The present invention relates to cryogenic fluid tanks, in particular for the onboard storage of liquid cryogenic fuels, of the type comprising an outer envelope and an inner envelope, the space between the inner and outer envelopes being occupied by a multilayer insulating structure.
The production of tanks with multilayer insulation presents considerable difficulties in terms of manpower cost. Automation of the manufacture of multilayer insulations remains hypothetical by reason of the many connections and piping entering and leaving the tank (filling and withdrawing liquid, withdrawing the gaseous phase, various connections, etc.) Moreover, support for the inner tank is generally obtained by means of adhesive bonding systems or relatively sophisticated struts made of non-conducting materials which, in the special case of tanks for motor vehicles, must be mechanically overdesigned in order to withstand the high level of accelerations imposed by the manufacturers. These adhesives or struts and the connecting points for pipework or conductors create discontinuities harming the satisfactory insulation of the tank and constitute large sources for the entry of heat reducing the thermal performance of the tank.
The object of the present invention is to provide a cryogenic fluid tank structure greatly reducing the above disadvantages and making it possible, in a simple and effective manner, to produce a tank with improved thermal insulation and also with improved impact resistance.
To this end, according to one feature of the invention, the inner envelope is supported on a pivot point formed by a support structure secured to the outer tank and extending into the latter, the pivot point being situated above the center of gravity of the inner tank.
According to other more particular features of the invention:
The present invention also relates to the use of such a tank in a motor vehicle, for storing an energetic fluid that can be used by a vehicle, in particular for its traction.
Other features and advantages of the invention will become apparent from the following descriptions of embodiments given by way of illustration but in no way limiting, made in relation to the appended drawings, in which:
In
According to one feature of the invention, the multilayer insulating structure 3 advantageously consists of alternate reflecting/interleaved layers consisting of layers of polyethylene terephthalic of the aluminized Mylar™ type and of glass fiber paper of the Dextar™ or Lydall™ type. The vacuum in the interspace between the envelopes is at a pressure that is typically below 10−4 millibar.
As can be clearly seen in
As shown in
It will be understood that with such an arrangement, the inner envelope 1 is suspended in a pendular manner inside the outer envelope 2, angular swinging of the inner envelope 1 about the pivot point A under the effect of external and/or internal accelerations being immediately damped by the compacted insulating structure 3 between the envelopes 1 and 2, the inner envelope automatically recovering, simply by gravity, its balanced configuration at rest in the absence of accelerations. According to the invention therefore, the inner envelope is protected against a large number of accidents, which makes it possible to simplify and automate the installation of insulation around this envelope. Moreover, the points where pipes and conductors pass through the wall are grouped together in the narrow pivot zone about the point A inside the inner envelope 1, in this way greatly reducing all thermal bridges to the outside.
In the particular embodiment shown in
Although the invention has been described in relation to particular embodiments, it is not limited thereby but is susceptible to modifications and variants that will be apparent to a person skilled in the art within the context of the claims below. Thus, as a variant of the embodiments of FIGS. 1 to 3, the tubular support may extend downwards, from the top of the outer envelope 2, in a shortened bell-shaped structure that is open upwards and extends downwards from the top of the inner envelope to a point situated above the center of gravity G. Also, in place of a tubular support 6 extending vertically into an equally vertical bell 5, the pivot point A may be formed between the upper generating line of a tubular support structure extending horizontally, between the domed ends facing the outer envelope 2, into a cylindrical hollow volume that is also horizontal formed in the inner envelope 1, between its axially opposed bowed ends, the latter representing in its turn a generally tubular configuration with a hollow volume that is off-center upwards. In this case, also, the connecting lines and conductors extend outwards from the pivot zone, into the horizontal tubular support, along the latter.
Number | Date | Country | Kind |
---|---|---|---|
0405020 | May 2004 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR04/50718 | 12/17/2004 | WO | 5/30/2007 |