Cryogenic system for producing carbon monoxide

Abstract
A system for producing carbon monoxide wherein a carbon monoxide containing feed stream is processed in a membrane separation unit for partial removal of carbon dioxide, cooled to complete the removal of carbon dioxide, and then processed in a cryogenic separation system comprising a first cryogenic separation column and a second cryogenic separation column for the production of product carbon monoxide.
Description




TECHNICAL FIELD




This invention relates generally to the production of carbon monoxide and is particularly useful for the production of carbon monoxide at relatively low production rates.




BACKGROUND ART




Carbon monoxide is used as a reactant in a number of important industrial chemical synthesis processes. Carbon monoxide may be produced by the partial oxidation of hydrocarbons followed by purification, including the removal of carbon dioxide using chemical based absorption typically involving an amine based reactant. While such a system is very effective for the production of carbon monoxide on a large scale, it is cost prohibitive for the production of carbon monoxide on a relatively small scale such as at a production rate of less than 50,000 cubic feet per hour.




Accordingly it is an object of this invention to provide an improved system for producing carbon monoxide which will enable effective production of carbon monoxide even at relatively low production rates.




SUMMARY OF THE INVENTION




The above and other objects, which will become apparent to those skilled in the art upon a reading of this disclosure, are attained by the present invention, one aspect of which is:




A method for producing carbon monoxide comprising:




(A) providing a feed comprising carbon monoxide, carbon dioxide, hydrogen and hydrocarbons, and passing the feed through a membrane separation unit to separate the feed into a permeate, which comprises some of the hydrogen and carbon dioxide of the feed, and into retentate which has a higher concentration of carbon monoxide than does the feed;




(B) cooling the retentate to remove essentially all of the remaining carbon dioxide, and passing the resulting fluid comprising carbon monoxide, hydrogen and hydrocarbons into a first cryogenic separation column as first column feed;




(C) separating the first column feed in the first cryogenic separation column into hydrogen top fluid and into bottom fluid comprising carbon monoxide and hydrocarbons;




(D) passing bottom fluid into a second cryogenic separation column and separating the bottom fluid in the second cryogenic separation column into carbon monoxide vapor and hydrocarbon liquid; and




(E) recovering carbon monoxide vapor from the upper portion of the second cryogenic separation column as product carbon monoxide.




Another aspect of this invention is:




Apparatus for producing carbon monoxide comprising:




(A) a membrane separation unit and means for passing a feed comprising carbon monoxide, carbon dioxide, hydrogen and hydrocarbons to the membrane separation unit;




(B) a carbon dioxide removal cooler and means for passing fluid from the membrane separation unit to the carbon dioxide removal cooler;




(C) a first cryogenic separation column and means for passing fluid from the carbon dioxide removal cooler to the first cryogenic separation column;




(D) a second cryogenic separation column and means for passing fluid from the lower portion of the first cryogenic separation column into the second cryogenic separation column; and




(E) means for recovering fluid from the upper portion of the second cryogenic separation column as product carbon monoxide.




As used herein the term “membrane separation unit” means a system which separates gas components from gas mixtures using polymeric membranes and employing gas concentration and pressure gradients across the membrane.




As used herein the term “carbon dioxide removal cooler” means a system which receives a gas stream comprising carbon dioxide and wherein the gas stream is cooled so as to condense and/or sublime carbon dioxide out from the gas stream.




As used herein the term “hydrocarbons” means one or more hydrocarbon species having up to 5 carbon atoms. Examples include methane, ethane, acetylene and propane.




As used herein the term “column” means a distillation or fractionation column or zone, i.e., a contacting column or zone wherein liquid and vapor phases as countercurrently contacted to effect separation of a fluid mixture, as for example, by contacting or the vapor and liquid phases on a series of vertically spaced trays or plates mounted within the column and/or on packing elements such as structured or random packing. For a further discussion of distillation columns, see the Chemical Engineer's Handbook fifth edition, edited by R. H. Perry and C. H. Chilton, McGraw-Hill Book Company, New York, Section 13,


The Continuous Distillation Process


. Vapor and liquid contacting separation processes depend on the difference in vapor pressures for the components. The high vapor pressure (or more volatile or low boiling) component will tend to concentrate in the vapor phase whereas the low vapor pressure (or less volatile or high boiling) component will tend to concentrate in the liquid phase. Partial condensation is the separation process whereby cooling of a vapor mixture can be used to concentrate the volatile component(s) in the vapor phase and thereby the less volatile component(s) in the liquid phase. Rectification, or continuous distillation, is the separation process that combines successive partial vaporizations and condensations as obtained by a countercurrent treatment of the vapor and liquid phases. The countercurrent contacting of the vapor and liquid phases is adiabatic and can include integral or differential contact between the phases. Separation process arrangements that utilize the principles of rectification to separate mixtures are often interchangeably termed rectification columns, distillation columns, or fractionation columns. Cryogenic separation is a separation process carried out in a column at least in part at temperatures at or below 150 degrees Kelvin (K).




