Crystal forms of amino lipids

Information

  • Patent Grant
  • 11203569
  • Patent Number
    11,203,569
  • Date Filed
    Thursday, March 15, 2018
    6 years ago
  • Date Issued
    Tuesday, December 21, 2021
    2 years ago
Abstract
Provided herein are novel solid forms of each of four compounds: (1) heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate (“Compound 1”), (2) heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate (“Compound 2”), (3) heptadecan-9-yl 8-((2-hydroxyethyl)(8-(nonyloxy)-8-oxooctyl)amino)octanoate (“Compound 3”), and (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate (“MC3”), and related compositions and methods.
Description
TECHNICAL FIELD

This disclosure relates to solid crystalline forms of each of three compounds: (1) heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate (“Compound 1”), (2) heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate (“Compound 2”), and (3) heptadecan-9-yl 8-((2-hydroxyethyl)(8-(nonyloxy)-8-oxooctyl)amino)octanoate (“Compound 3”), and related compositions and methods. This disclosure also relates to solid crystalline forms of (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate (“MC3”), and related compositions and methods.


BACKGROUND

The effective targeted delivery of biologically active substances such as small molecule drugs, proteins, and nucleic acids represents a continuing medical challenge. In particular, the delivery of nucleic acids to cells is made difficult by the relative instability and low cell permeability of such species. Thus, there exists a need to develop methods and compositions to facilitate the delivery of therapeutic and/or prophylactics such as nucleic acids to cells.


Lipid-containing nanoparticle compositions, liposomes, and lipoplexes have proven effective as transport vehicles into cells and/or intracellular compartments for biologically active substances such as small molecule drugs, proteins, and nucleic acids. Such compositions generally include one or more “cationic” and/or amino (ionizable) lipids, phospholipids including polyunsaturated lipids, structural lipids (e.g., sterols), and/or lipids containing polyethylene glycol (PEG lipids). Cationic and/or ionizable lipids include, for example, amine-containing lipids that can be readily protonated. Though a variety of such lipid-containing nanoparticle compositions have been demonstrated, improvements in safety, efficacy, and specificity are still lacking. In addition, the physical and chemical properties of lipid materials often present challenges relating to the practice of making and using lipid-containing nanoparticles for drug delivery.


SUMMARY

Long-chain amino lipids are usually viscous oils at room temperature. Solid forms of these lipids are desirable for e.g., improving handling, improving stability (such as storage stability) and/or control of physical/chemical properties, simplifying purification process, simplifying large-scale production process and/or increasing accuracy in measurements and characterization of lipids.


Accordingly, provided herein are novel solid forms (e.g., crystalline forms) of each of three compounds (1) heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate (“Compound 1”), (2) heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate (“Compound 2”), and (3) heptadecan-9-yl 8-((2-hydroxyethyl)(8-(nonyloxy)-8-oxooctyl)amino)octanoate (“Compound 3”), the structure of each of which is provided below:




embedded image


In another aspect, provided herein are novel solid forms (e.g., crystalline forms) of (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate (“MC3”), the structure of which is provided below:




embedded image


In one aspect, disclosed herein is salt or cocrystal of heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate (“Compound 1”), heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate (“Compound 2”), or heptadecan-9-yl 8-((2-hydroxyethyl)(8-(nonyloxy)-8-oxooctyl)amino)octanoate (“Compound 3”). In another aspect, the salt or cocrystal of Compound 1, 2, or 3 has a melting point of about 50° C. or greater (e.g., about 60° C., about 70° C. or greater). In another aspect, the salt or cocrystal of Compound 3 has a melting point of about 270° C. or greater (e.g., about 280° C., about 290° C. or greater). For example, the salt or cocrystal of Compound 1, 2, or 3 is formed between Compound 1, 2, or 3 and a coformer compound (e.g., an acid).


In one aspect, disclosed herein is a salt or cocrystal of (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate (“MC3”). In another aspect, the salt or cocrystal of MC3 has a melting point of about 150° C. or greater (e.g., about 160° C., about 170° C., about 180° C. or greater, about 190° C. or greater). In another aspect, disclosed herein is a salt or cocrystal of (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate (“MC3”). In another aspect, the salt or cocrystal of MC3 has a melting point of about 50° C. or greater (e.g., about 60° C., about 70° C., about 80° C. or greater). For example, the salt or cocrystal of MC3 is formed between MC3 and a coformer compound (e.g., an acid).


In one aspect, this disclosure is directed to a salt or cocrystal of heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate (“Compound 1”) and a compound (e.g., a coformer compound) selected from the group consisting of 4-hydroxybenzoic acid, oxalic acid, trimellitic acid, orotic acid, trimesic acid, and sulfuric acid.


In another aspect, this disclosure is directed to a salt or cocrystal of heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate (“Compound 2”) and a compound (e.g., a coformer compound) selected from the group consisting of trimesic acid, (−)-2,3-dibenzoyl-L-tartaric acid, 4-acetamido benzoic acid, (+)-L-tartaric acid, and methanesulfonic acid.


In yet another aspect, this disclosure is directed to a salt or cocrystal of heptadecan-9-yl 8-((2-hydroxyethyl)(8-(nonyloxy)-8-oxooctyl)amino)octanoate (“Compound 3”) and trimesic acid.


In one aspect, this disclosure is directed to a salt or cocrystal of (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate (“MC3”) and a compound selected from the group consisting of (+)-O,O-di-pivaloyl-D-tartaric acid (DPDT), (−)-O,O-di-pivaloyl-L-tartaric acid (DPLT), (+)-2,3-dibenzoyl-D-tartaric acid (DBDT), and trimesic acid. In one embodiment this disclosure is directed to a salt or cocrystal of (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate (“MC3”) and trimesic acid.


The salts or cocrystals disclosed herein may comprise Compound 1 (or Compound 2 or 3) and the coformer compound (e.g., an acid), within a ratio of from about 1:0.2 mol/mol (i.e., 5:1 mol/mol) to 1:5 mol/mol or from about 1:0.5 mol/mol (i.e., 2:1 mol/mol) to 1:2 mol/mol, or within the range of from 1:0.4 mol/mol (i.e., 2.5:1 mol/mol) to 1:1.1 mol/mol.


The salts or cocrystals disclosed herein may comprise (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate (“MC3”) and the coformer compound (e.g., an acid), within a ratio of from about 1:0.5 mol/mol (i.e., 2:1 mol/mol) to 1:2 mol/mol. For example the ratio is about 1:1.2 mol/mol, about 1:1.1 mol/mol, or about 1:1.5 mol/mol).


The salts or cocrystals disclosed herein may be anhydrous and/or essentially solvent-free form, or be in hydrate and/or solvate form. For example, 4-hydroxybenzoate of Compound 1 is anhydrous. For example, Compound 1 orotate may be anhydrous or in a hydrate or solvate form. For example, trimesate of MC3 may be anhydrous or in a hydrate or solvate form.


The salts or cocrystals disclosed herein may be non-hygroscopic. For example, the 4-hydroxybenzoate of Compound 1 is non-hygroscopic. For example, the trimesate of MC3 is non-hygroscopic.


It has been found that under suitable conditions some of the salts or cocrystals can be obtained in the form of different polymorphs. For example, 4-hydroxybenzoate of Compound 1 has at least two polymorphs, Polymorphs A and B. For example, orotate of Compound 1 has at least two polymorphs, Polymorphs A and B. For example, orotate of Compound 7 has at least two polymorphs, Polymorphs A and B. For example trimesate of Compound 3 has at least two polymorphs, Polymorphs A and B. For example, trimesate of MC3 has at least two polymorphs, Polymorphs A and B


The polymorphs disclosed herein may be substantially pure, i.e., substantially free of impurities. Non-limiting examples of impurities include other polymorph forms, or residual organic and inorganic molecules such as related impurities (e.g., intermediates used to make the compounds), solvents, water or salts. As used herein “substantially pure” or “substantially free of impurities” means there is not a significant amount of impurities (e.g., other polymorph forms, or residual organic and inorganic molecules such as related impurities, solvents, water or salts) present in a sample of the salt, cocrystal, or polymorph. For example, a salt, cocrystal, or polymorph disclosed herein contains less than 10% weight by weight (wt/wt) total impurities, less than 5% wt/wt total impurities, less than 2% wt/wt total impurities, less than 1% wt/wt total impurities, less than 0.5% wt/wt total impurities, or not a detectable amount of impurities.


In one embodiment, Polymorph A of 4-hydroxybenzoate of Compound 1 is substantially free of impurities, meaning there is not a significant amount of impurities present in the sample of Polymorph A. In another embodiment, Polymorph A is a crystalline solid substantially free of Compound 1 (or any of its amorphous salt forms). In yet another embodiment, Polymorph A is a crystalline solid substantially free of other polymorphs of 4-hydroxybenzoate of Compound 1 and substantially free of amorphous Compound 1 (or any of its amorphous salt forms). For example, Polymorph A is a crystalline solid substantially free of Polymorph B of 4-hydroxybenzoate of Compound 1 and substantially free of amorphous Compound 1 (or any of its amorphous salt forms). The skilled artisan understands that a solid sample of Polymorph A may also include other polymorphs (e.g., Polymorph B), and/or amorphous Compound 1 (or any of its amorphous salt forms).


Polymorph A of 4-hydroxybenzoate of Compound 1 can be defined according to its X-ray powder diffraction pattern. Accordingly, in one embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having two, three, or more characteristic peaks expressed in degrees 2-theta (+/−0.2) selected from the group consisting of 4.5, 6.8, 9.1, and 11.4. In one embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with FIG. 1. In another embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with Table I.


Polymorph A of 4-hydroxybenzoate of Compound 1 can also be defined according to its differential scanning calorimetry thermogram. In one embodiment, the polymorph exhibits a differential scanning calorimetry thermogram showing a primary endotherm expressed in units of ° C. at a temperature of 103+/−2° C. and a second primary endotherm expressed in units of ° C. at a temperature of 68+/−2° C. In another embodiment, Polymorph A exhibits a differential scanning calorimetry thermogram substantially in accordance with the lower curve shown in FIG. 3.


In one embodiment, Polymorph B of Compound 1 orotate is substantially free of impurities (e.g., phase or form impurities), meaning there is not a significant amount of impurities present in the sample of Polymorph B. In another embodiment, Polymorph B is a crystalline solid substantially free of amorphous Compound 1 (or any of its amorphous salt forms). In yet another embodiment, Polymorph B is a crystalline solid substantially free of other polymorphs of Compound 1 orotate and substantially free of amorphous Compound 1 (or any of its amorphous salt forms). For example, Polymorph B is a crystalline solid substantially free of Polymorph A of Compound 1 orotate and substantially free of amorphous Compound 1 (or any of its amorphous salt forms). The skilled artisan understands that a solid sample of Polymorph B of Compound 1 orotate may also include other polymorphs (e.g., Polymorph A), and/or amorphous Compound 1 (or any of its amorphous salt forms).


Polymorph B of Compound 1 orotate can be defined according to its X-ray powder diffraction pattern. Accordingly, in one embodiment, Polymorph B exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having two, three, four, or more characteristic peaks expressed in degrees 2-theta (+/−0.2) selected from the group consisting of 5.1, 7.5, 10.1, 12.7, 15.2, and 17.8. In one embodiment, Polymorph B exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with FIG. 18, upper profile. In another embodiment, Polymorph B exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with Table III.


In one embodiment, Polymorph B of trimesate of Compound 3 is substantially free of impurities, meaning there is not a significant amount of impurities present in the sample of Polymorph B. In another embodiment, Polymorph B is a crystalline solid substantially free of Compound 3 (or any of its amorphous salt forms). In yet another embodiment, Polymorph B is a crystalline solid substantially free of other polymorphs of trimesate of Compound 3 and substantially free of amorphous trimesate of Compound 3 (or any of its amorphous salt forms). For example Polymorph B is a crystalline solid substantially free of Polymorph A of trimesate of Compound 3 and substantially free of amorphous trimesate of Compound 3 (or any of its amorphous salt forms). The skilled artisan understands that a solid sample of Polymorph B may also include other polymorphs (e.g., Polymorph A) and/or amorphous Compound 3 (or any of its amorphous salt forms).


Polymorph B of Compound 3 trimesate can be defined according to its X-ray powder diffraction pattern. Accordingly, Polymorph B of Compound 3 trimesate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having two, three, four or more characteristic peaks expressed in degrees 2-theta (+/−0.4) at 6.2, 10.8, 16.5, and 26.7. In one embodiment, Polymorph B exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with FIG. 48. In another embodiment, Polymorph B exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with Table XII.


In other embodiments, Polymorph B of trimesate of Compound 3 is identifiable on the basis of a characteristic peak observed in a differential scanning calorimetry thermogram. In one embodiment, the polymorph exhibits a differential scanning calorimetry thermogram showing a characteristic melting endotherm peak expressed in units of ° C. with an onset temperature of about 305+/−2° C. In another embodiment, the polymorph exhibits a differential scanning calorimetry thermogram showing a second primary endotherm expressed in units of ° C. at a temperature of 240+/−2° C. In another embodiment, the polymorph exhibits a differential scanning calorimetry thermogram substantially in accordance with FIG. 49.


In one embodiment, Polymorph A of trimesate of MC3 is substantially free of impurities, meaning there is not a significant amount of impurities present in the sample of Polymorph A. In another embodiment, Polymorph A is a crystalline solid substantially free of MC3 (or any of its amorphous salt forms). In yet another embodiment, Polymorph A is a crystalline solid substantially free of other polymorphs of trimesate of MC3 and substantially free of amorphous MC3 (or any of its amorphous salt forms). For example, Polymorph A is a crystalline solid substantially free of Polymorph B of trimesate of MC3 and substantially free of amorphous MC3 (or any of its amorphous salt forms). The skilled artisan understands that a solid sample of Polymorph A may also include other polymorphs (e.g., Polymorph B), and/or amorphous MC3 (or any of its amorphous salt forms).


Polymorph A of MC3 trimesate can be defined according to its X-ray powder diffraction pattern. Accordingly, Polymorph A of MC3 trimesate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having two, three, four or more characteristic peaks expressed in degrees 2-theta (+/−0.4) at 5.2, 7.8, 10.4, 18.3, 20.9, 23.6, or 26.2. In one embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with FIG. 52. In another embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with Table XIII.


Polymorph A of MC3 trimesate can also be defined according to its differential scanning calorimetry thermogram. In one embodiment, the polymorph exhibits a differential scanning calorimetry thermogram showing a primary endotherm expressed in units of ° C. at a temperature of 184+/−2° C. In one embodiment, the polymorph exhibits a differential scanning calorimetry thermogram showing a primary endotherm expressed in units of ° C. at a temperature of 186+/−2° C. and a second primary endotherm expressed in units of ° C. at a temperature of 90+/−2° C. In yet another embodiment, the polymorph exhibits a differential scanning calorimetry thermogram substantially in accordance with FIG. 53 or FIG. 54.


Polymorph B of MC3 trimesate can be defined according to its X-ray powder diffraction pattern. Accordingly, Polymorph B of MC3 trimesate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having two, three, four or more characteristic peaks expressed in degrees 2-theta (+/−0.4) at 4.8, 5.4, 7.2, 9.7, 12.1, 14.5, 17.0, 19.4, 21.9, 24.3, 26.8, 29.3, or 31.8. In one embodiment, Polymorph B exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with FIG. 59. In another embodiment, Polymorph B exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with Table XIV.


Polymorph B of MC3 trimesate can also be defined according to its differential scanning calorimetry thermogram. In one embodiment, the polymorph exhibits a differential scanning calorimetry thermogram showing a primary endotherm expressed in units of ° C. at a temperature of 187+/−2° C. In another embodiment, the polymorph exhibits a differential scanning calorimetry thermogram substantially in accordance with FIG. 60.


Another aspect of the disclosure relates to the preparation of the salt or cocrystal of heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate (“Compound 1”) and a compound selected from the group consisting of 4-hydroxybenzoic acid, oxalic acid, trimellitic acid, orotic acid, trimesic acid, and sulfuric acid.


Also provided herein is a method for preparing the salt or cocrystal of heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate (“Compound 2”) and a compound selected from the group consisting of trimesic acid, (−)-2,3-dibenzoyl-L-tartaric acid, 4-acetamido benzoic acid, (+)-L-tartaric acid, and methanesulfonic acid.


This disclosure also provides a method of preparing the salt or cocrystal of heptadecan-9-yl 8-((2-hydroxyethyl)(8-(nonyloxy)-8-oxooctyl)amino)octanoate (“Compound 3”) and trimesic acid.


This disclosure also provides a method of preparing the salt or cocrystal of (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate (“MC3”) (“MC3”) and trimesic acid.


In still another aspect, provided herein is a process of synthesizing Compound 2, Compound 3, or an analog thereof by reacting a salt or cocrystal of Compound 1 disclosed herein with a suitable electrophile, such as an ester substituted with a halogen (e.g., Br or I).


Also provided herein is a process of purifying Compound 1, 2, or 3 by forming a salt or cocrystal thereof disclosed herein to separate the salt or cocrystal thereof from the impurities. The method may further comprise neutralizing the salt or cocrystal to convert to Compound 1, 2, or 3 (i.e., a free base).


In one embodiment, the process of the present disclosure is advantageous as compared to other processes in that the process of the disclosure produces Compound 1, 2, or 3 or a salt or cocrystal thereof at a large scale and/or at a high purity, e.g., such that cumbersome purification (e.g., column chromatography, extraction, phase separation, distillation and solvent evaporation) is not needed. In one embodiment, the process of the present disclosure is able to process at least 100 g, 200 g, 500 g, or more (e.g., 1 kg, 2 kg, 5 kg, 10 kg, 20 kg, 50 kg, 100 kg, 200 kg, 500 kg, or 1000 kg or more) Compound 1, 2, or 3 or a salt or cocrystal thereof. In one embodiment, the process of the present disclosure is able to produce Compound 1, 2, or 3 or a salt or cocrystal thereof at least at a purity of at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5%, or higher. In one embodiment, the process of the present disclosure is able to produce Compound 1, 2, or 3 or a salt or cocrystal thereof with little or no impurity. In one embodiment, the impurity produced in the process of the present disclosure, even if produced, is easy to be separated from Compound 1, 2, or 3 or a salt or cocrystal thereof, without cumbersome purification (e.g., column chromatography, extraction, phase separation, distillation and solvent evaporation).


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. In the specification, the singular forms also include the plural unless the context clearly dictates otherwise. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods and examples are illustrative only and are not intended to be limiting.


Other features and advantages of the invention will be apparent from the following drawings, detailed description and claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a representative X-ray powder diffraction (XRPD) pattern overlay of heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate 4-hydroxybenzoate Polymorph A batches, i.e., 100 mg and 10 mg batches or batches Nos. 1 and 2.



FIG. 2 depicts a 1H NMR spectrum of heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate 4-hydroxybenzoate Polymorph A, batch No. 2.



FIG. 3 depicts thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC) data for heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate 4-hydroxybenzoate Polymorph A, batch No. 2.



FIG. 4 depicts cyclic DSC data for heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate 4-hydroxybenzoate Polymorph A, batch No. 2.



FIG. 5 depicts a representative XRPD pattern overlay of heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate 4-hydroxybenzoate Polymorph A (i.e., Type A in the figure), batch No. 2, before and after heating.



FIG. 6 depicts TGA and DSC data for heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate 4-hydroxybenzoate Polymorph A, batch No. 1.



