Cryosurgical instrument with enhanced heat exchange

Information

  • Patent Grant
  • 8083733
  • Patent Number
    8,083,733
  • Date Filed
    Monday, April 13, 2009
    15 years ago
  • Date Issued
    Tuesday, December 27, 2011
    12 years ago
Abstract
A cryosurgical instrument features a cryogen in liquid or liquid-gaseous (mist) form being supplied by a feeding lumen into the internal space of a cryotip at the distal end of the cryosurgical instrument. The distal section of the feeding lumen is helically coiled, so that an outer diameter of the helically coiled distal section fits an inner diameter of a cylindrical envelope of said cryotip, and said helically coiled distal section and said cylindrical envelope are in thermal contact.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a national stage filing under section 371 of International Application No. PCT/IB2009/051532, filed on Apr. 13, 2009, and published in English on Oct. 22, 2009, as WO 2009/0128014 and claims priority of U.S. application No. 61/045,372 filed on Apr. 16, 2008, the entire disclosure of these applications being hereby incorporated herein by reference.


FIELD OF THE INVENTION

The present invention relates to cryosurgical equipment, and, in particular, to cryoprobes intended to be inserted in tissue or to be brought in contact with the tissue in order to perform a cryosurgical procedure.


BACKGROUND OF THE INVENTION

Cryoprobes are known in the art for inducing a lower temperature or freezing in tissues. Typically, a cryogen is delivered into a cryoprobe in the form of mist, i.e., in the form of small cryogen droplets distributed in the vapors of the cryogen itself. A certain fraction of the liquid cryogen evaporates during delivery to the cryoprobe as a result of imperfections in the thermal insulation of a delivery hose. The cryogen mist cannot be separated completely in the internal cavity of the cryotip (the distal section of the cryoprobe) on the liquid and gaseous phases without application of special measures. Without such special means, it is impossible to use completely the liquid fraction of the cryogen for effective freezing.


There were some previous attempts with limited success to solve this problem. U.S. Pat. No. 5,324,286 describes a cryogenic apparatus which comprises a coolant system and a probe having a cryogenically-cooled tip. The probe is formed of an elongated housing having a distal end closed by the tip and a proximal end connected to the coolant system. The housing is adapted to receive cryogenic droplets entrained in a warm carrier gas stream supplied by the coolant system. The carrier gas stream passes through the housing such that the entrained cryogenic droplets are transported to the distal end of the probe for cooling the cold-tip. The tip is cryogenically-cooled by the cryogenic droplets which are collected at the base of the tip. More specifically, the carrier gas transports the entrained cryogenic droplets, through the inlet tube to the distal end of the probe where, because of their inertia, the droplets cannot follow the 180 degree bend of the returning carrier gas stream. Instead, the droplets are deposited and stored in a porous heat sink positioned in the cold-tip. The porous heat sink is positioned such that it is in thermal contact with a cold-tip head. Both the porous heat sink and the tip head are formed of a thermally conductive material. The liquid deposited in the heat sink from impinging droplets is evaporated by heat supplied by the object to be cooled, such as tumor tissue which is placed in contact with the cold-tip head. Accordingly, the tip reaches temperatures commensurate with the saturation temperature of the evaporating liquid cryogen.


U.S. Pat. No. 5,264,116 describes a cryoprobe with separation means in the form of a liquid nitrogen supply tube, which is provided with a plurality of small vent holes to vent gas formed or present in the refrigerant supply tube to the return refrigerant flow channel. The vent holes also allow a small amount of liquid nitrogen to vent into the return flow channel to further reduce the temperature differential between the sub-cooled liquid nitrogen supply and the counter-current flowing return refrigerant.


An analagous technical solution is described in U.S. Pat. No. 5,520,682. However, such design of a separator cannot ensure effective separation of liquid and gaseous phases of the cryogen mixture.


