The present invention relates generally to magnetic resonance imaging and spectroscopy, and, more particularly, to magnetic resonance imaging and spectroscopy apparatus employing superconductor components, and to methods for manufacturing such apparatus.
Magnetic Resonance Imaging (MRI) technology is commonly used today in larger medical institutions worldwide, and has led to significant and unique benefits in the practice of medicine. While MRI has been developed as a well-established diagnostic tool for imaging structure and anatomy, it has also been developed for imaging functional activities and other biophysical and biochemical characteristics or processes (e.g., blood flow, metabolites/metabolism, diffusion), some of these magnetic resonance (MR) imaging techniques being known as functional MRI, spectroscopic MRI or Magnetic Resonance Spectroscopic Imaging (MRSI), diffusion weighted imaging (DWI), and diffusion tensor imaging (DTI). These magnetic resonance imaging techniques have broad clinical and research applications in addition to their medical diagnostic value for identifying and assessing pathology and determining the state of health of the tissue examined.
During a typical MRI examination, a patient's body (or a sample object) is placed within the examination region and is supported by a patient support in an MRI scanner where a substantially constant and uniform primary (main) magnetic field is provided by a primary (main) magnet. The magnetic field aligns the nuclear magnetization of precessing atoms such as hydrogen (protons) in the body. A gradient coil assembly within the magnet creates a small variation of the magnetic field in a given location, thus providing resonance frequency encoding in the imaging region. A radio frequency (RF) coil is selectively driven under computer control according to a pulse sequence to generate in the patient a temporary oscillating transverse magnetization signal that is detected by the RF coil and that, by computer processing, may be mapped to spatially localized regions of the patient, thus providing an image of the region-of-interest under examination.
In a common MRI configuration, the static main magnetic field is typically produced by a solenoid magnet apparatus, and a patient platform is disposed in the cylindrical space bounded by the solenoid windings (i.e. the main magnet bore). The windings of the main field are typically implemented as a low temperature superconductor (LTS) material, and are super-cooled with liquid helium in order to reduce resistance, and, therefore, to minimize the amount of heat generated and the amount of power necessary to create and maintain the main field. The majority of existing LTS superconducting MRI magnets are made of a niobium-titanium (NbTi) and/or Nb3Sn material which is cooled with a cryostat to a temperature of 4.2 K.
As is known to those skilled in the art, the magnetic field gradient coils generally are configured to selectively provide linear magnetic field gradients along each of three principal Cartesian axes in space (one of these axes being the direction of the main magnetic field), so that the magnitude of the magnetic field varies with location inside the examination region, and characteristics of the magnetic resonance signals from different locations within the region of interest, such as the frequency and phase of the signals, are encoded according to position within the region (thus providing for spatial localization). Typically, the gradient fields are created by current passing through coiled saddle or solenoid windings, which are affixed to cylinders concentric with and fitted within a larger cylinder containing the windings of the main magnetic field. Unlike the main magnetic field, the coils used to create the gradient fields typically are common room temperature copper windings. The gradient strength and field linearity are of fundamental importance both to the accuracy of the details of the image produced and to the information on tissue chemistry (e.g., in MRSI).
Since MRI's inception, there has been a relentless pursuit for improving MRI quality and capabilities, such as by providing higher spatial resolution, higher spectral resolution (e.g., for MRSI), higher contrast, and faster acquisition speed. For example, increased imaging (acquisition) speed is desired to minimize imaging blurring caused by temporal variations in the imaged region during image acquisition, such as variations due to patient movement, natural anatomical and/or functional movements (e.g., heart beat, respiration, blood flow), and/or natural biochemical variations (e.g., caused by metabolism during MRSI). Similarly, for example, because in spectroscopic MRI the pulse sequence for acquiring data encodes spectral information in addition to spatial information, minimizing the time required for acquiring sufficient spectral and spatial information to provide desired spectral resolution and spatial localization is particularly important for improving the clinical practicality and utility of spectroscopic MRI.