FIG. 7 depicts variable temperature X-ray powder diffraction (VT-XRPD) pattern overlay of heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate 4-hydroxybenzoate Polymorph A batch No. 1, before and after heating. Type A ref. in this figure is heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate 4-hydroxybenzoate Polymorph A, batch No. 2.



FIG. 8 depicts dynamic vapor sorption (DVS) data at 25° C. for heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate 4-hydroxybenzoate Polymorph A, batch No. 1.



FIG. 9 depicts an XRPD pattern overlay of heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate 4-hydroxybenzoate Polymorph A, batch No. 1, before and after DVS.



FIG. 10 depicts a polarized light microscopy (PLM) image for heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate 4-hydroxybenzoate Polymorph A, batch No. 1.



FIG. 11 depicts a representative XRPD pattern overlay of heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate trimellitate Polymorph A batches, i.e., 100 mg and 10 mg batches or batches Nos. 1 and 2.



FIG. 12 depicts an 1H NMR spectrum of heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate trimellitate Polymorph A, batch No. 2.



FIG. 13 depicts TGA and DSC data for heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate trimellitate Polymorph A, batch No. 1.



FIG. 14 depicts a VT-XRPD pattern overlay of heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate trimellitate Polymorph A batch No. 1, before and after heating.



FIG. 15 depicts DVS data at 25° C. for heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate trimellitate Polymorph A, batch No. 1.



FIG. 16 depicts an XRPD pattern overlay of heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate trimellitate Polymorph A, batch No. 1, before and after DVS.



FIG. 17 depicts a polarized light microscopy (PLM) image for heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate trimellitate Polymorph A, batch No. 1.



FIG. 18 depicts a representative XRPD pattern overlay of heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate orotate Polymorphs A and B.



FIG. 19 depicts an 1H NMR spectrum of heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate orotate Polymorph A.



FIG. 20 depicts TGA and DSC data for heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate orotate Polymorph A.



FIG. 21 depicts a VT-XRPD pattern overlay of heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate orotate Polymorph A, before and after heating.



FIG. 22 depicts heating-cooling DSC curve for heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate orotate Polymorph A.



FIG. 23 depicts TGA and DSC data for heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate orotate Polymorphs B.



FIG. 24 depicts cyclic DSC data for heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate orotate Polymorphs B.



FIG. 25 depicts an XRPD pattern overlay of heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate orotate Polymorph B, before and after cyclic DSC.



FIG. 26 depicts DVS data at 25° C. for heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate orotate Polymorphs B.



FIG. 27 depicts an XRPD pattern overlay of heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate orotate Polymorph B, before and after DVS.



FIG. 28 depicts a PLM image of heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate orotate Polymorph B.



FIG. 29 depicts a PLM image of heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate sulfate Polymorph A.



FIG. 30 depicts an XRPD pattern of heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate sulfate Polymorph A.



FIG. 31 depicts TGA and DSC data of heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate sulfate Polymorph A.



FIG. 32 depicts an XRPD pattern of heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate trimesate Polymorph A.



FIG. 33 depicts an 1H NMR overlay of heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate trimesate and freebase.



FIG. 34 depicts TGA data of heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate.



FIG. 35 depicts cyclic DSC data of heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate (heating/cooling rate: 10° C./min).



FIG. 36 depicts an XRPD pattern overlay of heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate dibenzoyl-L-tartrate Polymorph A and the corresponding acid, dibenzoyl-L-tartaric acid.



FIG. 37 depicts TGA and DSC data for heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate dibenzoyl-L-tartrate Polymorph A.



FIG. 38 depicts an XRPD pattern overlay of heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate trimesate Polymorph A and the corresponding acid, trimesic acid.



FIG. 39 depicts TGA and DSC data for heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate trimesate Polymorph A.



FIG. 40 depicts an XRPD pattern overlay of heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate L-tartrate Polymorph A and the corresponding acid, L-tartaric acid.



FIG. 41 depicts TGA and DSC data for heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate L-tartrate Polymorph A.



FIG. 42 depicts an XRPD pattern of heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate mesylate Polymorph A.



FIG. 43 depicts TGA and DSC data for heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate mesylate Polymorph A.



FIG. 44 depicts an XRPD pattern overlay of heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate 4-acetamido benzoate Polymorph A and the corresponding acid, 4-acetamido benzoic acid.



FIG. 45 depicts TGA and DSC data for heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate 4-acetamido benzoate Polymorph A.



FIG. 46 depicts an XRPD pattern overlay of heptadecan-9-yl 8-((2-hydroxyethyl)(8-(nonyloxy)-8-oxooctyl)amino)octanoate trimesate Polymorph A and the corresponding acid, trimesic acid.



FIG. 47 depicts TGA and DSC data for heptadecan-9-yl 8-((2-hydroxyethyl)(8-(nonyloxy)-8-oxooctyl)amino)octanoate trimesate Polymorph A.



FIG. 48 depicts an XRPD pattern of heptadecan-9-yl 8-((2-hydroxyethyl)(8-(nonyloxy)-8-oxooctyl)amino)octanoate trimesate Polymorph B.



FIG. 49 depicts TGA and DSC data for heptadecan-9-yl 8-((2-hydroxyethyl)(8-(nonyloxy)-8-oxooctyl)amino)octanoate trimesate Polymorph B.



FIG. 50 depicts an 1H NMR overlay of heptadecan-9-yl 8-((2-hydroxyethyl)(8-(nonyloxy)-8-oxooctyl)amino)octanoate trimesate Polymorph B and freebase.



FIG. 51 is a polarized light microscopy (PLM) image of heptadecan-9-yl 8-((2-hydroxyethyl)(8-(nonyloxy)-8-oxooctyl)amino)octanoate trimesate Polymorph B.



FIG. 52 is an XRPD pattern of (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate trimesate Type A polymorph.



FIG. 53 depicts TGA and DSC data for (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate trimesate Type A polymorph prepared with cyclohexane.



FIG. 54 depicts TGA and DSC data for (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate trimesate Type A polymorph prepared with EtOAc.



FIG. 55 is a polarized light microscopy (PLM) image of (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate trimesate Type A polymorph prepared with cyclohexane.



FIG. 56 is a polarized light microscopy (PLM) image of (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate trimesate Type A polymorph prepared with EtOAc.



FIG. 57 depicts DVS data at 25° C. for (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate trimesate Type A polymorphs before and after DVS.



FIG. 58 is an XRPD pattern overlay of (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate trimesate Type A polymorphs before and after DVS.



FIG. 59 is an XRPD pattern of (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate trimesate Type B polymorph.



FIG. 60 depicts TGA and DSC data for (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate trimesate Type B.



FIG. 61 is a polarized light microscopy (PLM) image of (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate trimesate Type B polymorph.





DETAILED DESCRIPTION

The solid form (e.g., crystal state) of a compound may be important when the compound is used for pharmaceutical purposes. Compared with an amorphous solid or viscous oil, the physical properties of a crystalline compound are generally enhanced. These properties change from one solid form to another, which may impact its suitability for pharmaceutical use. In addition, different solid forms of a crystalline compound may incorporate different types and/or different amounts of impurities. Different solid forms of a compound may also have different chemical stability upon exposure to heat, light and/or moisture (e.g., atmospheric moisture) over a period of time, or different rates of dissolution. Long-chain amino lipids are usually oils at room temperature. Solid forms of these lipids are desirable for e.g., improving handling, improving stability (such as storage stability), simplifying purification process, simplifying large-scale production process and/or increasing accuracy in measurements and characterization of lipids.


Provided herein are novel solid forms (e.g., crystalline forms) of each of Compound 1, Compound 2, and Compound 3, the structure of each of which is provided below:




embedded image


In another aspect, provided herein are novel solid forms (e.g., crystalline forms) of (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate (“MC3”), the structure of which is provided below:




embedded image


In one aspect, disclosed herein is salt or cocrystal of Compound 1, 2, or 3, which has a melting point of about 50° C. or greater (e.g., about 60° C., about 70° C. or greater). For example, the salt or cocrystal of Compound 1, 2, or 3 is formed between Compound 1, 2, or 3 and a coformer compound (e.g., an acid). In another aspect, the salt or cocrystal of Compound 3 has a melting point of about 270° C. or greater (e.g., about 280° C., about 290° C. or greater).


As used herein, “Compound 1” refers to heptadecan-9-yl 8-((2-hydroxyethyl)amino)octanoate; “Compound 2” refers to heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate; and “Compound 3” refers to heptadecan-9-yl 8-((2-hydroxyethyl)(8-(nonyloxy)-8-oxooctyl)amino)octanoate. Compound 1 can be used as a starting material for the synthesis of Compound 2 or 3.


As used herein, “MC 3” refers to (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate.


In one aspect, this disclosure is directed to a salt or cocrystal of Compound 1 and a compound selected from the group consisting of 4-hydroxybenzoic acid, oxalic acid, trimellitic acid, orotic acid, trimesic acid, and sulfuric acid. For example, the compound is 4-hydroxybenzoic acid. For example, the compound is oxalic acid.


Also described herein are polymorphic forms of a salt or cocrystal of Compound 1, e.g., Polymorphs A and B of 4-hydroxybenzoate of Compound 1, or Polymorphs A and B of orotate of Compound 1.


In one aspect, this disclosure is directed to a salt or cocrystal of (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate (“MC3”). In another aspect, the salt or cocrystal of MC3 has a melting point of about 150° C. or greater (e.g., about 160° C., about 170° C., about 180° C. or greater, about 190° C. or greater). In another aspect, disclosed herein is a salt or cocrystal of (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate (“MC3”). In another aspect, the salt or cocrystal of MC3 has a melting point of about 50° C. or greater (e.g., about 60° C., about 70° C., about 80° C. or greater). For example, the salt or cocrystal of MC3 is formed between MC3 and a coformer compound (e.g., an acid).


The ability of a substance to exist in more than one crystal form is defined as polymorphism; the different crystal forms of a particular substance are referred to as “polymorphs” of one another. In general, polymorphism is affected by the ability of a molecule of a substance (or its salt, cocrystal, or hydrate) to change its conformation or to form different intermolecular or intra-molecular interactions, (e.g., different hydrogen bond configurations), which is reflected in different atomic arrangements in the crystal lattices of different polymorphs. In contrast, the overall external form of a substance is known as “morphology,” which refers to the external shape of the crystal and the planes present, without reference to the internal structure. A particular crystalline polymorph can display different morphology based on different conditions, such as, for example, growth rate, stirring, and the presence of impurities.


The different polymorphs of a substance may possess different energies of the crystal lattice and, thus, in solid state they can show different physical properties such as form, density, melting point, color, stability, solubility, dissolution rate, etc., which can, in turn, effect the stability, dissolution rate and/or bioavailability of a given polymorph and its suitability for use as a pharmaceutical and in pharmaceutical compositions.


Polymorph A of 4-hydroxybenzoate of Compound 1 has a number of advantageous physical properties over its free base form, as well as other salts of the free base. In particular, Polymorph A of 4-hydroxybenzoate of Compound 1 has low hygroscopicity compared to other salt forms of Compound 1. More particularly, Polymorph A of 4-hydroxybenzoate of Compound 1 has low hygroscopicity compared to Polymorph A of Compound 1 trimellitate and Polymorph B of Compound 1 orotate (see, e.g., Table 1-2). Crystal forms that are highly hygroscopic may also be unstable, as the compound's dissolution rate (and other physico-chemical properties) may change as it is stored in settings with varying humidity. Also, hygroscopicity can impact large-scale handling and manufacturing of a compound, as it can be difficult to determine the true weight of a hygroscopic agent when using it for reactions or when preparing a pharmaceutical composition comprising that agent. For example, in large scale medicinal formulating preparations, highly hygroscopic compounds can result in batch manufacturing inconsistency creating clinical and/or prescribing difficulties. For example, when Compound 1 is used as a starting material for the synthesis of Compound 2 or 3, Polymorph A of 4-hydroxybenzoate of Compound 1 has a low hygoscopicity compared to other salt forms of Compound 1, and as such, it may be stored over appreciable periods or conditions (e.g., relative humidity conditions), and not suffer from weight changes that would be detrimental for consistent production of Compound 2 or 3.


In certain embodiments, Polymorph A of 4-hydroxybenzoate of Compound 1 is identifiable on the basis of characteristic peaks in an X-ray powder diffraction analysis. X-ray powder diffraction pattern, also referred to as XRPD pattern, is a scientific technique involving the scattering of x-rays by crystal atoms, producing a diffraction pattern that yields information about the structure of the crystal. In certain embodiments, Polymorph A of 4-hydroxybenzoate of Compound 1 exhibits an X-ray powder diffraction (XRPD) pattern obtained using Cu Kα radiation, having from two (2) to seven (7) characteristic peaks expressed in degrees 2-theta at 4.5, 6.8, 9.1, 11.4, 13.7, 18.3, 20.1, and 20.6.


The skilled artisan recognizes that some variation is associated with 2-theta measurements in XRPD. Typically, 2-theta values may vary from ±0.1 to ±0.2. Such slight variation can be caused, for example, by sample preparation, instrument configurations and other experimental factors. The skilled artisan appreciates that such variation in values are greatest with low 2-theta values, and least with high 2-theta values. The skilled artisan recognizes that different instruments may provide substantially the same XRPD pattern, even though the 2-theta values vary slightly. Moreover, the skilled artisan appreciates that the same instrument may provide substantially the same XRPD pattern for the same or different samples even though the XRPD of the respectively collected XRPD patterns vary slightly in the 2-theta values.


The skilled artisan also appreciates that XRPD patterns of the same sample (taken on the same or different instruments) may exhibit variations in peak intensity at the different 2-theta values. The skilled artisan also appreciates that XRPD patterns of different samples of the same polymorph (taken on the same or different instruments) may also exhibit variations in peak intensity at the different 2-theta values. XRPD patterns can be substantially the same pattern even though they have corresponding 2-theta signals that vary in their peak intensities.


In one embodiment, Polymorph A of 4-hydroxybenzoate of Compound 1 exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having two or more characteristic peaks expressed in degrees 2-theta (+/−0.2) selected from the group consisting of 4.5, 6.8, 9.1, and 11.4. In another embodiment, Polymorph A of 4-hydroxybenzoate of Compound 1 exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having three or more characteristic peaks expressed in degrees 2-theta (+/−0.2) selected from the group consisting of 4.5, 6.8, 9.1, 11.4, and 13.7. In another embodiment, Polymorph A of 4-hydroxybenzoate of Compound 1 exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having four or more characteristic peaks expressed in degrees 2-theta (+/−0.2) selected from the group consisting of 4.5, 6.8, 9.1, 11.4, and 13.7. In another embodiment, Polymorph A of 4-hydroxybenzoate of Compound 1 exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having characteristic peaks expressed in degrees 2-theta (+/−0.2) at 4.5, 6.8, 9.1, 11.4, 13.7, 18.3, 20.1, and 20.6. In one embodiment, Polymorph A of 4-hydroxybenzoate of Compound 1 exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having two, three, four, or more characteristic peaks expressed in degrees 2-theta (+/−0.2) selected from the group consisting of 4.5, 6.8, 9.1, 11.4, and 13.7.


In a particular embodiment, Polymorph A of 4-hydroxybenzoate of Compound 1 exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having at least eight characteristic peaks expressed in degrees 2-theta (+/−0.2), selected from the group consisting of 4.5, 6.8, 9.1, 11.4, 13.7, 16.0, 18.3, 20.1, and 20.6. In another particular embodiment, Polymorph A of 4-hydroxybenzoate of Compound 1 exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having at least nine characteristic peaks expressed in degrees 2-theta (+/−0.2), selected from the group consisting of 4.5, 6.8, 9.1, 11.4, 13.7, 16.0, 16.6, 18.3, 20.1, and 20.6. In a further embodiment, Polymorph A of 4-hydroxybenzoate of Compound 1 exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having at least ten characteristic peaks expressed in degrees 2-theta (+/−0.2), selected from the group consisting of 4.5, 6.8, 9.1, 11.4, 13.7, 16.0, 16.6, 18.3, 20.1, 20.6, and 21.5. In one embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with FIG. 1. In another embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with Table I below.












TABLE I







Peak
Position [°2Th.]



















 1.
4.5



 2.
6.8



 3.
9.1



 4.
11.4



 5.
13.7



 6.
16.0



 7.
16.6



 8.
18.3



 9.
20.1



10.
20.6



11.
21.5



12.
23.8



13.
24.9



14.
25.8










In other embodiments, Polymorph A of 4-hydroxybenzoate of Compound 1 is identifiable on the basis of a characteristic peak observed in a differential scanning calorimetry thermogram. Differential scanning calorimetry, or DSC, is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. In one embodiment, Polymorph A of 4-hydroxybenzoate of Compound 1 exhibits a differential scanning calorimetry thermogram showing a characteristic primary endotherm peak expressed in units of ° C. with an onset temperature of about 103+1-2° C. In another embodiment, Polymorph A of 4-hydroxybenzoate of Compound 1 exhibits a differential scanning calorimetry thermogram showing a characteristic second primary endotherm expressed in units of ° C. with an onset temperature of about 68+/−2° C. In another embodiment, Polymorph A of 4-hydroxybenzoate of Compound 1 exhibits a differential scanning calorimetry thermogram substantially in accordance with the lower curve shown in FIG. 3.


In another embodiment, provided herein is Polymorph A of 4-hydroxybenzoate of Compound 1, wherein the solid form undergoes a weight increase of less than 1.5% (e.g., less than 1%, or less than 0.6%) upon increasing relative humidity from 5.0% to 95.0% at e.g., 25° C. In another embodiment, Polymorph A of 4-hydroxybenzoate of Compound 1 is characterized as having a dynamic vapor sorption profile that is substantially in accordance with FIG. 8.


In one embodiment, Polymorph A of 4-hydroxybenzoate of Compound 1 is substantially free of impurities, meaning there is not a significant amount of impurities present in the sample of Polymorph A. In another embodiment, Polymorph A is a crystalline solid substantially free of amorphous Compound 1 (or any of its amorphous salt forms). In yet another embodiment, Polymorph A is a crystalline solid substantially free of other polymorphs of 4-hydroxybenzoate of Compound 1 and substantially free of amorphous Compound 1 (or any of its amorphous salt forms). For example, Polymorph A is a crystalline solid substantially free of Polymorph B of 4-hydroxybenzoate of Compound 1 and substantially free of amorphous Compound 1 (or any of its amorphous salt forms). The skilled artisan understands that a solid sample of Polymorph A may also include other polymorphs (e.g., Polymorph A), and/or amorphous Compound 1 (or any of its amorphous salt forms)


As used herein, the term “substantially free of amorphous Compound 1” means that the compound contains no significant amount of amorphous Compound 1 (or any of its amorphous salt forms). In another embodiment, a sample of a salt or cocrystal of Compound 1 comprises Polymorph A of 4-hydroxybenzoate of Compound 1 substantially free of other polymorphs (e.g., Polymorph B of 4-hydroxybenzoate of Compound 1). As used herein, the term “substantially free of other polymorphs” means that a sample of crystalline Compound 1 4-hydroxybenzoate contains no significant amount of other polymorphs (e.g., Polymorph B). In certain embodiments, at least about 90% by weight of a sample is Polymorph A, with only 10% being other polymorphs (e.g., Polymorph B) and/or amorphous Compound 1 (or any of its amorphous salt forms). In certain embodiments, at least about 95% by weight of a sample is Polymorph A, with only 5% being other polymorphs (e.g., Polymorph B) and/or amorphous Compound 1 (or any of its amorphous salt forms). In still other embodiments, at least about 98% by weight of a sample is Polymorph A, with only 2% by weight being other polymorphs (e.g., Polymorph B) and/or amorphous Compound 1 (or any of its amorphous salt forms). In still other embodiments, at least about 99% by weight of a sample is Polymorph A, with only 1% by weight being other polymorphs (e.g., Polymorph B) and/or amorphous Compound 1 (or any of its amorphous salt forms). In still other embodiments, at least about 99.5% by weight of a sample is Polymorph A, with only 0.5% by weight being other polymorphs (e.g., Polymorph B) and/or amorphous Compound 1 (or any of its amorphous salt forms). In still other embodiments, at least about 99.9% by weight of a sample is Polymorph A, with only 0.1% by weight being other polymorphs (e.g., Polymorph B) and/or amorphous Compound 1 (or any of its amorphous salt forms).