An article by S. L. Qi et al. “DEVELOPMENT AND PERFORMANCE TEST OF A CRYOPROBE WITH HEAT TRANSFER ENHANCEMENT CONFIGURATION” CRYOGENICS 46 (2006) 881-887, describes a cryosurgical system, which functions on the basis of liquid nitrogen, supplied into a cryoprobe from a dewar flask. In order to improve quality of the liquid-gaseous mixture supplied from the dewar flask, there is a separator, which is positioned immediately after the dewar flask and serves for separation between the liquid and gaseous phases of the stream.


However, this technical solution cannot provide complete separation of gaseous and liquid phases because of the process of further gasification of the liquid nitrogen, which occurs in the supplying hose of the system and in the cryoprobe itself as a result of imperfection of their thermal insulations.


U.S. Pat. Nos. 4,831,856 and 5,800,487, among others, describe application of helical tubes as counter-flow heat exchangers in cryosurgical instruments operating on the principle of Joule-Thomson.


SUMMARY OF THE INVENTION

The background art does not teach or suggest a cryoprobe which provides efficient heat transfer at the distal end of the probe. The background art also does not teach or suggest the use of helical tubes for droplet separators and/or internal fins as described herein.


The present invention provides a cryosurgical instrument that features a cryogen in liquid or liquid-gaseous (mist) form being supplied into the internal space of the distal section of the cryosurgical instrument, which is terminated by a cryotip. Fins of a special form are provided in order to separate droplets.


The cryosurgical instrument of the present invention comprises a shaft, which ends at its distal edge with a cryotip.


A feeding lumen is situated in the shaft and sealed with its proximal edge. The proximal end of the feeding lumen protrudes from the proximal end of the shaft and is terminated with a connection inlet serving for supply of the liquid or gaseous cryogen into the internal space of the cryotip. The proximal section of the shaft is provided with an outlet connection with a function to remove the evaporated cryogen from the internal space of the cryosurgical instrument.


In addition, the shaft is provided with a layer of thermal insulation intended to minimize or prevent any undesired freezing effect of the cryogen on surrounding tissue.


In order to achieve high values of heat transfer from the internal wall of the cryotip to the supplied cryogen, the distal section of the feeding lumen preferably has a form of a helical tube, which is situated in tight thermal contact with the internal wall of the cryotip. The distal end of this helical tube is open, so that the cryogen enters from this distal end into the internal space of the cryotip and then is exhausted via the outlet connection of the cryosurgical instrument.


The helical tube preferably provides internal fins for the envelope of the cryotip. Such an exemplary form of the internal fins has a significant advantage: in the process of the cryogen flowing in the helical section of the feeding lumen, heat transfer coefficient of the cryogen to the internal wall of this helical section achieves very high value.


Without wishing to be limited by a single hypothesis, it is believed that this enhancement of heat transfer is based on two physical phenomenon: eddying flow separation of the droplets in the distal helical section of the feeding lumen and higher value of heat transfer coefficient of the gaseous fraction of the cryogen to the internal wall of the helical tube because of its eddying motion and the decreased hydraulic diameter of the feeding lumen in the helical portion.


There are some optional embodiments to ensure good thermal contact between the helical section of the feeding lumen and the internal wall of the envelope of the cryotip.


In an embodiment of the present invention, there is mechanical contact between the helical tube and the internal surface of the cryotip envelope. This contact can be improved by abrading the outer surface (to be in the contact with the internal wall of the cryotip envelope) of the helical tube.


In another embodiment of the invention, the helical tube is soldered or otherwise joined directly to the internal surface of the cryotip envelope.


In yet another embodiment of the invention, the helical tube and the internal surface of the cryotip envelope are optionally and preferably joined by deposition of chemical nickel, copper or silver, or any other suitable material, as it is known in the art of electroplating.


It should be noted that the helical tube preferably has a pitch that provides an eddying flow of the cryogen outside to the helical tube, which provides an additional effect of eddying flow separation for the cryogen flowing in the internal space of the cryotip envelope outside to the helical section of the feeding lumen.


