The present invention relates to a cryogenic assembly. In particular, but not necessarily restricted thereto, the present invention relates to a cryostat having a service neck for access to a superconducting magnet.
In many cryogenic applications components, e.g. superconducting coils for magnetic resonance imaging (MRI), superconducting transformers, generators, electronics, are cooled by keeping them in contact with a volume of liquefied gas (e.g. Helium, Neon, Nitrogen, Argon, Methane), the whole cryogenic assembly being known as a cryostat. In order to operate a superconducting magnet, it must be kept at a temperature below its superconducting transition temperature. For conventional low temperature superconductors, the transition temperature is in the region of 10K, and typically the magnet is cooled in a container or vessel comprising a bath of liquid helium, commonly called a helium vessel, at 4.2K. For simplicity, reference shall now be made to helium, but this does not preclude the use of other gases. Services need to be run from the external environment at room temperature into the helium vessel, for monitoring purposes and to energize the magnet. Any dissipation in the components or heat getting into the system causes helium boil-off. To account for such losses, replenishment is required. This service operation is considered as problematic by many users and great efforts have been made over the years to introduce refrigerators that either reduce the rate of boil-off, or recondense any lost liquid back into the bath.
In many cryostats the liquid gas boils away slowly as a result of heat entering the system. A suitable means must be available for the gas to exit from the cryostat, but it is one function of the cryostat to reduce this boiling to as low a value as practical since gases such as helium are expensive commodities. In other cryostats, a refrigerator is fitted, which recondenses the evaporated gases so that there is no overall loss of helium. In these cryostats, the heat load must be kept low enough that the refrigerator can perform the recondensation.
A cryostat must provide access to the vessel containing the liquified helium for the initial cooling of the magnet to its low operating temperature, and for periodic refilling of systems where there is a loss of helium. Furthermore, the cryostat must provide access to the helium vessel to measure the level of the liquified helium, and provide sufficient access whereby to enable operation and maintenance of the magnet. The magnet typically comprises one or more superconducting electromagnetic coils in series connection with a superconducting switch so that the field can be trapped in the magnet. Heat must be supplied to the superconducting switch to heat it above its superconducting transition temperature in order to “open” it. Electric current must be supplied to the magnet in order to energize it.
Electric current for the magnet is conveniently supplied through a removable current lead which is inserted through the access neck and provides electrical contact between an electrical terminal of a magnet at 4.2K and external cables at room temperature which connect to a power supply. Alternatively, a set of fixed current leads have been used which are permanently installed in the access neck so that the neck does not have to be opened to atmosphere in order to insert a removable current lead. Opening the neck tube to the atmosphere is to be avoided as there is the possibility of air entering the neck and helium vessel. This is to be avoided since air at temperatures below 0° C. (at normal atmospheric pressure) will include ice from water and, if present in the necks, would tend to collect at the bottom of the neck and either block the neck or prevent access to the magnet electrical terminal. Fixed current leads add to the heat load on the helium vessel.
Once the magnet has been energized, should an emergency situation arise which requires that the magnetic field be discharged rapidly, the magnet must be “quenched”. This involves heating a section of the magnet above its critical temperature so that it becomes resistive. The heat generated in this resistive section heats the adjacent parts of the magnet and causes them to become resistive. In this way the whole magnet rapidly becomes resistive, and the magnetic field is rapidly reduced to a negligible amount. The energy stored in the magnet is released into the liquid helium with the subsequent evolution of a large quantity of gas. The gas flow in this process can be high, and the access neck must provide a path for the gas to escape from the helium vessel without causing an excessive pressure in the helium vessel. The above, and other services, are provided through the service neck.
An example of prior art, comprising a conventional access neck is shown in
There are several disadvantages of such an access neck configuration. Firstly the neck must be opened in order to insert the removable current lead, with the possibility of admitting air to the helium vessel. Secondly, there is no means of providing a controlled de-energization of the magnet except by fitting the removable current lead, which means that a trained service engineer is required. Thirdly, the back pressure during a quench process is high because of the use of multiple radiation baffles. Furthermore the heat load at the magnet connector is typically high during energization of the magnet, leading to high helium loss. Additionally the thermal connections 24 connect only to the outside of the service neck tube 10 and as such are not ideal because of non-optimal thermal contact with the gas in the neck tube.