In certain embodiments, a sample of a salt or cocrystal of Compound 1 (e.g., Compound 1 oxalate or 4-hydroxybenzoate) may contain impurities. Non-limiting examples of impurities include other polymorph forms, or residual organic and inorganic molecules such as related impurities (e.g., intermediates used to make Compound 1 or by-products, e.g., heptadecan-9-yl 8-bromooctanoate and di(heptadecan-9-yl) 8,8′-((2-hydroxyethyl)azanediyl)dioctanoate), solvents, water or salts. In one embodiment, a sample of a salt or cocrystal of Compound 1, e.g., oxalate or 4-hydroxybenzoate Polymorph A is substantially free from impurities, meaning that no significant amount of impurities are present. In another embodiment, a sample of the salt or cocrystal of Compound 1 contains less than 10% weight by weight (wt/wt) total impurities. In another embodiment, a sample of the salt or cocrystal of Compound 1 contains less than 5% wt/wt total impurities. In another embodiment, a sample of the salt or cocrystal of Compound 1 contains less than 2% wt/wt total impurities. In another embodiment, a sample of the salt or cocrystal of Compound 1 contains less than 1% wt/wt total impurities. In yet another embodiment, a sample of the salt or cocrystal of Compound 1 contains less than 0.1% wt/wt total impurities. In yet another embodiment, a sample of the salt or cocrystal of Compound 1 does not contain a detectable amount of impurities.


Also disclosed herein are Polymorphs A and B of Compound 1 orotate. In a particular embodiment, Polymorph A of Compound 1 orotate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having two, three, four, or more characteristic peaks expressed in degrees 2-theta (+/−0.2) selected from the group consisting of 5.3, 10.7, 13.3, 16.1, and 18.7. In one embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with FIG. 18, lower profile. In another embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with Table II below.












TABLE II







Peak
Position [°2Th.]



















1.
5.3



2.
10.7



3.
13.3



4.
16.1



5.
18.7



6.
24.3



7.
26.9










Polymorph B of Compound 1 orotate can be defined according to its X-ray powder diffraction pattern. Accordingly, in one embodiment, Polymorph B exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having two, three, four, or more characteristic peaks expressed in degrees 2-theta (+/−0.2) selected from the group consisting of 5.1, 7.5, 10.1, 12.7, 15.2, and 17.8. In one embodiment, Polymorph B exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with FIG. 18, upper profile. In another embodiment, Polymorph B exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with Table III.












TABLE III







Peak
Position [°2Th.]









1.
5.1



2.
7.5



3.
10.1



4.
12.7



5.
15.2



6.
17.8



7.
20.2



8.
25.5



9.
28.2










In yet another embodiment, this disclosure provides Polymorph A of Compound 1 trimesate. In a particular embodiment, Polymorph A of Compound 1 trimesate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having two, three, four, or more characteristic peaks expressed in degrees 2-theta (+1-0.2) selected from the group consisting of 3.3, 5.3, 6.7, 7.9, 10.5, 18.5, 21.3, 23.9, and 26.5. In one embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with FIG. 32. In another embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with Table IV below.












TABLE IV







Peak
Position [°2Th.]



















 1.
3.3



 2.
5.3



 3.
6.7



 4.
7.9



 5.
10.5



 6.
13.6



 7.
18.5



 8.
21.3



 9.
23.9



10.
26.5



11.
29.1










This disclosure also provides Polymorph A of Compound 1 trimellitate. In a particular embodiment, Polymorph A of Compound 1 trimellitate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having two, three, four, or more characteristic peaks expressed in degrees 2-theta (+/−0.2) selected from the group consisting of 4.6, 6.8, 9.2, 11.5, 23.1, and 25.4. In one embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with FIG. 11. In another embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with Table V below.












TABLE V







Peak
Position [°2Th.]









1.
 4.6



2.
 6.8



3.
 9.2



4.
11.5



5.
23.1



6.
25.4



7.
27.7










Also provided herein is Polymorph A of Compound 1 sulfate. In a particular embodiment, Polymorph A of Compound 1 sulfate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having two, three, four, or more characteristic peaks expressed in degrees 2-theta (+/−0.2) selected from the group consisting of 4.0, 11.8, 21.4, 21.8, and 22.8. In one embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with FIG. 30. In another embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with Table VI below.












TABLE VI







Peak
Position [°2Th.]









1.
 4.0



2.
11.4



3.
11.8



4.
19.8



5.
21.4



6.
21.8



7.
22.8










In another aspect, this disclosure is directed to a salt or cocrystal of heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate (“Compound 2”) and a compound selected from the group consisting of trimesic acid, (−)-2,3-dibenzoyl-L-tartaric acid, 4-acetamido benzoic acid, (+)-L-tartaric acid, and methanesulfonic acid.


In one embodiment, this disclosure also provides Polymorph A of Compound 2 trimesate. In a particular embodiment, Polymorph A of Compound 2 trimesate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having two, three, four, or more characteristic peaks expressed in degrees 2-theta (+/−0.2) selected from the group consisting of 3.4, 6.8, 10.2, 20.5, and 23.8. In one embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with FIG. 38. In another embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with Table VII below.












TABLE VII







Peak
Position [°2Th.]









1.
 3.4



2.
 6.8



3.
10.2



4.
20.5



5.
23.8










In another embodiment, this disclosure also provides Polymorph A of Compound 2 dibenzoyl-L-tartrate. In a particular embodiment, Polymorph A of Compound 2 dibenzoyl-L-tartrate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having two characteristic peaks expressed in degrees 2-theta (+1-0.2) at 6.1 and 9.1. In one embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with FIG. 36, upper profile. In another embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with Table VIII below.












TABLE VIII







Peak
Pos. [°2Th.]









1
6.1



2
9.1










In yet another embodiment, this disclosure also provides Polymorph A of Compound 2 L-tartrate. In a particular embodiment, Polymorph A of Compound 2 L-tartrate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having two characteristic peaks expressed in degrees 2-theta (+1-0.2) at 5.4 and 8.1. In one embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with FIG. 40, upper profile. In another embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with Table IX below.












TABLE IX







Peak
Position [°2Th.]









1
5.4



2
8.1










In yet another embodiment, this disclosure also provides Polymorph A of Compound 2 mesylate. In a particular embodiment, Polymorph A of Compound 2 mesylate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having two, three, or four characteristic peaks expressed in degrees 2-theta (+1-0.2) selected from the group consisting of 4.0, 11.4, 11.8, and 19.8. In one embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with FIG. 42. In another embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with Table X below.












TABLE X







Peak
Position [°2Th.]









1.
 4.0



2.
11.4



3.
11.8



4.
19.8



5.
27.9



6.
36.0










In yet another aspect, this disclosure is directed to a salt or cocrystal of heptadecan-9-yl 8-((2-hydroxyethyl)(8-(nonyloxy)-8-oxooctyl)amino)octanoate (“Compound 3”) and trimesic acid.


In one embodiment, this disclosure also provides Polymorph A of Compound 3 trimesate. In a particular embodiment, Polymorph A of Compound 3 trimesate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having two, three, four or more characteristic peaks expressed in degrees 2-theta (+/−0.4) selected from the group consisting of 3.5, 6.8, 10.4, 18.9 and 20.9. In one embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with FIG. 46. In another embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with Table XI below.












TABLE XI







Peak
Position [°2Th.]









1.
 3.5



2.
 6.8



3.
10.4



4.
18.9



5.
20.9



6.
24.3



7.
27.5










In one embodiment, this disclosure also provides Polymorph B of Compound 3 trimesate. In a particular embodiment, Polymorph B of Compound 3 trimesate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, comprising two, three, or more characteristic peaks expressed in degrees 2-theta (+/−0.2) selected from the group consisting of 6.2, 10.8, 16.5, and 26.7. In another embodiment, Polymorph B of Compound 3 trimesate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having characteristic peaks expressed in degrees 2-theta (+/−0.2) at 6.2, 10.8, 16.5, and 26.7.


In a further embodiment, Polymorph B of Compound 3 trimesate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having at least five characteristic peaks expressed in degrees 2-theta (+/−0.2), selected from the group consisting of 6.2, 10.8, 12.4, 16.5, 18.7, 22.5, and 26.7. In one embodiment, Polymorph B of Compound 3 trimesate exhibits an X-ray powder diffraction obtained using Cu Kα radiation, pattern having at least six characteristic peaks expressed in degrees 2-theta (+/−0.2), selected from the group consisting of 6.2, 10.8, 12.4, 16.5, 18.7, 22.5, and 26.7.


In a particular embodiment, Polymorph B of Compound 3 trimesate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having two, three, four, or more characteristic peaks expressed in degrees 2-theta (+/−0.4) selected from the group consisting of 6.2, 10.8, 12.4, 16.5, 18.7, 22.5 and 26.7. In one embodiment, Polymorph B exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with FIG. 48. In another embodiment, Polymorph B exhibits an X-ray powder diffraction obtained using Cu Kα radiation, pattern having peaks with 2-theta values substantially in accordance with Table XII below.












TABLE XII







Peak
Position [°2Th.]









1.
 6.2



2.
10.8



3.
12.4



4.
16.5



5.
18.7



6.
22.5



7.
26.7










In other embodiments, Polymorph B of trimesate of Compound 3 is identifiable on the basis of a characteristic peak observed in a differential scanning calorimetry thermogram. In one embodiment, Polymorph B of trimesate of Compound 3 exhibits a differential scanning calorimetry thermogram showing a characteristic melting endotherm peak expressed in units of ° C. with an onset temperature of about 305+/−2° C. In another embodiment, Polymorph A of trimesate of Compound 3 exhibits a differential scanning calorimetry thermogram showing a second primary endotherm expressed in units of ° C. at a temperature of 240+/−2° C. In another embodiment, Polymorph B of trimesate of Compound 3 exhibits a differential scanning calorimetry thermogram substantially in accordance with FIG. 49.


In one embodiment, Polymorph A of trimesate of Compound 3 is substantially free of impurities, meaning there is not a significant amount of impurities present in the sample of Polymorph A. In another embodiment, Polymorph A is a crystalline solid substantially free of amorphous Compound 3 (or any of its amorphous salt forms). In yet another embodiment, Polymorph A is a crystalline solid substantially free of other polymorphs of 4-hydroxybenzoate of Compound 3 and substantially free of amorphous Compound 3 (or any of its amorphous salt forms). For example, Polymorph A is a crystalline solid substantially free of Polymorph B of trimesate of Compound 3 and substantially free of amorphous Compound 3 (or any of its amorphous salt forms). The skilled artisan understands that a solid sample of Polymorph B may also include other polymorphs (e.g., Polymorph A), and/or amorphous Compound 3 (or any of its amorphous salt forms).


In another embodiment, a sample of a salt or cocrystal of Compound 3 comprises Polymorph A of trimesate of Compound 3 substantially free of other polymorphs (e.g., Polymorph B of trimesate of Compound 3). As used herein, the term “substantially free of other polymorphs” means that a sample of crystalline Compound 3 trimesate contains no significant amount of other polymorphs (e.g., Polymorph B). In certain embodiments, at least about 90% by weight of a sample is Polymorph A, with only 10% being other polymorphs (e.g., Polymorph B) and/or amorphous Compound 3 (or any of its amorphous salt forms). In certain embodiments, at least about 95% by weight of a sample is Polymorph A, with only 5% being other polymorphs (e.g., Polymorph B) and/or amorphous Compound 3 (or any of its amorphous salt forms). In still other embodiments, at least about 98% by weight of a sample is Polymorph A, with only 2% by weight being other polymorphs (e.g., Polymorph B) and/or amorphous Compound 3 (or any of its amorphous salt forms). In still other embodiments, at least about 99% by weight of a sample is Polymorph A, with only 1% by weight being other polymorphs (e.g., Polymorph B) and/or amorphous Compound 3 (or any of its amorphous salt forms). In still other embodiments, at least about 99.5% by weight of a sample is Polymorph A, with only 0.5% by weight being other polymorphs (e.g., Polymorph B) and/or amorphous Compound 3 (or any of its amorphous salt forms). In still other embodiments, at least about 99.9% by weight of a sample is Polymorph A, with only 0.1% by weight being other polymorphs (e.g., Polymorph B) and/or amorphous Compound 3 (or any of its amorphous salt forms).


In certain embodiments, a sample of a salt or cocrystal of Compound 3 (e.g., Compound 3 trimesate) may contain impurities. Non-limiting examples of impurities include other polymorph forms, or residual organic and inorganic molecules such as related impurities (e.g., intermediates used to make Compound 3 or by-products), solvents, water or salts. In one embodiment, a sample of a salt or cocrystal of Compound 3, e.g., trimesate Polymorph A is substantially free from impurities, meaning that no significant amount of impurities are present. In another embodiment, a sample of the salt or cocrystal of Compound 3 contains less than 10% weight by weight (wt/wt) total impurities. In another embodiment, a sample of the salt or cocrystal of Compound 3 contains less than 5% wt/wt total impurities. In another embodiment, a sample of the salt or cocrystal of Compound 3 contains less than 2% wt/wt total impurities. In another embodiment, a sample of the salt or cocrystal of Compound 3 contains less than 1% wt/wt total impurities. In yet another embodiment, a sample of the salt or cocrystal of Compound 3 contains less than 0.1% wt/wt total impurities. In yet another embodiment, a sample of the salt or cocrystal of Compound 3 does not contain a detectable amount of impurities.


In one embodiment, this disclosure also provides Polymorph A of MC3 trimesate. In one embodiment, Polymorph A of MC3 trimesate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, comprising two, three, or more characteristic peaks expressed in degrees 2-theta (+/−0.2) selected from the group consisting of 5.2, 7.8, 20.9, and 23.6. In another embodiment, Polymorph A of MC3 trimesate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having two, three, four, or more characteristic peaks expressed in degrees 2-theta (+/−0.2) selected from the group consisting of 5.2, 7.8, 10.4, 20.9, and 23.6. In a further embodiment, Polymorph A of MC3 trimesate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having characteristic peaks expressed in degrees 2-theta (+/−0.2) at 5.2, 7.8, 10.4, 18.3, 20.9, 23.6, and 26.2.


In one embodiment, Polymorph A of MC3 trimesate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having at least seven characteristic peaks expressed in degrees 2-theta (+/−0.2), selected from the group consisting of 5.2, 7.8, 9.7, 10.4, 18.3, 20.9, 23.6, and 26.2. In another embodiment, Polymorph A of MC3 trimesate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having at least nine characteristic peaks expressed in degrees 2-theta (+/−0.2), selected from the group consisting of 5.2, 7.8, 9.7, 10.4, 11.5, 13.0, 18.3, 20.9, 23.6, and 26.2.


In a particular embodiment, Polymorph A of MC3 trimesate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having two, three, four or more characteristic peaks expressed in degrees 2-theta (+/−0.2) selected from the group consisting of 5.2, 7.8, 10.4, 18.3, 20.9, 23.6, and 26.2. In one embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with FIG. 52. In another embodiment, Polymorph A exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with Table XIII below.












TABLE XIII







Peak
Position [°2Th.]









 1.
 5.2



 2.
 7.8



 3.
 9.7



 4.
10.4



 5.
11.5



 6.
13.0



 7.
18.3



 8.
20.9



 9.
23.6



10.
26.2










In other embodiments, Polymorph A of trimesate of MC3 is identifiable on the basis of a characteristic peak observed in a differential scanning calorimetry thermogram. In one embodiment, Polymorph A of trimesate of MC3 exhibits a differential scanning calorimetry thermogram showing a characteristic melting endotherm peak expressed in units of ° C. with an onset temperature of about 184+/−2° C. In another embodiment, Polymorph A of trimesate of MC3 exhibits a differential scanning calorimetry thermogram substantially in accordance with the lower curve shown in FIG. 53. In another embodiment, Polymorph A of trimesate of MC3 exhibits a differential scanning calorimetry thermogram showing a characteristic melting endotherm peak expressed in units of ° C. with an onset temperature of about 186+/−2° C. In another embodiment, Polymorph A of trimesate of MC3 exhibits a differential scanning calorimetry thermogram showing a second primary endotherm expressed in units of ° C. at a temperature of 90+/−2° C. In another embodiment, Polymorph A of trimesate of MC3 exhibits a differential scanning calorimetry thermogram substantially in accordance with FIG. 54.


In another embodiment, provided herein is Polymorph A of trimesate of MC3, wherein the solid form undergoes a weight increase of less than 1.0% (e.g., less than 0.5%, or less than 0.3%) upon increasing relative humidity from 5.0% to 95.0% at e.g., 25° C. In another embodiment, Polymorph A of trimesate of MC3 is characterized as having a dynamic vapor sorption profile that is substantially in accordance with FIG. 57.


In one embodiment, Polymorph A of trimesate of MC3 is substantially free of impurities, meaning there is not a significant amount of impurities present in the sample of Polymorph A. In another embodiment, Polymorph A is a crystalline solid substantially free of amorphous MC3 (or any of its amorphous salt forms). In yet another embodiment, Polymorph A is a crystalline solid substantially free of other polymorphs of trimesate of MC3 and substantially free of amorphous MC3 (or any of its amorphous salt forms). For example, Polymorph A is a crystalline solid substantially free of Polymorph B of trimesate of MC3 and substantially free of amorphous MC3 (or any of its amorphous salt forms). The skilled artisan understands that a solid sample of Polymorph A may also include other polymorphs (e.g., Polymorph B), and/or amorphous MC3 (or any of its amorphous salt forms).


As used herein, the term “substantially free of amorphous MC3” means that the compound contains no significant amount of amorphous MC3 (or any of its amorphous salt forms). In another embodiment, a sample of a salt or cocrystal of MC3 comprises Polymorph A of trimesate of MC3 substantially free of other polymorphs (e.g., Polymorph B of trimesate of MC3). As used herein, the term “substantially free of other polymorphs” means that a sample of crystalline MC3 trimesate contains no significant amount of other polymorphs (e.g., Polymorph B). In certain embodiments, at least about 90% by weight of a sample is Polymorph A, with only 10% being other polymorphs (e.g., Polymorph B) and/or amorphous MC3 (or any of its amorphous salt forms). In certain embodiments, at least about 95% by weight of a sample is Polymorph A, with only 5% being other polymorphs (e.g., Polymorph B) and/or amorphous MC3 (or any of its amorphous salt forms). In still other embodiments, at least about 98% by weight of a sample is Polymorph A, with only 2% by weight being other polymorphs (e.g., Polymorph B) and/or amorphous MC3 (or any of its amorphous salt forms). In still other embodiments, at least about 99% by weight of a sample is Polymorph A, with only 1% by weight being other polymorphs (e.g., Polymorph B) and/or amorphous MC3 (or any of its amorphous salt forms). In still other embodiments, at least about 99.5% by weight of a sample is Polymorph A, with only 0.5% by weight being other polymorphs (e.g., Polymorph B) and/or amorphous MC3 (or any of its amorphous salt forms). In still other embodiments, at least about 99.9% by weight of a sample is Polymorph A, with only 0.1% by weight being other polymorphs (e.g., Polymorph B) and/or amorphous MC3 (or any of its amorphous salt forms).