In some embodiments, the heat transfer coefficient for the cryogen flowing in the helical section of the feeding lumen is enhanced by inserting a metal wire spiral into the distal section of the feeding lumen before winding this distal section in the form of the helical tube. The outer diameter of the metal wire spiral fits the internal diameter of the feeding lumen, such that this metal wire spiral provides an internal fin of the distal section of the feeding lumen, which, after winding this distal section provides an additional factor of heat transfer enhancement for the internal surface of the helical distal section of the feeding lumen.


The above embodiments support the important function of separating liquid droplets of the cryogen and its gaseous phase immediately near the internal surface of the cryotip and directing the obtained liquid phase on the internal surface following boiling and evaporation of this liquid phase.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1
a is an axial cross-section of a cryosurgical instrument with application of a bushing as a joining element of the cryoprobe construction and a female unit of the quick coupling.



FIG. 1
b is an axial cross-section of a cryosurgical instrument with application of a bushing as a joining element of the cryoprobe construction.



FIG. 1
c is an axial cross-section of the female unit of the quick coupling.



FIG. 1
d is an exploded axial cross-section of a cryotip of the cryosurgical instrument with a distal section of a feeding lumen in the form of a helical tube.



FIG. 1
e is an exploded axial cross-section of a cryotip of the cryosurgical instrument with a distal section of a feeding lumen in the form of a helical tube and a wire metal spiral installed in the helical tube.





DESCRIPTION OF PREFERRED EMBODIMENTS


FIG. 1
a is an axial cross-section of a cryosurgical instrument with application of a bushing as a joining element of the cryoprobe construction and a female unit of the quick coupling.



FIG. 1
b is an exploded axial cross-section of a cryotip of the cryosurgical instrument with a distal section of a feeding lumen in the form of a helical tube.


This embodiment of cryoprobe 100 comprises shaft 101, which terminates at its distal edge with cryotip 102. Shaft 101 is preferably fabricated from a rigid material in the case of the design of the cryosurgical instrument as a cryoprobe, and from a flexible material in the case of the design of the cryosurgical instrument as a cryocatheter.


A feeding lumen 103 is situated in shaft 101; the proximal end of the feeding lumen 103 preferably protrudes from the proximal end of shaft 101. The extreme proximal section of the feeding lumen 103 is preferably longitudinally turned. The proximal sections of shaft 101 and the feeding lumen 103 receive a male unit 110 which together comprise a quick coupling mechanism.


The distal section 140 of the feeding lumen 103 is twisted into a helical coil, described herein as being helically coiled and is also described herein as a helical tube, so that the outer diameter of the helical coil of distal section 140 fits the inner diameter of a cylindrical envelope 141 of cryotip 102. The pitch of the helical coil into which distal section 140 is formed preferably provides an eddying flow of the cryogen around distal section 140, which provides an additional effect of eddying flow separation for the cryogen flowing in the internal space of the feeding lumen 103, after emerging from a distal end 142 of distal section 140, which is open. By “eddying flow” it is meant that various eddies are created as the cryogen flows around distal section 140, as the cryogen swirls, thereby creating turbulence.


In an embodiment of the present invention, there is mechanical contact between the helical tube of distal section 140 and the internal surface of the cryotip envelope 141. This contact can be improved by abrading the outer surface (to be in the contact with the internal wall of the cryotip envelope 141) of the helical tube.


In another embodiment of the invention, the helical tube of distal section 140 is soldered or otherwise joined directly to the internal surface of the cryotip envelope 141.


In yet another embodiment of the invention, the helical tube of distal section 140 and the internal surface of the cryotip envelope 141 are optionally and preferably joined by deposition of chemical nickel, copper or silver, or any other suitable material, as it is known in the art of electroplating.


