together with the downward sloping trailing end can allow a heap of dunnage 40 to form and yet maintain a resistance to escape. That is, the upward and outward sloping head end leading to the arcuate shape can provide an accumulation space 517. The arcuate shape can also begin the downward sloping trailing end which can close off the accumulation space 517 and prevent the dunnage 40 from escaping. This escape prevention may be in the form of pressure exerted by the portion of the top rail 514 near the tailing end 505.
The accumulating feature 516 of the top rail 514 can be any shape and can function to arrest motion of material passing along the lower surface of the top rail 514. As discussed with respect to the bottom rail 508, the accumulation feature 516 can include an accumulating portion 525 and a transition portion 527. The accumulating portion 525 can extend transverse to the top rail 514 into the accumulation space 517. Alternatively, the accumulating portion 525 can first extend parallel to the top rail 514 and then, gradually or abruptly, turn into the accumulation space 517. The transition portion 527 can return out of the accumulation space 517 and provide a smooth or rounded end on the top rail 514. In some embodiments, the transition portion 527 may abruptly return out of the accumulation space 517 and in other embodiments, the transition portion 527 may gradually return. As shown, in
As mentioned, the top holding portion 504 can include one or more top rails 514. In the case of a single top rail 514, the rail can be positioned at a selected location across the width of the accumulator. In a preferred embodiment, the rail 514 can be centered between two bottom rails 508. In the case of multiple rails 514, the rails 514 can be spaced laterally from one another and each rail 514 can extend from separate support structures. Similar to the multiple bottom rails 508, multiple top rails 514 can accommodate relatively elongate units of dunnage 40 as they are fed out of the dunnage machine 17 with a longitudinal dimension 602 transverse to the handling direction 522. The top holding portion 504 can include any number of top rails 514 and the top rails 514 may correspond to the number and location of the bottom rails 508 of the bottom holding portion 502. Alternatively, they may not correspond. However, as with the bottom rails 508, a preferred spacing of the top rails 514 may be approximately 70% to approximately 95% of the material width, or preferably approximately 80% of the material width, so as to accommodate retrieval of dunnage 40 from between the rails 514. As shown best in
A crossbar 518 can also be included. In embodiments where more than one top rail 514 is included, the plurality of top rails 514 can be connected to each other by one or a plurality of crossbars 518. As shown, a crossbar 518 can extend laterally from a point on a top rail 514 to a corresponding point on a laterally spaced top rail 514. The crossbar 518 can be in the form of and can be made from the same or similar materials as the top rails 514. The crossbar 518 can follow an arcuate path.
Referring again to
With continued reference to
Suitable support structures can be included such as, for example, a base, a plate, a bracket, or a mounting surface. Other suitable support structures can be provided. As shown in
The top and bottom holding portions 504, 502 can be associated with one another via an Articulation. The articulation may be a hinge, a sliding mechanism, or any other element allowing the top and bottom holding portions 504, 502 to move or articulate relative to one another and thus adapt to accumulating dunnage. As shown in
Regarding the pivotal connection, the top holding portion 504 can be pivotally connected to the pivoting guide plate 24. Several pivoting relationships may be used including hinges, pins, ball and socket arrangements and the like. As shown, the top holding portion 504 can be pivotally connected to the planar surface of the pivoting guide plate 24 via a pivot pin 532. In some embodiments, the top rail 514 can include a connecting plate 534 to facilitate pivotally connecting to the guide plate 24. The connecting plate 534 can be a relatively flat element adapted to be connected to the planar surface of the guide plate 24. In one embodiment, the top rail 514 can include a longitudinal slot for receiving the connecting plate 534. The connecting plate 534 can extend into the slot and be affixed to the top rail 514 creating a rigid connection between the connecting plate 534 and the top rail 514. This connection can be welded, glued, fused, or otherwise secured. Alternatively, the connecting plate 534 can include a slot for receiving the top rail 514 or a combination of these can be used. In some embodiments, the connecting plate 534 and the top rail 514 can be of molded construction and can be molded together or separate. The connecting plate 534 can be positioned adjacent to the guide plate 24 and secured with a pivot pin 532. The connecting plate 534 can include a pivot hole defining a pivot point of the top rail 514. The pivot pin 532 can pass through the pivot hole of the connecting plate 534 and into the guide plate 24. Other alternative configurations to permit pivoting can be used such as, for example, hinged configurations.