In certain embodiments, a sample of a salt or cocrystal of MC3 (e.g., MC3 trimesate) may contain impurities. Non-limiting examples of impurities include other polymorph forms, or residual organic and inorganic molecules such as related impurities (e.g., intermediates used to make MC3 or by-products), solvents, water or salts. In one embodiment, a sample of a salt or cocrystal of MC3, e.g., trimesate Polymorph A is substantially free from impurities, meaning that no significant amount of impurities are present. In another embodiment, a sample of the salt or cocrystal of MC3 contains less than 10% weight by weight (wt/wt) total impurities. In another embodiment, a sample of the salt or cocrystal of MC3 contains less than 5% wt/wt total impurities. In another embodiment, a sample of the salt or cocrystal of MC3 contains less than 2% wt/wt total impurities. In another embodiment, a sample of the salt or cocrystal of MC3 contains less than 1% wt/wt total impurities. In yet another embodiment, a sample of the salt or cocrystal of MC3 contains less than 0.1% wt/wt total impurities. In yet another embodiment, a sample of the salt or cocrystal of MC3 does not contain a detectable amount of impurities.


In one embodiment, this disclosure also provides Polymorph B of MC3 trimesate. In one embodiment, Polymorph B of MC3 trimesate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having two, three, four or more characteristic peaks expressed in degrees 2-theta (+/−0.2) selected from the group consisting of (+/−0.2) at 4.8, 19.4, 24.3, and 26.8. In a further embodiment, Polymorph B of MC3 trimesate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having characteristic peaks expressed in degrees 2-theta (+/−0.2) at 4.8, 5.4, 7.2, 9.7, 19.4, 24.3, 26.8, and 29.3.


In one embodiment, Polymorph B of MC3 trimesate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having at least seven characteristic peaks expressed in degrees 2-theta (+/−0.2), selected from the group consisting of 4.8, 5.4, 7.2, 9.7, 12.1, 19.4, 21.9, 24.3, 26.8, 29.3, and 31.8. In another embodiment, Polymorph B of MC3 trimesate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having at least nine characteristic peaks expressed in degrees 2-theta (+/−0.2), selected from the group consisting 4.8, 5.4, 7.2, 9.7, 12.1, 14.5, 17.0, 19.4, 21.9, 24.3, 26.8, and 29.3.


In a particular embodiment, Polymorph B of MC3 trimesate exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having two, three, four or more characteristic peaks expressed in degrees 2-theta (+/−0.2) selected from the group consisting of 4.8, 5.4, 7.2, 9.7, 19.4, 24.3, 26.8, and 29.3. In one embodiment, Polymorph B exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with FIG. 59. In another embodiment, Polymorph B exhibits an X-ray powder diffraction pattern obtained using Cu Kα radiation, having peaks with 2-theta values substantially in accordance with Table XIV below.












TABLE XIV







Peak
Position [°2Th.]









 1.
 4.8



 2.
 5.4



 3.
 7.2



 4.
 9.7



 5.
12.1



 6.
14.5



 7.
17.0



 8.
19.4



 9.
21.9



10.
24.3



11.
26.8



12.
29.3



13.
31.8










In other embodiments, Polymorph B of trimesate of MC3 is identifiable on the basis of a characteristic peak observed in a differential scanning calorimetry thermogram. In one embodiment, Polymorph B of trimesate of MC3 exhibits a differential scanning calorimetry thermogram showing a characteristic melting endotherm peak expressed in units of ° C. with an onset temperature of about 187+/−2° C. In another embodiment, Polymorph B of trimesate of MC3 exhibits a differential scanning calorimetry thermogram substantially in accordance with FIG. 60.


In one embodiment, Polymorph B of trimesate of MC3 is substantially free of impurities, meaning there is not a significant amount of impurities present in the sample of Polymorph B. In another embodiment, Polymorph B is a crystalline solid substantially free of amorphous MC3 (or any of its amorphous salt forms). In yet another embodiment, Polymorph B is a crystalline solid substantially free of other polymorphs of trimesate of MC3 and substantially free of amorphous trimesate of MC3 (or any of its amorphous salt forms). For example, Polymorph B is a crystalline solid substantially free of Polymorph A of trimesate of MC3 and substantially free of amorphous trimesate of MC3 (or any of its amorphous salt forms). The skilled artisan understands that a solid sample of Polymorph B may also include other polymorphs (e.g., Polymorph A), and/or amorphous MC3 (or any of its amorphous salt forms). As used herein, the term “substantially free of amorphous MC3” means that the compound contains no significant amount of amorphous MC3 (or any of its amorphous salt forms).


In another embodiment, a sample of a salt or cocrystal of MC3 comprises Polymorph B of trimesate of MC3 substantially free of other polymorphs (e.g., Polymorph A of trimesate of MC3).


As used herein, the term “substantially free of other polymorphs” means that a sample of crystalline MC3 trimesate contains no significant amount of other polymorphs (e.g., Polymorph A). In certain embodiments, at least about 90% by weight of a sample is Polymorph B, with only 10% being other polymorphs (e.g., Polymorph A) and/or amorphous MC3 (or any of its amorphous salt forms). In certain embodiments, at least about 95% by weight of a sample is Polymorph B, with only 5% being other polymorphs (e.g., Polymorph A) and/or amorphous MC3 (or any of its amorphous salt forms). In still other embodiments, at least about 98% by weight of a sample is Polymorph B, with only 2% by weight being other polymorphs (e.g., Polymorph A) and/or amorphous MC3 (or any of its amorphous salt forms). In still other embodiments, at least about 99% by weight of a sample is Polymorph B, with only 1% by weight being other polymorphs (e.g., Polymorph A) and/or amorphous MC3 (or any of its amorphous salt forms). In still other embodiments, at least about 99.5% by weight of a sample is Polymorph B, with only 0.5% by weight being other polymorphs (e.g., Polymorph A) and/or amorphous MC3 (or any of its amorphous salt forms). In still other embodiments, at least about 99.9% by weight of a sample is Polymorph B, with only 0.1% by weight being other polymorphs (e.g., Polymorph A) and/or amorphous MC3 (or any of its amorphous salt forms).


In certain embodiments, a sample of a salt or cocrystal of MC3 (e.g., MC3 trimesate) may contain impurities. Non-limiting examples of impurities include other polymorph forms, or residual organic and inorganic molecules such as related impurities (e.g., intermediates used to make MC3 or by-products), solvents, water or salts. In one embodiment, a sample of a salt or cocrystal of MC3, e.g., trimesate Polymorph B is substantially free from impurities, meaning that no significant amount of impurities are present. In another embodiment, a sample of the salt or cocrystal of MC3 contains less than 10% weight by weight (wt/wt) total impurities. In another embodiment, a sample of the salt or cocrystal of MC3 contains less than 5% wt/wt total impurities. In another embodiment, a sample of the salt or cocrystal of MC3 contains less than 2% wt/wt total impurities. In another embodiment, a sample of the salt or cocrystal of MC3 contains less than 1% wt/wt total impurities. In yet another embodiment, a sample of the salt or cocrystal of MC3 contains less than 0.1% wt/wt total impurities.


Also disclosed herein is a salt or cocrystal of an alkylated Compound 1 (structure of which is shown below, wherein R is an alkyl having, e.g., 1-20 carbon atoms) and a coformer compound such as those disclosed herein, e.g., 4-hydroxybenzoic acid, oxalic acid, trimellitic acid, orotic acid, trimesic acid, sulfuric acid, (−)-2,3-dibenzoyl-L-tartaric acid, 4-acetamido benzoic acid, (+)-L-tartaric acid, and methanesulfonic acid. For example, the salt or cocrystal of an alkylated Compound 1 has a melting point of about 50° C. or greater (e.g., about 60° C., 70° C., or greater).




embedded image


The salts or cocrystals disclosed herein may comprise Compound 1 (or Compound 2 or 3) and the coformer compound (e.g., an acid), within a ratio from 1:0.2 mol/mol to 1:5 mol/mol or from about 1:0.5 mol/mol to 1:2 mol/mol, or from 1:0.4 mol/mol to 1:1.1 mol/mol. For example, the molar ratio is about 1:1 mol/mol.


The salts or cocrystals disclosed herein may comprise (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate (“MC3”) and the coformer compound (e.g., an acid), within a ratio from 1:0.5 mol/mol (i.e., 2:1 mol/mol) to 1:2 mol/mol.


The salts or cocrystals disclosed herein may be anhydrous and/or essentially solvent-free form, or be in hydrate and/or solvate form. For example, 4-hydroxybenzoate of Compound 1 is anhydrous. For example, Compound 1 orotate may be anhydrous or in a hydrate or solvate form.


Preparation of Salts or Cocrystals and Polymorphs Thereof

General techniques for making polymorphs are understood by the skilled artisan. Conventionally, a salt form or cocrystal is prepared by combining in solution the free base compound and a coformer (e.g., an acid coformer) containing the anion of the salt form desired, and then isolating the solid salt or cocrystal product from the reaction solution (e.g., by crystallization, precipitation, evaporation, etc.). Other salt-forming or cocrystallization techniques may be employed.


In one aspect, provided herein is a method of preparing a salt or cocrystal of Compound 1 by combining Compound 1 with a compound selected from the group consisting of 4-hydroxybenzoic acid, oxalic acid, trimellitic acid, orotic acid, trimesic acid, and sulfuric acid. In one embodiment, the method comprises the steps: a) dissolving Compound 1 in a solvent to obtain a solution; b) combining the coformer compound with the solution; c) precipitating or crystallizing the salt or cocrystal from the solution; and d) collecting the salt or cocrystal. In one embodiment, the solvent used in step a) is n-heptane, ethyl acetate, or cyclohexane. In one embodiment, step c) is carried out substantively free of evaporation to obtain 4-hydroxybenzoate, trimellitate, orotate, and trimesate of Compound 1. In another embodiment, step c) is carried out by slow evaporation, at e.g., 5° C., to obtain, e.g., sulfate of Compound 1. In some embodiments, the molar ratio of Compound 1 and the compound is about 1:1.


Also provided herein is a method for preparing a salt or cocrystal of Compound 2 by combining Compound 2 with a compound selected from the group consisting of trimesic acid, (−)-2,3-dibenzoyl-L-tartaric acid, 4-acetamido benzoic acid, (+)-L-tartaric acid, and methanesulfonic acid. In one embodiment, the method comprises the steps: a) dissolving Compound 2 in a solvent to obtain a solution; b) combining the coformer compound with the solution; c) precipitating or crystallizing the salt or cocrystal from the solution; and d) collecting the salt or cocrystal. In one embodiment, the solvent used in step a) is n-heptane, ethyl acetate, or cyclohexane. In one embodiment, step c) is carried out substantively free of evaporation to obtain trimesate, dibenzoyl-L-tartrate, or 4-acetamido benzoate of Compound 2. In another embodiment, step c) is carried out by slow evaporation, at e.g., 5° C., to obtain, e.g., dibenzoyl-L-tartrate, L-tartrate, or mesylate of Compound 2. In some embodiments, the molar ratio of Compound 2 and the compound is about 1:1.


This disclosure also provides a method of preparing the salt or cocrystal of Compound 3 by combining Compound 3 and trimesic acid. In one embodiment, the method comprises the steps: a) dissolving Compound 3 in a solvent to obtain a solution; b) combining trimesic acid with the solution; c) precipitating or crystallizing the salt or cocrystal from the solution; and d) collecting the salt or cocrystal. In one embodiment, the solvent used in step a) is n-heptane or toluene. In one embodiment, step c) is carried out substantively free of evaporation. In another embodiment, step c) is carried out by slow evaporation. In some embodiments, the molar ratio of Compound 3 and the compound is about 1:1.


This disclosure also provides a method of preparing the salt or cocrystal of MC3 by combining MC3 and a compound selected from (+)-O,O-di-pivaloyl-D-tartaric acid (DPDT), (−)-O,O-di-pivaloyl-L-tartaric acid (DPLT), (+)-2,3-dibenzoyl-D-tartaric acid (DBDT), and trimesic acid. In one embodiment, the method comprises the steps: a) dissolving MC3 in a solvent to obtain a solution; b) combining the compound with the solution; c) precipitating or crystallizing the salt or cocrystal from the solution; and d) collecting the salt or cocrystal. In one embodiment, the solvent used in step a) is ethyl acetate, toluene, or cyclohexane. In one embodiment, step c) is carried out substantively free of evaporation. In another embodiment, step c) is carried out by slow evaporation. In some embodiments, the molar ratio of MC3 and the compound is about 1:1.


This disclosure also provides a method of preparing the salt or cocrystal of MC3 by combining MC3 and a compound selected from (+)-O,O-di-pivaloyl-D-tartaric acid (DPDT), (−)-O,O-di-pivaloyl-L-tartaric acid (DPLT), (+)-2,3-dibenzoyl-D-tartaric acid (DBDT), and trimesic acid. In one embodiment, the method comprises the steps: a) combining MC3 and trimesic acid; b) dissolving the combination of MC3 and the compound to obtain a solution; c) precipitating or crystallizing the salt or cocrystal from the solution; and d) collecting the salt or cocrystal. In one embodiment, the solvent used in step a) is ethyl acetate, toluene, or cyclohexane. In one embodiment, step c) is carried out substantively free of evaporation. In another embodiment, step c) is carried out by slow evaporation. In some embodiments, the molar ratio of MC3 and the compound is about 1:1.


In one embodiment of the method, the solvent comprises an aprotic solvent. In one embodiment of the method, the solvent comprises a nonpolar aprotic solvent. In certain embodiments, one or more of the solutions of steps a) or b) is heated. For example, the solution from step b) is subject to temperature cycling, e.g., from about 50° C. to about 5° C. (for e.g., twice, three, or four times) before step c).


Also provided herein is a process of purifying Compound 1, 2, or 3 by forming a salt or cocrystal thereof disclosed herein to separate the salt or cocrystal thereof from the impurities. The method may further comprise neutralizing the salt or cocrystal to convert to Compound 1, 2, or 3 (i.e., a free base).


Also provided herein is a process of purifying MC3 by forming a salt or cocrystal thereof disclosed herein to separate the salt or cocrystal thereof from the impurities. The method may further comprise neutralizing the salt or cocrystal to convert to MC3 (i.e., a free base).


In still another aspect, provided herein is a process of synthesizing Compound 2, Compound 3, or an analog thereof by reacting a salt or cocrystal of Compound 1 disclosed herein with a suitable electrophile, such as an ester substituted with a halogen (e.g., Br or I). The scheme below illustrates one embodiment of the process.




embedded image


In the scheme above, Compound 1 is oil and it is hard to purify it, e.g., by separating it from a and b, and other by-products. Compound 1 oxalate is a crystal, thus is easy to separate from a, b, and/or other by-products. Forming a salt or cocrystal of Compound 1, e.g., oxalate, improves purification. Also, Compound 1 oxalate can be used to synthesize Compound 2 or 3 without converting back to Compound 1 (i.e., neutralization).


A process for synthesizing MC3 is described in Jayaraman, M.; Maximizing the Potency of siRNA Lipid Nanoparticles for Hepatic Gene Silencing In Vivo, Angew. Chem. Int. Ed. 2012, 51, 8529-8533, which is incorporated herein by reference in its entirety. MC3 corresponds to compound 16 in this article.


In one embodiment, the process of the present disclosure is advantageous as compared to other processes in that the process of the disclosure produces Compound 1, 2, or 3 or a salt or cocrystal thereof at a large scale and/or at a high purity, e.g., such that cumbersome purification (e.g., column chromatography, extraction, phase separation, distillation and solvent evaporation) is not needed. In one embodiment, the process of the present disclosure is able to process at least 100 g, 200 g, 500 g or more (e.g., 1 kg, 2 kg, 5 kg, 10 kg, 20 kg, 50 kg, 100 kg, 200 kg, 500 kg, or 1000 kg or more) Compound 1, 2, or 3 or a salt or cocrystal thereof without the need to scale up. In one embodiment, the process of the present disclosure is able to produce Compound 1, 2, or 3 or a salt or cocrystal thereof at least at a purity of at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5%, or higher. In one embodiment, the process of the present disclosure is able to produce Compound 1, 2, or 3 or a salt or cocrystal thereof with little or none impurity. In one embodiment, the impurity produced in the process of the present disclosure, even if produced, is easy to be separated from Compound 1, 2, or 3 or a salt or cocrystal thereof, without cumbersome purification (e.g., column chromatography, extraction, phase separation, distillation and solvent evaporation).


All percentages and ratios used herein, unless otherwise indicated, are by weight (i.e., weight by weight or wt/wt). Other features and advantages of the present invention are apparent from the different examples. The provided examples illustrate different components and methodology useful in practicing the present invention. The examples do not limit the claimed invention. Based on the present disclosure the skilled artisan can identify and employ other components and methodology useful for practicing the present invention.


EXAMPLES

X-Ray Powder Diffraction


XRPD was performed with PANalytical Empyrean, X' Pert3, and Bruker D2 X-ray powder diffractometers. The parameters used are listed in the table below.













Parameters
XRPD


















Model
Empyrean
X′ Pert3
Bruker D2








X-Ray wavelength
Cu, kα, Kα1 (Å): 1.540598, Kα2 (Å): 1.544426



Kα2/Kα1 intensity ratio: 0.50









X-Ray tube setting
45 kV, 40 mA
30 kV, 10 mA










Divergence slit
Automatic
1/8°
0.6 mm








Scan mode
Continuous


Scan range (°2-theta)
3-40










Scan step time (s)
17.8
46.7
0.1


Step size (°2-theta)
0.0167
0.0263
0.0201


Scan speed (°/min)
5 min 30 s
5 min 04 s
3 min 27 s










TGA/DSC


TGA data were collected using a TA Q500/Q5000 TGA from TA Instruments. DSC was performed using a TA Q200/Q2000 DSC from TA Instruments. Detailed parameters used are listed in the following table.














Parameters
TGA
DSC







Method
Ramp
Ramp


Sample pan
Aluminum or platinum, open
Aluminum or platinum, crimped


Temperature
RT—desired temperature; or
−60° C.—desired temperature;



RT-350° C.
or RT-300° C.








Heating rate
10° C./min


Purge gas
N2










HPLC


Agilent 1100 or Agilent 1100/1260 HPLC was utilized to analyze purity, with the detailed method listed in the table below.
















HPLC
Agilent 1100 with DAD Detector
Agilent 1100/1260





Column
Agilent Eclipse Plus C18, 150 × 4.6
Agilent ZORBAX SB-Phenyl,



mm, 5 μm
150 × 4.6 mm, 3.5 μm








Mobile phase
A: 0.1% TFA in H2O



B: 0.1% TFA in Acetonitrile















Time (min)
% B
Time (min)
% B





Gradient table
 0.0
 30
0.0
10



15.0
100
4.0
80



22.0
100
6.0
80



22.1
 30
 6.10
10



25.0
 30
8.0
10












Run time
25.0 min
8.0 min


Post time
 0.0 min
0.0 min


Flow rate
0.8 mL/min
1.0 mL/min


Injection volume
5 μL
10 μL








Column temperature
40° C.