A wire spiral 143 is installed in the distal section 140 in the version shown in FIG. 1e. Wire spiral 143 may optionally and preferably be comprised of metal or any temperature conducting material. Although shown herein as a wire, wire spiral 143 may optionally be configured as any type of helical shape.


Thermal insulation of shaft 101 is provided by an intermediate tube 104 with two flanged ends 105 and 106, wherein the outer diameter of the formed flange ends 105 and 106 conforms to the internal diameter of the shaft. Friction between the internal surface of shaft 101 and flanged ends 105 and 106 ensures stable positioning of the intermediate tube 104 with regard to shaft 101.


The male unit 110 of the quick coupling, which is installed on the proximal sections of shaft 101 and the feeding lumen 103, comprises bushing 107.


The outer surface of bushing 107 comprises proximal and distal cylindrical sections 108 and a middle section 109; the proximal and distal sections 108 have the same diameter, and diameter of the middle section 109 is preferably somewhat smaller.


The inner surface of bushing 107 is preferably also stepped, such that distal, intermediate and proximal sections 111, 115 and 112 respectively of bushing 107 have progressively decreasing diameters.


Bushing 107 is installed on the proximal sections of shaft 101 and the feeding lumen 103 in such a manner that the distal section of the inner surface of the bushing is fitted tightly on the proximal section of the shaft and the proximal inner surface 112 of bushing 107 is fitted slidingly on the longitudinally turned proximal section of the feeding lumen 103. After positioning bushing 107 on the proximal section of shaft 101, the proximal edge of the feeding lumen 103 is flanged with formation flange 113 and application of a deformable o-ring 116 from a cryogenically stable polymer for sealing the gap between the proximal sections of the internal surface of bushing 107 and the feeding lumen 103. A first through channel 114 communicates the internal and external spaces of bushing 107 in the place of its inner intermediate section 115 and its outer middle section 109.


A female unit 117 of the quick coupling mechanism is designed as housing 118, with a cylindrical inner cavity, wherein the diameter of the cylindrical section 119 of the inner cavity conforms to the outer diameter of the distal and proximal sections 108 of bushing 107.


The cylindrical section 119 is provided with distal and proximal annular grooves 120 and 121, which serve for installation of steady sealing O-rings 123 and 122.


A through opening 124 in the proximal face plane of the inner cavity serves for installation of an inlet connection 125 supplying the cryogen into cryoprobe 100. It should be noted that the tolerances of the bushing 107 and the housing 118 permit sliding insertion of bushing 107 of cryoprobe 100 into housing 118 of the female unit 117; the polymer o-rings 123 and 122 installed in the aforementioned annular grooves 120 and 121 of housing 118 provide sealing.


In addition, the inner surface of the face plane of housing 118 is provided with blind holes 126 and helical springs 127, which are partially situated in these blind holes 126. In the process of coupling, the male unit 110 of the coupling pair is spring-actuated by these helical springs 127.


A second through channel 128 with an outlet connection 129 installed on the outer end of the second through channel 128 communicates the annular channel formed between the middle section 109 of bushing 107 and the outside space of housing 118.


First through channel 114, the formed annular channel and second through channel 128 serve for exhausting evaporated cryogen from cryoprobe 100.


The heat transfer coefficient for the cryogen flowing through distal section 140 of the feeding lumen 103 is preferably enhanced by inserting wire spiral 143, which as noted above preferably comprises metal or any temperature conductive material, into the distal section 140 of the feeding lumen 103, before distal section 140 assumes its helical form. The outer diameter of the wire spiral 143 fits the internal diameter of the feeding lumen 103, such that wire spiral 143 provides an internal fin of the distal section 140 of the feeding lumen 103. This arrangement provides an additional factor of heat transfer enhancement for the internal surface of the helical distal section 140 of the feeding lumen 103.


Persons skilled in the art will appreciate that the present invention is not limited to what has been particularly shown and described hereinabove. Rather the scope of the present invention is defined by the appended claims and includes both combinations and sub combinations of the various features described hereinabove as well as variations and modifications thereof, which would occur to persons skilled in the art upon reading the foregoing description.

