Crystal reference clock and radio localization receiver

Information

  • Patent Application
  • 20080174374
  • Publication Number
    20080174374
  • Date Filed
    September 10, 2007
    17 years ago
  • Date Published
    July 24, 2008
    16 years ago
Abstract
Device and method for temperature compensation in a clock oscillator using quartz crystals, which integrates dual crystal oscillators. The minimal power consumption is achieved through an efficient use of a processor in charge of the synchronisation of the two oscillators. The invention is particularly adapted for the provision of a precise reference clock in portable radiolocalization devices
Description
REFERENCE DATA

The present application claims priority from European patent application EP06120455 filed on Sep. 11, 2006.


FIELD OF THE INVENTION

The current invention relates to a low-power management system addressing the problem of providing high stability frequency references despite temperature variations. This invention is meant to be integrated in GPS (Global Positioning System) devices which requires both clock precision for better performance and a long lifetime for commodity and ease of use in combination with other applications (e.g. so-called Assisted-GPS applications).


More specifically, the described invention relates to a method for temperature compensation in a clock oscillator using quartz crystals, which integrates dual crystal oscillators. The minimal power consumption is achieved through an efficient use of a processor in charge of the synchronisation of the two oscillators.


DESCRIPTION OF RELATED ART

For devices requiring a highly accurate clock precision like GPS devices or satellite radiolocalization devices in general, effective temperature compensation must be achieved. To this end, TCXO (Temperature compensated Crystal Oscillator) are often employed. The cost and power consumption of available TCXO devices, however, are high. Thus, there is a need for an alternative way of providing a highly accurate clock which is less expensive and has lower power demands.


Devices providing an accurate time base are known, which use two thermally linked quartz crystals having different temperature coefficients. In such devices one crystal, cut in a manner that minimizes the temperature coefficient, is usually used as the “reference” oscillator while the other crystal is regarded as a “temperature oscillator”, in that it has a temperature coefficient which is quite linear with the temperature. In this way, the difference of the frequency generated by the two crystals univocally determines the common crystals' temperature, and can be used to correct the reference frequency, according to a known correction function.


An example of such quartz oscillators is known as CDXO (Calibrated Dual Crystal Oscillator). The appeal of such device reside in the fact that they comprise a memory which is factory programmed with an individual calibration function, coded for example as coefficients of a high order polynomial function, expressing the deviation of the “reference” oscillator as a function of the frequency difference between the two oscillators.


Usually the compensation for frequency deviation according to temperature is carried out by a Digital Signal Processor (DSP) that measures the frequency deviation of the “reference” oscillator based on the calibration function and on the inputs of the second oscillator. It communicates this frequency deviation to a numerically controlled oscillator (NCO) that numerically generates the reference frequency, for example 1 KHz for a 1 mS precise clock.


The correction function is, by nature, highly non-linear. These systems, therefore, may be difficult to integrate in portable GPS receiver, that require a very precise correction, in real-time, over a large temperature span, and in which the computing power is limited.


It is an object of the present invention to provide minimal processing power consumption while performing the compensation for the reference oscillator frequency drift depending on the temperature.


It is a further object of the invention to provide an optimised computer program carrying out the steps of the frequency compensation method.


BRIEF SUMMARY OF THE INVENTION

The above objects are attained by employing an architecture using no temperature, but solely a frequency related calibration function that is stored in a memory means and assessed with a stepwise linear estimation in order to correct the reference oscillator frequency according to the temperature variation. This requires fewer cycles of the Digital Signal Processor (DSP) in charge of determining the temperature dependent frequency drift; and hence allows for a lower processing power to carry out the correction. This is a very useful feature for GPS devices that precisely need low power management characteristics.





BRIEF SUMMARY OF THE DRAWINGS

The invention will be better understood with the drawing illustrated in



FIG. 1, which diagrammatically shows a radiolocalization device including a frequency reference according to the present invention, and in



FIG. 2, which shows, in flowchart format, an example of frequency correction method according to the invention.



FIG. 3 represents, in a flowchart format, an alternative embodiment of the invention involving a additional processor in order to carry out the calculate the interpolation tables.





DETAILED DESCRIPTION OF THE INVENTION

With reference to FIG. 1, the invention employs a two crystal oscillators:

    • A first reference oscillator 14 which provides the main reference frequency. The reference oscillator is, for example a quartz crystal cut in order to resonate at the desired frequency. Typically this resonator will be a standard AT-cut crystal oscillator exhibiting a known 5th order frequency versus temperature characteristics, and a temperature coefficient of around 15 ppm/degree, strongly variable in the operating range.
    • A second temperature sensitive oscillator 16, thermally coupled to the reference oscillator. This crystal may for example be a Y-cut quartz crystal with a temperature coefficient of 90 ppm/degree, approximately constant in the operating range of temperatures.


