This invention relates to a cryogenic expander having reduced noise and vibration characteristics. More specifically, the invention relates to a high capacity expander having a pneumatically driven reciprocating piston producing refrigeration at cryogenic temperatures and which includes a collar bumper with reduced noise and vibration characteristics.
Most cryogenic refrigerators that are used to cool cryopumps, superconducting MRI magnets, and laboratory research instruments use GM type refrigerators. These typically use air conditioning compressors that have been modified to compress helium and draw less than 12 kW of input power. The expanders have reciprocating pistons that are either mechanically or pneumatically driven. The mechanical drive is relatively quiet because it provides a nearly sinusoidal motion that does not cause the piston to hit the top or bottom at the end of the stroke. The pneumatic drives are simpler but can produce significant noise if the piston hits the top or bottom of the cylinder at the end of the stroke. The same is true for expanders that operate on the Brayton cycle.
U.S. Pat. No. 3,045,436, by W. E. Gifford and H. O. McMahon describes the basic GM cycle. This refrigerator system consists of a compressor that supplies gas at a high pressure to an expander which admits the gas through a warm inlet valve to the warm end of a regenerator heat exchanger, through the regenerator, and then into an expansion space at the cold end of a piston from whence it returns back through the regenerator and a warm outlet valve to the compressor at a low pressure. The '436 patent shows the regenerator external to the cylinder with the piston, and a second pair of valves that cycles gas to the warm end of the piston out of phase with the gas flow to the regenerator. U.S. Pat. No. 3,119,237, by W. E. Gifford shows an improvement of the concept in the '436 patent in the form of a drive stem at the warm end of the piston which reduces the amount of gas used to drive the piston up and down The expander configuration and valve cycling are shown in FIGS. 2-9 in the '237 patent.
The typical GM type expander being built today has the regenerator located inside the piston. The piston/regenerator becomes a displacer that moves from the cold end to the warm end with the gas at high pressure, then from the warm end to the cold end with the gas at low pressure. Since the pressure above and below the displacer is nearly the same, the force required to cause the displacer to reciprocate is small, and can be provided by either a mechanical or pneumatic mechanism. In the descriptions that follow the term piston is used when it may also refer to a displacer.
A pneumatically driven expander operating on the Brayton cycle is described in U.S. Pat. No. 9,080,794 by Longsworth. The Brayton cycle differs from the GM cycle in using a counterflow heat exchanger instead of a regenerator heat exchange to precool the high pressure gas before it is expanded. This requires an additional pair of valves at the cold end of the expander that have to be synchronized with the valves at the warm end. The counterflow heat exchanger has to be external to the piston/cylinder and is substantially larger than an equivalent regenerator. An important advantage that a Brayton cycle refrigerator has relative to a GM cycle expander is its ability to distribute cold gas to a remote load, while the cold expanded gas in a GM expander is contained within the expansion space.
A compressor system that can be used to supply gas to either a GM cycle expander or a Brayton cycle engine is described in U.S. Pat. No. 7,674,099 titled “Compressor With Oil Bypass” by S. Dunn. High and low pressures are typically 2.2 and 0.8 MPa
U.S. Pat. No. 6,256,997 to Longsworth describes the use of elastomer “O” rings at the warm end of a GM type displacer as “impact absorbers” to absorb the impact energy of the displacer when it is at the ends of the stroke to avoid the noise and vibration associated with having the displacer hit the warm and cold ends of the cylinder. It accomplishes this by locating “O” rings around the central drive mechanism. While the '997 patent describes the general principal and its application to relatively small and light displacers, the present invention describes a means of applying the principal to larger displacers and pistons in expanders that are producing more refrigeration and have larger and heavier pistons. This is accomplished by adding a collar extending from the top (warm end) of the piston that can have the same outside diameter as the piston and a lip at the top of the collar that engages an “O” ring before the piston hits the bottom (cold end) of the cylinder. The top end of the collar also engages an “O” ring before the piston hits the top (warm end) of the cylinder. Since the energy that an “O” ring can absorb is proportional to its volume, having “O” rings that are near the maximum diameter of the cylinder maximize the amount of energy they can absorb. “O” rings that are used for the purpose of absorbing energy are referred to herein as bumpers or impact absorbers and are not necessarily round. While the elastomer Buna N is a preferred material other materials can also be used.
While top and bottom are used to refer to the warm and cold ends respectively, and up refers to moving from the cold end to the warm end, and down refers to moving from the warm end to the cold end, the expanders can all be operated in any orientation. Having the collar be the same diameter as the piston means that the clearances and machining tolerances that make them different are small.