Claims
  • 1. A cryosurgical instrument operating on cryogen in liquid or gaseous-liquid forms; comprising: an external shaft;a cryotip joined with a distal edge of said external shaft;a feeding lumen, at least partially situated in an internal space of said external shaft and cryotip, wherein a proximal edge of said external shaft is joined with a proximal section of said feeding lumen; andwherein a distal section of said feeding lumen is helically coiled, so that an outer diameter of the helically coiled distal section fits an inner diameter of a cylindrical envelope of said cryotip, and said helically coiled distal section and said cylindrical envelope are in thermal contact, the instrument further comprising a wire spiral installed in the helically coiled distal section.
  • 2. The instrument of claim 1, wherein the thermal contact between the cylindrical envelope and the helically coiled distal section is provided mechanically by physical contact between the cylindrical envelope and the helically coiled distal section.
  • 3. The instrument of claim 1, wherein the thermal contact between the cylindrical envelope and the helically coiled distal section is provided by solder joining the cylindrical envelope and the helically coiled distal section together.
  • 4. The instrument of claim 1, wherein the thermal contact between the cylindrical envelope and the helically coiled distal section is provided by a chemical deposition of a metal coating.
  • 5. The instrument of claim 1, wherein said wire spiral comprises a metal.
  • 6. The instrument of claim 1, further comprising a proximal coupling unit, which includes an inlet connection for delivery of said cryogen into said feeding lumen and an outlet connection for removal of a gaseous component of said cryogen; and a thermal insulation unit of said external shaft.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/IB2009/051532 4/13/2009 WO 00 5/18/2011
Publishing Document Publishing Date Country Kind
WO2009/128014 10/22/2009 WO A
US Referenced Citations (272)
Number Name Date Kind
3234746 Smith Feb 1966 A
3358472 Kipling Dec 1967 A
3664344 Bryne May 1972 A
3699775 Cowans Oct 1972 A
3712306 Bryne Jan 1973 A
3736936 Basiulis Jun 1973 A
3800552 Sollami Apr 1974 A
3862630 Balamuth Jan 1975 A
3882849 Jamshidi May 1975 A
3938505 Jamshidi Feb 1976 A
3971383 Van Gerven Jul 1976 A
4082096 Benson Apr 1978 A
4091634 Shepherd May 1978 A
4127903 Schachar Dec 1978 A
4200104 Harris Apr 1980 A
4211231 Rzasa Jul 1980 A
4279626 Buchmuller Jul 1981 A
4306568 Torre Dec 1981 A
4313306 Torre Feb 1982 A
4367744 Sole Jan 1983 A
4428748 Peyman Jan 1984 A
4463458 Seidner Aug 1984 A
4481948 Sole Nov 1984 A