The pivoting motion of the top holding portion 504 can be limited by certain motion limiting features. These motion limiting elements may take the form of blocking elements that prevent motion of the top holding portion 504 beyond on given range of motion. In one embodiment, motion limiting elements may be positioned on the connecting plate 534 and the planar surface of the guide plate 24. As shown in
The track pin 538 can have a length less than, equal to, or greater than the thickness of the pivoting guide plate 24. The track slot 536 can have a width and the track pin 538 can have a diameter equal to or slightly smaller than the track slot width so as to slidably engage the track slot 536. The track slot 536 can define an arc length and can have radiused ends, the radius of the ends being substantially equal to one half of the width of the track slot 536. The track slot 536 has a length selected to provide the desired angular limits to the pivoting of the top holding portion 204. In one embodiment, the track slot 536 is positioned generally opposite the pivot point from the top holding portion 504 and can be centered on a horizontal line extending through the pivot point, although other positions with respect to the pivot point can be used. The track slot 536 can define an included angle 540 ranging from approximately 0° to approximately 120° about the pivot point. In other embodiments the included angle can range from approximately 15° to 90°. In still other embodiments the included angle can range from approximately 30° to 60°.
The interaction between the track pin 538 and the track slot 536 can define a range of motion of the top holding portion 504. That is as the top holding portion 504 is pivoted about the pivot pin 532, the track pin 538 can encounter a first end of the track slot 536. As the top holding portion 504 is pivoted about the pivot pin 532 in the opposite direction, the top holding portion 504 may pivot through one full range of motion until the track pin 538 encounters the other end of the track slot 536 defining a full position. As such, the range of motion of the top holding portion 504 can be substantially equal to the included angle 540 of the track slot 536. The track pin 538 may be sufficiently rigid to arrest the motion of the top holding portion 504 upon abutting the ends of the track slot 536. In some embodiments, the top holding portion 504 may be used to counteract a pivotal biasing force applied to the pivoting guide plate 24. Accordingly, the shear capacity of the track pin 538 and the bearing capacity of the pivot limiting ends of the track slot 536 can be sufficient to sustain a force on the top holding portion 504 that counteracts this pivotal biasing force.
With reference again to
The full position can be defined by limiting the upward motion of the top holding portion 504 to a particular radial position. The full position, for example, may be defined by a head end rail angle 533 of approximately 30° to approximately 120° providing a trailing end rail angle 535 of approximately 30° to approximately 0°. Other full positions can be selected and can include rail angles outside the ranges defined. In one alternative, the upward motion can be unlimited. In still other alternatives, one or a plurality of intermediate positions may be defined.
In addition to the track slot 536 and track pin 538 interaction limiting the motion of the top holding portion 504, the motion of the top holding portion 504 may otherwise be caused by gravity and the accumulation of dunnage 40. With reference to
Where the accumulation of dunnage 40 lifts the top holding portion 504, at some point, the accumulation of dunnage 40 and the associated upward motion of the top holding portion 504 will reach a full condition. This position can be defined by limiting the upward motion of the top holding portion 504 to a point where the trailing end portion 530 of the top holding portion 504 maintains a slightly downward slope as shown in
A sensor 542, as shown in
As previously discussed, the support structure for support of the top holding portion 504 can be in the form of pivoting guide plate 24. A connecting plate 534 of a top holding portion rail 514 can be positioned adjacent to the guide plate 24 and the pivot pin 532 can pivotally connect the connecting plate 534 to the guide plate 24. In this embodiment, the track pin 538 can extend through the track slot 536 and beyond the opposing surface of the guide plate 24. As shown, the sensor 542 can be positioned on the opposing side of the guide plate 24 from the connecting plate 534 and can be located near the bottom of the track slot 536. Accordingly, as the top holding portion 504 travels upward (e.g., as dunnage 40 is accumulated or the top holding portion 504 is otherwise lifted), the track pin 538 can travel toward the bottom of the track slot 536. The track pin 538 can make contact with the sensor 542 indicating that the accumulator is full. It is noted that the sensor 542 can be adjusted along the length of the track slot 536 such that the full condition can reflect the full range of motion of the top holding portion 504 or only part of the range of motion.