The resonators 14 and 16 are contained and thermally linked in the same device 10. It can then be assumed that both crystal have a common temperature. The device 10 contains also a memory area 12, for example a EEPROM or a ROM, programmed with a correction function, for example the coefficients of a 5th order polynomial expressing the frequency deviation of the reference oscillator 14, as a function of the frequency difference between the reference oscillator 14 and the temperature sensitive oscillator 16. The calibration coefficients are stored in the device by the manufacturer. The content of the memory 12 is readable through an appropriate bus 13, for example a serial bus.


Optionally, if the memory area 12 should be user-writable (for example a flash memory), the calibration coefficients may be updated by the host system 40, for example to accommodate aging of the quartz crystals. This may be useful in radiolocalization devices in which the temperature calibration of the resonators 14 and 16 can be precisely verified, by comparison with the GPS time reference.


The two outputs of the two oscillators 14 and 16 are compared in the frequency comparator 80, in order to obtain a beat frequency which is temperature dependent, and whose characteristics with respect to temperature are stored in the memory means 12.


The radiolocalization receiver also comprises a GPS core, for performing known radiolocalization function together with a digital processor 40. According to the described example, the same digital processor 40 is also used to obtain a precise frequency reference from the dual crystal device 10. It will be understood, however, that the present invention also includes the case in which the frequency reference is provided by a separate processor, or by a dedicated circuit.


The signal generated by the reference oscillator 14 is used as time base for the numerically controlled oscillator 60 which delivers at its output a clock signal 65. An increment value 62, provided by the DSP unit 40 has to be set in order to have the desired frequency of the clock signal, typically 1 kHz in the case of a GPS unit.


The clock signal 65 is also applied to the frequency comparison circuit 80, which generates a control signal 85 indicative of the relationship between the frequencies of the two oscillators 14 and 16. It will be understood that the frequency comparison circuit 80 could operate in several ways, within the framework of the invention. For example the comparison circuit 80 may include a mixer and possibly a low-pass filter, in order to extract a beat frequency equal to the difference of the frequencies 14 and 16, and a counter, to count the beats of the two oscillators in one millisecond: In alternative, the comparison circuit 80 may simply count the output of the temperature oscillator 16 in a time interval determined by the clock signal 65, from which the beat frequency fan be derived by software in the DSP 40. We will assume, to fix the ideas, that the control signal 85 expresses the beat frequency between the reference oscillator 14 and the temperature oscillator 16, it being understood that the invention also comprises other variants in which the control signal carries, say, the ratio between the same frequencies.


Based on the control signal 85 the DSP 40, which as read beforehand the calibration coefficients from the memory 12 compute, periodically and in real-time, the increment value 62 for the NCO 60, in order to obtain a clock signal 65 having precisely the desired frequency, for all possible temperatures of the device 10.


Such a dual crystal system can provide a very fine resolution while employing an only frequency-related calibration function. Yet in order to achieve this with very frequent sampling times, the digital processor 40 can be quickly overloaded. It is therefore preferable to compute the instantaneous correction coefficients as an interpolation of the calibration polynomial. To this effect, for example, the DSP divides the expected range of the control signal 85 in a finite number of steps and fills in advance an interpolation table with the appropriate values to quickly calculate the interpolation function for each value of the control signal 85. The interpolation technique may be varied, according to the need. Preferably a piecewise linear interpolation is used.


In a preferred embodiment, a software program will carry out the described frequency control method with a scaling function, so that integers and no floating numbers will be manipulated, depending on the size of the registers used, in order to comply with the low power management policy of the invention in order to fit in with the requirements of GPS devices which are precisely characterised by low power characteristics.



FIG. 2 represents, in a flowchart, the steps carried out by the DSP unit 40 for the frequency control method of the invention. In step 101, the DSP obtains the calibration coefficients from the memory area 12 of the device 10. Step 102 corresponds to the pre-calculation of the tables needed for the computation of the interpolated increment value 62.


In an alternative embodiment of the invention whose flowchart is represented in FIG. 3, an additional processor could be used to calculate the interpolation tables. In this case, the additional processor would be connected to the DSP by means of a serial connection link or any other communication method. This would require the introduction of new steps 101a and 102a, where step 101a would pass the coefficient data from the DSP to the additional processor and step 102a would pass the data for the pre-calculated tables as obtained in step 102 from the additional processor to the DSP. In this case, step 102 would then be performed by the additional processor and not the DSP.


In step 103 the DSP reads the beat frequency or the control signal 85 from the comparison unit 80, and in step 104, the DSP 40 updates the increment value 62 for the NCO 60 based on the control signal 85 and on the values pre-calculated in step 102. Steps 103 and 104 repeat as long as needed, for example according to a periodic interrupt of the DSP 40.


We will now work out, in further mathematical detail, an example of the present invention.


To obtain an accurate indication of the deviation of the Fref frequency generated from the reference oscillator 14 from its nominal value, a 5th order polynomial is applied:





ΔFref=C0+C1·ΔFbeat+C2·ΔFbeat2+C3·ΔFbeat3+C4·ΔFbeat4+C5·ΔFbeat5  (1)


Cn are the coefficients of the polynomial calibration function obtained from the EEPROM 12, opportunely adjusted and scaled, if needed. ΔFbeat is the deviation of the beat frequency 85 from the expected beat frequency FBeatnom at the nominal frequency Fref and at the standard operating temperature, say 25° C., normalized over 1 second.