4487253 Malek Dec 1984 A
4552208 Sorensen Nov 1985 A
4570626 Norris Feb 1986 A
4573525 Boyd Mar 1986 A
4611654 Buchsel Sep 1986 A
4617018 Nishi Oct 1986 A
4676225 Bartera Jun 1987 A
4726194 Mackay Feb 1988 A
4765396 Seidenberg Aug 1988 A
4770171 Sweren Sep 1988 A
4802475 Weshahy Feb 1989 A
4831856 Gano May 1989 A
4946460 Merry Aug 1990 A
5026387 Thomas Jun 1991 A
5047043 Kubota Sep 1991 A
5108390 Potocky Apr 1992 A
5147355 Friedman Sep 1992 A
5188102 Idemoto Feb 1993 A
5214925 Hoy Jun 1993 A
5222937 Kagawa Jun 1993 A
5224943 Goddard Jul 1993 A
5243826 Longsworth Sep 1993 A
5254082 Takase Oct 1993 A
5254116 Baust Oct 1993 A
5261923 Soares Nov 1993 A
5263957 Davison Nov 1993 A
5264116 Apelian Nov 1993 A
5275595 Dobak Jan 1994 A
5281215 Milder Jan 1994 A
5295484 Marcus Mar 1994 A
5324286 Fowle Jun 1994 A
5330745 Mcdow Jul 1994 A
5334181 Rubinsky Aug 1994 A
5342380 Hood Aug 1994 A
5361591 Caldwell Nov 1994 A
5391144 Sakurai Feb 1995 A
5411374 Gram May 1995 A
5417073 James May 1995 A
5423807 Milder Jun 1995 A
5429138 Jamshidi Jul 1995 A
5438837 Caldwell Aug 1995 A
5441512 Muller Aug 1995 A
5445462 Johnson Aug 1995 A
5452582 Longsworth Sep 1995 A
5488831 Griswold Feb 1996 A
5516505 Mcdow May 1996 A
5520682 Baust May 1996 A
5526821 Jamshidi Jun 1996 A
5547473 Peyman Aug 1996 A
5573532 Chang Nov 1996 A
5600143 Roberts Feb 1997 A
5647868 Chinn Jul 1997 A
5654279 Rubinsky Aug 1997 A
5658276 Griswold Aug 1997 A
5674218 Rubinsky Oct 1997 A
5683592 Bartholomew Nov 1997 A
5687776 Forgash Nov 1997 A
5716353 Matsuura Feb 1998 A
5720743 Bischof Feb 1998 A
5728130 Ishikawa Mar 1998 A
5735845 Zupkas Apr 1998 A
5771946 Kooy Jun 1998 A
5787940 Bonn Aug 1998 A
5800448 Banko Sep 1998 A
5800487 Mikus Sep 1998 A
5814040 Nelson Sep 1998 A
5868673 Vesely Feb 1999 A
5885276 Ammar Mar 1999 A
5899897 Rabin May 1999 A
5906612 Chinn May 1999 A
5906628 Miyawaki May 1999 A
5910104 Dobak Jun 1999 A
5921982 Lesh Jul 1999 A
5976092 Chinn Nov 1999 A
5976505 Henderson Nov 1999 A
5992158 Goddard Nov 1999 A
6012453 Tsais Jan 2000 A
6024750 Mastri Feb 2000 A
6027499 Johnston Feb 2000 A
6032068 Daniel Feb 2000 A
6032675 Rubinsky Mar 2000 A
6035657 Dobak Mar 2000 A
6036667 Manna Mar 2000 A
6039730 Rabin Mar 2000 A
6041787 Rubinsky Mar 2000 A
6042342 Orian Mar 2000 A
6053906 Honda Apr 2000 A
6059820 Baronov May 2000 A
6063098 Houser May 2000 A
6095149 Sharkey Aug 2000 A
6142991 Schatzberger Nov 2000 A
6152894 Kubler Nov 2000 A
6182666 Dobak Feb 2001 B1
6200308 Pope Mar 2001 B1
6206832 Downey Mar 2001 B1
6212904 Arkharov Apr 2001 B1
6216029 Paltieli Apr 2001 B1
6235018 LePivert May 2001 B1
6237355 Li May 2001 B1
6251105 Mikus Jun 2001 B1
6270494 Kovalcheck Aug 2001 B1
