The invention relates to a crushing bucket, which has been designed as an excavator or loader bucket, comprising a bottom plate, side walls, and working drums at a rear part of the bucket, which are rotatable about a shaft thereof and crush, while rotating, a bucket-held material and at the same time deliver crushed material out of the bucket between or through the working drums, as well as enclosures for the power transmission and bearing assemblies of the working drums, said enclosures being delimited by frame panels to which the drums' bearing cups are attachable.
Such a bucket is known from the Applicant's international patent application WO 0158595. This prior known bucket features crushing teeth mounted between the working drums' flanges. This type of structure calls for a multitude of welding-attached elements. A problem with such a structure is that each separate welded component represents a source of concentrated stress and thereby leads to poorer fatigue resistance. Particularly weak points are joints transverse to the longitudinal direction of a shaft, as well as weld terminations on the shaft.
It is an object of the invention to provide a bucket of the foregoing type, which does not have the above-mentioned problems.
This object is achieved according to the invention in such a way that the working drum is provided with at least one crushing tool, which is a continuous component extending all the way along the entire shaft length.
When a crushing tool extends continuously across the shaft length, the weld joint for attaching the crushing tool to the shaft can be established as a continuous joint which is equal to the entire shaft in terms of its length, thus avoiding a plurality of weld terminations. All weld joints also extend lengthwise of the shaft, nor is there any need for weld joints transverse to the longitudinal shaft direction. Thus, the prior art problem, i.e. stress concentrations applied to the shaft, is obviated.
At the same time, the crushing tool according to the invention provides a structural member which not only does the crushing but also functions as a load-bearing, shaft-strength enhancing component.
One exemplary embodiment of the invention will now be described more closely with reference to the accompanying drawings, in which
The bucket according to the invention can be attached to serve as an excavator or loader bucket, for which the bucket has attachment brackets 8 on its top.
A bucket 1 comprises a bottom plate 2, side walls 3, and working drums 6 at a rear part of the bucket, which are rotatable about a shaft 6a thereof and crush, while rotating, a bucket-held material and at the same time deliver crushed material out of the bucket between or through the working drums 3.
Associated with rear parts of the side walls 3 are enclosures 4 for the power transmission and bearing assemblies of the working drums 6. The enclosures 4 include outer side walls 4a and, in the illustrated embodiment, the enclosures 4 are separated from an interior of the bucket by frame panels 4b to which the working drums' 6 bearing cups (not shown) are attachable. In the illustrated case, the frame panels 4b are present as direct extensions of the side walls 3 and are made of the same material as the side walls 3.
The frame panels 4b are provided with take-up and attachment formations 5 for the working drums 6, which establish an installation path 5a and take-up openings 5b into which the working drums 3, along with the bearings and drive gears therefor, are mountable in place as a single assembly from behind the bucket.
In the illustrated embodiment, the working drums 6 are horizontal with the bucket in an operating position, but can also be vertical. In the depicted case, the frame panels 4b are nevertheless present between the outer side walls 4a of the enclosures 4 at a distance from the outer side walls 4a, thus providing sprocket and bearing boxes between the frame panels 4b and the enclosures' outer side walls 4a.
Attachable to rear parts of the frame panels 4b are complementary pieces 4d, which delimit the take-up openings 5b of working drums present in the frame panel and block the installation path 5a of working drums leading to the take-up openings. The sprocket and bearing boxes established between the frame panels 4b and the enclosures' outer side walls 4a are closable from behind by removably mounting backwall panels 4c on a rear-facing side of the bucket. Preferably, each backwall panel 4c is fastened at one edge thereof by bolts or screws both to the frame panel 4b and to the complementary piece 4d and at the other edge thereof to a rear edge of the outer side wall 4a. Thereby, the enclosures' 4 outer side walls 4a leave their external sides as smooth wear plates, which need not be opened. In the process of working with the bucket, the enclosures' 4 backwall panels 4c are not exposed to a substantial stress applied by rocks, thus enabling the same to be opened even after a long working period.
The working drum 6 according to one embodiment of the invention is depicted in more detail in
The crushing tool 7 includes an elongated rib 7a extending along and bearing on the shaft 6 preferably all the way along its length. For this purpose, the rib 7a is shaped for a bottom surface preferably conforming to the outline of the shaft 6a in terms of its cross-section. In addition, the rib 7a features a plurality of tooth members 7b present on a top surface opposite with respect to the bottom surface. The tooth members 7b are disposed along the rib 7a at equal spaces throughout the length of the rib 7a. The tooth members 7b are disposed on the rib 7a so as to point outward in a radial direction of the working drum 6, thus establishing a serration type crushing tool 7. *The tooth member 7b can be welded or reinforced with a wear-resistant weld. The tooth member can also be provided with a separately soldered claw piece.
The rib 7a, and thereby the crushing tool 7, is attached to the shaft 6 by welding. The crushing tool 7 according to the invention can be welded to the shaft 6 with a weld extending substantially over the entire length of the shaft 6. The weld follows the shape and direction of the bottom surface edges of the rib 7a, which in this embodiment is lengthwise of the shaft 6 and straight. This enables avoiding weld joints crosswise to the longitudinal direction of the shaft 6a.
Furthermore, the tooth members 7b of adjacent crushing tools 7 can be in coincidence with each other in the direction of the shaft 6a of the working drum 6. However, the tooth members 7b of adjacent crushing tools 7 may also have locations which are offset from each other in the direction of the shaft 6a of the working drum 6. For example, the offset between such members can be about a half of the gap between two adjacent tooth members 7b of the crushing tool 7, as shown in
According to one preferred embodiment of the invention, the crushing tool 7 is shaped in such a way that the shape follows a gentle spiral form along the shaft surface.
The present invention is not limited to the presented embodiments, but can be applied in a variety of manners within the scope of protection defined by the claims. The tooth members 7b, for example, can have a shape which is other than rectangular or the shaft can have a cross-sectional shape, especially in the longitudinal direction of the shaft at the location of a crushing tool, which is other than circular.
Number | Date | Country | Kind |
---|---|---|---|
20095301 | Mar 2009 | FI | national |