Several factors contribute to better MRI image quality in terms of high contrast, resolution, and acquisition speed. An important parameter impacting image quality and acquisition speed is the signal-to-noise ratio (SNR). Increasing SNR by increasing the signal before the preamplifier of the MRI system is important in terms of increasing the quality of the image. One way to improve SNR is to increase the magnetic field strength of the magnet as the SNR is proportional to the magnitude of the magnetic field. In clinical applications, however, MRI has a ceiling on the field strength of the magnet (the US FDA's current ceiling is 3 T (Tesla)). Other ways of improving the SNR involve, where possible, reducing sample noise by reducing the field-of-view (where possible), decreasing the distance between the sample and the RF coils, and/or reducing RF coil noise.
Despite the relentless efforts and many advancements for improving MRI, there is nevertheless a continuing need for yet further improvements in MRI, such as for providing greater contrast, improved SNR, higher acquisition speeds, higher spatial and temporal resolution, and/or higher spectral resolution.
Additionally, a significant factor affecting further use of MRI technology is the high cost associated with high magnetic field systems, both for purchase and maintenance. Thus, it would be advantageous to provide a high quality MRI imaging system that is capable of being manufactured and/or maintained at reasonable cost, permitting MRI technology to be more widely used.
Various embodiments of the present invention provide a cryogenically cooled superconducting RF head-coil array which may be used in whole-body MRI scanners and/or in dedicated, head-only MRI systems (also referred to herein as “head-dedicated MRI systems,” “head-only MRI systems,” or the like). Some embodiments of the invention provide a head-dedicated MRI system and, more particularly, various embodiments provide a superconducting main magnet for a head-dedicated MRI system which, in some embodiments, further comprises a cryogenically-cooled superconducting RF head-coil array according to embodiments of the present invention.
In accordance with some embodiments, a superconducting radiofrequency coil array module configured for cryogenic cooling comprises: a vacuum thermal isolation housing comprising a double wall hermetically sealed jacket that (i) encloses a hermetically sealed interior space under a vacuum condition, and (ii) substantially encloses an interior chamber region that is separate from the hermetically sealed interior space and is configured to be evacuated to a vacuum condition; a plurality of superconductor radiofrequency coils disposed in said interior chamber region and configured, each radiofrequency coil configured for at least one of generating and receiving a radiofrequency signal for at least one of magnetic resonance imaging and magnetic resonance spectroscopy; at least one thermal sink member disposed in said interior chamber region and in thermal contact with the superconductor radiofrequency coils; and a port configured for cryogenically cooling at least the thermal sink member. The port may be coupled to a cryocooler that is thermally coupled to the at least one thermal sink member.
In some embodiments, each radiofrequency coil is in direct thermal contact with a respective one of the thermal sink members that are each in direct thermal contact with another of the thermal sink members that is in thermal contact with the cryocooler.
The radiofrequency coils may comprise at least eight radiofrequency coils that are azimuthally displaced about a common longitudinal axis at a substantially common displacement along the longitudinal axis, and are configured for imaging a region surrounded by the radiofrequency coils. Each of the radiofrequency coils may be configured to receive and not transmit radiofrequency signals.
The vacuum thermal isolation housing and radiofrequency coils may be dimensioned and configured for head imaging and not whole body imaging. In some embodiments, the radiofrequency coil array module is dimensioned and configured for use in a head-only magnetic resonance imaging system that comprises a main electromagnet system comprising: a first and second set of high temperature superconductor coils which are configured to be coaxial relative to a common longitudinal axis; wherein the first coil set includes at least two coils having an inner radius and disposed in a first region of a length along the common axis to cover a head and neck of a human body, and the second coil set includes at least one coil having an inner radius and disposed in a second region of a length along the common axis to cover a portion of a human torso; and wherein the first and second coils are configured to provide a uniform magnetic field in the first region to provide for imaging a region of interest of the individual's head when positioned within the first region.
