CRYSTAL STRUCTURE AND PEPTIDE INHIBITORS OF HAUSP DEUBIQUITINASE

Abstract
Two vIRF4 (Kaposi's-sarcoma-associated-herpesvirus vIRF4) peptides, vif1, corresponding to aa202-216 of vIRF4, and vif2, corresponding to aa220-236 of vIRF4, are potent and selective HAUSP antagonists. The vif1 and vif2 peptides robustly suppress HAUSP DUB enzymatic activity, ultimately leading to p53-mediated anti-cancer activity. The vif1 and vif2 peptides, along with their homologues, are useful in treating cancer through regulation of p53 activity in a cancer cell. Also disclosed is the crystalline structure of vIRF4-HAUSP TRAF domain complex. The structure is useful in computer aided drug design for identifying an agent that interacts with and inhibits HAUSP, resulting in p53 medicated cell cycle arrest of cancer cells.
Description
FIELD OF INVENTION

The present disclosure generally relates to compositions and methods and for preventing or treating cancer. It also relates to computer aided design for agents useful in interacting with HAUSP (Herpes virus-associated ubiquitin-specific protease), inhibiting HAUSP activity.


BACKGROUND

Throughout this application, several technical publications are referenced by an Arabic numeral. The complete bibliographic citation for each reference is found immediately preceding the claims. The contents of each publication so referenced and the publications referenced within the specification are hereby incorporated into the present disclosure to more fully describe the state of the art to which this invention pertains.


p53 is a key regulator of a wide range of cellular activities, including cell cycle regulation, apoptosis, response to DNA damage, differentiation, and angiogenesis. p53 responds to DNA damage and other cellular stresses, such as viral infections, by inducing cell cycle arrest or apoptosis as well as playing an important role in tumor suppression. In order to circumvent host scrutiny, viruses employ their products to disrupt and overcome p53-mediated irreversible cell cycle arrest and apoptosis that are parts of the overall host surveillance mechanisms to block viral replication and dissemination.


p53 is negatively regulated by murine double minute 2 (MDM2) to maintain its low levels under normal conditions. It has been well established that MDM2, an oncogenic E3 ligase, is the major negative regulator of p53, which it modulates in two ways. First, MDM2 interaction masks the transactivation domain of p53, resulting in interfering with the transcriptional activity of p53. Second, MDM2 promotes the ubiquitin-mediated degradation of p53.


HAUSP (Herpes virus-associated ubiquitin-specific protease) is a ubiquitin specific protease or a deubiquitylating enzyme that cleaves ubiquitin from its substrates. HAUSP plays pivotal roles in the stability of p53 and MDM2, raising HAUSP as a potential therapeutic target for tuning p53-mediated anti-tumor activity. HAUSP is most widely known as a direct antagonist of MDM2. Normally, p53 levels are kept low in part due to MDM2-mediated ubiquitylation and degradation of p53. Interestingly, in response to oncogenic insults, HAUSP can deubiquitinate p53 and protect p53 from MDM2-mediated degradation of p53 in response to stress. It was also reported, however, that HAUSP is required for p53 destabilization and disruption of HAUSP stabilizes p53.


SUMMARY

It is discovered herein that two vIRF4 (Kaposi's-sarcoma-associated-herpesvirus vIRF4) peptides, vif1, corresponding to aa202-216 of vIRF4, and vif2, corresponding to aa220-236 of vIRF4, are potent and selective HAUSP antagonists. It is further demonstrated that vif1 and vif2 peptides robustly suppress HAUSP DUB enzymatic activity, ultimately leading to p53-mediated anti-cancer activity. Therefore, the vif1 and vif2 peptides, along with their homologues, are useful in treating cancer, through regulation of p53 activity in a cancer cell.