Sample temperature
RT









Diluent
MeOH
EtOH













Detector
ELSD
Grace 3300
Detector wavelength






Temperature
50° C.
UV at 210 nm, reference 500 nm



Flow
2 L/min




Gain
1









Agilent 1100/1260 HPLC with Halo C18 column was utilized for purity and concentration measurements of MC3 free base, with the detailed method listed in the table below.















Parameter
Condition





Column
Halo C18, 100 × 4.6 mm, 2.7 μm


Mobile phase
A: 20% NH4HCO3 (10 mM) + 40% MeOH + 40% THF



B: 20% IPA + 40% MeOH + 40% THF













Time (min)
% B





Gradient table
 0.00
 0



30.00
40



35.00
50



35.01
 0



40.00
 0











Run time
40.0 min


Post time
 0.0 min


Flow rate
10 mL/min


Injection volume
10 μL


Detector wavelength
UV at 207 nm, reference 500 nm


Column temperature
40° C.


Sample temperature
RT


Diluent
EtOH










Dynamic Vapor Sorption


DVS was measured on via a SMS (Surface Measurement Systems) DVS Intrinsic. The relative humidity at 25° C. were calibrated against deliquescence point of LiCl, Mg(NO3)2 and KCl. Actual parameters for DVS test are listed in the table below.













Parameters
DVS







Temperature
25° C.


Sample size
10~20 mg


Gas and flow rate
N2, 200 mL/min


dm/dt
0.002%/min


Min. dm/dt stability duration
 10 min


Max. equilibrium time
180 min


RH range
0%RH-95%RH


RH step size
10% (0% RH-90% RH, 90% RH-0% RH)



5% (90% RH-95% RH, 95% RH-90% RH)










1H NMR spectrum was collected on Bruker 400M NMR Spectrometer using DMSO-d6 as solvent.


Polarized light microscopic (PLM) images were captured on Axio Lab A1 upright microscope at room temperature.


Example 1: Salts or Cocrystals of Compound 1

Preparation


Compound 1 freebase is an oil at ambient conditions. As per the results in FIGS. 34 and 35, the freebase showed minor weight loss of 1.1% before 200° C. in TGA, and possible crystallization and melting signals in cyclic DSC, suggesting the existence of a crystalline form which melts around 17° C. (peak). Purity of the material was determined to be 99.95 area % by HPLC with ELSD detector.


To identify a crystalline salt form or cocrystal of Compound 1, screening was performed under 96 conditions using 32 acids and three solvent systems. Compound 1 freebase was dispersed in selected solvent with a 1.5-mL glass vial and corresponding salt former was added with a molar charge ratio of 1:1. The mixtures of freebase and the coformer compound (e.g., an acid) were first transferred to temperature cycling from 50° C. to 5° C. for two cycles (heating rate of 4.5° C./min, cooling rate of 0.1° C./min) and then stirred at 5° C. to induce precipitation. If the samples were still clear, they would be subjected to evaporation at different temperatures (5° C. or RT) to dryness. Resulted solids were isolated and analyzed.


Isolated crystal solids were characterized by X-ray powder diffraction (XRPD), thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC), with proton nuclear magnetic resonance (1H NMR) to confirm the freebase chemical structure and also potential co-existence with some organic acids. Exemplary data from the initial findings are summarized in Table 1.













TABLE 1







n-Heptane
EtOAc
Cyclohexane



















1
Hexanoic acid
Amorphous*
Amorphous*
Oil**


2
Fumaric acid
Acid + two extra peaks
Acid + two extra
Acid + two extra





peaks*
peaks


3
Adipic acid
Amorphous*
Amorphous*
Acid + one extra






peak**


4
Suberic acid
Amorphous*
Acid*
Oil**


5
Cinnamic acid
Amorphous*
Amorphous*
Oil**


6
Benzoic acid, 4-acetamido
Acid
Two peaks*
Acid


7
(S)-Mandelic acid
Two peaks*
Two peaks*
Oil**


8
(−)-O,O-Di-pivaloyl-L-tartaric
Amorphous*
Amorphous*
Oil**



acid





9
Terephthalic acid
Acid
Acid
Acid


10
Trimesic acid
Amorphous
Trimesate Polymorph
Oil**





A



11
Citric acid
Two peaks*
Amorphous*
Two peaks**


12
Succinic acid
Two peaks*
Two peaks*
Two peaks**


13
Malonic acid
Amorphous*
Amorphous*
Oil**


14
(+)-Camphor-10-sulfonic acid
Amorphous*
Amorphous*
Oil**


15
Nicotinic acid
Amorphous*
Acid*
Oil**


16
(+)-L-tartaric acid
Two peaks
Two peaks*
Oil**


17
p-Toluenesulfonic acid
Amorphous*
Two peaks*
Oil**


18
Hydrochloric acid
Amorphous*
Amorphous*
Amorphous**


19
Sulfuric acid
Sulfate Polymorph A*
Amorphous*
Oil**


20
Phosphoric acid
Two peaks*
Amorphous*
Oil**


20
Acetic acid
Amorphous*
Amorphous*
Oil**


21
Methanesulfonic acid
Amorphous*
Amorphous*
Oil**


22
Sebacic acid
Sebacic acid
Sebacic acid*
Sebacic acid*


23
Benzoic acid
Amorphous*
Amorphous*
Amorphous*


24
1,2,4-Trimellitic acid
Trimellitate Polymorph
Trimellitate
Trimellitate




A
Polymorph A
Polymorph A


25
Phthalic acid
Oil*
Oil*
Oil*


26
Isophthalic acid
Isophthalic acid
Isophthalic acid
Isophthalic acid


27
Orotic acid
Orotate Polymorph A
Orotate Polymorph A
Orotate Polymorph A


28
4-Hydroxybenzoic acid
4-Hydroxybenzoate
4-Hydroxybenzoate
4-Hydroxybenzoate




Polymorph A
Polymorph A
Polymorph A


29
(−)-Dibenzoyl-L-tartaric acid
Weakly crystalline
Amorphous*
Weakly crystalline


30
2,5-Dihydroxybenzoic acid
Oil*
Oil*
2,5-






Dihydroxybenzoic






acid


31
2-Hydroxy benzoic acid
Oil**
Oil**
Oil**


32
3-Hydroxy benzoic acid
Oil**
Oil**
Oil**





*clear solutions obtained after 5° C. stirring were transferred to 5° C. evaporation.


**clear solutions obtained after 5° C. stirring were slow evaporated at RT.






Among them, five crystalline hits were discovered, including 4-hydroxybenzoate, trimellitate, orotate, trimesate and sulfate. Table 2 summarizes the properties of certain polymorphs of the salts or cocrystals.












TABLE 2








4-Hydroxybenzoate
Trimellitate
Orotate












Polymorph A
Polymorph A
Polymorph A
Polymorph B













Appearance
White powder
Wax-like solid
Wax-like solid











Solid form
Anhydrate
Hydrate
Anhydrate/Hydrate
Hydrate/solvate










Crystallinity
High
Medium
Medium











Purity, area %
99.96
99.97

99.97


TGA weight loss,
0.7-1.7
1.5-3.4
4.0
4.0


%






DSC endotherm,
66.8, 101.8 (batch 1)
78.3, 137.1 (batch 1)
78.8*, 85.1*, 176.3*
83.5*


° C. (onset)
68.2, 103.5 (batch 2)
80.0*, 137.1 (batch 2)




Hygroscopicity
Non-hygroscopic
Slightly hygroscopic

Hygroscopic


(form change after
(no)
(no)

(convert to orotate


DVS)



Polymorph A)





*peak temperature.


—: no data available.






Three crystalline polymorphs of Compound 1 (4-hydroxybenzoate Polymorph A, trimellitate Polymorph A and orotate Polymorph B) were prepared to larger scale for further investigation, with the detailed procedure shown below:


1. About 100 mg of freebase Compound 1 was added into a 3-mL glass vial;


2. Add corresponding acids (molar charge ratio is 1:1) into the vial;


3. Add 0.5 mL of solvent and transfer the suspension to temperature cycling from 50° C. to 5° C. (cooling rate of 0.1° C./min, two cycles) with magnetic stirring.


4. Centrifuge to isolate solids and vacuum dry at RT.


Characterization of 4-hydroxybenzoate


Two batches of 4-hydroxybenzoate Polymorph A (or Type A) (batch Nos. 1 and 2) were prepared by slurry in n-heptane and showed high crystallinity as characterized by XRPD in FIG. 1. The 1H NMR of sample (batch No. 2) was collected with spectrum shown in FIG. 2. Besides freebase, a certain amount of 4-hydroxybenzic acid was detected in 1H NMR (signals around 6.7 and 7.7 ppm), indicating the possibility of salt formation.


As indicated by the TGA and DSC data in FIG. 3, sample (batch No. 2) showed a weight loss of 0.7% up to 140° C. and two sharp endothermic peaks at 68.2° C. and 103.5° C. (onset temperature) before decomposition. Based on the negligible weight loss in TGA, 4-hydroxybenzoate Polymorph A was considered to be an anhydrous form. In addition, the two sharp endothermic signals in DSC curve implied the possible existence of another anhydrous form at higher temperature.


As evidenced by heating experiments in FIG. 5 and VT-XRPD results in FIGS. 6 and 7, form change (new form assigned as 4-hydroxybenzoate Polymorph B) was observed after heating sample (batch No. 1) to 83° C. (over the first endotherm in DSC) in VT-XRPD test and no form change was observed after heating sample (batch No. 2) over the first endotherm and cooling back to RT. Considering results of heating experiments and thermal signals in cyclic DSC (FIG. 4), 4-hydroxybenzoate Polymorphs A and B are possibly enantiotropically related and Polymorph A is more stable at lower temperature (RT).


Further evaluation on hygroscopicity of 4-hydroxybenzoate Polymorph A was conducted via DVS isotherm collection at 25° C. Results in FIGS. 8 and 9 showed that sample (batch No. 1) is non-hygroscopic with no form change before and after DVS test. Moreover, sample (batch No. 1) showed aggregation of small particles (<10 μm) in PLM image (FIG. 10) and a purity of 99.96 area % determined by HPLC (Table 3).















TABLE 3







# Peak
Time (min)
RRT
Area (mAU*S)
Area (%)






















1
16.58
1.00
2070.9
99.96



2
16.99
1.02
0.8
0.04











Characterization of Trimellitate


Trimellitate Polymorph A samples (batch Nos. 1 and 2) were prepared by reactive crystallization in EtOAc with XRPD patterns shown in FIG. 11. The 1H NMR spectrum was collected for sample (batch No. 2) and is shown in FIG. 12. Compared to freebase, a certain amount of trimellitic acid was detected (signals between 8.0 and 9.0 ppm), indicating the salt formation.


As per the TGA and DSC data in FIG. 13, sample (batch No. 1) showed a weight loss of 3.4% up to 110° C. and two endothermic peaks at 78.3° C. and 137.1° C. (onset temperature) before decomposition. As demonstrated by VT-XRPD results in FIG. 14, extra diffraction peaks appeared after 20 minutes of N2 flow, and new form was observed at 90° C., which converted back to trimellitate Polymorph A after being heated and exposed to ambient condition, suggesting that Polymorph A is a hydrated form.


Further evaluation on hygroscopicity of trimellitate Polymorph A was performed via DVS isotherm collection at 25° C. Results in FIGS. 15 and 16 showed that sample (batch No. 1) is slightly hygroscopic with no form change before and after DVS test. Platform observed in DVS plot (FIG. 15) also indicated that Polymorph A is a hydrated form. Moreover, sample (batch No. 1) showed irregular particles (<10 μm) in PLM image (FIG. 17) and a purity of 99.97 area % determined by HPLC (Table 4).















TABLE 4







# Peak
Time (min)
RRT
Area (mAU*S)
Area (%)






















1
16.62
1.00
1404.2
99.97



2
16.99
1.02
0.5
0.03











Characterization of Orotate


Orotate Polymorph A and Polymorph B were generated via reactive crystallization in EtOAc with XRPD patterns shown in FIG. 18. The 1H NMR spectrum of Polymorph A was collected and is shown in FIG. 19. In addition to freebase, a certain amount of orotic acid was detected (signal at 5.7 ppm).


As per the TGA and DSC data in FIG. 20, Polymorph A sample showed a weight loss of 4.0% up to 110° C. and endothermic peaks at 78.8, 85.1 and 176.3° C. (peak temperature) before decomposition. Results of heating experiments in FIG. 21 showed that no form change was observed after heating Polymorph A sample over the first two endothermic signals and cooling back to RT, suggesting Polymorph A is anhydrous or a hydrated form which can rapidly absorb water at ambient conditions after de-hydration. In addition, as evidenced by the heating-cooling DSC curve of Polymorph A in FIG. 22, endothermic and exothermic signals with similar enthalpy were observed at 170˜175° C. and 80˜90° C., suggesting the possible form transition and the existence of anhydrate form at higher temperature.


TGA and DSC data of Polymorph B in FIG. 23 showed a weight loss of 4.0% up to 110° C. and endothermic peak at 78.1° C. (onset) before decomposition. After cyclic DSC between 25° C. and 130° C., Polymorph B converted to Polymorph A with data illustrated in FIG. 24 and FIG. 25, indicating Polymorph B is a hydrated or solvate form. DVS test of Polymorph B sample showed that it is slightly hygroscopic and converted to Polymorph A after DVS test, with data displayed in FIG. 26 and FIG. 27. Also, Polymorph B sample showed irregular particles in PLM image (FIG. 28) and a purity of 99.97 area % detected by HPLC (Table 5).















TABLE 5







# Peak
Time (min)
RRT
Area (mAU*S)
Area (%)






















1
16.62
1.00
1464.2
99.97



2
17.00
1.02
0.5
0.03











Characterization of Sulfate


Sulfate Polymorph A was generated by slow evaporation at 5° C. in n-heptane. Needle like crystals were observed during evaporation (FIG. 29), which was further isolated for XRPD, TGA and DSC tests. Results in FIGS. 30 and 31 showed that the sample is crystalline with continuous weight loss and multiple endotherms.


Characterization of Trimesate


Trimesate Polymorph A was generated from reactive crystallization in EtOAc system and XRPD pattern is shown in FIG. 32. 1H NMR results in FIG. 33 showed obvious signal of trimesic acid besides chemical shifts of freebase.


Characterization of Oxalate


Compound 1 Oxalate was generated from recrystallization. A purity of >97.5 area % detected by UPLC-CAD.


Example 2: Salts or Cocrystals of Compound 2

Preparation


Compound 2 freebase showed minor weight loss of 1.6% before reaching 200° C. in TGA. No obvious glass transition signal was observed and multiple endothermic peaks were observed with temperature elevated from −60 to 35° C. Two endothermic signals at −47.7 and −34.0° C. (onset) were observed during temperature elevated from −60 to 35° C.


Similar to the process described in Example 1, to identify a crystalline salt form or cocrystal of Compound 2, screening was performed under 93 conditions using 31 acids and three solvent systems. 0.3 mL stock solutions of Compound 2 freebase (˜50 mg/mL) was dispersed in selected solvent and corresponding salt former was added with a molar charge ratio of 1:1. The mixtures of freebase and the coformer compound (e.g., an acid) were first transferred to temperature cycling from 50° C. to 5° C. for three cycles (heating rate of 4.5° C./min, cooling rate of 0.1° C./min) and then stored at 5° C. before analysis. If the samples were still clear, they would be subjected to slow evaporation at 5° C. to dryness. Resulted solids were isolated and analyzed.


Isolated crystal solids were characterized by X-ray powder diffraction (XRPD), thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC), with proton nuclear magnetic resonance (′H NMR) to confirm the freebase chemical structure and also potential co-existence with some organic acids. Exemplary data from the initial findings are summarized in Table 6.











TABLE 6









Solvent











#
Acid
n-Heptane
Cyclohexane
EtOAc














1
Trimesic acid
Trimesate Polymorph A
Trimesate Polymorph A
Gel


2
Trimellitic acid
Amorphous + acid
Amorphous
Gel


3
(−)-2,3-Dibenzoyl-L-
Dibenzoyl-L-tartrate
Dibenzoyl-L-tartrate
Dibenzoyl-L-tartrate



tartaric acid
Polymorph A
Polymorph A*
Polymorph A*


4
Fumaric acid
Amorphous + two peaks
Acid
Gel


5
Terephthalic acid
Acid
Acid
Gel


6
Phthalic acid
Gel
Gel
Gel


7
Isophthalic acid
Acid
Acid
Gel


8
Benzoic acid
Gel
Gel
Gel


9
Cinnamic acid
Gel
Gel
Gel


10
4-Hydroxy benzoic acid
Amorphous
Gel
Gel


11
Salicylic acid
Gel
Gel
Gel


12
Adipic acid
Acid
Gel
Gel


13
Suberic acid
Acid
Acid
Gel


14
Sebacic acid
Gel
Acid
Acid


15
4-Acetamido benzoic acid
4-Acetamido benzoate
Acid
Acid




Polymorph A + acid




16
S-(+)-Mandelic
Gel
Gel
Gel


17
Orotic acid
Gel
Acid
Acid


18
Hexanoic acid
Gel
Gel
Gel


19
Citric acid
Gel
Gel
Gel


20
Acetic acid
Gel
Gel
Gel


21
Succinic acid
Acid
Acid
Gel


22
Malonic acid
Gel
Gel
Gel


23
(+)-Camphor-10-sulfonic
Gel
Gel
Gel



acid





24
Nicotinic acid
Acid
Acid
Acid


25
(+)-L-tartaric acid
L-Tartrate Polymorph A*
Gel
L-Tartrate Polymorph






A*


26
Hydrochloric acid
Gel
Gel
Gel


27
Sulfuric acid
Gel
Gel
Gel


28
Phosphoric acid
Gel
Gel
Gel


29
Methanesulfonic acid
Mesylate Polymorph A*
Mesylate Polymorph A*
Gel


30
p-Toluene sulfonic acid
Gel
Gel
Gel


31
2,5-Dihydroxybenzoic
Gel
Gel
Gel



acid








*solids obtained after 5° C. evaporation.







Characterization of Dibenzoyl-L-tartrate


Compound 2 dibenzoyl-L-tartrate Polymorph A was prepared by combining Compound 2 freebase with (−)-2,3-dibenzoyl-L-tartaric acid in n-heptane and showed crystallinity as characterized by XRPD in FIG. 36. The TGA/DSC data as shown in FIG. 37 indicate a weight loss of 30.5% up to 100° C. and broad endothermic signals before decomposition.


Characterization of Trimesate


Compound 2 trimesate Polymorph A was prepared by combining Compound 2 freebase with trimesic acid in n-heptane and showed crystallinity as characterized by XRPD in FIG. 38. The TGA/DSC data as shown in FIG. 39 indicate a weight loss of 0.8% up to 150° C. and multiple endothermic signals before decomposition.


Characterization of L-tartrate


Compound 2 L-tartrate Polymorph A was prepared by combining Compound 2 freebase with L-tartaric acid in n-heptane and showed crystallinity as characterized by XRPD in FIG. 40. The TGA/DSC data as shown in FIG. 41 indicate a weight loss of 4.0% up to 100° C. and multiple endothermic signals before decomposition.


Characterization of Mesylate


Compound 2 mesylate Polymorph A was prepared by combining Compound 2 freebase with methanesulfonic acid in n-heptane and showed crystallinity as characterized by XRPD in FIG. 42. The TGA/DSC data as shown in FIG. 43 indicate a weight loss of 5.9% up to 100° C. and irregular signals in the DSC curve.


