1. Field of the Invention
The present invention relates to cryostats including cryogen vessels for retaining cooled equipment such as superconductive magnet coils. In particular, the present invention relates to vacuum chambers provided for reducing heat reaching a cryogen vessel, and to venting arrangements allowing cryogen gas to escape from the cryogen vessel.
2. Description of the Prior Art
A negative electrical connection 21a is usually provided to the magnet 10 through the body of the cryostat. A positive electrical connection 21 is usually provided by a conductor passing through the vent tube 20.
For fixed current lead (FCL) designs, a separate vent path (auxiliary vent) (not shown in
The present invention addresses the consumption of cryogen during transportation of the cryostat, or at any time that the refrigerator 17 is inoperative. When the refrigerator 17 is inoperative, heat from the OVC 14, which is at approximately ambient temperature (250-315K), will flow towards the cryogen vessel 12 by any available mechanism. This may be by conduction through support structures (not illustrated) which retain the cryogen vessel and the radiation shield 16 in position within the OVC; by convection of gases, typically hydrogen, which may be present in the volume between the cryogen vessel 12 and the OVC 14; or by radiation from the inner surface of the OVC. Much attention is typically paid to reducing all of these possible mechanisms for thermal influx. Support structures are made as long and thin as mechanically practicable, and are constructed from materials of low specific heat capacities, to reduce thermal influx by conduction. Care is taken to remove as much gas as possible from the volume between the cryogen vessel and the OVC, although many gases will freeze as a frost on the surface of a cryogen vessel if a very cold cryogen such as helium is in use. One or more thermal radiation shields 16 are provided to intercept thermal radiation from the OVC. Any resultant heating of the thermal radiation shield is removed by the refrigerator 17. Further thermal insulation may be provided, such as the well-known “super-insulation”: multilayered insulation of aluminized polyester sheet, typically aluminized polyethylene terephthalate sheet, played in a layer between the cryogen vessel and the thermal shield 16; or between the thermal shield 16 and the OVC; or both.
In operation, cryogen liquid in cryogen vessel 12 boils, keeping the cooled equipment 10 at a constant temperature, being the boiling point of the cryogen. Refrigerator 17 removes heat from the cryogen gas and the thermal shield 16. Provided that the cooling power of the refrigerator is sufficient to remove any heat generated by the cooled equipment and any heat influx reaching the cryogen vessel, the cooled equipment 10 will remain at its steady temperature, and cryogen will not be consumed.
A difficulty arises during transportation of the cryostat, when the refrigerator is switched off; or at any other time that the refrigerator 17 is inoperative. With the refrigerator inoperative, any heat influx reaching the cryogen vessel, and any heat generated within the cryogen vessel, will cause cryogen liquid to boil. As the refrigerator is inoperative, the boiled-off cryogen cannot be recondensed into liquid, and will vent to atmosphere through vent tube 20 or the auxiliary vent. In the case of superconducting magnets, for example as used in Magnetic Resonance Imaging (MRI) systems, liquid helium is typically used as the cryogen. Liquid helium is expensive, and difficult to obtain in some parts of the world. It is also a finite resource. For these reasons, it is desired to reduce the consumption of helium cryogen during transport or at other times that the refrigerator 17 is not operating.
It is of course possible to transport the cryostat and the equipment 10 at ambient temperature, empty of cryogen. This will avoid the problem of cryogen consumption during transport. However, the equipment 10 and indeed the cryostat itself will need to be cooled on arrival at its destination. Such cooling is a skilled process, and on-site cooling has been found to be very expensive. Furthermore, the quantity of cryogen required to cool the equipment and cryostat from ambient temperature on arrival at an installation site has been found to far exceed current consumption rates over a reasonable transport time. Typical current systems are able to travel for at least 30 days without the refrigerator operating, and without the liquid cryogen boiling dry. This is known as the hold time. It is the aim of the present invention to improve the hold time of a cryostat.