It will be appreciated by those skilled in the art that the foregoing brief description and the following detailed description are exemplary and explanatory of the present invention, but are not intended to be restrictive thereof or limiting of the advantages which can be achieved by this invention. Additionally, it is understood that the foregoing summary of the invention is representative of some embodiments of the invention, and is neither representative nor inclusive of all subject matter and embodiments within the scope of the present invention. Thus, the accompanying drawings, referred to herein and constituting a part hereof, illustrate embodiments of this invention, and, together with the detailed description, serve to explain principles of embodiments of the invention. Aspects, features, and advantages of embodiments of the invention, both as to structure and operation, will be understood and will become more readily apparent when the invention is considered in the light of the following description made in conjunction with the accompanying drawings, in which like reference numerals designate the same or similar parts throughout the various figures.
Aspects, features, and advantages of embodiments of the invention, both as to structure and operation, will be understood and will become more readily apparent when the invention is considered in the light of the following description made in conjunction with the accompanying drawings, in which like reference numerals designate the same or similar parts throughout the various figures, and wherein:
The ensuing description discloses (i) various embodiments of a cryogenically cooled superconducting RF head-coil array which may be used in whole-body MRI scanners and/or in dedicated, head-only MRI systems (also referred to herein as “head-dedicated MRI systems,” “head-only MRI systems,” or the like) and (ii) various embodiments of a head-dedicated MRI system and, more particularly, various embodiments of a superconducting main magnet for a head-dedicated MRI system which, in some embodiments, further comprises a cryogenically-cooled superconducting RF head-coil array according to embodiments of the present invention.
More specifically, as will be further understood by those skilled in the art in view of the ensuing description, a cryogenically-cooled superconducting RF head-coil array coil according to various embodiments of the present invention may be implemented in myriad magnetic resonance imaging and spectroscopy systems, such as systems employing conventional copper gradient coils, systems employing superconducting gradient coils (e.g., such as disclosed in U.S. patent application Ser. No. 12/416,606, filed April 1, 2009, and in Provisional Application No. 61/170,135, filed Apr. 17, 2009, each of which is hereby incorporated by reference in its entirety), whole body systems, dedicated head-only systems, systems with a vertically or horizontally oriented main magnetic field, open or closed systems, etc. Similarly, as will be further understood by those skilled in the art in view of the ensuing description, a head-dedicated MRI system employing a superconducting main magnet according to various embodiments of the present invention may be implemented in myriad magnetic resonance imaging and spectroscopy systems, such as systems employing conventional copper gradient coils, systems employing superconducting gradient coils (e.g., such as disclosed in U.S. patent application Ser. No. 12/416,606, filed Apr. 1, 2009, and in Provisional Application No. 61/170,135, filed Apr. 17, 2009, each of which is hereby incorporated by reference in its entirety), systems employing conventional (e.g., copper) head coils or coil arrays, and/or systems employing a superconducting RF head coil array (e.g., according to superconducting RF head-coil embodiments described herein), etc. Similarly, it will also be understood by those skilled in the art that while various portions of the ensuing description may be set forth in the context of an MRI system that may be used for structural examination of a patient, various embodiments of the present invention may be employed in connection with magnetic resonance (MR) systems operated and/or configured for other modalities, such as functional MRI, diffusion weighted and/or diffusion tensor MRI, MR spectroscopy and/or spectroscopic imaging, etc. Additionally, as used herein, MRI includes and embraces magnetic resonance spectroscopic imaging, diffusion tensor imaging (DTI), as well as any other imaging modality based on nuclear magnetic resonance.