As used herein the term “indirect heat exchange” means the bringing of two fluids into heat exchange relation without any physical contact or intermixing of the fluid with each other.




As used herein the terms “upper portion” and “lower portion” mean those sections of a column respectively above and below the mid point of the column.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a simplified schematic flow diagram of one preferred embodiment of the carbon monoxide production system of this invention.





FIGS. 2 and 3

are more detailed diagrams of certain aspects of the system illustrated in FIG.


1


. The numerals in the Figures are the same for the common elements.











DETAILED DESCRIPTION




In the practice of this invention, the production of carbon monoxide is achieved by managing the concentration levels of carbon dioxide in several elements of the system. This carbon dioxide management system enables the effective production of carbon monoxide, especially at relatively low production rates.




The invention will be described in greater detail with reference to the Drawings.

FIG. 1

illustrates an arrangement wherein the feed for the carbon monoxide production system of the invention is taken from a synthesis gas generating reactor.




Referring now to

FIG. 1

, hydrocarbons stream


60


and oxygen stream


61


are provided into synthesis gas generating reactor


1


wherein they react to form a synthesis gas mixture. This synthesis gas mixture, which comprises carbon monoxide, carbon dioxide, hydrogen, water and hydrocarbons, and which may also comprise other components such as nitrogen, argon and hydrogen sulfide, is passed in stream


2


from reactor


1


to cooler


13


and from there in stream


62


to compressor


14


wherein it is compressed to a pressure generally within the range of from 50 to 1000 pounds per square inch absolute (psia). Resulting compressed stream


15


, if necessary, is passed to desulfurization unit


20


wherein any sulfur compounds such as hydrogen sulfide are removed. Resulting stream


63


is further cooled by passage through cooler


22


and resulting stream


64


is passed as feed into membrane separation unit


3


. Typically feed stream


64


comprises from 25 to 45 mole percent carbon monoxide, up to 10 mole percent carbon dioxide, from 30 to 60 mole percent hydrogen, and up to 10 mole percent hydrocarbons on a dry basis. Typically the feed stream into the membrane separation unit will have a flowrate within the range of from 10,000 to 200,000 cubic feet per hour (cfh), NTP.




Within membrane separation unit


3


the feed is separated into a permeate, which comprises some of the hydrogen and carbon dioxide of the feed along with carbon monoxide and water, and into a retentate which has a higher concentration of carbon monoxide than does the feed. Permeate is withdrawn from membrane separation unit


3


in stream


4


and retentate is removed from membrane separation unit


3


in retentate stream


5


. Stream


5


comprises from 50 to 90 mole percent carbon monoxide on a dry basis along with carbon dioxide, hydrogen, hydrocarbons and water.




Retentate stream


5


is passed into carbon dioxide removal cooler


6


wherein it is cooled to a temperature sufficient to condense or sublime essentially all of the carbon dioxide out from the retentate. Any water vapor that may be in retentate stream


5


is also removed by the passage of stream


5


through cooler


6


. Resulting stream


16


comprising carbon monoxide, hydrogen and hydrocarbons is passed from carbon dioxide removal cooler


6


to the cryogenic separation system, shown in

FIG. 1

in block diagram form as item


7


.





FIGS. 2 and 3

respectively illustrate in greater detail preferred embodiments of the carbon dioxide removal cooler and the cryogenic separation system which may be used in the practice of this invention. In

FIG. 2

there is illustrated one embodiment of a reversing heat exchanger which may be used as the carbon dioxide removal cooler. A regenerator system may also be used as the carbon dioxide removal cooler in the practice of the invention.




