The present disclosure relates to cryosurgical probes for use in the treatment of cancerous tumors or lesions, and more particularly to a cryoprobe having an integral device for delivery of a cryoprotective or cryodestructive agent.
Cryosurgical probes are used to treat a variety of diseases. Cryosurgical probes quickly freeze diseased body tissue, causing the tissue to die after which it will be absorbed by the body, expelled by the body, sloughed off or replaced by scar tissue. Cryothermal treatment can be used to treat prostate cancer and benign prostate disease. Cryosurgery also has gynecological applications. In addition, cryosurgery may be used for the treatment of a number of other diseases and conditions including breast cancer, liver cancer, glaucoma and other eye diseases.
A variety of cryosurgical instruments variously referred to as cryoprobes, cryosurgical probes, cryosurgical ablation devices, cryostats and cryocoolers have been used for cryosurgery. These devices typically use the principle of Joule-Thomson expansion to generate cooling. They take advantage of the fact that most fluids, when rapidly expanded, become extremely cold. In these devices, a high pressure gas mixture is expanded through a nozzle inside a small cylindrical shaft or sheath typically made of steel. The Joule-Thomson expansion cools the steel sheath to a cold temperature very rapidly. The cryosurgical probes then form ice balls which freeze diseased tissue. A properly performed cryosurgical procedure allows cryoablation of the diseased tissue without undue destruction of surrounding healthy tissue.
However, there is still a risk that during cryosurgery, healthy tissues, nerves, or blood vessels will be accidentally frozen. Such accidental freezing can cause additional complications, such as incontinence or impotence. In order to help avoid such accidental freezing, certain chemical compounds, known as cryoprotective or cryophylactic agents, can be used on the surrounding healthy tissues to help prevent them from becoming frozen. In addition, certain other agents, known as cryodestructive agents, can be used to enhance freezing of the target tissue.
The present disclosure is directed to a probe for use in a cryosurgical system that has an integral delivery device for delivering a treatment element at a desired stage of a cryosurgical procedure. The integral delivery device can take on a variety of forms, including a sealed lumen located in an outer retractable sheath surrounding a cryoprobe tip, a sealed channel attached to the side of the cryoprobe tip, a sealed channel inside the cryoprobe tip, or a sealed capsule located at a distal treatment end of the cryoprobe tip. Generally, the delivery device comes sealed to prevent air from being introduced into the system and to allow for selective delivery and application of the treatment element and a treatment site. Based upon the treatment to be performed, the treatment element can comprise a treatment agent, a treatment sensor, a treatment device and various combinations thereof. In some representative embodiments, the integral delivery device can provide for the delivery of a cryodestructive agent or a cryoprotective agent to the treatment site. Depending upon the treatment element, the probe can further comprise a puncture member allowing an operator to selectively puncture the integral delivery device so as to break a seal prior to delivery of the treatment element.
In one aspect of the present disclosure, a cryosurgical probe can comprise a probe tip and a sealed delivery device. The sealed delivery device is generally adapted to contain a treatment element, a treatment sensor, a treatment device and combinations thereof. In some representative embodiments, the sealed delivery device can allow for the selective delivery and application of a cryoprotective or cryodestructive agent onto a surrounding or target region of a treatment site at the beginning of an operation. The sealed delivery device is integrally attached to the cryoprobe tip such that delivery of the treatment element as well as use of the cryosurgical probe to perform cryosurgery is accomplished with the same cryosurgical probe. The cryosurgical probe can comprise a puncture member allowing a medical professional to selectively pierce or otherwise puncture the sealed delivery device to allow for application, approximation, injection or insertion of the treatment element at the treatment site.
In another aspect of the present disclosure, a method for cryosurgical treatment of tissue can comprise providing a cryosurgical probe having a probe tip with an integral sealed delivery element. The cryosurgical probe can be positioned such that the probe tip and integral sealed delivery element are positioned proximate a treatment site. Once the integral sealed delivery element is suitably positioned, the integral sealed delivery element can be punctured or otherwise pierced such that a treatment element contained within the integral sealed delivery element can be applied, approximated, injected or otherwise inserted at the treatment site. Depending upon the treatment to be performed, the integral sealed delivery element can be pierced prior to, during or after a cryosurgical procedure performed with the cryosurgical probe. In one representative embodiment, a cryoprotective or cryodestructive agent can be applied to the treatment site or surrounding tissue prior to the cryosurgical procedure.
In yet another aspect of the present disclosure, a cryosurgical treatment system can comprise a closed loop cryosurgical system including one or more cyroprobes having a sealed delivery channel containing a treatment element. The closed loop cryosurgical system allows for selective freezing of target regions of tissue with the cryoprobe while simultaneously delivering the treatment element to the target region. At an appropriate time, either prior to, during or after the cryosurgical procedure is performed, the sealed delivery channel can be punctured or otherwise pierced such that the treatment element can be applied, approximated, injected or otherwise inserted at the target region. In one representative embodiment, a cryoprotective or cryodestructive agent can be applied to either the target region or surrounding tissue prior to the cryosurgical procedure.