The sensor 542 can be a wired device or a stand alone device. The sensor 542 can be in communication with a dunnage machine controller 50 and the sensor 542 can send a signal to the dunnage machine controller 50 reflecting that the accumulator is full when the track pin 538 contacts or otherwise triggers the sensor 542. In the preferred embodiment, the dunnage machine controller 50 is configured to stop the pick up system 14 and the crumpling mechanism 16, thereby stopping the outfeed of dunnage 40 and avoiding overfilling the dunnage handler 18, upon receipt of a signal from the sensor 542 indicating that the accumulator is full. The machine controller can also be programmed for other adaptations including delaying the shut off time or adapting to on-off cycling frequencies. For example, the controller can be adapted to increase or decrease motor speeds based on the on/off cycle durations. If the cycles are low the motor can be commanded to reduce speeds allowing the process to conserve energy by running in a more preferable steady state process with a lower noise condition.
In one embodiment, as dunnage 40 is manually or otherwise removed from the dunnage handler 18, the top holding portion 504 can pivot downward about the pivot pin 532 due to the decreased amount of dunnage 40 and the effects of gravity acting on the top holding portion. The track pin 538 can travel away from the bottom of the track slot 536 and out of contact or triggering relationship with the sensor 542. The sensor 542 can then signal the dunnage machine controller to restart or start producing dunnage 40. Alternatively, the controller may require the user to indicate that additional dunnage 40 is desired. In this instance, the sensor 542 may function only to stop dunnage production without restarting.
In still other embodiments, the top holding portion 504 may be manually pivoted up to or beyond a full condition for purposes of accessing the crumpling mechanism 16, such as when a paper jamb occurs. In this embodiment, the contact of the track pin 538 with the sensor 542 may cause the sensor to indicate a full condition and the controller may stop production allowing the user to access the crumpling mechanism 16. Releasing the top holding portion 504 and allowing it to pivot back down upon the accumulated dunnage can cause the top holding portion 504 to pivot such that the track pin 538 moves out of contact with the sensor 542. As mentioned above, the controller can be configured to automatically restart production or require a user to indicate a desire for additional dunnage production.
In some embodiments, the sensor 542 can be a circuit interrupter. In this embodiment, the contact of the track pin 538 with the sensor 542 can bypass the power driving the dunnage machine 17. As such, when the top holding portion 504 pivots to a full position bringing the track pin 538 into contact with the sensor 542, the electrical power circuit running the dunnage machine 17 can be interrupted causing the dunnage machine 17 to stop producing dunnage 40. Accordingly, when the accumulated dunnage 40 is reduced and the track pin 538 moves out of contact with the sensor 542, the power circuit can become uninterrupted and the dunnage machine 17 can again produce dunnage 40.
Referring now to FIGS. 4 and 18-20 the preferred dunnage handler 18 can be used to disengage the converting portions of the dunnage machine 17, for example in the case of a paper jamb. The handler can include a handling portion connected to a support structure. The support structure can also be connected to a moveable part of the converting portion of the dunnage machine 17. Accordingly, in certain instances, motion of the handling portion can cause corresponding disengaging motion of the moveable part causing disengagement of the converting portion of the dunnage machine 17. The disengaging motion can be pivotal or translational. Other disengaging motions can be provided.
As previously described, one or more support structures in the form of pivoting guide plates 24 can be provided. The pivoting guide plates 24 can be pivotally supported on the pivoting guide plate high-speed roller shaft 326 and can further support the pivoting guide plate low-speed roller 308 in an opposing position to the fixed guide plate low-speed roller 306. Accordingly, pivoting motion of the pivoting guide plate 24 can cause low-speed roller 308 to move away from low-speed roller 306 thereby disengaging the crumpling mechanism 16.