Thus, one embodiment of the present disclosure provides a purified, isolated or recombinant vIRF4 peptide fragment, wherein the fragment comprises, or alternatively consists essentially of, or yet alternatively consists of, one or more amino acid sequence of the group: vIRF4 aa 153-256; vIRF4 aa 608-758; vIRF4 aa 202-208; vIRF4 aa 211-216; vIRF4 aa 202-216 (vif1); vIRF4 aa 209-216; vIRF4 aa 153-216; or vIRF4 aa 217-236; and vIRF4 aa 220-236 (vif2), or a biological equivalent of each thereof.


In another embodiment, the present disclosure provides a purified, isolated or recombinant vIRF4 peptide comprising, or alternatively consisting essentially of, or yet further consisting of at least two non-contiguous vIRF4 peptide fragments described above.


Another embodiment of the present disclosure provides a purified, isolated or recombinant retro-inverso peptide of any of the above vIRF4 peptides or peptide fragments.


Any of the above peptides can further comprise, or alternatively consist essentially of, or yet further consist of, a cell penetrating domain, which for example, can comprise a HIV TAT peptide.


In further embodiments, the present disclosure also provides polynucleotides encoding the peptides, of the present disclosure, antibodies that specifically bind to the peptides of the present disclosure, and compositions comprising the peptides or polynucleotides of the present disclosure.


Yet another embodiment of the present disclosure provides a method of increasing or inducing apoptosis in a cell, comprising contacting the cell with an effective amount of one or more of any of the above vIRF4 peptide fragments, polynucleotides or compositions, thereby increasing or inducing apoptosis in the cell.


Also provided is a method of increasing p53 activity in a cell with functional p53, comprising contacting the cell with an effective amount of one or more of any of the above vIRF4 peptide fragments, polynucleotides or compositions, thereby increasing p53 activity in the cell.


Further provided is a method of increasing MDM2 activity in a cell, comprising contacting the cell with an effective amount of one or more of any of the above vIRF4 peptide fragments, polynucleotides or compositions, thereby increasing MDM2 activity in the cell.


Still further, provided is a method of decreasing HAUSP activity in a cell, comprising contacting the cell with an effective amount of one or more of any of the above vIRF4 peptide fragments, polynucleotides or compositions, thereby decreasing HAUSP activity in the cell.


In yet another embodiment, the present disclosure provides a method of inhibiting enzyme substrate interaction between p53 and MDM2 in a cell, comprising contacting the cell with an effective amount of one or more of any of the above vIRF4 peptide fragments, polynucleotides or compositions, thereby inhibiting enzyme substrate interaction between p53 and MDM2 in the cell.


Provided also is a method of competitively blocking substrate binding of the TRAF domain of HAUSP in a cell, comprising contacting the cell with an effective amount of one or more of any of the above vIRF4 peptide fragments, polynucleotides or compositions, thereby competitively blocking substrate binding of the TRAF domain of HAUSP in the cell.


Still further provided is a method for suppressing deubiquitination activity of HAUSP in a cell comprising contacting the cell with an effective amount of one or more of any of the above vIRF4 peptide fragments, polynucleotides or compositions, thereby suppressing deubiquitination activity of HAUSP in a cell.


In one embodiment, the present disclosure provides a method of inhibiting the growth of a cancer cell, comprising contacting the cell with an effective amount of one or more of any of the above vIRF4 peptide fragments, polynucleotides or compositions, thereby inhibiting the growth of the cancer cell.


Another embodiment provides a method for tuning p53-mediated anti-tumor activity in a cell with functional p53, comprising contacting the cell with an effective amount of one or more of any of the above vIRF4 peptide fragments, polynucleotides or compositions, thereby tuning p53-mediated anti-tumor activity in a cell.


Thus, in one embodiment, the present disclosure provides a computer-implemented method for identifying an agent that binds HAUSP. The method comprises positioning a three-dimensional structure of a candidate agent against a three-dimensional structure of a HAUSP fragment, which three-dimensional structure of the HAUSP fragment is based on X, Y and Z atomic structure coordinates determined from a crystalline form of the HAUSP fragment. Interaction of the candidate agent with the HAUSP fragment at two or more, or alternatively three or more, or four or more, or five or more, or six or more, or all seven HAUSP amino acids selected from R104, R152, R153, 5155, D164, W165 or G166 identifies that candidate agent binds HAUSP.