ΔFbeat=(Fbeat−FBeatnom)·1000/Gatems  (2)


Gatems is the period in ms over which the measurements are made.






F
Beat



nom
=F
TempCount



nom
−F
RefCount



nom  (3)


FTempCountNom is the predicted count of the XTemp signal generated by the temperature-dependent oscillator 16 at the nominal frequency and 25° C. FRefCountNom is the predicted count of XRef signal generated by the reference oscillator 14 at the nominal frequency and 25° C.













F
TempCount_nom

=

GateCount
·


(


FX
Temp

+

F
offset


)

/

FX
Ref









=


(


FX
Temp

+

F
offset


)

·

Gatems
/
1000









(
4
)







FXTemp is the nominal frequency of the XTemp oscillator (in Hz) at 25° C. Foffset is an offset frequency adjustment to XTemp obtained from the data in EEPROM 12. GateCount is the number of counts of XRef in the measurement period.





GateCount=Gatems·FXRef/1000  (5)


FXRef is the nominal frequency of the XRef oscillator (in Hz) at 25° C., but note that the term FXRef/1000 is actually the factor applied to obtain the 1 mS clock signal.





FRefCountnom=GateCount  (6)


Hence restating equation 3






F
Beat



nom=GateCount·(FXTemp+Foffset)/FXRef−GateCount  (7)


There are two options for FBeat depending whether the system is configured to measure a Beat frequency-count, or to measure the count from XTemp.


If the Beat frequency is being counted, then





Fbeat=MeasuredCount  (8)


Otherwise, if the count from Xtemp is measured, then






F
beat=MeasuredCount−GateCount  (9)


In the presented example, The NCO uses a 39-bit counter and a 28-bit increment register. It is clear, however, that other arrangements are possible.






F
req=(Incr·Fref)/239  (10)


Freq is the desired frequency


Fref is the input frequency


Incr is the Increment value.


By rearranging we obtain





Incr=(Freq·239)/Fref  (11)


Initially, and by default the NCO will be programmed with an nominal Incrnom value obtained from the nominal frequency of XRef (XRefnom) to produce a one KHz signal by applying Equation 11.


When the control loop is active, periodically the system provides a frequency error for XRef. The NCO 60 must be adjusted to correct for any drift in the frequency of XRef. This will be done by applying Equation 11 where Fref is the nominal frequency of XRef, plus the change in frequency ΔFref obtained from Equation 1. Thus:






F
ref
=X
Ref



nom
+ΔF
ref  (12)


To reduce the scale of the calculation required to obtain the updated Incr value, it is possible to scale the Incr value based on the ΔFRef value. Hence





Incr=Incrnom+(ΔFRef·Slope256/XRefnom·256))  (13)


Incrnom is the Incr value calculated using the nominal frequency of XRef.


Slope256 is a pre-calculated Slope factor across the range of variation in XRef, scaled by 256.


Slope256 is calculated by the following equation:





Slope256=256·(IncrXrefmax−IncrXrefmin)/(Xrefmax−Xrefmin)  (14)


Where


IncrXrefmax is the Incr value calculated using Xrefmax


IncrXrefmin is the Incr value calculated using Xrefmin


Xrefmax is the maximum allowed frequency of Xref


Xrefmin is the minimum allowed frequency of Xref

Claims
  • 1. A system for generating a very precise, temperature independent reference frequency for GPS devices, comprising: (a) A reference oscillator (Xref)(b) A temperature sensitive oscillator (XTemp), being thermally coupled to the reference oscillator(c) A processing means mixing and measuring the outputs of (a) and (b)(d) A memory means storing the characteristics of oscillation frequencies with respect to temperature(e) A Digital Processor computing the frequency deviation of the reference oscillator(f) A Numerically controlled oscillator (NCO)
  • 2. A Method for generating a very precise, temperature independent reference frequency for GPS devices, consisting in: Mixing the outputs of a reference oscillator Xref (a), with another temperature sensitive oscillator XTemp (b), in order to obtain a temperature dependent beat frequency BT whose characteristics are well known and stored in a memory means (d)Deriving the frequency deviation DF(t) of the reference oscillator Xref (a), depending on the temperature, from BT by applying a calibration function according to the predetermined values stored in (d) thanks to a stepwise linear interpolationAdjusting the reference oscillator frequency F(t) by adding the frequency deviation DF(t) in order to obtain a final output frequency stable with temperature
  • 3. The system according to claim 1 where the processing means (c) derives the beat of the two oscillators (a) and (b) from the temperature sensitive oscillator XTemp values only thanks to software processing.
  • 4. A computer program for carrying out the steps of methods of claims 2
  • 5. A computer program for carrying out the steps of methods of claims 2, characterised in that a scaling function in used to manipulate integers and no floating numbers depending on the size of the registers used.
Priority Claims (1)
Number Date Country Kind
06 120 455.8 Sep 2006 EP regional