Current known solutions consume approximately 2.5-3.0% of cryogen inventory per day of transit time. On current systems, this may equate to a consumption of 50 liters of liquid helium per day. The present invention aims to reduce this level of consumption, and so increase the hold time, simplifying the logistics of delivering a cooled equipment to a destination and/or reducing the consumption of cryogen.
Known attempts to address this problem have met with difficulties. Some of the known attempts to address this problem will be briefly discussed.
A second thermal radiation shield, concentric with first thermal shield 16 may be provided. This has been found somewhat effective in reducing thermal influx to the cryogen vessel, but has required increased size of OVC, and caused increased manufacturing costs.
A thermally conductive pipe has been run around the thermal shield, carrying escaping cryogen gas. As the gas is at a temperature of about 70-100K, such arrangements serve to cool the thermal shield. This has been somewhat effective at reducing thermal influx to the cryogen vessel. Such an arrangement is described, for example, in U.S. Pat. No. 7,170,377 and UK patent application GB 2 414 536, but has also required increased size of OVC to accommodate the thickness of the conductive pipe. Increased manufacturing costs also resulted from the additional assembly effort, and the material and labor costs of providing the cooling pipes and increasing the size of the OVC.
The present invention accordingly aims to provide an improved cryostat which reduces consumption of cryogen during transportation, or at any time when active refrigeration is not present, and does not suffer from the problems of the prior art.
The above object is achieved in accordance with the present invention by a cryostat having a cryogen vessel retained within an outer vacuum container (OVC), an active refrigeration unit that cools the OVC, and a thermally insulating jacket surrounding the OVC and insulating the OVC from ambient temperature.
The present invention provides reduced consumption of cryogen during transport, or at any time that the active refrigeration is inoperative, by cooling the OVC. Thermal influx to the cryogen vessel 12 takes place by many mechanisms, and most of these mechanisms operate in dependence on the temperature of the outer vacuum chamber.
For example, heat conduction to the cryogen vessel depends upon the thermal conductivity of support structures and other equipment in mechanical connection between the OVC and the cryogen vessel, such as vent tubes 20, electrical connections 21, 21a. However, the heat introduced along each of these conductors depends on the temperature difference between the cryostat and the OVC. By reducing the temperature of the OVC, the amount of heat reaching the cryogen vessel by thermal conduction will reduce.
Heat is also transferred to the cryogen vessel by thermal radiation. Thermal radiation from the OVC is typically intercepted by a thermal shield 16, and removed from the system by the refrigerator when in operation. When the refrigerator is not in operation, the temperature of the thermal shield will rise, and will emit thermal radiation to the cryogen vessel. If the temperature of the OVC is reduced, then the radiation to the shield will reduce; the temperature of the shield will reduce; the radiation from the shield to the cryogen vessel will reduce, and cryogen consumption will reduce. In current cryostats, thermal radiation is the dominant mechanism for heat influx to the cryogen vessel. The radiated power scales as T4, where T is the difference in temperature between the emitting surface and the receiving surface. By reducing the highest temperature—the temperature of the OVC—a significant reduction in radiated power may be achieved.
Some heat may reach the cryogen vessel by convection of gas within the vacuum space between the cryogen vessel and the OVC. Again, if the temperature of the OVC is reduced, the heat influx by this mechanism will reduce.
The inventors have performed simulations demonstrating the effect of a modest reduction of the temperature of the OVC.
Some assumptions were made to make the simulations simple. The geometry simulated is an infinite cylinder, to avoid complications with substantially planar end covers of the OVC 14, the cryogen vessel 12 and the shield 16. Emissivity values consistent with a stainless steel OVC, aluminum shield and aluminum foil-coated cryogen vessel have been used, as these are common materials in use in current cryostats. An OVC mass of 950 kg has been assumed, along with an ambient temperature of 300K.
The effect of a layer of super-insulation placed between the shield and the OVC, has been included. Twenty layers of density 15 layers/cm are assumed, having a room temperature emissivity of 0.04, and a mean temperature determined by the mean of the shield and OVC temperatures.
The conduction of heat through the shield supports has been included. Conducted power varies with OVC and shield temperatures.