A further prior example is shown in
Some of the disadvantages of this access neck are that the back pressures developed during a quench process can be high; this is because the gas must be vented primarily up the fixed leads in order to ensure that they are adequately cooled during magnet energization. The cooling of the gas column is not particularly efficient because the boil-off gas passes primarily up the two fixed leads. The diameter of the leads cannot be made large because other service operations and fittings must also be provided through the neck and if the neck diameter is increased the heat load increases.
Furthermore, there are three paths for gas going up the neck, two inside the current leads and one through the surrounding space inside the neck wall. In order to achieve optimum cooling of the current leads during a magnet ramp, gases should pass through the leads only and not through the third path. However, to achieve minimum helium losses during normal standby operation, with no current flowing in the leads, it is preferable to have some of the boil-off gas going through the third path, cooling both the neck as well as the leads. These conflicting requirements lead to a higher boil-off of gases then is preferred. Balancing the three parallel gas streams in a neck assembly requires precise knowledge of the gas impedances which is hard to predict and even harder to control in taking manufacturing tolerances into account.
The present invention seeks to provide an improved cryostat. In particular, the present invention seeks to provide an access neck to a cryostat such as helium vessel which provides the required services with a minimum heat load.
In accordance with a first aspect of the invention, there is provided a cryostat assembly operable to support electrical, electronic, or a magnetic device immersed in a cryogenic fluid, comprising a cryogenic fluid container, having a service neck operable to provide access from an ambient atmosphere to the cryogenic fluid container, wherein the service neck comprises at least one positive and one negative current lead, arranged such that one of the leads is formed by the neck tube wall and the space between the neck tube wall and the second current lead forms a gas path for venting and/or filling or other services.
There are several advantages arising from the invention: There is a reduced pressure difference in the neck, with an improved contact between components and cooling fluids; a lower heat load on the components is provided; there are provided separate paths for fluid release from the neck.
The invention may be understood more readily, and various other aspects and features of the invention may become apparent from consideration of the following description and the figures as shown in the accompanying drawing sheets, wherein:
There will now be described, by way of example, the best mode contemplated by the inventors for carrying out the invention. In the following description, numerous specific details are set out in order to provide a complete understanding of the present invention. It will be apparent, however, to those skilled in the art, that the present invention may be put into practice with variations of this specific.
Referring now to
Thus electrical connection is enabled through the gas tight turret/cryostat wall. Current lead tubes 52 and 16 are preferably made from stainless steel or brass, but may be made of other suitably conducting materials, the means of determining specific dimensions being well known to those skilled in the art.
Collar 74, is preferably made of a high conductivity material, such as copper, which is used to mechanically support the inner tube 16 and to provide means of connecting both tubes to a heat sink (not shown) for the purpose of intercepting heat conducted from a higher temperature to a lower temperature along the tubes, the gas contained within the tubes, and any other heat conductor either within the confines of the outer tube 52 or elsewhere within the vacuum space. There may be one or more collars 74 depending on the construction of the cryostat and the number of heat sinks available. Insulator 76 provides electrical insulation between first and second current paths and thermal conduction to the collar 74. It maybe made of many types of material, but is conveniently made of one such as sapphire, aluminium oxide, or a ceramic where the high thermal conductivity characteristics are particularly good. The insulator 76 assists in the conduction of heat from the inner tube 16 and is of a size such that it can be bonded firmly to collar 74, for example by gluing or soldering.
Referring now to
Overall, low heat load is achieved in normal operation and during magnet energization due to the boil-off gas being in intimate contact with the surfaces of both tubes 52 and 16, and the collars 74, 82 provide intimate thermal contact with the tubes and the gas contained within the column.
The gas enclosed by tube 16 can be cooled more effectively by the provision of one or more conductive baffles 88 which are placed inside the tube in intimate thermal contact with the walls of the tube. Conveniently, the positions of baffles are placed on the inside of the tube forming the insulating ring 76, as shown in
In an alternative embodiment, the inner tube 16 can be used as an emergency vent from the helium vessel in case the holes 21 should become blocked or are not large enough, as shown in
It is to be recognized that, although the high temperature superconducting leads 92 and 94 in
It is to be noted that, in example
Number | Date | Country | Kind |
---|---|---|---|
10157105.4 | Nov 2001 | DE | national |
0206517.5 | Mar 2002 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP02/13319 | 11/20/2002 | WO | 5/27/2005 |