6280407 Manna Aug 2001 B1
6354088 Emmer Mar 2002 B1
6355033 Moorman Mar 2002 B1
6358264 Banko Mar 2002 B2
6379348 Onik Apr 2002 B1
6383180 Lalonde May 2002 B1
6383181 Johnston May 2002 B1
6411852 Danek Jun 2002 B1
6413263 Lobdill Jul 2002 B1
6423009 Downey Jul 2002 B1
6432102 Joye Aug 2002 B2
6457212 Craig Oct 2002 B1
6468268 Abboud Oct 2002 B1
6468269 Korpan Oct 2002 B1
6471217 Hayfield Oct 2002 B1
6482178 Andrews Nov 2002 B1
6497714 Ishikawa Dec 2002 B1
6500109 Tokita Dec 2002 B2
6503246 Har-Shai Jan 2003 B1
6508814 Tortal Jan 2003 B2
6513336 Zurecki Feb 2003 B2
6547784 Thompson Apr 2003 B1
6551309 LePivert Apr 2003 B1
6562030 Abboud May 2003 B1
6565556 Korpan May 2003 B1
6581390 Emmer Jun 2003 B2
6582426 Moorman Jun 2003 B2
6631615 Drube Oct 2003 B2
6640556 Ursan Nov 2003 B2
6659730 Gram Dec 2003 B2
6659956 Barzell Dec 2003 B2
6672095 Luo Jan 2004 B1
6678621 Wiener Jan 2004 B2
6682525 Lalonde Jan 2004 B2
6698423 Honkonen Mar 2004 B1
6702761 Damadian Mar 2004 B1
6761715 Carroll Jul 2004 B2
6765333 Mariaucue Jul 2004 B1
6768917 Van Vaals Jul 2004 B1
6772766 Gallo Aug 2004 B2
6786902 Rabin Sep 2004 B1
6824543 Lentz Nov 2004 B2
6852706 Heber-Katz Feb 2005 B1
6858025 Maurice Feb 2005 B2
6869439 White Mar 2005 B2
6889695 Pankratov May 2005 B2
6898940 Gram May 2005 B2
6908472 Wiener Jun 2005 B2
6910510 Gale Jun 2005 B2
6913604 Mihalik Jul 2005 B2
6929639 Lafontaine Aug 2005 B2
6932771 Whitmore Aug 2005 B2
6936045 Yu Aug 2005 B2
6942659 Lehmann Sep 2005 B2
6951569 Nohilly Oct 2005 B2
6954977 Maguire Oct 2005 B2
6995493 Isoda Feb 2006 B2
7001378 Yon Feb 2006 B2
7025762 Johnston Apr 2006 B2
7025767 Schaefer Apr 2006 B2
7071690 Butts Jul 2006 B2
7081111 Svaasand Jul 2006 B2
7101367 Xiao Sep 2006 B2
7128739 Prakash Oct 2006 B2
7144228 Emmer Dec 2006 B2
7151374 Doty Dec 2006 B2
7160291 Damasco Jan 2007 B2
7160292 Moorman Jan 2007 B2
7165422 Little Jan 2007 B2
7189228 Eum Mar 2007 B2
7204833 Osorio et al. Apr 2007 B1
7207985 Duong Apr 2007 B2
7213400 Dickerson May 2007 B2
7220257 Lafontaine May 2007 B1
7223080 Duron May 2007 B2
7250046 Fallat Jul 2007 B1
7252648 Honda Aug 2007 B2
7255693 Johnston Aug 2007 B1
7273479 Littrup Sep 2007 B2
7278991 Morris Oct 2007 B2
7280623 Gupta Oct 2007 B2
7282919 Doty Oct 2007 B2
7288089 Yon Oct 2007 B2
7318327 Dickerson Jan 2008 B2
7344530 Bischof Mar 2008 B2
7344531 Bischoff Mar 2008 B2
7354434 Zvuloni Apr 2008 B2
7361187 Duong Apr 2008 B2
7381207 Duong Jun 2008 B2
7458968 Carroll Dec 2008 B2
7485117 Damasco Feb 2009 B2
7498812 Doty Mar 2009 B2
7510554 Duong Mar 2009 B2
7563260 Whitmore Jul 2009 B2
20010047129 Hall Nov 2001 A1
20020016540 Mikus Feb 2002 A1
20020022832 Mikus Feb 2002 A1
