The present invention relates to a process and to an installation for separating air by cryogenic distillation.
It is known to produce a gas from pressurized air by vaporization of pressurized liquid in an exchange line of an air separation unit by heat exchange with a compressed gas above a cryogenic temperature. Units of this type are known from FR-A-2 688 052, EP-A-0644388, EP-A-1014020 and patent application FR 03/01722.
The energy efficiency of the known units is not excellent as the inflow of heat associated with the cryogenic compression has to be extracted.
In addition, in the case of schemes such as that of
Nevertheless, this type of process does appear to be economically beneficial, in particular when there is little energy reutilization or when energy is available at low cost. It is therefore potentially beneficial to be able to get round the technological limitation of the oil brake integrated onto the shaft of the turbine/booster assembly.
It is an object of the invention to propose an alternative that makes it possible to achieve process schemes based on a cold booster but without an energy dissipation system integrated onto the turbine/booster shaft, and therefore to envisage using this scheme for practically all sizes of air separation units.
One subject of the present invention is a process for separating air by cryogenic distillation in an installation comprising a double or triple air separation column, the column of which operating at the higher pressure operates at what is called the medium pressure, and an exchange line in which:
According to other optional aspects of the invention:
Another subject of the invention is an installation for separating air by cryogenic distillation, comprising:
characterized in that the turbine not coupled to the cold booster is coupled to an energy dissipation means comprising a booster followed by a cooler.
According to other optional aspects, the installation comprises:
A complementary turbine will be used, operating in parallel with the turbine of the first turbine/booster assembly, and equipped with its own energy dissipation system. Favorably, this system will be a booster followed by a water cooler installed in the warm part.
The expression “close in terms of pressure” means that the pressures differ by at most 5 bar, preferably at most 2 bar. The expression “close in terms of temperature” means that the temperatures differ by at most 15° C., preferably at most 10° C.
A booster is a single-stage compressor.
All the pressures mentioned are absolute pressures.
The term “condensation” includes pseudo-condensation. The term “vaporization” includes pseudo-vaporization.
This invention is distinguished from U.S. Pat. No. 5,475,980 in that, in
The invention will be described in greater detail with reference to the figures in which:
In
Another portion 2 of the air at 15 bar, constituting the remainder of the feed air, is cooled in the exchange line to an intermediate temperature above the intake temperature of the turbines 17, 19, compressed in a second booster 23 up to about 30 bar and reintroduced into the exchange line 9 at a higher temperature so as to continue its cooling.
Thus, the air 37 at about 30 bar liquefies in the exchange line and liquid oxygen 25 vaporizes in the exchange line, the vaporization temperature of the liquid being close to the intake temperature of the second booster 23. The liquefied air leaves the exchange line and is sent to the column system.
A waste nitrogen stream 27 is warmed in the exchange line 9.
The first booster 5 is coupled to one of the turbines, 17 or 19, and the second booster 23 is coupled with the other of the turbines, 19 or 17.
The column system of an air separation unit is formed by a medium-pressure column 100 thermally coupled with a low-pressure column 200 having a minaret, a mixing column 300, and an optional argon column (not illustrated). The low-pressure column does not necessarily have a minaret.
The medium-pressure column operates at a pressure of 5.5 bar, but it may operate at a higher pressure.
The air 121 coming from the two turbines 17, 19 is the stream sent into the bottom of the medium-pressure column 100.
The liquefied air 37 is expanded in the valve 39 or, optionally, in a turbine, and sent to the column system.
Rich liquid 51, lower lean liquid 53 and upper lean liquid 55 are sent from the medium-pressure column 100 to the low-pressure column 200 after in-valve expansion and subcooling steps.
Liquid oxygen is pressurized by the pump 500 and sent as pressurized liquid 25 to the exchange line 9. Other liquids, whether pressurized or not, may be vaporized in the exchange line.
Optionally, gaseous nitrogen is withdrawn from the medium-pressure column and is cooled, again in the exchange line 9.
Nitrogen 33 is withdrawn from the top of the low-pressure column and warmed in the exchange line, after having served for subcooling the reflux liquids.