Throughout the disclosure, the locations of the amino acids in HAUSP refer to those in human HAUSP, the sequence of which is provided in SEQ ID NO: 4. It would be readily appreciated by one of skill in the art that for a different HAUSP sequence, either a human variant, or HAUSP sequence from a different species, the corresponding locations of these amino acids can be readily obtained by methods known in the art including, for example, sequence alignment. Accordingly, in the present disclosure, a HAUSP sequence encompasses the human HAUSP sequence represented by SEQ ID NO. 4 and HAUSP variants and HAUSP sequences from other species.


A HAUSP amino acid, further, also encompasses its equivalents. An equivalent of a HAUSP amino acid, in one aspect, is any amino acid in a different HAUSP sequence that corresponds to the one recited for SEQ ID NO: 4. In another aspect, an equivalent of a HAUSP amino acid is a substitute amino acid at the same location in a HAUSP, or a corresponding location in a different HAUSP sequence, provided that the substitute amino acid is biologically similar to the one being substituted, in terms of size, hydrophilicity, or charge.


The present disclosure, in Table 3, for instance, also provides the X, Y and Z atomic structure coordinates that are determined from a crystalline form of a vIRF4-HAUSP TRAF domain complex. Alternatively, the X, Y and Z atomic structure coordinates can be determined from a free HAUSP TRAF domain as it is demonstrated here that the structure of a free HAUSP TRAF domain is similar to that of a HAUSP TRAF domain in a vIRF4-HAUSP TRAF domain complex. An exemplary set of X, Y and Z atomic structure coordinates of a free HAUSP TRAF domain are provided in Protein Data Bank (PDB) Accession No.: 2F1W.


In another embodiment, the three-dimensional structure of the HAUSP fragment is based on X, Y and Z atomic structure coordinates of a HAUSP catalytic domain. The interaction of the candidate agent with the HAUSP fragment at two or more, or alternatively all three HAUSP amino acids selected from C223, D481 or H464 identifies the candidate agent as suitable for inhibiting the activity of HAUSP. As it is further shown that N218, N226, D295, D482 or H456 of the HAUSP catalytic domain are also involved in the vif2-HAUSP catalytic domain binding, interaction of the candidate agent at one or more, or alternatively two or more, or three or more, or four or move, or all five of these amino acids further indicates that the candidate agent binds HAUSP. The X, Y and Z atomic structure coordinates of the HAUSP catalytic domain, for example, can be found in Protein Data Bank (PDB) Accession No.: 2F1Z.


In yet another embodiment, an agent that binds HAUSP is an agent or a mixture of agents that interact, as shown with any of the above methods, with both the HAUSP TRAF domain and the HAUSP catalytic domain.


A candidate agent can further analyzed for its ability bind to HAUSP and/or inhibit HAUSP activity in an in vitro or in vivo assay. Such a candidate agent can be a small molecule, a polypeptide, an antibody, an antibody fragment, or a combination or mixture of two or more such agents, without limitation.


The above methods are also useful in identifying an agent that interacts with HAUSP, or an agent that inhibits the activity of HAUSP, suitable for inhibiting cell growth, promoting cell cycle arrest, promoting apoptosis or promoting cell death.


Also provided, in one embodiment, is an agent suitable for inhibiting the activity of HAUSP, for interacting with HAUSP, or suitable for inhibiting cell growth, promoting cell cycle arrest, promoting apoptosis or promoting cell death, that is identified by any of the above methods.