The present invention provides a means of maximizing the energy absorbing capacity of bumpers that prevent the displacer or piston in a pneumatically driven cryogenic expander from hitting the cold or warm end of a cylinder. A collar is added to the warm end of the piston which can have the same outside diameter as the piston and a lip at the top end that engages an “O” ring before the piston hits the cold end or bottom of the cylinder. The top end of the collar also engages an “O” ring before the piston hits the warm end or top of the cylinder. Having “O” rings that are near the maximum diameter of the cylinder maximizes the amount of energy they can absorb, and thus permits quiet operation of larger size expanders than prior designs. The collar can also be used to drive the piston up and down in place of the typical drive stem. This design is referred to as a “collar bumper”
The options of having the bottom bumper be external to the collar for the Brayton expanders are not shown. Components that are equivalent in the drawings have the same identifying number.
The expander has four main subassemblies. The cylinder subassembly comprises cylinder 6a, cold end cap 9, and warm flange 7. The piston subassembly that reciprocates in the cylinder assembly comprises piston body 1, regenerator 19, drive stem 2, and piston seal 26 near the warm end of piston body 1. The cylinder head subassembly comprises cylinder head 8a, stem cylinder 18, and stem seal 27. The valve subassembly, which is usually in a housing attached to the cylinder head subassembly, comprises valves 12, 13, 14, and 15. These valves are typically contained in a ported rotary valve driven by a motor. When piston 1 reciprocates it displaces gas in cold displaced volume 3, warm displaced volume 4, and drive stem displaced volume 5. While most of these volumes are displaced as piston 1 reciprocates they also include void volumes in the form of clearances and gas ports. Valves 14 and 15 cycle gas to warm displaced volume 4 through line 33 then through ports 21, regenerator 19, and port 20 to cold displaced volume 3. Valves 12 and 13 cycle gas to drive stem displaced volume 5 through line 34. Seal 17 seals cylinder head 8a to warm flange 7.
A GM refrigeration cycle starts with the piston at the cold end, (cold displaced volume 3 minimized), the pressure in the cylinder and on the drive stem is high (valves 12 and 14 open, valves 13 and 15 closed). Valve 12 is then closed and 13 opened. Low pressure on the drive stem causes piston 1 to move up and draw high pressure gas into cold displaced volume 3. Before the piston reaches the top valve 14 is closed and the pressure in the cylinder drops to a first pressure intermediate to the high and low pressures as the piston moves to the top. This pressure decrease results from warm gas being transferred from the warm displaced volume to the cold displaced volume. Valve 15 is then opened and the pressure in the cylinder drops to low pressure. Valve 13 is closed and 12 opened putting high pressure gas on the drive stem and pushing the piston down. Before reaching the bottom valve 15 is closed and the pressure in the cylinder increases to a second intermediate pressure as the piston moves to the bottom. This pressure increase results from cold gas being transferred from the cold displaced volume to the warm displaced volume. Valve 14 is then opened and the pressure increases to high pressure and the beginning of the next cycle. The P-V work done in cold displaced volume 3 is equal to the refrigeration produced per cycle.
The object of this invention is to allow a cryogenic expander with a pneumatically driven piston to operate quietly in higher capacity refrigerators. The size of an “O” ring bumper is maximized by having it be about the same diameter as a piston and having a collar on the warm end of a piston with a lip at the top of the collar that engages the “O” ring bumper before it hits the cold end, and a similar “O” ring bumper that prevents it from hitting the warm end. Prior art “O” ring bumpers which have had smaller diameters have been adequate for pistons producing small amounts of refrigeration.
The rate at which refrigeration is produced is proportional to the high to low pressure difference and the rate of displacement, dV/dt, in the expansion space of a reciprocating expander. Given the same pressures the refrigeration rate is thus proportional to the square of the diameter of the piston, D, the stroke, S, and the cycle rate, N, eg. dV/dt=(SπD2N)/4. The kinetic energy of a piston is proportional to its mass, M, and velocity squared, (SN)2. If the displacement rate (refrigeration rate) is doubled by doubling the stroke or speed then the energy that has to be absorbed by the “O” ring bumpers is increased by a factor of four but the capacity of the bumper to absorb the additional energy has not changed. If the displacement rate is increased by doubling the area of the piston, and its length, stroke, and speed are kept the same then the kinetic energy is doubled, but an “O” ring bumper that is the diameter of the piston only increases in length by D √2. That is, if the displacement rate is increased by doubling the area of the piston, and its length, stroke, and speed are kept the same, then the kinetic energy is doubled and therein an “O” ring bumper that is the diameter of the piston only increases in length by D times 2.super.0.5. Regardless of what strategy is used to make larger displacement pistons lighter, a bumper “O” ring that is about the same diameter as the piston will maximize the refrigeration rate that can be produced by a pneumatically driven piston that runs quietly. A piston with a collar bumper enables this to be accomplished.
Number | Date | Country | |
---|---|---|---|
62366205 | Jul 2016 | US |