Referring now to

FIG. 2

, retentate stream


5


is passed through one of either passage


65


or


66


of heat exchange


67


wherein stream


5


is cooled such that essentially all the carbon dioxide and water vapor in retentate stream


5


plates out onto the walls of the passage. Retentate stream


5


is periodically switched between passages


65


and


66


using the illustrated valve system when the passage that stream


5


is passing through becomes saturated with the deposited carbon dioxide and water vapor. The resulting stream


16


is then passed to the cryogenic separation system. Waste stream


18


taken from the cryogenic separation system is passed through heat exchanger


67


wherein it is warmed so as to serve by indirect heat exchange as a source of cooling for retentate stream


5


. Resulting warmed stream


23


is combined with stream


19


which is also a waste stream from the cryogenic separation system to form sweep stream


9


. Stream


9


is passed through one of either passage


65


or


66


, i.e. the passage through which retentate stream


5


is not passing, and in the process the plated carbon dioxide and water vapor in that passage are passed into the sweep stream and the passage is cleaned for the next periodic flow therethrough of the retentate. Stream


9


is also warmed by passage through heat exchanger


67


thereby serving to cool retentate stream


5


. The resulting carbon dioxide laden sweep stream


10


, after venting via vent stream


11


to prevent carbon dioxide accumulation in the system, may be recycled in stream


12


to reactor


1


for additional production of synthesis gas mixture as shown in FIG.


1


. Warming stream


18


through heat exchanger


67


prior to mixing with stream


19


enables control of the temperature difference between streams


26


and


16


, ensuring that carbon dioxide deposited in heat exchanger


67


will be adequately removed.




Carbon monoxide product stream


8


from the cryogenic separation system is divided into streams


26


and


25


. Stream


26


is warmed by passage through heat exchanger


67


thereby serving to cool by indirect heat exchange retentate stream


5


. Resulting warmed stream


17


is recovered as product carbon monoxide. Stream


25


is warmed by passage through heat exchanger


67


thereby also serving to cool by indirect heat exchange retentate stream


5


, and resulting stream


21


is cycled into stream


26


for passage through heat exchanger


67


and recovery in stream


17


. Warming stream


25


through heat exchanger


17


prior to mixing with stream


73


enables control of the temperature difference between streams


26


and


16


, ensuring that carbon dioxide deposited in heat exchanger


67


will be adequately removed.




A preferred embodiment of the cryogenic separation system for use in the practice of this invention is illustrated in FIG.


3


. Referring now to

FIG. 3

, stream


16


comprising carbon monoxide, hydrogen and hydrocarbons is partially condensed by passage through heat exchanger or condenser/reboiler


27


and resulting two phase stream


28


is passed into phase separator


31


. Vapor is passed out from phase separator


31


in stream


29


which is combined with other streams to form aforesaid waste stream


19


. Liquid comprising carbon monoxide, hydrogen and hydrocarbons is passed out from phase separator


31


in stream


30


and passed as first column feed into first cryogenic separation column


32


.




First cryogenic separation column


32


is operating at a pressure generally within the range of from 30 to 1000 psia. Within first column


32


the first column feed is separated by cryogenic separation into hydrogen-containing top fluid and into bottom fluid comprising carbon monoxide and hydrocarbons. Hydrogen top fluid is withdrawn from the upper portion of first column


32


in vapor stream


24


. A first portion


18


of stream


24


is passed through heat exchanger


67


and further processed as previously described in conjunction with

FIG. 2. A

second portion


49


of stream


24


is combined with other streams to form the aforesaid waste stream


19


.




Bottom fluid is withdrawn from the lower portion of first column


32


in liquid stream


48


and passed as stream


43


through reboiler/condenser


27


wherein it is partially vaporized by indirect heat exchange with partially condensing stream


16


. Resulting two phase stream


44


is passed to phase separator


33


. Liquid from phase separator


33


is passed in stream


40


to heat exchanger or condenser


39


wherein it is vaporized. Resulting vapor stream


41


is then combined with other streams to form aforesaid waste stream


19


which is further processed as was previously described in conjunction with FIG.


2


.




Vapor is withdrawn from phase separator


33


in stream


34


, a first portion


45


passed into first cryogenic separation column


32


and a second portion


46


passed as feed into second cryogenic separation column


35


which contains a rectification section and which is operating at a pressure generally within the range of from 30 to 1000 psia. Within second column


35


the bottom fluid


46


passed into that column is separated by cryogenic rectification into carbon monoxide vapor and hydrocarbon-containing liquid. It will be recognized by those skilled in the art that column


35


may also contain a stripping section located below the feed stage if the feed is to be a two phase fluid. Hydrocarbon liquid is withdrawn from the lower portion of second column


35


in stream


39


which is combined with stream


48


to form stream


43


which is processed as previously described. Carbon monoxide vapor is withdrawn from the upper portion of second cryogenic separation column


35


in stream


36


and a portion


8


of stream


36


is passed to the carbon dioxide removal cooler and then recovered in steam


17


as was previously described. Stream


17


has a carbon monoxide concentration of at least 50 mole percent and generally within the range of from about 95 to 100 mole percent. Typically the flowrate of stream


17


is less than 50,000 cfh, NTP.