Referring now to
The coupling shaft 550 may extend through the guide plates 24 and, as show in
The coupling shaft 550 is preferably associated with a support structure biasing element 552 to bias the support structures to maintain operational contact between the opposed low-speed rollers 306, 308. As shown in
As shown in
Referring now to
The biasing force preferably can also be overcome manually in the preferred embodiment. That is, the guide plate 24 can be physically rotated in a direction opposite to the biasing force. This may be desired in case where a jamb has occurred and access to the crumpling zone 310 is required. In the embodiment shown, the top holding portion 504 of the dunnage handler 18 can be pivoted about its pivot pin 532 through a range of handling positions between a start position and a full position. In the full position, the track pin 538 engages the sensor 542. As discussed above, where the top holding portion 504 is pivoted to bring the track pin 538 into contact with the sensor 542, production of dunnage can be interrupted. Where disengagement of the converting portion of the dunnage machine is desired, the top holding portion 504 may be further pivoted beyond the full position until the track pin 538 engages the ends of the track slot 536. This may define a transition position in that motion of the top holding portion 504 beyond this position will begin to cause motion of the pivoting guide plate 24 in conjunction with the top holding portion 504. It is noted that the full position and the transition position can be the same position where, for example, the track pin 538 abuts the end of the track slot 536 at the same point at which the sensor 542 is triggered. As the top holding portion 504 is pivoted further, beyond the transition position, the top holding portion 504 and the pivoting guide plate 24 may begin to pivot together about the shaft 326. In this embodiment, the distance from the force on the top holding portion 504 of the dunnage handler 18 defines a third lever arm 570. When the torque caused by the force on the top holding portion 504 of the dunnage handler 18 over the third lever arm 570 is greater than the torque caused by the biasing force over the first lever 556 arm, the low-speed rollers 308, 306 are caused to separate. When the top holding portion 504 and the pivoting guide plate 24 are pivoted such that the low-speed rollers 308, 306 separate, the top holding portion 504 can be said to be in a release position. Depending on the force applied to oppose the biasing force, more or less separation between the rollers 308, 306 can be provided. In some embodiments, the separation between the rollers 308, 306 may be limited by the motion of the coupling shaft 550 in the slot 558. In the present embodiment, the high-speed rollers 302,304 are not separated when the low-speed rollers 308, 306 are separated by the opening of the dunnage handler 18, although other arrangements can be employed.
In some embodiments, the top holding portion 504 of the dunnage handler 18 may be pivoted by grasping and lifting from one or a plurality of the top rails 514. In some embodiments, a crossbar 518 may be grasped and lifted to pivot the top holding portion 504. In either case, the use of the top holding portion 504 to disengage the crumpling mechanism 16 can advantageously provide an increased lever arm to overcome the torque tending to keep the crumpling rollers 308, 306 engaged against each other by the biasing mechanism 552. Also, by using the top holding portion 504 to move the guide plate 24, the top holding portion 504 is naturally cleared from the path of access to the crumpling zone 310 allowing the jamb or other obstruction to be removed, and relieving back pressure that may be caused on the crumpling mechanism 16 by dunnage 40 accumulated in the handler 18. Moreover, where the top holding portion is used to release the abutment between the two low-speed rollers 308, 306, inadvertent motion of the crumpling mechanism 16 may be avoided since the track pin 538 will have moved up to or beyond the sensor 542 causing the production of dunnage to be interrupted.
In another embodiment, the biasing mechanism 552 may be a piston type mechanism, balloon elastic material, o other known biasing mechanism. Moreover, the biasing mechanism 552 may be tensile in lieu of compressive. Gravity may be used to provide the desired biasing in other embodiments. The biasing mechanism 552 can include single elements, such as a spring, or multiple biasing elements.