Characterization of 4-acetamido Benzoate


Compound 2 4-acetamido benzoate Polymorph A was prepared by combining Compound 2 freebase with 4-acetamido benzoic acid in n-heptane and showed crystallinity as characterized by XRPD in FIG. 44. The TGA/DSC data as shown in FIG. 45 indicate a weight loss of 0.02% up to 150° C. and multiple endothermic signals before decomposition.


Example 3: Salts or Cocrystals of Compound 3

Preparation


Compound 3 freebase, as characterized via modulated DSC (mDSC), exhibits no glass transition signal. A weight loss of 1.2% was observed up to 200° C., and endotherms were observed at −44.1° C. and −29.9° C. (peak).


Similar to the process described in Example 1 or 2, to identify a crystalline salt form or cocrystal of Compound 3, screening was performed under 93 conditions using 31 acids and three solvent systems. 0.5 mL stock solutions of Compound 3 freebase (˜40 mg/mL) was dispersed in selected solvent and corresponding salt former was added with a molar charge ratio of 1:1. The mixtures of freebase and the coformer compound (e.g., an acid) were first transferred to temperature cycling from 50° C. to 5° C. for three cycles (heating rate of 4.5° C./min, cooling rate of 0.1° C./min) and then stored at 5° C. before analysis. If the samples were still clear, they would be subjected to slow evaporation at 5° C. to obtain gels. Resulting solids were isolated and analyzed.


Isolated crystal solids were characterized by X-ray powder diffraction (XRPD), thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC), with proton nuclear magnetic resonance (′H NMR) to confirm the freebase chemical structure and also potential co-existence with some organic acids. Exemplary data from the initial findings are summarized in Table7.











TABLE 7









Solvent











#
Acid
n-Heptane
EtOAc
Toluene














1
Trimesic acid
Trimesate
Acid
Trimesate




Type A

Type A


2
Trimellitic acid
Acid
Acid
Acid


3
(−)-2,3-Dibenzoyl-L-
Gel
Gel
Gel



tartaric acid





4
Fumaric acid
Gel
Gel
Gel


5
Terephthalic acid
Gel
Gel
Gel


6
Phthalic acid
Gel
Gel
Gel


7
Isophthalic acid
Acid
Acid
Acid


8
Benzoic acid
Gel
Gel
Gel


9
Cinnamic acid
Gel
Gel
Gel


10
4-Hydroxy benzoic acid
Gel
Gel
Gel


11
Salicylic acid
Gel
Gel
Gel


12
Adipic acid
Acid
Acid
Acid


13
Suberic acid
Acid
Gel
Acid


14
Sebacic acid
Acid
Acid
Acid


15
4-Acetamido benzoic
Acid
Acid
Acid



acid





16
S-(+)-Mandelic
Gel
Gel
Gel


17
Orotic acid
Acid
Acid
Acid


18
Hexanoic acid
Gel
Gel
Gel


19
Citric acid
Gel
Gel
Gel


20
Acetic acid
Gel
Gel
Gel


21
Succinic acid
Acid
Gel
Gel


22
Malonic acid
Gel
Gel
Gel


23
(+)-Camphor-10-
Gel
Gel
Gel



sulfonic acid





24
Nicotinic acid
Acid
Acid
Acid


25
(+)-L-tartaric acid
Gel
Gel
Gel


26
Hydrochloric acid
Gel
Gel
Gel


27
Sulfuric acid
Gel
Gel
Gel


28
Phosphoric acid
Gel
Gel
Gel


29
Methanesulfonic acid
Gel
Gel
Gel


30
p-Toluene sulfonic acid
Gel
Gel
Gel


31
2,5-Dihydroxybenzoic
Gel
Gel
Gel



acid













Characterization of Trimesate


Compound 3 trimesate Polymorph A was prepared by combining Compound 3 freebase with trimesic acid in n-heptane and showed crystallinity as characterized by XRPD in FIG. 46. The TGA/DSC data as shown in FIG. 47 indicate a weight loss of 0.9% up to 200° C. and three endothermic peaks at 49.4° C., 100.2° C. and 129.2° C. (peak temperature) before decomposition. Polymorph B was obtained via temperature cycling in EtOH/n-heptane (1:19, v/v) from 50° C. to 5° C. with molar charge ratio (compound 3:trimesic acid) at 1:1, and showed crystallinity as characterized by XRPD in FIG. 48. The TGA/DSC data as shown in FIG. 49 indicate a weight loss of 5.4% up to 200° C. and two endothermic peaks at 239.9° C. and 257.5° C. before decomposition at 304.6° C. An 1H NMR spectrum was collected using (CD3)2SO as the test solvent, and signals of trimesic acid and compound 3 were observed. See FIG. 50.


Example 4: Salts or Co-Crystals of MC3

Only one crystalline salt of MC3 (O,O-Dibenzoyl-L-Tartrate, abbreviated as “DBLT” hereafter) has been previously identified, and only one polymorph, Type A, has been discovered for the DBLT salt. An onset temperature of 69.8° C. in DSC analysis indicated a low melting point, however, not as low as the free base which is oil-like at room temperature. The crude free base has an HPLC purity of 88.6 area % and was used in the synthesis of the DBLT salt. Impurities are not rejected by the salt formation and the purity of the crystallized salt was found to be the same as the crude free base. Additional salt screening experiments were performed to identify new crystalline salts.


An oil-like MC3 free base with an HPLC purity of 97.6 area % (“purified free base”) was used in the salt screening. A total of 24 acids and three solvent systems were screened. Crystalline salt hits were obtained with (+)-O,O-di-pivaloyl-D-tartaric acid (DPDT), (−)-O,O-di-pivaloyl-L-tartaric acid (DPLT), and trimesic acid.


Solvent Screening


A solvent screening was performed by reaction of free base and DPDT, DPLT and trimesic acid in 17 selected solvents to improve crystallinity and facilitate salt isolation and re-preparation. The X-ray powder diffraction (XRPD) results showed that crystalline trimesate Type A and B were obtained in ketones, esters and some other selected solvents from slurry at room temperature. For DPDT and DPLT salts, no suitable anti-solvent was found, only clear solutions were obtained during the solvent screening.


Based on the screening results, attempts were made to re-prepare trimesate Type A and B, but only trimesate Type A was successfully prepared at a 100-mg scale. Both polymorphs were further characterized using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), polarizing microscopy (PLM), dynamic vapor sorption (DVS), and HPLC. The characterization results of trimesate samples are summarized in Table 8. As the results show, trimesate Type A is anhydrous and non-hygroscopic.











TABLE 8





Salt form
Trimesate Type A
Trimesate Type B


















Prepared solvent
EtOAc
Cyclohexane
Toluene


Scale, mg
100
100
10


Molar ratio (acid/FB)a
1.2
1.1
1.5


Speculated formb
Anhydrate
Anhydrate
N/A


HPLC purity (area %)
98.3
99.4c
93.7


Weight loss (%)
1.9
0.3
8.0


Endotherm (° C., onset)
186.4
183.8
186.8


Hygroscopicity/purity decrease
Non-hygroscopic
N/A
N/A








Morphology
Aggregated of small particles (<20 μm)










Appearance of solution in preparation
Suspension
Wax/emulsus
Wax/emulsus





N/A: not applicable or data not collected in this study.



athe molar ratio (acid/FB) was determined by HPLC/IC.




bresults speculated based on the preliminary thermal analysis data.




caverage value of three sampling (100.0 area %, 99.34 area %, and 98.74 area %), suggesting the sample is inhomogeneous.



Hygroscopicity concluded using the water uptake up to 80% RH at 25° C.: <0.2% for non-hygroscopic.







Salt Screening


A total of 41 screening experiments were designed based on the free base pKa>8 and the solubility of MC3. Crystalline hits of trimesate (Type A), DPDT and DPLT salts were obtained.


In the 1st tier experiments, about 10 mg of MC3 free base and the corresponding acid were mixed, at a 1:1 molar ratio, into a 1.5-mL glass vial and 0.5 mL of n-heptane were then added. The mixtures were stirred at room temperature for about two days. If clear solutions were obtained, the samples were cooled at 5° C. or left to evaporate to induce solid formation. All the obtained solids were isolated by centrifugation and vacuum dried at room temperature for about 5 hours before being analyzed by X-Ray Powder Diffraction (XRPD). As summarized in Table 9, amorphous salts or acids were found under most of the conditions while potential crystalline forms were obtained with DPDT, DPLT, and trimesic acid.


To enhance the chance of crystallization during the 2nd tier screening, the concentration of free base was increased from 20 to 50 mg/mL when using the acids that yielded solutions in the 1st tier screening. Also, isopropyl alcohol/n-heptane (3:97, v/v) was used with those acids which yielded crystalline acid in the 1st tier screening. As summarized in Table 10, no new crystalline hit was obtained.


Six more acids with structures closely related to trimesic acid were screened. The free base and the acids were mixed, at a 1:1 molar ratio, in EtOAc (free base loading 50 mg/mL) and the suspensions were then shaken at room temperature for about three days. The results are summarized in Table 11.














TABLE 9





No.
Acid
Solid form
No.
Acid
Solid form







1
Hexanoic
Amorphousa
10
(R)-(−)-Mandelic
Amorphousa



acid


acid



2
Fumaric acid
Acid
11
Benzyloxy lactic acid
Amorphousa


3
Adipic acid
Amorphous
12
(+)-O,O-Di-pivaloyl-
DPDT salt






D-tartaric acid
Type Aa


4
Suberic acid
Acid
13
(−)-O,O-Di-pivaloyl-
DPLT salt






L-tartaric acid
Type Aa


5
Sebacic acid
Acid
14
Terephthalic acid
Acid


6
Alginic acid
Amorphousa
15
Trimesic acid
Acid + new







peaksc


7
Cinnamic
Amorphousa
16
4-Hydroxy benzoic
Acid



acid






8
Benzoic acid,
Acid
17
2-(4-
Amorphousa



4-acetamido


Hydroxybenzoyl)-







benzoic acid



9
(S)-(+)-
Amorphousa
18
(+)-2,3-Dibenzoyl-
DBDT salt



Mandelic


D-tartaric acid
Type Ab



acid






aclear solution was observed after slurry at room temperature (RT) and 5° C., which was then transferred to slow evaporate at RT.




bobtained in a previous experiment with no obvious purity improvement.




cnew peaks conformed to trimesate Type A.



















TABLE 10







No.
Acid
Solvent
Solid form









1
Hexanoic acid
n-
N/A



2
Alginic acid
Heptane
N/A



3
Cinnamic acid

N/A



4
(S)-(+)-Mandelic acid

N/A



5
R)-(−)-Mandelic acid

N/A



6
Benzyloxy lactic acid

N/A



7
(+)-O,O-Di-pivaloyl-

N/A




D-tartaric acid





8
(−)-O,O-Di-pivaloyl-

N/A




L-tartaric acid





9
2-(4-

N/A




Hydroxybenzoyl)-






benzoic acid





10
Fumaric acid
IPA/H2O
Acid



11
Adipic acid
(3:97,
Amorphous



12
Suberic acid
v/v)
Acid



13
Sebacic acid

Acid



14
Benzoic acid,

Acid




4-acetamido





15
Terephthalic

Acid




acid





16
Trimesic acid

Acid



17
4-Hydroxy

Acid




benzoic
















N/A: clear solution was observed after slurry at RT and 5° C..
















TABLE 11





No.
Acid
Solvent
Solid form







1
1,2,4-Trimellitic acid
EtOAc
Amorphous


2
Phthalic acid

Amorphous


3
Isophthalic acid

Amorphous


4
Terephthalic acid

Acid


5
Orotic acid

Acid + new peaks*


6
1,2,3-Benzene tricarboxylic acid

Amorphous





*only amorphous was observed in the re-preparation experiment.







Optimization of Solvent Systems


A solvent screening was performed to select an optimal solvent system for re-preparation of the salt hits and to improve crystallinity. The free base was mixed in a 1:1 molar ratio, with DPDT, DPLT, and trimesic acid in 17 selected solvents. Trimesate Type A and B polymorphs were isolated from slurries in several solvents (see Table 12). DPDT and DPLT salts were not obtained as solids from any solvent. In addition, the samples containing tetrahydrofuran (THF)/H2O, THF, cyclohexane and 1,4-dioxane were freeze-dried, but no crystalline solid was obtained.












TABLE 12







Acid














Form
Solvent
DPDT
DPLT
Trimesic acid














1
Acetone
N/A*
N/A*
Trimesate Type A


2
Methyl isobutyl ketone (MIBK)
N/A
N/A
Trimesate Type A


3
Methyl ethyl ketone (MEK)
N/A
N/A
Trimesate Type A


4
CH2Cl2
N/A
N/A
Acid


5
Methyl tert-butyl ether (MTBE)
N/A
N/A
Trimesate Type A


6
2-Methyl tetrahydrofuran
N/A
N/A
N/A



(2-MeTHF)





7
Tetrahydrofuran (THF)
N/A*
N/A*
N/A


8
Anisole
N/A
N/A
Trimesate Type A


9
1,4-Dioxane
N/A*
N/A*
N/A


10
EtOAc
N/A
N/A
Trimesate Type A


11
Isopropyl acetate (IPAc)
N/A
N/A
Trimesate Type A


12
Acetonitrile (CAN)
N/A*
N/A*
N/A


13
MeOH
N/A*
N/A*
N/A


14
Isopropyl alcohol (IPA)
N/A*
N/A*
N/A


15
Cyclohexane
N/A
N/A
Trimesate Type A


16
Xylene
N/A
N/A
N/A


17
Toluene
N/A
N/A
Trimesate Type B





N/A: clear solution was obtained after slurry at RT and 5° C..


*about 0.2~0.3 mL of H2O was added into the clear solution to induce precipitation and emulsion was obtained.







Preparation of Trimesate Polymorphs (100 mg Scale)


Heating and cooling experiments were carried out at 100-mg scale to improve crystal morphology and chemical purity. Trimesate Type A polymorph was successfully re-prepared in cyclohexane and EtOAc following the procedure detailed below.


Preparation of Trimesate Type A Polymorph:


A 5 mL vial was charged with 100.0 mg of the free base (97.6 area %) and 30 mg of trimesic acid and 2 mL of cyclohexane or EtOAc, were added. The suspension was stirred at room temperature for about 0.5 h. The solution was continued to be stirred while being heated and cooled between 5° C. and 50° C. for two cycles with a 4.5° C./min heating rate and a 0.1° C./min cooling rate. The resulting solid was isolated by centrifugation and dried under vacuum at room temperature for 2 hours before characterization.


Preparation of Trimesate Type B Polymorph:


About 10 mg of free base and trimesic acid were mixed, at a 1:1 molar ratio, in a 1.5-mL glass vial. n-Heptane (0.5 mL) was added. The mixtures were magnetically stirred at RT for about two days. If clear solutions were obtained, the samples were cooled at 5° C. or left to evaporate to induce solid formation. All the obtained solids were isolated by centrifugation and vacuum dried at RT for about 5 hours before being analyzed by XRPD.


Characterization of Trimesate Polymorphs


Both trimesate Type A (100-mg scale) and Type B (10-mg scale) were characterized, and results are summarized in Table 8.


The XRPD pattern of polymorph A is shown in FIG. 52. TGA/DSC curves of trimesate Type A polymorph prepared with cyclohexane, displayed in FIG. 53, shows a weight loss of 0.3% before 120° C. and a sharp melting endotherm at 183.8° C. (onset temperature). The TGA/DSC curves of trimesate Type A polymorph prepared with EtOAc displayed in FIG. 54, shows a weight loss of 1.9% before 120° C. and a sharp melting endotherm at 186.4° C. (onset temperature). Agglomerate and small particles (<20 μm) were observed in the trimesate Type A polymorphs. See FIGS. 55 and 56. The XRPD pattern of trimesate Type B polymorph is shown in FIG. 59. TGA/DSC curves displayed in FIG. 60 show a weight loss of 8.0% before 150° C. and a sharp melting endotherm at 186.8° C. (onset temperature). As shown in FIG. 61, agglomerate particles with small size (<20 μm) are observed in trimesate Type B sample.


As the DVS result shows, the trimesate Type A polymorph is non-hygroscopic. See FIG. 57. The hygroscopicity of free base (crude and pure) was determined as well. The crude free base was slightly hygroscopic (0.27 and 0.24% water uptake at 80% relative humidity for the desorption and adsorption isotherms, respectively), but the pure free base was non-hygroscopic (0.17 and 0.14% water uptake at 80% relative humidity for the desorption and adsorption isotherms, respectively).


HPLC Purity of Trimesate Type A


Trimesate Type A samples were prepared according to the procedure described in the foregoing, using the crude free base (HPLC purity of 88.5 area %) or purified free base (HPLC purity of 97.6 area %) as starting material, and analyzed by HPLC. The results of the HPLC purity analysis for the samples prepared with crude and purified free base are summarized in Tables 13 and 14, respectively. No significant HPLC purity change was observed for both samples after the DVS experiment.
















TABLE 13









Imp 1
Imp 2
Imp 3
Imp 4
Imp 5
Imp 6



Solvent/
(RRT
(RRT
(RRT
(RRT
(RRT
(RRT


Sample
scale (mg)
0.08)
0.50)
0.51)
0.52)
0.53)
0.90)





Free base
N/A
0.11
0.22
<0.05
0.34
0.44
1.74


Trimesate
EtOAc/100
<0.05
4.18
1.38
<0.05
<0.05
1.96


Type A
Cyclohexane/
<0.05
<0.05
<0.05
<0.05
<0.05
1.91



100







Imp 7
Imp 8
Imp 9
Imp 10
Imp 11




Solvent/
(RRT
(RRT
(RRT
(RRT
(RRT
Area


Sample
scale (mg)
0.91)
0.99)
1.04)
1.06)
1.14)
(%)





Free base
N/A
0.16
0.36
5.02
0.28
2.74
88.6


Trimesate
EtOAc/100
<0.05
<0.05
3.78
<0.05
3.31
85.38


Type A
Cyclohexane/
<0.05
<0.05
4.45
<0.05
3.97
89.66



100





















TABLE 14







Imp 1
Imp 2
Imp 3




Solvent/
(RRT
(RRT
(RRT



Sample
scale (mg)
0.58)
1.04)
1.14)
Area(%)




















Free base
N/A
0.99
1.41
<0.05
97.60


Trimesate
EtOAc/100
<0.05
1.04
0.68
98.28













Type A
Cyclohexane/
<0.05
<0.05
<0.05
100.00
99.36



100
<0.05
1.26
<0.05
98.74
(av.)




<0.05
0.66
<0.05
99.34










The entire disclosure of each of the patent documents and scientific articles referred to herein is incorporated by reference for all purposes.


The invention can be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting on the invention described herein. Scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes that come within the meaning and range of equivalency of the claims are intended to be embraced therein.