Accordingly, in the configuration of the superconducting RF head coil array 10 depicted in
More particularly, in accordance with various embodiments of the present invention, each of RF coil elements 3a-3h is implemented as a high temperature superconductor (HTS), such as YBCO and/or BSCCO, etc. (e.g., using an HTS thin film or HTS tape), though a low temperature superconductor (LTS) may be used in various embodiments. For example, in some embodiments, each of RF coil elements 3a-3h is an HTS thin film spiral coil and/or an HTS thin film spiral-interdigitated coil on a substrate such as sapphire or lanthanum aluminate. The design and fabrication of such coils is further described in and/or may be further understood in view of, for example, Ma et al., “Superconducting RF Coils for Clinical MR Imaging at Low Field,” Academic Radiology, vol. 10, no. 9, September 2003, pp. 978-987; Gao et al., “Simulation of the Sensitivity of HTS Coil and Coil Array for Head Imaging,” ISMRM-2003, no. 1412; Fang et al., “Design of Superconducting MRI Surface Coil by Using Method of Moment,” IEEE Trans. on Applied Superconductivity, vol. 12, no. 2, pp. 1823-1827 (2002); and Miller et al., “Performance of a High Temperature Superconducting Probe for In Vivo Microscopy at 2.0 T,” Magnetic Resonance in Medicine, 41:72-79 (1999), each of which is incorporated by reference herein in its entirety. Accordingly, in some embodiments, superconducting RF head coil array 10 is implemented as an HTS thin film RF head coil array.
As depicted in
It will be understood that double-walled Dewar 1 may be constructed, in a variety of ways, as a continuous, hermetically sealed glass housing enclosing an interior chamber (or cavity) 4 in which at least a low vacuum condition and, in accordance with some embodiments, preferably at least a high vacuum condition (e.g., about 10−6 Torr or lower pressure) is maintained. For example, in accordance with some embodiments, double-walled Dewar 1 may be manufactured as follows: (i) forming two generally cylindrical (e.g., but hexagonal in cross-section transverse to the longitudinal/cylindrical access) double-walled structures each having a generally U-shaped wall cross-section, the first corresponding to continuous glass wall portion 1a (comprising cylinders 60 and 66, ring 68 and plate 74) and the second corresponding to continuous wall portion 1b (comprising cylinders 62 and 64, ring 66, and plate 76), (ii) fitting the generally cylindrical continuous glass wall portion 1b into the annular space of generally cylindrical continuous glass wall portion 1a, possibly using glass spacers therebetween (e.g., identified in
In various embodiments, cryocooler 7 may be implemented as any of various single stage or multi-stage cryocoolers, such as, for example, a Gifford McMahon (GM) cryocooler, a pulse tube (PT) cooler, a Joule-Thomson (JT) cooler, a Stirling cooler, or other cryocooler. In various alternative embodiments, the superconductor RF head coil array 10 may be configured for cooling such that coils 3 are cooled by a cryogen, such as liquid helium and liquid nitrogen.
It is understood that while not shown in the drawings, a cryogenically cooled superconductor RF coil array (e.g., array 10) in accordance with various embodiments of the present invention includes at least one electrical feedthrough (e.g., through chamber 8) to provide for coupling electrical signals into and/or out of the array (e.g., for the RF coils, for controlling and/or monitoring any sensors (e.g., pressure and/or temperature, etc.) that may be provided in the module). Additionally, it will be understood that at least a portion of receiver and/or, if applicable, transmitter circuitry (e.g., amplifiers and/or filters and/or appropriate matching and/or decoupling circuitry) for each of the RF coils may be provided within the vacuum chamber; for example, it may be disposed on and in thermal contact with thermal conductors 5a-5h, wherein such cooling may provide for improving noise properties and/or for using superconducting components for at least a portion of such circuitry.
As understood in view of the foregoing description, in accordance with various embodiments of the present invention, superconducting RF head coil array 10 is implemented as a receive-only array, with an RF transmitter being implemented as a separate RF coil (not shown), which in various embodiments may be a conventional (e.g., non-superconducting, such as a conventional copper RF coil) RF transmitter coil or a superconducting RF transmitting coil. Such a separate transmitter coil may be configured external to the vacuum chamber comprising wall(s) 2 (e.g., external to Dewar 1) or, in some embodiments, within the vacuum chamber comprising wall(s) 2 (e.g., within Dewar 1). For instance, in the case that an RF transmission coil is implemented as one or more superconducting RF transmission coils (e.g., a high temperature superconductor (HTS) RF transmitter) that are separate from the RF receiver coils, then, in some embodiments, such one or more superconducting RF transmission coils may be disposed in thermal contact with one or more of thermal conductors 5a-5h.