The boil-off rate as a function of shield temperature has been determined. It has been assumed that the cooling power to the shield varies linearly with boil-off rate.
Table 1 shows a summary of the output from the simulation. A reduction of 21% in cryogen consumption (boil-off rate), which corresponds to a similar proportionate improvement in hold time can be achieved by a 20 K reduction in OVC temperature.
In an example pallet, schematically illustrated in
In an embodiment of the present invention, the jacket 30 is added over the OVC. The OVC is carried in a pallet in the usual manner.
In another pallet, suitable for application of the invention, as illustrated in
In a particular example, shown in cross-section on
The OVC and its cooled equipment may be mounted within a pallet and provided with a thermal jacket. The OVC and its cooled equipment may be transported in the pallet to a further manufacturing site, where further assembly steps are carried out on the OVC and cooled equipment, before it is transported to a final end-user destination, all without leaving the thermally insulating pallet.
In an embodiment of the present invention (not illustrated), an arrangement is made for actively cooling the OVC within the thermally insulating jacket. For example, an electrically powered refrigerator may be provided and employed to cool the OVC within the thermally insulating jacket. Such arrangement may be built into any of the pallets described above, provided that a suitable source of energy, such as an electrical source, is available during shipping, or is built into the pallet.
In a further, preferred, embodiment, illustrated in
Arrangements must be made to ensure that at least some of the cryogen gas escaping from the cryogen vessel 12 is made to flow through the cooling pipe 32. As will be apparent to those skilled in the art, this may be arranged by a temporary fitting on the vent tube or auxiliary vent.
Such arrangement may be built into any of the pallets described above, or may be permanently affixed to the OVC.
Assuming perfect thermal contact between the helium gas and OVC, no ambient heat load, and helium cryogen gas incident on the OVC at shield temperature (70-100K), the simulation referred to above demonstrates that a 20 K reduction in OVC temperature can be achieved in 2.4 days by use of the boil-off gas enthalpy only.
Typically, the OVC cooling pipe vents the boiled off cryogen gas to atmosphere.
In some embodiments, the cooling pipe 32 may be a permanent fixture, in which case heat transfer between the pipe 32 and the OVC 14 may be improved by bonding the pipe 32 to the OVC 14 by soldering or using a thermally conductive adhesive. It may be found advantageous in such embodiments to provide a permanent thermally insulating jacket, for example of expanded polyurethane foam.
By making the cooling pipe and thermally insulating jacket 30 a permanent feature, the advantages of the present invention may be enjoyed even while the cryostat is in operation, for example containing a superconducting magnet of a magnetic resonance imaging (MRI) system. By thermally insulating the OVC 14 from atmosphere, the temperature of the OVC 14 will be less than ambient, due to the effect of thermal radiation from the OVC 14 to the thermal shield 16, cooled by refrigerator 17. Reduced thermal influx due to reduced OVC 14 temperature may mean that a desired temperature within the cryostat may be achieved with a less powerful refrigerator 17. If cryogen gas escapes during operation and is directed through a cooling pipe 32. of the present invention, the effect will be even more pronounced, and the required power from refrigerator 17 may be reduced still further.
Alternatively, or in addition, arrangements may be made for actively cooling the OVC within the jacket. For example, an electrically powered refrigerator may be provided and employed to cool the OVC within the thermally insulating jacket. Such active refrigeration may be provided by a cooling loop similar to that employed in a domestic refrigerator or freezer.
Some equipment containing a cryostat, such as a magnet in an MRI system, is conventionally provided with “looks” covers, to improve the aesthetic appearance of the cryostat, and to provide acoustic damping. These typically comprise glass-fiber reinforced plastic moldings which are clipped into place over the surface of the cryostat's OVC 14. According to an embodiment of this invention, such looks covers may be provided with thermally insulating material, such as expanded polystyrene or polyurethane foam, or wool, or fiberglass wool, or rock wool, between the surface of the OVC and the “looks” covers themselves. Such thermal insulation may then be a permanent feature of the cryostat in use, and may also provide acoustic damping. In order to provide space for cooling pipes 32, molded channels may be provided in solid insulation such as expanded polystyrene or polyurethane foam. For flexible thermal insulation, such as fiberglass wool, or wool, or rock wool, the insulation may simply deform around the pipes. Other embodiments may include loose material such as expanded polystyrene beads. It is preferred that such material be contained within flexible pouches such as polythene bags to avoid spills. Such thermal insulation would also deform around the OVC cooling pipes.