Claims
  • 1. A salt or cocrystal of heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate (“Compound 2”).
  • 2. The salt or cocrystal of claim 1, wherein the salt or cocrystal is a salt or cocrystal of Compound 2 and a compound selected from the group consisting of trimesic acid, (−)-2,3-dibenzoyl-L-tartaric acid, 4-acetamido benzoic acid, (+)-L-tartaric acid, and methanesulfonic acid.
  • 3. The salt or cocrystal of claim 1, wherein the salt or cocrystal exhibits an X-ray powder diffraction pattern obtained using CuKα radiation having peaks with 2-theta values substantially in accordance with FIG. 36, 38, 40, 42, or 44.
  • 4. The salt or cocrystal of claim 1, wherein the salt or cocrystal exhibits a differential scanning calorimetry thermogram substantially in accordance with the DSC profile shown in FIG. 37, 39, 41, 43, or 45.
  • 5. The salt or cocrystal of claim 1, wherein said salt or cocrystal is substantially free of impurities.
  • 6. The salt or cocrystal of claim 1, being an anhydrate, a solvate, or a hydrate.
  • 7. The salt or cocrystal of claim 1, wherein the stoichiometry of Compound 2 and the compound selected from the group consisting of trimesic acid, (−)-2,3-dibenzoyl-L-tartaric acid, 4-acetamido benzoic acid, (+)-L-tartaric acid, and methanesulfonic acid is within the range of from about 1:0.2 mol/mol to about 1:5 mol/mol.
  • 8. The salt or cocrystal of claim 1, wherein the stoichiometry of Compound 2 and the compound selected from the group consisting of trimesic acid, (−)-2,3-dibenzoyl-L-tartaric acid, 4-acetamido benzoic acid, (+)-L-tartaric acid, and methanesulfonic acid is about 1:1 mol/mol.
  • 9. The salt or cocrystal of claim 1, wherein the salt or cocrystal is a salt or cocrystal of Compound 2 and trimesic acid.
  • 10. The salt or cocrystal of claim 9, wherein the salt or cocrystal exhibits an X-ray powder diffraction pattern obtained using CuKα radiation having peaks with 2-theta values substantially in accordance with FIG. 38.
  • 11. The salt or cocrystal of claim 9, wherein the salt or cocrystal exhibits a differential scanning calorimetry thermogram substantially in accordance with the DSC profile shown in FIG. 39.
  • 12. The salt or cocrystal of claim 9, wherein the salt or cocrystal exhibits an X-ray powder diffraction pattern obtained using CuKα radiation having two characteristic peaks expressed in degrees 2-theta (+/−0.2) selected from the group consisting of 3.4, 6.8, 10.2, 20.5, and 23.8.
  • 13. The salt or cocrystal of claim 9, wherein the salt or cocrystal exhibits an X-ray powder diffraction pattern obtained using CuKα radiation having three characteristic peaks expressed in degrees 2-theta (+/−0.2) selected from the group consisting of 3.4, 6.8, 10.2, 20.5, and 23.8.
  • 14. The salt or cocrystal of claim 9, wherein the salt or cocrystal exhibits an X-ray powder diffraction pattern obtained using CuKα radiation having four characteristic peaks expressed in degrees 2-theta (+/−0.2) selected from the group consisting of 3.4, 6.8, 10.2, 20.5, and 23.8.
  • 15. The salt or cocrystal of claim 9, wherein the salt or cocrystal exhibits an X-ray powder diffraction pattern obtained using CuKα radiation having characteristic peaks expressed in degrees 2-theta (+/−0.2) at 3.4, 6.8, 10.2, 20.5, and 23.8.
  • 16. The salt or cocrystal of claim 1, wherein the salt or cocrystal is a salt or cocrystal of Compound 2 and (−)-2,3-dibenzoyl-L-tartaric acid, and wherein the salt or cocrystal exhibits an X-ray powder diffraction pattern obtained using CuKα radiation having two characteristic peaks expressed in degrees 2-theta (+/−0.2) at 6.1 and 9.1.
  • 17. The salt or cocrystal of claim 1, wherein the salt or cocrystal is a salt or cocrystal of Compound 2 and (+)-L-tartaric acid, and wherein the salt or cocrystal exhibits an X-ray powder diffraction pattern obtained using CuKα radiation having two characteristic peaks expressed in degrees 2-theta (+/−0.2) at 5.4 and 8.1.
  • 18. The salt or cocrystal of claim 1, wherein the salt or cocrystal is a salt or cocrystal of Compound 2 and methanesulfonic acid, and wherein the salt or cocrystal exhibits an X-ray powder diffraction pattern obtained using CuKα radiation having two characteristic peaks expressed in degrees 2-theta (+/−0.2) selected from the group consisting of 4.0, 11.4, 11.8, and 19.8.
  • 19. The salt or cocrystal of claim 1, wherein the salt or cocrystal is a salt or cocrystal of Compound 2 and methanesulfonic acid, and wherein the salt or cocrystal exhibits an X-ray powder diffraction pattern obtained using CuKα radiation having three characteristic peaks expressed in degrees 2-theta (+/−0.2) selected from the group consisting of 4.0, 11.4, 11.8, and 19.8.
  • 20. The salt or cocrystal of claim 1, wherein the salt or cocrystal is a salt or cocrystal of Compound 2 and methanesulfonic acid, and wherein the salt or cocrystal exhibits an X-ray powder diffraction pattern obtained using CuKα radiation having four characteristic peaks expressed in degrees 2-theta (+/−0.2) at 4.0, 11.4, 11.8, and 19.8.
RELATED APPLICATIONS