Referring again to
As discussed, the guides are preferably positioned so that when dunnage 40 exits the dunnage machine 17, the crimped regions 44 of the dunnage 40 are generally positioned and preferably also in alignment, with the guides. As shown in
Referring to
In use, a dunnage machine 17 may feed cross-crumpled dunnage 40 into the intake area 501 of the dunnage accumulator. The top holding portion 504 may initially be in a starting position. The starting position may be defined by the top holding portion 504 being pivoted to a first end of its range of motion. The dunnage 40 may travel through the accumulation space 517 until it encounters an accumulation feature 516, 514 of the top and/or bottom holding portion 504, 502, the lower surface of the top holding portion 504, or other dunnage 40, at which point, the dunnage motion may be arrested. As the dunnage motion is arrested, the dunnage 40 entering the accumulation space 517 may accumulate and begin to pile up. As this occurs, the dunnage 40 may reach the lower surface of the top holding portion 504 and begin exerting pressure on the top holding portion 504. As the pressure increases, the top holding portion 504 may begin to pivot about its pivot pin 532 to accommodate the accumulating dunnage 40. This process may continue until the top holding portion 504 reaches a full condition. Where a sensor 542 is included, the production of dunnage 40 may be interrupted when the top holding portion 504 reaches a full condition. During the production of dunnage 40 and/or when production of dunnage 40 has stopped, dunnage 40 may be removed from the dunnage accumulator by retrieving it from the retrieval port 519. That is, packing personnel, devices, or other equipment may grasp the dunnage 40 in the accumulator and pull it through the retrieval port 519. Alternatively or additionally, the dunnage 40 may be pulled through the space between the rails 514, 508 of the top and bottom holding portions 504, 502 and/or out the lateral sides of the dunnage accumulator. As dunnage accumulation is reduced, the top holding portion 504 may pivot away from the full condition back toward the start position and the sensor 542 may restart dunnage 40 production.
In the case of a dunnage production jamb, the dunnage handler 18 can be used to free the jamb. Preferably, a user can grasp a portion of the top holding portion 504 by grasping a top rail 514 or a crossbar 518 and lifting the dunnage handler 18 out of contact with the surface of the accumulated dunnage 40. The top holding portion 504 can be pivoted about its pivot pin 532 to a transition position where the top holding portion 504 and the pivoting guide plate 24 begin to rotate together about the shaft 326. This transition position may be where the track pin 538 travels to the fully counterclockwise position in the track slot 536 or another stopping point can be provided. Additionally, the transition point is preferably at or beyond the full position of the top holding portion 504 such that the process of disengaging the crumpling mechanism 16 also interrupts the production of dunnage 40. That is, moving the top holding portion 504 to or beyond the full position can preferably trigger the sensor 542 and interrupt the dunnage 40 production. The top holding portion 504 and the pivoting guide plate 24 can be pivoted about the shaft 326 to disengage the crumpling mechanism 16 by creating separation of the low-speed rollers 308, 306.
While the dunnage handler 118 has been described in detail several modifications can be made and still be within the scope of the present invention. For example, the top and bottom holding portions 504, 502 can be in the form of a rigid an or flexible flap material in lieu of the rails 508, 514 described. In other embodiments, the first and second portions 524, 526 of the bottom rail 508 described above may be positioned adjacent to one another and laterally spaced from one another rather than above and below one another. In other embodiments, the accumulation features 516, 510 of the top and/or bottom holding portions 504, 502 can be in the form of hooks, gripping surfaces, or other arresting mechanisms in lieu of the eye type shapes described. The accumulation features 510, 516 may be uncoupleable from the rails 508, 514 and may be adjustable along the length of the rails 508, 514. An additional modification can include diagonally extending, or otherwise non-perpendicularly extending, crossbars 518. A handle can also be secured to the outer surface of one or both of the holding portions 504, 502. In other embodiments, regarding the range of motion of the top holding portion 504, the downward direction can be limited or unlimited. Where it is limited, a shelf, ledge, or other vertical support at the trailing end of the top holding portion 504 can be included. In still other embodiments, the top and bottom holding portion 504, 502 can be connected to one another and close off the path of exiting dunnage 40. A sensor can be provided to monitor the amount of expansion and interrupt the production of dunnage 40 when a particular level of expansion is detected. In still other embodiments, the dunnage handler 18 can be a separate device and can be positioned adjacent to or remote from the dunnage machine 17 and be adapted to accumulate or discharge dunnage 40. The handler can include a connecting mechanism for anchoring the dunnage handler 18 to the dunnage machine 17. In still other embodiments, the top holding portion 504 can include a biasing mechanism, which creates a biasing force that can be overcome by accumulating dunnage 40. In still other embodiments, different orientations may be used. As such, while the terms top and bottom have been used to refer to the supports 504, 502, different orientation can be used. In still other embodiments, the bottom holding portion 502 can be pivotally connected to the dunnage machine 17 in lieu of the top holding portion 504 or both the top and bottom holding portions 504, 502 can be pivotally connected. In still other embodiments, the track slot 536 and track pin 538 can be reversed.