In some embodiments, superconducting RF head coil array 10 may be implemented as a transmit and receive coil array (a transceiver array), with each of one or more of the superconducting RF coils 3a-3h being used for both transmission and reception of RF signals.
In accordance with various embodiments of the present invention, one or more of the superconducting RF coil elements 3a-3h may be implemented as a multiple resonance RF coil element (e.g., comprising two or more receiving coils having different resonant frequencies, such as for detecting sodium and hydrogen resonances at a given magnetic field (e.g., at 3 Tesla (T)). In some embodiments, two or more different ones of superconducting RF coil elements 3a-3h may be designed to have different resonant frequencies; for example, RF coil elements 3a, 3c, 3e, and 3g may be tuned to a first resonant frequency (e.g., that of hydrogen nuclei at 3 T) and RF coil elements 3b, 3d, 3f, and 3h may be tuned to a second resonant frequency (e.g., that of sodium nuclei at 3 T). As such, a superconducting RF head coil array in accordance with various embodiments of the present invention may be used for acquiring magnetic resonance signals from different types of nuclei in a simultaneous or time-multiplexed manner.
It is further understood that while the hereinabove described figures depict an illustrative embodiment of a superconducting RF head coil array having eight RF receiving channels (e.g., eight receiver coils), alternative embodiments of the present invention may comprise superconducting RF head coil arrays having less or more than eight superconducting RF receiving channels (e.g., less or more than eight RF receiver.
Additionally, as indicated above, it is understood that according to some embodiments of the present invention, a cryogenically-cooled superconducting RF head-coil array coil according to various embodiments of the present invention may be implemented in a magnetic resonance imaging system that employs superconducting gradient coils such as those disclosed in U.S. patent application Ser. No. 12/416,606, filed Apr. 1, 2009, and in Provisional Application No. 61/170,135, filed Apr. 17, 2009, each of which is hereby incorporated by reference in its entirety. In some embodiments, one or more of the superconducting gradient coils may be disposed within the same vacuum chamber as the superconducting RF coils (e.g., the gradient coils may be in thermal contact with the surfaces of thermal conductors 5a-5h that are opposite the surfaces in contact with coils 3a-3h).
Referring now to
As will be understood by those skilled in the art, a generally cylindrically shaped RF head coil array module such as depicted in the foregoing described embodiments may be well suited for use, for example, in an MRI system that employs a cylindrical, solenoid main magnet structure that generates a substantially uniform, horizontal magnetic field. For example, such an MRI system is schematically depicted in
As indicated above, while a superconductor RF head coil array in accordance with the hereinabove embodiments may be implemented in connection with a whole-body MRI scanner, such RF head coil arrays may alternatively be used in dedicated, head-only MRI scanners. In accordance with some embodiments of the present invention, a dedicated head-only scanner may implement a superconductor main magnet in accordance with embodiments represented by, and described in connection with, the following drawings. It will be understood, however, that MRI scanners employing a superconductor main magnet according to the ensuing embodiments may employ various RF coil configurations (e.g., array, non-array type, superconducting, non-superconducting, etc.), though some embodiments may employ superconducting RF head coil arrays implemented in accordance with embodiments described hereinabove.