Waste nitrogen 27 is withdrawn from a lower level of the low-pressure column and warmed in the exchange line, after having served for subcooling the reflux liquids.
Optionally, the column may produce argon, by treating a stream 51 withdrawn into the low-pressure column 200. The stream 52 is the bottoms liquid sent from the argon column, if there is one.
The mixing column 300 is fed at the top with an oxygen-rich liquid 35, withdrawn from an intermediate level of the low-pressure column 200 and pressurized by the pump 600, and at the bottom with a stream 122 of gaseous air coming from the turbines 17, 19. The mixing column essentially operates at the medium pressure.
A gaseous oxygen stream 37 is withdrawn from the top of the mixing column and then warmed in the exchange line 9, and a liquid stream 41 is withdrawn as bottoms and sent to the low-pressure column after being expanded in a valve. It is possible to withdraw an intermediate stream from the column 300, which is sent to the low-pressure column.
In
The fraction 123 continues to be cooled in the exchange line 9 and exits therefrom upstream of the cold end to be sent to the bottom reboiler 301 of the mixing column 300, where the fraction condenses, at least partially, in order to form the stream 125.
Another portion 2 of the air at 15 bar, constituting the remainder of the feed air, is cooled in the exchange line down to an intermediate temperature above the intake temperature of the turbines 17, 19, compressed in a second booster 23 to about 30 bar and reintroduced into the exchange line 9 at a higher temperature, so as to continue its cooling.
Thus, the air 37 at about 30 bar is liquefied in the exchange line and liquid oxygen 25 is vaporized in the exchange line, the vaporization temperature of the liquid being close to the intake temperature of the second booster 23. The liquefied air leaves the exchange line and is sent to the column system after being mixed with the liquefied air 125 coming from the reboiler 301.
A waste nitrogen stream 27 is warmed in the exchange line 9.
The first booster 5 is coupled with one of the turbines, 17 or 19, and the second booster 23 is coupled with the other of the turbines, 19 or 17.
The column system of an air separation unit is formed by a medium-pressure column 100 thermally coupled with a low-pressure column 200 having a minaret, a mixing column 300, and an optional argon column (not illustrated). The low-pressure column does not necessarily have a minaret.
The medium-pressure column operates at a pressure of 5.5 bar, but it may operate at a higher pressure.
The gaseous air 21 coming from the two turbines 17, 19 is the stream sent to the bottom of the medium-pressure column 100.
The liquefied air 37 is expanded in the valve 39 and sent at least to the medium-pressure column 100.
Rich liquid 51, lower lean liquid 53 and upper lean liquid 55 are sent from the medium-pressure column 100 to the low-pressure column 200 after in-valve expansion and subcooling steps.
Liquid oxygen is pressurized by the pump 500 and sent as pressurized liquid 25 to the exchange line 9. In addition or alternatively, other liquids, whether pressurized or not, may be vaporized in the exchange line.
Gaseous nitrogen is optionally withdrawn from the medium-pressure column and is cooled, again in the exchange line 9.
Nitrogen 33 is withdrawn from the top of the low-pressure column and is warmed in the exchange line, after having served to subcool the reflux liquids.
Waste nitrogen 27 is withdrawn from a lower level of the low-pressure column and warmed in the exchange line, after having served to subcool the reflux liquids.
Optionally, the column may produce argon, by treating a stream 51 withdrawn into the low-pressure column 200.
The mixing column 300 is fed only at the top with an oxygen-rich liquid 35 withdrawn from an intermediate level of the low-pressure column 200 and pressurized in the pump 600. The mixing column operates essentially at the medium pressure. By modifying the pressure of the stream 123, the mixing column 300 may operate at a pressure different from the medium pressure. Optionally, one portion of the rich liquid 51 may be sent to the bottom of the column 300.
A gaseous oxygen stream 37 is withdrawn from the top of the mixing column and warmed in the exchange line 9, and a liquid stream 41 is withdrawn as bottoms and sent to the low-pressure column after being expanded in a valve.
Number | Date | Country | Kind |
---|---|---|---|
0450067 | Jan 2004 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR05/50011 | 1/7/2005 | WO | 00 | 7/12/2006 |