On installation of the cryostat, the cooling pipes 32 may be left in place, possibly being used during operation of the cryostat by providing an escape path for cryogen gas, or the cooling pipes may be removed. The molded channels which would remain in a molded thermal insulation may be employed to house other components, such as electrical cables.
It may be preferred to remove the cooling pipes 32 on delivery. In such arrangements, a serpentine copper pipe arrangement may be found most advantageous, in that it is flexible enough to be wrapped around the OVC 14. In particular, a serpentine cooling pipe 32 may be wrapped around the outer cylindrical surface of the OVC 14, strapped into place using suitable straps, such as conventional luggage straps, and a flexible thermally insulating jacket 30 may be wrapped and fastened over the cooling pipe 32. The thermally insulating jacket 30 may be of fiberglass, wool, or rock wool enclosed in a suitable outer cover. Alternatively, a serpentine OVC cooling pipe may be retained within a flexible wrapper, such as a thin fiberglass blanket, which may be wrapped around the OVC 14 and tightened to provide sufficient thermal contact between the cooling pipe 32 and the OVC 14. A flexible thermally insulating jacket 30 may then be wrapped and fastened over the blanket.
By making the OVC cooling pipes and thermally insulating jacket temporary fixtures only, the cost of each system may be reduced since the OVC cooling pipes and the thermally insulating jacket may be removed from the cryostat on installation and re-used many times over on other cryostats.
The thermally insulated jacket may be constructed so as to provide mechanical damping to protect the OVC and the cryostat as a whole from mechanical shocks encountered during transport.
The thermally insulated jacket may be constructed so as to protect the OVC and the cryostat as a whole from harmful contaminants which may be encountered during transport, such as seawater.
The thermally insulating jacket may be integrated with a pallet for transporting the system.
In all embodiments of the present invention, extended hold times are enabled by the reduction in thermal influx to the cryogen vessel brought about by a reduction in the temperature of the OVC. In embodiments where the cooling pipe 32 and thermally insulating jacket 30 are removed, there is little manufacturing cost penalty in using the present invention, since the cooling pipe 32 and thermally insulating jacket 30 may be reused several times. In embodiments where a permanent cooling pipe 32 and thermally insulating jacket 30 are provided, the benefits of the present invention may be enjoyed even during operation of the cryostat, by continuing to ensure reduced OVC 14 temperatures. The requirement for later fitting “looks” covers may be avoided, or simplified, by the provision of a permanent thermally insulating jacket.
While the present invention has been described with specific reference to a limited number of particular embodiments, many modifications and variations will be apparent to those skilled in the art, and fall within the scope of the present invention. For example, outer vacuum chambers according to the present invention may be provided in cryostats holding cooled equipment other than magnets for MRI systems, being useful in any cryogenic storage Dewar. Similarly, insulated outer vacuum chambers according to the present invention are useful for cryostats containing any liquid cryogen, and the present invention is not limited to helium-cooled cryostats. While the cooling pipes 32 of the present invention have been discussed as, contacting an external surface of the OVC, the present invention also encompasses. arrangements in which the cooling pipes are provided on an interior surface of the OVC, within the vacuum region between the OVC and the cryogen vessel.
Although modifications and changes may be suggested by those skilled in the art, it is the intention of the inventors to embody within the patent warranted hereon all changes and modifications as reasonably and properly come within the scope of their contribution to the art.
Number | Date | Country | Kind |
---|---|---|---|
0721572.6 | Nov 2007 | GB | national |
0723788.6 | Dec 2007 | GB | national |