20020040220 Zvuloni Apr 2002 A1
20020077654 Javier Jun 2002 A1
20020085921 Gram Jul 2002 A1
20020144509 Chalk Oct 2002 A1
20020156469 Yon Oct 2002 A1
20020157402 Drube Oct 2002 A1
20020160640 Korpan Oct 2002 A1
20020161385 Wiener Oct 2002 A1
20030060762 Zvuloni Mar 2003 A1
20030079480 Emmer May 2003 A1
20030126867 Drube Jul 2003 A1
20030135119 Lee Jul 2003 A1
20030181897 Thomas Sep 2003 A1
20030220635 Knowlton Nov 2003 A1
20040024391 Cytron Feb 2004 A1
20040055316 Emmer Mar 2004 A1
20040078033 Levin Apr 2004 A1
20040215178 Maurice Oct 2004 A1
20050016185 Emmer Jan 2005 A1
20050038422 Maurice Feb 2005 A1
20050056027 White Mar 2005 A1
20050086949 Noble Apr 2005 A1
20050106153 Nordouist May 2005 A1
20050177147 Vancelette Aug 2005 A1
20050192564 Cosman Sep 2005 A1
20050214268 Cavanagh Sep 2005 A1
20050274142 Corey Dec 2005 A1
20060049274 Hume Mar 2006 A1
20060053165 Hume Mar 2006 A1
20060079867 Berzak Apr 2006 A1
20060122590 Bliweis Jun 2006 A1
20060155267 Berzak Jul 2006 A1
20060155268 Amir Jul 2006 A1
20060264920 Duong Nov 2006 A1
20060293647 McRae Dec 2006 A1
20070000259 Brook Jan 2007 A1
20070093710 Maschke Apr 2007 A1
20070129626 Mahesh Jun 2007 A1
20070129629 Beauregard Jun 2007 A1
20070149959 DeLonzor Jun 2007 A1
20070166171 Kondo Jul 2007 A1
20070167939 Duong Jul 2007 A1
20070276360 Johnston Nov 2007 A1
20080027419 Hamel Jan 2008 A1
20080051774 Ofir Feb 2008 A1
20080051776 Bliweis Feb 2008 A1
20080115509 Gullickson May 2008 A1
20080119834 Vancelette May 2008 A1
20080119838 Vancelette May 2008 A1
20080319433 Geiselhart Dec 2008 A1
20090011032 LePivert Jan 2009 A1
Foreign Referenced Citations (40)
Number Date Country
2437079 Jun 2004 CA
202004008875 Aug 2004 DE
102005050344 May 2007 DE
0292922 Nov 1988 EP
395307 Oct 1990 EP
570301 Nov 1993 EP
955012 Nov 1999 EP
919197 Feb 2005 EP
1108905 Apr 1968 GB
1108905 Apr 1968 GB
1402737 Aug 1975 GB
1473856 May 1977 GB
1534472 Dec 1978 GB
2336781 Nov 1999 GB
2336781 Nov 1999 GB
2409815 Jul 2005 GB
2004041428 Feb 2004 JP
2007144180 Jun 2007 JP
2007167100 Jul 2007 JP
WO8303961 Nov 1983 WO
WO9637158 Nov 1996 WO
WO9639960 Dec 1996 WO
WO9947876 Sep 1999 WO
WO0137919 May 2001 WO
WO0141683 Jun 2001 WO
WO0197702 Dec 2001 WO
WO0202026 Jan 2002 WO
WO03015651 Feb 2003 WO
WO2004060465 Jul 2004 WO
WO2004051409 Aug 2004 WO
WO2004089183 Oct 2004 WO
WO2004093635 Nov 2004 WO
20050000106 Jan 2005 WO
WO2005098308 Oct 2005 WO
WO2005000106 Dec 2005 WO
WO2006116457 Nov 2006 WO
WO2006127467 Nov 2006 WO
WO2007028232 Mar 2007 WO
WO2007086056 Aug 2007 WO
WO2007129308 Nov 2007 WO
Related Publications (1)
Number Date Country
20110224662 A1 Sep 2011 US
Provisional Applications (1)
Number Date Country
61045372 Apr 2008 US