This application is a U.S. National Phase application, filed under U.S.C. § 371, of International Application No. PCT/US2018/022740, filed Mar. 15, 2018, which claims priority to, and the benefit of, U.S. Provisional Application No. 62/471,908, filed Mar. 15, 2017; the entire content of which is incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2018/022740 3/15/2018 WO 00
Publishing Document Publishing Date Country Kind
WO2018/170322 9/20/2018 WO A
US Referenced Citations (192)
Number Name Date Kind
3872171 Cronin et al. Mar 1975 A
4125544 Dygos Nov 1978 A
4957735 Huang Sep 1990 A
5807861 Klein et al. Sep 1998 A
6143276 Unger Nov 2000 A
6303378 Bridenbaugh et al. Oct 2001 B1
6395253 Levy et al. May 2002 B2
6652886 Ahn et al. Nov 2003 B2
6696038 Mahato et al. Feb 2004 B1
7268120 Horton et al. Sep 2007 B1
7371404 Panzner et al. May 2008 B2
7943168 Schlesinger et al. May 2011 B2
8058069 Yaworski et al. Nov 2011 B2
8158601 Chen et al. Apr 2012 B2
8420123 Troiano et al. Apr 2013 B2
8440614 Castor May 2013 B2
8449916 Bellaire et al. May 2013 B1
8450298 Mahon et al. May 2013 B2
8460696 Slobodkin et al. Jun 2013 B2
8460709 Ausborn et al. Jun 2013 B2
8563041 Grayson et al. Oct 2013 B2
8568784 Lillard et al. Oct 2013 B2
8569256 Heyes et al. Oct 2013 B2
8580297 Essler et al. Nov 2013 B2
8603499 Zale et al. Dec 2013 B2
8603500 Zale et al. Dec 2013 B2
8603501 Zale et al. Dec 2013 B2
8603534 Zale et al. Dec 2013 B2
8603535 Troiano et al. Dec 2013 B2
8609142 Troiano et al. Dec 2013 B2
8613951 Zale et al. Dec 2013 B2
8613954 Zale et al. Dec 2013 B2
8617608 Zale et al. Dec 2013 B2
8618240 Podobinski et al. Dec 2013 B2
8637083 Troiano et al. Jan 2014 B2
8642076 Manoharan et al. Feb 2014 B2
8652487 Maldonado Feb 2014 B2
8652528 Troiano et al. Feb 2014 B2
8663599 Sung et al. Mar 2014 B1
8663700 Troiano et al. Mar 2014 B2
8668926 Mousa et al. Mar 2014 B1
8685368 Reineke Apr 2014 B2
8691750 Constein et al. Apr 2014 B2
8697098 Perumal et al. Apr 2014 B2
8703204 Bloom et al. Apr 2014 B2
8709483 Farokhzad et al. Apr 2014 B2
8715736 Sachdeva et al. May 2014 B2
8715741 Maitra et al. May 2014 B2
8728527 Singh May 2014 B2
8734832 O'Hagan et al. May 2014 B2
8734846 Ali et al. May 2014 B2
8734853 Sood et al. May 2014 B2
8802644 Chen et al. Aug 2014 B2
9006487 Anderson et al. Apr 2015 B2
9029590 Colletti et al. May 2015 B2
9394234 Chen et al. Jul 2016 B2
9717690 Guild et al. Aug 2017 B2
9738593 Ansell et al. Aug 2017 B2
9867888 Benenato Jan 2018 B2
9868691 Benenato Jan 2018 B2
9868692 Benenato Jan 2018 B2
9868693 Benenato Jan 2018 B2
10106490 Du Oct 2018 B2
10166298 Ansell et al. Jan 2019 B2
10392341 Benenato et al. Aug 2019 B2
10799463 Benenato et al. Oct 2020 B2
10857105 Benenato et al. Dec 2020 B2
20030073619 Mahato et al. Apr 2003 A1
20030092653 Kisich et al. May 2003 A1
20040142474 Mahato et al. Jul 2004 A1
20050222064 Vargeese et al. Oct 2005 A1
20060008910 Maclachlan et al. Jan 2006 A1
20060083780 Heyes et al. Apr 2006 A1
20060172003 Meers et al. Aug 2006 A1
20060204566 Smyth-Templeton et al. Sep 2006 A1
20070252295 Panzner et al. Nov 2007 A1
20090042825 Matar et al. Feb 2009 A1
20090042829 Matar et al. Feb 2009 A1
20110009641 Anderson et al. Jan 2011 A1
20110200582 Baryza et al. Aug 2011 A1
20110244026 Guild et al. Oct 2011 A1
20120136073 Yang et al. May 2012 A1
20120177724 Irvine et al. Jul 2012 A1
20120178702 Huang Jul 2012 A1
20120226085 Ishihara et al. Sep 2012 A1
20120295832 Constien et al. Nov 2012 A1
20130017223 Hope et al. Jan 2013 A1
20130064894 Martin et al. Mar 2013 A1
20130065942 Matar et al. Mar 2013 A1
20130090372 Budzik et al. Apr 2013 A1
20130108685 Kuboyama et al. May 2013 A1
20130115273 Yang et al. May 2013 A1
20130115274 Knopov et al. May 2013 A1
20130116307 Heyes et al. May 2013 A1
20130122104 Yaworski et al. May 2013 A1
20130123338 Heyes et al. May 2013 A1
20130129785 Manoharan et al. May 2013 A1
20130130348 Gu et al. May 2013 A1
20130142868 Hoekman et al. Jun 2013 A1
20130142876 Howard et al. Jun 2013 A1
20130150625 Budzik et al. Jun 2013 A1
20130156845 Manoharan et al. Jun 2013 A1
20130156849 de Fougerolles et al. Jun 2013 A1
20130164400 Knopov et al. Jun 2013 A1
20130171241 Geall Jul 2013 A1
20130172406 Zale et al. Jul 2013 A1
20130178541 Stanton et al. Jul 2013 A1
20130183244 Hanes et al. Jul 2013 A1
20130183355 Jain et al. Jul 2013 A1
20130183372 Schutt et al. Jul 2013 A1
20130183373 Schutt et al. Jul 2013 A1
20130183375 Schutt et al. Jul 2013 A1
20130189351 Geall Jul 2013 A1
20130195759 Mirkin et al. Aug 2013 A1
20130195765 Gho et al. Aug 2013 A1
20130195967 Guild et al. Aug 2013 A1
20130195968 Geall et al. Aug 2013 A1
20130195969 Geall et al. Aug 2013 A1
20130202684 Geall et al. Aug 2013 A1
20130236500 Zale et al. Sep 2013 A1
20130236533 Von Andrian et al. Sep 2013 A1
20130236550 Ausborn et al. Sep 2013 A1
20130243827 Troiano et al. Sep 2013 A1
20130243848 Lobovkina et al. Sep 2013 A1
20130243867 Mohapatra et al. Sep 2013 A1
20130251766 Zale et al. Sep 2013 A1
20130251816 Zale et al. Sep 2013 A1
20130251817 Zale et al. Sep 2013 A1
20130266617 Mirosevich et al. Oct 2013 A1
20130273117 Podobinski et al. Oct 2013 A1
20130274504 Colletti et al. Oct 2013 A1
20130274523 Bawiec, III et al. Oct 2013 A1
20130280334 Karp et al. Oct 2013 A1
20130280339 Zale et al. Oct 2013 A1
20130295183 Troiano et al. Nov 2013 A1
20130295191 Troiano et al. Nov 2013 A1
20130302432 Zale et al. Nov 2013 A1
20130302433 Troiano et al. Nov 2013 A1
20130315831 Shi et al. Nov 2013 A1
20130330401 Payne et al. Dec 2013 A1
20130338210 Manoharan et al. Dec 2013 A1
20130344158 Zale et al. Dec 2013 A1
20140017327 Cheng et al. Jan 2014 A1
20140017329 Mousa Jan 2014 A1
20140037573 Eliasof et al. Feb 2014 A1
20140037660 Folin-Mleczek et al. Feb 2014 A1
20140037714 Quay et al. Feb 2014 A1
20140039032 Kumboyama et al. Feb 2014 A1
20140044772 Maclachlan et al. Feb 2014 A1
20140044791 Basilion et al. Feb 2014 A1
20140045913 Kumboyama et al. Feb 2014 A1
20140050775 Slobodkin et al. Feb 2014 A1
20140057109 Mechen et al. Feb 2014 A1
20140065172 Echeverri et al. Mar 2014 A1
20140065204 Hayes et al. Mar 2014 A1
20140065228 Yarowoski et al. Mar 2014 A1
20140079774 Brinker et al. Mar 2014 A1
20140093575 Hammond et al. Apr 2014 A1
20140093579 Zale et al. Apr 2014 A1
20140113137 Podobinski et al. Apr 2014 A1
20140121263 Fitzgerald et al. May 2014 A1
20140121393 Manoharan et al. May 2014 A1
20140134260 Heyes et al. May 2014 A1
20140141070 Geall et al. May 2014 A1
20140141089 Liang May 2014 A1
20140141483 Bossard et al. May 2014 A1
20140142165 Grayson et al. May 2014 A1
20140142254 Fonnum et al. May 2014 A1
20140161830 Anderson et al. Jun 2014 A1
20140308304 Manoharan et al. Oct 2014 A1
20150174260 Yang et al. Jun 2015 A1
20150174261 Kuboyama et al. Jun 2015 A1
20150239926 Payne et al. Aug 2015 A1
20150284317 Colletti et al. Oct 2015 A1
20150343062 Kuboyama et al. Dec 2015 A1
20150376115 Ansell et al. Dec 2015 A1
20160002178 Fenton et al. Jan 2016 A1
20160009657 Anderson et al. Jan 2016 A1
20160151284 Heyes et al. Jun 2016 A1
20170119904 Ansell et al. May 2017 A1
20180201572 Benenato Jul 2018 A1
20180273467 Benenato Sep 2018 A1
20180303925 Weissman et al. Oct 2018 A1
20180333366 Benenato et al. Nov 2018 A1
20180369419 Benenato et al. Dec 2018 A1
20190016669 Benenato et al. Jan 2019 A1
20190314292 Benenato et al. Oct 2019 A1
20190314524 Ansell et al. Oct 2019 A1
20190336452 Brader et al. Nov 2019 A1
20200069599 Smith et al. Mar 2020 A1
20200129445 Patel Apr 2020 A1
20210087135 Benenato et al. Mar 2021 A1
Foreign Referenced Citations (163)
Number Date Country
652831 Sep 1994 AU
102068701 May 2011 CN
102204920 Oct 2011 CN
102813929 Dec 2012 CN
104644555 May 2015 CN
737750 Oct 1996 EP
1404860 May 2002 EP
2073848 Aug 2013 EP
2000-169864 Jun 2000 JP
WO 1993014778 Aug 1993 WO
WO 1999014346 Mar 1999 WO
WO 1999052503 Oct 1999 WO
WO 199954344 Oct 1999 WO
WO 2003086280 Oct 2003 WO
WO 2005034979 Apr 2005 WO
WO 2006063249 Jun 2006 WO
WO 2008042973 Apr 2008 WO
WO 2009024599 Feb 2009 WO
WO 2009053686 Apr 2009 WO
WO 2009086558 Jul 2009 WO
WO 2009127060 Oct 2009 WO
WO 2009129385 Oct 2009 WO
WO 2009129395 Oct 2009 WO
WO 2010030739 Mar 2010 WO
WO 2010042877 Apr 2010 WO
WO 2010053572 May 2010 WO
WO 2010054406 May 2010 WO
WO 2010088537 Aug 2010 WO
WO 2010129709 Nov 2010 WO
WO 2011058990 May 2011 WO
WO 2011068810 Jun 2011 WO
WO 2011127255 Oct 2011 WO
WO 2012000104 Jan 2012 WO
WO 2012006376 Jan 2012 WO
WO 2012006378 Jan 2012 WO
WO 2012030901 Mar 2012 WO
WO 2012031043 Mar 2012 WO
WO 2012031046 Mar 2012 WO
WO 2012054365 Apr 2012 WO
WO 2012129483 Sep 2012 WO
WO 2012149252 Nov 2012 WO
WO 2012149255 Nov 2012 WO
WO 2012149265 Nov 2012 WO
WO 2012149282 Nov 2012 WO
WO 2012149301 Nov 2012 WO
WO 2012149376 Nov 2012 WO
WO 2012149393 Nov 2012 WO
WO 2012153338 Nov 2012 WO
WO 2012170889 Dec 2012 WO
WO 2012170930 Dec 2012 WO
WO 2013006825 Jan 2013 WO
WO 2013006834 Jan 2013 WO
WO 2013006837 Jan 2013 WO
WO 2013006838 Jan 2013 WO
WO 2013006842 Jan 2013 WO
WO 2013016058 Jan 2013 WO
WO 2013033438 Mar 2013 WO
WO 2013033563 Mar 2013 WO
WO 2013036835 Mar 2013 WO
WO 2013049328 Apr 2013 WO
WO 2013052167 Apr 2013 WO
WO 2013056132 Apr 2013 WO
WO 2013057715 Apr 2013 WO
WO 2013059496 Apr 2013 WO
WO 2013059922 May 2013 WO
WO 2013064911 May 2013 WO
WO 2013066903 May 2013 WO
WO 2013067537 May 2013 WO
WO 2013070872 May 2013 WO
WO 2013072929 May 2013 WO
WO 2013086322 Jun 2013 WO
WO 2013086354 Jun 2013 WO
WO 2013086373 Jun 2013 WO
WO 2013086526 Jun 2013 WO
WO 2013087083 Jun 2013 WO
WO 2013087791 Jun 2013 WO
WO 2013093648 Jun 2013 WO
WO 2013135359 Sep 2013 WO
WO 2013143555 Oct 2013 WO
WO 2013143683 Oct 2013 WO
WO 2013148186 Oct 2013 WO
WO 2013148541 Oct 2013 WO
WO 2013149141 Oct 2013 WO
WO 2013151650 Oct 2013 WO
WO 2013155487 Oct 2013 WO
WO 2013155493 Oct 2013 WO
WO 2013158127 Oct 2013 WO
WO 2013158579 Oct 2013 WO
WO 2013166498 Nov 2013 WO
WO 2013173693 Nov 2013 WO
WO 2013177419 Nov 2013 WO
WO 2013177421 Nov 2013 WO
WO 2013185069 Dec 2013 WO
WO 2014007398 Jan 2014 WO
WO 2014008334 Jan 2014 WO
WO 2014026284 Feb 2014 WO
WO 2014028487 Feb 2014 WO
WO 2014028763 Feb 2014 WO
WO 2014047649 Mar 2014 WO
WO 2014052634 Apr 2014 WO
WO 2014054026 Apr 2014 WO
WO 2014071072 May 2014 WO
WO 2014072997 May 2014 WO
WO 2014089486 Jun 2014 WO
WO 2014144196 Sep 2014 WO
WO 2014160243 Oct 2014 WO
WO 2014172045 Oct 2014 WO
WO 2011136368 Nov 2014 WO
WO 2014182661 Nov 2014 WO
WO 2014210356 Dec 2014 WO
WO 2015011633 Jan 2015 WO
WO 2015130584 Sep 2015 WO
WO 2015154002 Oct 2015 WO
WO 2015199952 Dec 2015 WO
WO 2016004202 Jan 2016 WO
WO 2016004318 Jan 2016 WO
WO 2016118697 Jul 2016 WO
WO 2016118724 Jul 2016 WO
WO 2016176330 Nov 2016 WO
WO 2017015630 Jan 2017 WO
WO 2017031232 Feb 2017 WO
WO 2017049245 Mar 2017 WO
WO 2017070616 Apr 2017 WO
WO 2017070626 Apr 2017 WO
WO 2017075531 May 2017 WO
WO 2017099823 Jun 2017 WO
WO 2017100744 Jun 2017 WO
WO 2017112865 Jun 2017 WO
WO 2017127750 Jul 2017 WO
WO 2017180917 Oct 2017 WO
WO 2017192470 Nov 2017 WO
WO 2017201317 Nov 2017 WO
WO 2017201325 Nov 2017 WO
WO 2017201328 Nov 2017 WO
WO 2017201332 Nov 2017 WO
WO 2017201333 Nov 2017 WO
WO 2017201340 Nov 2017 WO
WO 2017201342 Nov 2017 WO
WO 2017201346 Nov 2017 WO
WO 2017201347 Nov 2017 WO
WO 2017201348 Nov 2017 WO
WO 2017201349 Nov 2017 WO
WO 2017201350 Nov 2017 WO
WO 2017201352 Nov 2017 WO
WO 2017218704 Dec 2017 WO
WO 2018078053 May 2018 WO
WO 2018081480 May 2018 WO
WO 2018081638 May 2018 WO
WO 2018089540 May 2018 WO
WO 2018170260 Sep 2018 WO
WO 2018170270 Sep 2018 WO
WO 2018170306 Sep 2018 WO
WO 2018170336 Sep 2018 WO
WO 2018191719 Oct 2018 WO
WO 2018232120 Dec 2018 WO
WO 2019046809 Mar 2019 WO
WO 2019089828 May 2019 WO
WO 2019152557 Aug 2019 WO
WO 2019193183 Oct 2019 WO
WO 2019202035 Oct 2019 WO
WO 2020002525 Jan 2020 WO
WO 2020061457 Mar 2020 WO
WO 2020123300 Jun 2020 WO
Non-Patent Literature Citations (97)
Entry
Dong et al., “Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates,” PNAS, Mar. 2014, vol. 111, No. 11, 3955-3960; 5753-5754.
Hashiba et al., “pH-labile PEGylation of siRNA-loaded lipid nanoparticle improves active targeting and gene silencing activity in hepatocytes,” Journal of Controlled Release (2017) vol. 262, 239-246.
Jaiswal et al., “Nanostructured lipid carriers and their current application in targeted drug delivery,” Artificial Cells, Nanomedicine, and Biotechnology (2016) 44: 27-40.
Mohtar et al., “Solid Lipid Nanoparticles of Atovaquone Based on 24 Full-Factorial Design,” Iranian Journal of Pharmaceutical Research (2015) 14(4): 989-1000.
Ramteke, K. H. et al., “Solid Lipid Nanoparticle: A Review,” IOSR Journal of Pharmacy, Nov.-Dec. 2012, 2(60): 34-44.
Sabnis et al., “A Novel Amino Lipid Series for mRNA Delivery: Improved Endosomal Escape and Sustained Pharmacology and Safety in Non-human Primates,” Molecular Therapy, Jun. 2018, vol. 26, No. 6, pp. 1509-1519.
Yadava, P. et al., “Effect of Lyophilization and Freeze-thawing on the Stability of siRNA-liposome Complexes,” AAPS PharmSciTech, Jun. 2008, 9(2): 335-341.
Abdelwahed et al., “Freeze-drying of nanoparticles: Formulation, process and storage considerations,” Advanced Drug Delivery Reviews 58 (2006) 1688-1713.
Akinc et al., Development of Lipidoid-siRNA Formulations for Systemic Delivery to the Liver, Molecular Therapy, May 2009, vol. 17, No. 5, pp. 872-879.
Akinc et al., Targeted Delivery of RNAi Therapeutics With Endogenous and Exogenous Ligand-Based Mechanisms, Mol Ther. 2010 18(7):1357-1364.
Anderson, D.M. et al., Stability of mRNA/cationic lipid lipoplexes in human and rat cerebrospinal fluid: methods and evidence for nonviral mRNA gene delivery to the central nervous system. Hum Gene Ther. Feb. 10, 2003;14(3):191-202.
Andries, O., et al., Comparison of the gene transfer efficiency of mRNA/GL67 and pDNA/GL67 complexes in respiratory cells. Mol Pharmaceutics. 2012; 9: 2136-2145.
Ashizawa et al., “Liposomal delivery of nucleic acid-based anticancer therapeutics: BP-100-1.01,” Expert Opin. Drug Deliv., (2014) 12(7):1107-1120.
Bag, J., Recovery of normal protein synthesis in heat-shocked chicken myotubes by liposome-mediated transfer of mRNAs. Can. J. Biochem. Cell Biol. 1985; 63(3): 231-235.
Belliveau, N.M., et al., Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol Ther Nucleic Acids. Aug. 2012; 1(8): e37.
Bettinger, T. et al., Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells. Nucleic Acids Res. Sep. 15, 2001;29(18):3882-91.
Bolhassani A., et al., Improvement of Different Vaccine Delivery Systems For Cancer Therapy, Molecular Cancer, Biomed Central, London, GB, 2011, vol. 10, No. 3, pp. 1-20.
Bonehill, A., et al., Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients. Clin Cancer Res. May 2009; 15(10): 3366-3375.
Bouxsein, N.F., et al., Structure and gene silencing activities of monovalent and pentavalent cationic lipid vectors complexed with siRNA. Biochem. 2007; 46(16): 4785-4792.
Chen, D., et al., Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J Am Chem Soc. 2012; 134: 6948-6951.
Chen, S. et al., “Development of lipid nanoparticle formulations of siRNA for hepatocyte gene silencing following subcutaneous administration,” J Control Release, 2014, 196, 106-112.
Cun, Dongmei, et al., Preparation and characterization of poly(DL-lactide-co-glycolide) nanoparticles for siRNA delivery. International Journal of Pharmaceutics 390 (2010) 70-75.
Dahlman, James E. et al., In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight, Nature Nanotechnology, 2014, No. vol.#, pp. 1-8.
Delehanty, James B., Peptides for Specific Intracellular Delivery and Targeting of Nanoparticles: Implications for Developing Nanoparticle-Mediated Drug Delivery, Future Science, Therapeutic Delivery, 2010, vol. 1, No. 3, pp. 411-433.
El Ouahabi, A., et al., Double long-chain amidine liposome-mediated self replicating RNA transfection. FEBS Letters. Feb. 1996; 380(1-2): 108-112.
Felgner, PL Cationic lipid/polynucleotide condensates for in vitro and in vivo polynucleotide delivery—the cytofectins. J. of Liposome Research. 1993; 3(1): 3-16.
Felgner, PL Particulate systems and polymers for in vitro and in vivo delivery of polynucleotides. Adv. Drug Delivery Rev. 1990; 5(3): 163-187.
Felgner, PL, et al., Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U SA. Nov. 1987;84(21):7413-7.
Gao, X. et al., Nonviral gene delivery: what we know and what is next. AAPS J. Mar. 23, 2007;9(1):E92-104.
Geall et al., Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci U S A. Sep. 4, 2012;109(36):14604-9. doi:10.1073/pnas.1209367109. Epub Aug. 20, 2012.
He, K. et al., Synthesis and Separation of Diastereomers of Ribonucleoside 5′-(alpha-P-Borano)triphosphates. J Org Chem. Aug. 21, 1998;63(17):5769-5773.
Hecker, J.G. et al., Non-Viral DNA and mRNA Gene Delivery to the CNS Pre-Operatively for Neuroprotection and Following Neurotrauma. Molecular Therapy. 2004; 9, S258-S258.
Hoerr, I. et al., In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. EurJ Immunol. Jan. 2000;30(1):1-7.
Jayaraman et al., “Maximizing the Potency of siRNA Lipid Nanoparticles for Hepatic Gene Silencing In Vivo,” Angew. Chem. Int. Ed. 2012, 51, 8529-8533.
Juliano, R.L., et al., Cell-targeting and cell-penetrating peptides for delivery of therapeutic and imaging agents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. May/Jun. 2009; 1(3): 324-335.
Kang, Hyunmin, Inhibition of MDR1 Gene Expression by Chimeric HNA Antisense Oligonucleotides, Nucleic Acids Research, 2004, vol. 32, No. 14, pp. 4411-4419.
Kariko et al., Phosphate-enhanced transfection of cationic lipid-complexed mRNA and plasmid DNA. Biochimica et Biophysica Acta. 1998. 1369:320-34.
Kariko, K., et al., In vivo protein expression from mRNA delivered into adult rat brain. J. of Neuroscience Methods. Jan. 2001; 105(1): 77-86.
Kariko, K., et al., Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability, Molecular Therapy, Nature Publishing Group, GB, vol. 16, No. 11, Nov. 1, 2008 (Nov. 1, 2008), pp. 1833-1840.
Keown, Wa, et al., Methods for Introducing DNA into Mammalian Cells. Methods in Enzymology, 1990, 185:527-37.
Kirpotin, D.B., et al., Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 2006; 66: 6732-6740.
Kozielski, Kristen L. et al., Bioreducible Cationic Polymer-Based Nanoparticles for Efficient and Environmentally Triggered Cytoplasmic siRNA Delivery to Primary Human Brain Cancer Cells, ACS Nano, 2014, vol. 8,' No. 4 ',pp. 3232-3241.
Lai, S.K., et al., Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. Feb. 27, 2009; 61(2): 158-171.
Lai, S.K., et al., Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. PNAS. Jan. 30, 2007; 104(5): 1482-1487.
Lee, Justin B. et al., Lipid Nanoparticle siRNA Systems for Silencing The Androgen Receptor In Human Prostate Cancer in Vivo, International Journal of Cancer, 2012, vol. 131, pp. 781-790.
Lehto, T., et al., Cell-penetrating peptides for the delivery of nucleic acids. Expert Opin. Drug Deliv. Jul. 2012; 9(7): 823-836.
Leung et al., “Lipid Nanoparticles for Short Interfering RNA Delivery”, Advances in Genetics, vol. 88, Chapter 4, pp. 71-110.
Lewis, David, Dynamic Polyconjugates (DPC) Technology: An elegant solution to the siRNA delivery problem. Arrowhead Research Corp (NASDAQ: ARWR). Nov. 2011.
Lewis, R., et al., “Studies of the Thermotropie Phase Behavior of Phosphatidylcholines Containing 2-Alkyl Substituted Fatty Alkyl Chains: A New Class of Phosphatidylcholines Forming Inverted Nonlamellar Phases,” Biophysical Journal, Apr. 1994, vol. 66, pp. 1088-1103.
Li, L. et al., Overcoming obstacles to develop effective and safe siRNA therapeutics. Expert Opin Biol Ther. May 2009; 9(5): 609-19.
Li, L. et al., Preparation and gene delivery of alkaline amino acids-based cationic liposomes. Arch Pharm Res. Jul. 2008;31(7):924-31. Epub Aug. 14, 2008.
Lian, T. et al., Trends and developments in liposome drug delivery systems. J Pharm Sci. Jun. 2001;90(6):667-80.
Lopez-Berestein, G. et al., Treatment of systemic fungal infections with liposomal amphotericin B. Arch Intern Med. Nov. 1989;149(11):2533-6.
Love et al., Lipid-like materials for low-dose, in vivo gene silencing, PNAS vol. 107 No. 5, pp. 1864-1869, Feb. 2, 2010.
M. Kanapathipillai, et al., Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment, Adv. Drug Deliv. Rev. (2014), , pp. 1-12.
Magee, W .E. et al., Marked stimulation of lymphocyte-mediated attack on tumor cells by target-directed liposomes containing immune RNA, Cancer Res., 1978, 38(4):1173-6.
Malone, R.W. et al., Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci U S A. Aug. 1989;86 (16):6077-81.
Martinon, F. et al., Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol. Jul. 1993;23(7):1719-22.
Maskarinec et al., “Direct Observation of Poloxamer 188 Insertion into Lipid Monolayers,” Biophys J., Mar. 2002, vol. 82, 1453-1459.
Maurer, N., et al., Spontaneous entrapment of polynucleotides upon electrostatic interaction with ethanol-destabilized cationic liposomes. Biophys J. May 2001; 80(5): 2310-2326.
Midoux et al., Lipid-based mRNA vaccine delivery systems. Expert Rev Vaccines. Feb. 2015;14(2):221-34. doi: 10.1586/14760584.2015.986104. Epub Dec. 26, 2014. Review.
Mishra, R.K. et al., Improved leishmanicidal effect of phosphorothioate antisense oligonucleotides by LDL-mediated delivery. Biochim Biophys Acta. Nov. 7, 1995;1264(2):229-37.
Mockey et al., mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes, Cancer Gene Therapy, 2007, 14, pp. 802-814.
Morissette et al., “High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids,” Advanced Drug Delivery Reviews 56 (2004) 275-300.
Müller et al, “Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art,” European Journal of Pharmaceutics and Biopharmaceutics, 50 (2000) 161-177.
Nair, S. et al., Soluble proteins delivered to dendritic cells via pH-sensitive liposomes induce primary cytotoxic T lymphocyte responses in vitro. J Exp Med. Feb. 1, 1992;175(2):609-12.
Okumura, K., et al., Bax mRNA therapy using cationic liposomes for human malignant melanoma. J Gene Med. 2008; 10: 910-917.
Oster, C.G., et al. Comparative study of DNA encapsulation into PLGA microparticles using modified double emulsion methods and spray drying techniques. Journal of Microencapsulation, May 2005; 22(3): 235-244.
Parker et al., Targeting of Polyelectrolyte RNA Complexes to Cell Surface Integrins as an Efficient, Cytoplasmic Transfection Mechanism, Journal of Bioactive and Compatible Polymers, Jul. 2002, pp. 1-10.
Pollard, C., et al., Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines. Mol Ther. Jan. 2013; 21(1): 251-259.
Pulford, B., et al., Liposome-siRNA-peptide complexes cross the blood-brain barrier and significantly decrease PrP∧C on neuronal cells and PrP∧RES in infected cell cultures. PLoS ONE. 2010; 5(6): e11085.
Sahay, G. et al., “Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling,” Nat Biotechnol. Jul. 2013 ; 31(7): 653-658.
Saito, R., et al., Distribution of liposomes into brain and rat brain tumor models by convection-enhanced delivery monitored with magnetic resonance imaging. Cancer Res. Apr. 2004; 64: 2572-2579.
Sakuma, S. et al., Mucoadhesion of polystyrene nanoparticles having surface hydrophilic polymeric chains in the gastrointestinal tract. Int J Pharm. Jan. 25, 1999;177(2):161-72.
Schott, J.W., et al., Viral and non-viral approaches for transient delivery of mRNA and proteins. Current Gene Ther. 2011; 11 (5): 382-398.
Semple, S.C., et al., Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim Biophys Acta. Feb. 9, 2001; 1510(1-2): 152-166.
Shah et al., “Lipid Nanoparticles: Production, Characterization and Stability,” Springer International Publishing, 2014, 23 pages.
Shea, R.G. et al., Synthesis, hybridization properties and antiviral activity of lipid-oligodeoxynucleotide conjugates. Nucleic Acids Res.Jul. 11, 1990;18(13):3777-83.
Strobel, I. et al., Human dendritic cells transfected with either RNA or DNA encoding influenza matrix protein M1 differ in their ability to stimulate cytotoxic T lymphocytes. Gene Ther. Dec. 2000; 7(23): 2028-2035.
Svinarchuk, F.P. et al., Inhibition of HIV proliferation in MT-4 cells by antisense oligonucleotide conjugated to lipophilic groups. Biochimie. 1993;75(1-2):49-54.
Tam et al., “Advances in Lipid Nanoparticles for siRNA Delivery,” Pharmaceutics 2013, 5, 498-507; doi:10.3390/pharmaceutics5030498.
Tavernier, G., et al., mRNA as gene therapeutic: How to control protein expression. J. of Controlled Release. Mar. 2011; 150(3): 238-247.
Thess et al., Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals. Mol Ther. Sep. 2015;23(9):1456-64. doi: 10.1038/mt.2015.103. Epub Jun. 8, 2015.
Torchilin, Vladimir et al., Multifunctional and Stimuli-Sensitive Pharmaceutical Nanocarriers, Eur J. Pharm Biopharm, 2009, vol. 71, No. 3, pp. 431-444.
Tracy, M., “Progress in the Development of LNP Delivery for siRNA Advancing LNPs to the Clinic,” International Liposome Research Days Meeting, Vancouver, Canada. Aug. 2010, pp. 1-52.
Treat, J. et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, New York, 1989. 353-65.
Uzgun, S., et al., PEGylation improves nanoparticle formation and transfection efficiency of messenger RNA. Pharm Res. Sep. 2011; 28(9); 2223-2232.
Van Tendeloo, V.F. et al., Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood. Jul. 1, 2001;98(1):49-56.
Wan et al., Lipid nanoparticle delivery systems for siRNA-based therapeutics. Drug Deliv Transl Res. Feb. 2014;4(1):74-83. doi:10.1007/s13346-013-0161-z.
Wang et al., Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Mol Ther. Feb. 2013;21(2):358-67. doi: 10.1038/mt.2012.250. Epub Dec. 11, 2012.
Weilhammer et al., The use of nanolipoprotein particles to enhance the immunostimulatory properties of innate immune agonists against lethal influenza challenge. Biomaterials. Dec. 2013;34(38):10305-18. doi: 10.1016/j.biomaterials.2013.09.038. Epub Sep. 27, 2013.
Yamamoto et al., Current prospects for mRNA gene delivery, European Journal of Pharmaceutics and Biopharmaceutics 71 (2009) 484-489.
Zhang et al., “A novel cationic cardiolipin analogue for gene delivery,” Pharmazie, 2006, 61: 10-14).
Zhigaltsev, I.V., et al., Bottom-Up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Langmuir. Feb. 21, 2012; 28(7): 3633-3640.
Zimmermann, E. et al., Electrolyte- and pH-stabilities of aqueous solid lipid nanoparticle (SLN™) dispersions in artificial gastrointestinal media. Eur J Pharm Biopharm. Sep. 2001;52(2):203-10.
Zohra, F.T., et al., Drastic effect of nanoapatite particles on liposome-mediated mRNA delivery to mammalian cells. Analytical Biochem. Oct. 2005; 345(1): 164-166.
Zohra, F.T., et al., Effective delivery with enhanced translational activity synergistically accelerates mRNA-based transfection. Biochem Biophys Res Comm. Jun. 2007; 358(1): 373-378.
Related Publications (1)
Number Date Country
20200131116 A1 Apr 2020 US
Provisional Applications (1)
Number Date Country
62471908 Mar 2017 US