The invention relates to bearings. More particularly, the invention relates to bearings in cryogenic turbopumps.
Various turbomachines are subject to use at cryogenic temperatures. For example, turbopumps are used in rocket propulsion to pump cryogenic liquids such as oxygen, hydrogen, and hydrazine. One exemplary turbopump configuration is shown in U.S. Pat. No. 5,529,464.
Bearing performance is critical to operation of such machines. Often, the machines are subject to a variety of conditions including start-up, shut-down, and other transient operations. For example, the bearings may be configured for lubrication by the working fluid. However, a lack of such fluid in start-up and shut-down conditions may exacerbate asperity contact between bearing surfaces. Accordingly, much development work has gone into bearings for such applications. Among these are the variety of complex foil bearing constructions (e.g., as proposed in U.S. Pat. No. 6,158,893).
Separately, technologies have developed regarding the deposition of so-called diamond-like coatings including diamond-like carbon (DLC) and diamond-like nanocomposite (DLN) coatings. Exemplary DLN coatings are described in U.S. Pat. Nos. 5,352,493, 5,466,431, 5,728,465, 6,200,675, and 6,228,471. Exemplary DLC and DLN coatings and application services are available from Bekaert Dymonics n.v., Zulte, Belgium. Diamond-like coatings are generally amorphous carbon-based coatings with a high hardness and a low coefficient of friction. Exemplary DLC coatings involve a mixture of SP2 and SP3 bonded carbon atoms stabilized by hydrogen. Exemplary DLN coatings involve interpenetrating networks of a-C:H and a-SI:O. The compositional balances and addition of dopants may vary coating properties.
One aspect of the invention involves a bearing system. A first component has a first substrate and a first coating. The first coating comprises a DLC layer and a DLN layer between the DLC layer and the substrate. A second component is in bearing engagement with the first component (e.g., dry or fluidicly lubricated sliding engagement).
In various implementations, the first coating may consist essentially of the DLC layer and the DLN layer. The second component may include a second substrate and a second coating engaging the first coating via said sliding engagement. The second coating may act as a solid lubricant effective to provide a coefficient of friction of less than 0.2. The second coating may comprise silver in an amount effective to act as a solid lubricant. The second coating may have a thickness of 12.5-50 μm. The first and second components may be in the sliding engagement along an essentially radial intersection (e.g., acting as a thrust bearing). The system may be a non-foil journal bearing. The first coating may have a characteristic thickness of 0.5-5.0 μm. The first substrate may be titanium-based. The second substrate may be a superalloy, comprising in major mass part one or more of nickel, iron, and cobalt. The first substrate may be a rotor of a turbopump. The second substrate may be a bearing of a housing of the turbopump. The turbopump may be driven by a first flow of a first fluid. The turbopump may pump a second flow of a second fluid at a temperature below −150° C.
Another aspect of the invention involves a method for forming a bearing surface on a titanium-based substrate. A coating is applied having a carbon-based first layer and a carbon-based second layer of different composition than the first layer. The first layer is between the substrate and the second layer. The first layer is harder than the second layer and the second layer has a higher lubricity than the first layer.
In various implementations, the applying may comprise at least one of PVD and PACVD. The first layer may consist essentially of DLN and the second layer may consist essentially of DLC. The applying may provide the coating with a coefficient of thermal expansion between 30% and 120% of a coefficient of thermal expansion of the substrate. The second layer may be placed in sliding engagement with a silver-based coating on a second substrate.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference numbers and designations in the various drawings indicate like elements.
Each exemplary pump stage extends from an axial inlet to a radial outlet. In the series example, the pump stages pump a single second fluid (e.g., rocket fuel or oxidizer) at cryogenic conditions. Exemplary cryogenic conditions are below −100° C., typically below −150° C. The first and second fluids may be the same. For example, a flow of hydrogen rocket fuel may be pumped through the stages 24 and 26 and then receive heat from the combustion chamber. The heated hydrogen flow then passes to the turbine before entering the combustion chamber. Alternate fuels include hydrazine and kerosene.
The bearing 40 includes a substrate 60 which may be formed of a superalloy. An exemplary superalloy is INCOLOY Alloy 909 (UNS N19909), available from Inco Alloys International, Inc. of Huntington W.V., a nickel-iron-cobalt alloy with a silicon addition and containing niobium and titanium for precipitation hardening. The nominal composition by weight percent is: Al 0.03; C 0.01; Co 13; Fe 42; Nb 4.7; Ni 38; Si 0.4; Ti 1.5. One exemplary group of superalloy compositions is Ni 38-58, Cr 17-23, Fe 13-40, Nb 3-6, Mo 3-10, Ti 0.4-2, and Al 0.2-4. The substrate 60 includes a radial/circumferential thrust surface 62 and a longitudinal/circumferential bushing surface 64. A solid lubricant coating 66 is deposited atop the surfaces 62 and 64 and has an exterior surface 68. The exemplary solid lubricant is silver (e.g., built up by electrolytic deposition as a single layer of uniform composition). An exemplary characteristic thickness of the coating 66 is 2.5-125 μm, more narrowly, 12.5-50 μm.
With the exemplary coating combination, the DLN layer 50 is selected for hardness, wear resistance, and compatibility with the material of the substrate 42. For example, exemplary coefficients of thermal expansion (CTE) for Ti alloys are 7.7-9.0×10−6/K whereas an exemplary overall CTE of the coating 48 is 3.9×10−6/K. Exemplary Ti alloys compositions include, in weight percent, Al 3-6, Sn 0-3, and 0-4V or Zr, remainder Ti and impurities. Generally advantageous matching may occur when the CTE of the coating is at least 30% that of the substrate (e.g., 30-120% or 30-100%). The DLC layer 52 is selected for lubricity (e.g., in combination with the coating 66). The thickness of the coating 48 also influences compatibility. Thicker coatings have been observed to have poorer adherence characteristics (believed due to incorporated stress). For example, thicknesses of 2.0 μm or less have produced indentation adherence classifications of HF2 or stronger on German industry standard VDI 3198 (Verein Deutsche Ingeneur (VDI)—Richtlinie 3198: Beschichten von Werkzeugen in der Kaltmassivumformung CVD- und PVD-Verfahren. Düsseldorf, VDI, 1992). By contrast, increasing thickness to just 2.5 μm or greater may produce adherence classifications of HF5 or worse. Accordingly, exemplary advantageous thicknesses for the coating 48 are less than about 2.5 μm (e.g., 1.5-2.0 μm).
Test data has been obtained for sample friction pucks and environmental test coupons.
Among variations are the presence of a bond or adherence-promoting layer. Compositions for such layers could include Cr, Si, and/or amorphous SiC. Hybrid DLC-DLN layers are possible variants on layers essentially of one or the other as is a reversal of the order in which they occur (DLC innermost and DLN external to DLC). There may also be a number of repeating multiples of the alternating coating layers.
One or more embodiments of the present invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, when applied to an existing machine, details of the existing material as well as details of the operating condition (e.g., loads, speeds, temperatures, lifespans, and cycle properties) may influence the details of any particular implementation. Accordingly, other embodiments are within the scope of the following claims.