The remaining portion


68


of stream


36


is condensed and returned to the upper portion of second column


35


as reflux. A first part


69


of stream


68


is condensed by passage through condenser


37


by indirect heat exchange with liquid nitrogen


42


which is vaporized and withdrawn as stream


47


. Resulting condensed stream


70


is then passed into second column


35


as part of stream


50


. A second part


71


of stream


68


is condensed by passage through condenser


38


by indirect heat exchange with liquid stream


40


, and resulting condensed stream


72


is combined with stream


70


to form stream


50


for passage as reflux into second cryogenic separation column


35


.




Although the invention has been described in detail with reference to a certain particularly preferred embodiment, those skilled in the art will recognize that there are other embodiments of the invention within the spirit and the scope of the claims.



Claims
  • 1. A method for producing carbon monoxide comprising:(A) providing a feed comprising carbon monoxide, carbon dioxide, hydrogen and hydrocarbons, and passing the feed through a membrane separation unit to separate the feed into a permeate, which comprises some of the hydrogen and carbon dioxide of the feed, and into retentate which has a higher concentration of carbon monoxide than does the feed; (B) cooling the retentate to remove essentially all of the remaining carbon dioxide, and passing the resulting fluid comprising carbon monoxide, hydrogen and hydrocarbons into a first cryogenic separation column as first column feed; (C) separating the first column feed in the first cryogenic separation column into hydrogen top fluid and into bottom fluid comprising carbon monoxide and hydrocarbons; (D) passing bottom fluid into a second cryogenic separation column and separating the bottom fluid in the second cryogenic separation column into carbon monoxide vapor and hydrocarbon liquid; and (E) recovering carbon monoxide vapor from the upper portion of the second cryogenic separation column as product carbon monoxide.
  • 2. The method of claim 1 wherein hydrogen top fluid is warmed to effect cooling of the retentate.
  • 3. The method of claim 1 wherein carbon monoxide vapor is warmed by indirect heat exchange with the retentate prior to recovery of the carbon monoxide vapor as product carbon monoxide.
  • 4. Apparatus for producing carbon monoxide comprising:(A) a membrane separation unit and means for passing a feed comprising carbon monoxide, carbon dioxide, hydrogen and hydrocarbons to the membrane separation unit; (B) a carbon dioxide removal cooler and means for passing fluid from the membrane separation unit to the carbon dioxide removal cooler; (C) a first cryogenic separation column and means for passing fluid from the carbon dioxide removal cooler to the first cryogenic separation column; (D) a second cryogenic separation column and means for passing fluid from the lower portion of the first cryogenic separation column into the second cryogenic separation column; and (E) means for recovering fluid from the upper portion of the second cryogenic separation column as product carbon monoxide.
  • 5. The apparatus of claim 4 wherein the carbon dioxide removal cooler comprises a reversing heat exchanger.
  • 6. The apparatus of claim 4 further comprising means for passing fluid from the upper portion of the first cryogenic separation column to the carbon dioxide removal cooler.
  • 7. The apparatus of claim 4 where in the means for recovering fluid from the upper portion of the second cryogenic separation column as product carbon monoxide includes the carbon dioxide removal cooler.
  • 8. The apparatus of claim 4 further comprising means for passing fluid from the lower portion of the second cryogenic separation column into the lower portion of the first cryogenic separation column.
  • 9. The apparatus of claim 4 further comprising a synthesis gas generating reactor and means for passing hydrocarbons and oxygen into the synthesis gas generating reactor, wherein the means for passing feed to the membrane separation unit passes from the synthesis gas generating reactor to the membrane separation unit, and further comprising means for passing fluid from the carbon dioxide removal cooler to the synthesis gas generation reactor.
  • 10. The apparatus of claim 4 wherein the means for passing fluid from the carbon dioxide removal cooler to the first cryogenic separation column includes a reboiler/condenser.
  • 11. The apparatus of claim 4 wherein the means for passing fluid from the lower portion of the first cryogenic separation column into the second cryogenic separation column includes a reboiler/condenser and a phase separator, and further comprising means for passing fluid from the phase separator into the lower portion of the first cryogenic separation column.
US Referenced Citations (8)
Number Name Date Kind
4566886 Fabian et al. Jan 1986
5073356 Guro et al. Dec 1991
5133793 Billy Jul 1992
5295356 Billy Mar 1994
5509271 Billy et al. Apr 1996
5538706 Kapoor et al. Jul 1996
5592831 Bauer et al. Jan 1997
5609040 Billy et al. Mar 1997