More specifically, in accordance with some embodiments, the superconducting main magnet is an electromagnet system comprising a vacuum thermal isolation housing 41 (e.g., a dewar) that is integrated with a cryogenic system (not shown) to provide for cooling superconducting coils 42 via a heat pipe (not shown) and a heat sink assembly (not shown) in thermal contact with the superconducting coils. Superconducting coils may be implemented as high temperature superconductor (HTS) coils and, in some embodiments, may comprise at least one of the following superconductor materials: YBaCuO, BiSrCaCuO, TIBiCaCuO, and MgB2. By way of example, the temperature in the interior chamber region in which the coils are disposed may be in the range of about 77K-80K.
In accordance with some embodiments, as shown, the coils are configured as (i) a first coil set that is disposed in a first region to cover or surround or otherwise be disposed adjacent to an individual's head, and (ii) a second coil set that is coaxial with the first coil set and is disposed in a second region to cover or surround or otherwise be disposed adjacent to the individuals shoulders or upper torso, wherein the inner radius of the first set of coils is less than the inner radius of the second set of coils, and the coils are configured to provide a uniform magnetic field in the region of the individual's head. As will be understood by those skilled in the art in view of the herein disclosure, various embodiments may vary the number of coils per set, the coil radii, number of turns, longitudinal position and length, and electric current magnitude and direction in each coil to provide a desired magnetic field distribution. In accordance with some embodiments of the present invention, the longitudinal position and extension, the number of turns, and electric current direction of each coil are designed to provide 1-10 ppm uniform magnetic field within the first region for head imaging.
By way of example, the first set of coils may include at least two coils having an inner radius in a range of about 25-35 cm and disposed in a first region of a length along the common axis in a range of 40-60 cm to cover a head and neck of a human body, and the second set of coils may include at least one coil having an inner radius in a range of about 30-40 cm and disposed in a second region of a length along the common axis in a range of 15-25 cm to cover a portion of a human torso. In various alternative embodiments, the length of the first and second regions may, for example, range from about 20-70 cm and 10-40 cm, respectively, and the inner radii of the first and second set of coils may range from about 10-40 com and 20-50 cm, respectively. Some embodiments, may employ a length of the first and second regions in a range from about 10-20 cm and 20-30 cm respectively. Additionally, some embodiments may employ an inner radius of the first and second coils of about 10-20 cm and 20-30 cm, respectively.
By way of illustrative example,
Accordingly, as may be appreciated,
Accordingly, it may also be understood in view of the foregoing that for a head-only magnetic resonance imaging scanner according to embodiments of the present invention, the bore surrounding a DSV 43 of homogeneous fields is preferably not much larger in diameter than what is necessary to fit a patient's head, while the main magnet bore also includes a portion designed with a diameter having an appropriate size to accommodate the shoulder as shown in
The present invention has been illustrated and described with respect to specific embodiments thereof, which embodiments are merely illustrative of the principles of the invention and are not intended to be exclusive or otherwise limiting embodiments. Accordingly, although the above description of illustrative embodiments of the present invention, as well as various illustrative modifications and features thereof, provides many specificities, these enabling details should not be construed as limiting the scope of the invention, and it will be readily understood by those persons skilled in the art that the present invention is susceptible to many modifications, adaptations, variations, omissions, additions, and equivalent implementations without departing from this scope and without diminishing its attendant advantages. For instance, except to the extent necessary or inherent in the processes themselves, no particular order to steps or stages of methods or processes described in this disclosure, including the figures, is implied. In many cases the order of process steps may be varied, and various illustrative steps may be combined, altered, or omitted, without changing the purpose, effect or import of the methods described. It is further noted that the terms and expressions have been used as terms of description and not terms of limitation. There is no intention to use the terms or expressions to exclude any equivalents of features shown and described or portions thereof. Additionally, the present invention may be practiced without necessarily providing one or more of the advantages described herein or otherwise understood in view of the disclosure and/or that may be realized in some embodiments thereof. It is therefore intended that the present invention is not limited to the disclosed embodiments but should be defined in accordance with the claims that follow.
This application claims the benefit of U.S. Provisional Application No. 61/171,074, filed Apr. 20, 2009, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61171074 | Apr 2009 | US |