The above described handler can have certain advantages. For example, the outward/downward sloping trailing end portion 530 of the top rail 514 can serve at least two purposes. First, this trailing end 530 can interact with the accumulating dunnage 40 and ride on the dunnage 40 to naturally create the upward motion of the top holding portion 504. Second, this outward/downward sloping trailing end 530 can also allow for more accumulation of dunnage 40 than would be available with, for example, a straight top holding portion 504. That is, as the generally elongate dunnage 40 is accumulated, and additional dunnage 40 is fed out of the dunnage machine 17, the tendency of the accumulated dunnage 40 to escape out the trailing end 505 of the dunnage handler 18 increases. However, the downward sloping trailing end 530 can function to maintain a component of force opposite to the handling direction 522 thereby resisting this outflow of dunnage 40. This is in contrast to an alternative straight top holding portion that may not have this opposing component of force. That is, once a straight top holding portion is rotated beyond the horizontal position its weight may include a component of force along the handling direction 522 rather than opposite to the handling direction 522. This may cause the weight of the support to contribute to the tendency of the dunnage 40 to escape.
Another advantage of the described handler 18 relates to its tendency to set the shape of the dunnage 40. In some cases, dunnage 40 in the form of crumpled paper dunnage may have a tendency to return to its pre-crumpled shape and thus slightly uncrumple or expand upon exiting the dunnage mechanism 16. By accumulating the dunnage 40 in the dunnage handler 18, the crumpled dunnage 40 may experience a varying amount of setting force or compression that acts to hold the shape of the dunnage 40 for a period of time thereby setting its shape.
One having ordinary skill in the art should appreciate that there are numerous types and sizes of dunnage for which there can be a need or desire to accumulate or discharge according to an exemplary embodiment of the present invention. Additionally, one having ordinary skill in the art will appreciate that although the preferred embodiments illustrated herein reflect a round rail steel rod or tube type construction, the dunnage handler can be constructed of different materials with differing cross-sections, e.g., square, triangular, oval, rectangular, or another cross-section.
As used herein, the terms “top,” “bottom,” and/or other terms indicative of direction are used herein for convenience and to depict relational positions and/or directions between the parts of the embodiments. It will be appreciated that certain embodiments, or portions thereof, can also be oriented in other positions.
In addition, the term “about” should generally be understood to refer to both the corresponding number and a range of numbers. In addition, all numerical ranges herein should be understood to include each whole integer within the range. While illustrative embodiments of the invention are disclosed herein, it will be appreciated that numerous modifications and other embodiments may be devised by those skilled in the art. For example, the features for the various embodiments can be used in other embodiments. Therefore, it will be understood that the appended claims are intended to cover all such modifications and embodiments that come within the spirit and scope of the present invention.
This application is a divisional of U.S. application Ser. No. 12/550,294 filed on Aug. 28, 2009, the entire contents of which are expressly incorporated herein by reference thereto.
Number | Date | Country | |
---|---|---|---|
Parent | 12550294 | Aug 2009 | US |
Child | 13784630 | US |