The above summary of the various representative embodiments of the invention is not intended to describe each illustrated embodiment or every implementation of the invention. Rather, the embodiments are chosen and described so that others skilled in the art may appreciate and understand the principles and practices of the invention. The figures in the detailed description that follows more particularly exemplify these embodiments.
These as well as other objects and advantages of this invention, will be more completely understood and appreciated by referring to the following more detailed description of the presently preferred exemplary embodiments of the invention in conjunction with the accompanying drawings of which:
Referring to
In one representative embodiment, treatment agent 107 can comprise a cryodestructive agent. Utilizing cryoprobe 100, the selected cryodestructive agent can be injected into or otherwise applied to target regions of tissue prior to the cryosurgical procedure so as to enhance the freezing process at the target region. Representative examples of cryodestructive agents that are contemplated for use with the cryoprobe 100 can include, for example, water, ethanol, glycol, TNF-α, gold nanoparticles with TNF-α, other metallic nanoparticles (such as aluminum or Fe3O4), arsenic trioxide, DMXAA, pH lowering agents, chemotherapy agents such as Taxotere, Cisplatin, 5-FU, Peplomycin, or Adriamycin, Erk Inhibitors, Mitochondrial specific agents such as Cyclosporine A, Antimycin, or PK 11195, NaCl, AFP, solutions with low latent heat, solution with high thermal conductivity, or some combination of these. By integrally forming cryoprobe 100 so as to include a cryodestructive agent within integral delivery device 106, desired cryoinjury of the selected tissue can be enhanced in a simple and efficient manner with little alteration to the typical cryosurgical procedure.
In another representative embodiment, treatment agent 107 can comprise a cryoprotective agent such that cryoprobe 100 can be utilized to protect tissue surrounding a target region from accidental freezing. The cryoprotective agent can be injected into or otherwise applied to the surrounding tissue prior to conducting a cryosurgical treatment with the cryoprobe 100. Representative examples of suitable cryoprotective agents that can be used with cryoprobes of the present disclosure include glycerol, propylene, glycol, DMSA, DMSO, AFP, glucose, VM3, VEG, or some combinations of these. By integrally forming cryoprobe 100 so as to include a cryoprotective agent within integral delivery device 106, protection of selected tissue from exposure to freeze-induced cryoinjury is accomplished in a simple and efficient manner without significantly altering the typical cryosurgical procedure.
Referring now to
As illustrated in
Referring now to
In addition to providing for the introduction of cryoprotective and cryodestructive agents, representative cryoprobes of the present disclosure can comprise various additional features to enhance the efficacy, ease of use and outcomes of a cryosurgical treatment while reducing the potential for cryoinjury. For example, thermosensors may be inserted into various regions of interest in order to monitor the temperature of areas targeted for cryoablation and areas that are not to be frozen and/or to be warmed. In addition, heating probes may be inserted into surrounding tissue or other nearby areas of the body for warming select regions in order to prevent them from freezing during cryosurgery. Such a system may incorporate multiple probes wherein some probes are used for heating and some probes are used for freezing. Further, additional treatments, such as chemotherapy, radiation treatment, or percutaneous ethanol injection therapy, may be combined with cryosurgery in order to enhance patient treatment. The various cryoprobes of the present disclosure including cryoprobes 100, 200, 300 and 400, used individually or in combination, can be utilized to enhance the efficacy and cryosurgical outcome of a cryosurgical treatment such as, for example, cryosurgical treatment of prostate cancer. For illustrative purposes, use of a cyroprobe 500 is described though it will be understood that cryoprobes 100,200, 300 and 400 can be similarly employed. Referring to
Through the use of the various cryoprobes as described above, the opportunity for improved cryosurgical outcomes in enhanced. Treatment enhancements include enhanced cryoinjury regions, faster treatment times, cryotreatment at higher (and therefore safer) temperatures, greater localization of cryodamage, and improved protection of healthy tissue regions not targeted for freezing.
The above described embodiments of cryoprobes can be used with various types of cryoablation systems. In one presently preferred embodiment, the described cryoprobes are used with a closed-loop cryosurgical system. One such suitable system is described in co-pending U.S. Provisional Patent Application Ser. No. 60/820,290, filed Jul. 25, 2006, entitled “CLOSED LOOP CRYOSURGICAL SYSTEM,” which is hereby incorporated in its entirety by reference.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it will be apparent to those of ordinary skill in the art that the invention is not to be limited to the disclosed embodiments. It will be readily apparent to those of ordinary skill in the art that many modifications and equivalent arrangements can be made thereof without departing from the spirit and scope of the present disclosure, such scope to be accorded the broadest interpretation of the appended claims so as to encompass all equivalent structures and products.
The present application claims priority to U.S. Provisional Application No. 60/820,293, filed Jul. 25, 2006 and entitled “CRYOPROBE WITH INTEGRAL AGENT DELIVERY DEVICE, which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60820293 | Jul 2006 | US |