Computer apparatus and non-transitory storage medium useful in carrying out the methods of the present disclosure are also provided in this disclosure. Also provided is a non-transitory computer medium comprising the crystalline structure of the vIRF4-HAUSP TRAF domain complex, as provided in Table 3, or its equivalents.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1
a-d. Structural basis for the interaction between HAUSP and vIRF4. (a) Silver stained purified V5-vIRF4 complexes. Arrows, HAUSP; asterisks, V5-vIRF4 (b) Ribbon representation of the vIRF4-HAUSP TRAF domain complex. The viral peptide (S202 to M216) bound to the TRAF domain is represented in dark gray. The β6 and β7 strands of the TRAF domain are indicated. (c) Decisive interactions between vIRF4 and HAUSP TRAF domain. Residues in vIRF4 and TRAF are displayed by gray and white carbon atoms, respectively. Hydrogen bonds are depicted as gray short-dashed lines. (d) Superimposition of target binding peptides onto HAUSP TRAF domain. The peptides include vIRF4, p53, MDM2, MDM2, MDM4, and EBNA1. Residues in vIRF4 are labeled in gray. The consensus sequence motif is shown and the most conserved residues are circled.



FIG. 2
a-g. Bilateral interaction of vIRF4 with HAUSP and effect of this interaction on HAUSP DUB enzymatic activity. (a) NMR analysis of interaction between vIRF4 peptide and HAUSP TRAF-catalytic domain. The backbone amide region of the 2D 1H-15N correlation spectra of vIRF4153-256 in the presence of an equimolar amount of HAUSP62-205 (light gray contours) or HAUSP62-560 (dark gray contours). 1H-15N spectrum of free vIRF4153-256 is represented in black contours. Signal changes of vIRF4153-256 observed upon the binding of HAUSP62-205 are denoted by dark gray triangles, and additional changes detected upon the binding of HAUSP62-560 are indicated by light gray triangles. Residues close to vIRF4 Trp232 are indicated by light gray arrows. (b) The Trp232 backbone assignment. Superposition of the 1H-15N correlation spectra of free vIRF4153 256 (black) and vIRF4 W232A153-256 (gray) for comparison. Residues located close to Trp232 were identified by the comparison of the two spectra (light gray arrows). The assigned Trp232 backbone is indicated by a gray arrow. (c) Signal changes of the tryptophan ε-NH protons upon interaction with HAUSP62-205 (light gray) or HAUSP62-560 (dark gray). Free vIRF4153-256 is represented in black contours. Assignments of the tryptophan side chain and backbone signals are described in the FIGS. 11 and 12. (d) Proposed molecular interaction scheme between HAUSP and two different vIRF4 derived peptides. This model is based on the vIRF4-TRAF complex structure from the present study and the HAUSP structure containing the TRAF and catalytic domains (PDB accession code 2F1Z). The vIRF4202-216 peptide is displayed a magenta loop, while the vIRF4217-236 peptide is depicted as magenta short dashed line. Catalytic triad (red) is highlighted in the catalytic site. The ubiquitin binding pocket is marked by the black dashed circle. See text for description. (e) Effect of vif1/2 peptides on HAUSP DUB activity toward ubiquitin chains. Purified recombinant HAUSP alone or HAUSP pre-incubated with vif1 or vif2 peptide for 5 min at 37° C. was incubated with K48-Ub3-7 chains for the indicated times at 37° C. Products were analyzed by immunoblotting (IB) with an anti-ubiquitin antibody. Right: time-course measuring the appearance of cleaved mono- and di-ubiquitin reaction products were determined by semi-quantification of IB shown on the left. (f) Effect of vif1/2 peptides on HAUSP DUB activity toward ubiquitinated MDM2. Human recombinant purified MDM2 was incubated with purified E1, E2, and ubiquitin for 2 h at 37° C. prior to the deubiquitination assay. HAUSP pre-incubated with increasing concentrations of each peptide or HAUSP alone was then incubated with ubiquitinated MDM2 for 1 h at 37° C. HAUSP DUB enzymatic activity toward ubiquitinated MDM2 was observed by IB with anti-MDM2 antibody. (g) In vivo effect of TAT-vif1/2 peptides on HAUSP DUB activity. At 24 h post-transfection with vector or Flag-tagged HAUSP, 293T cells were treated with 100 μM of TAT, TAT-vif1, or TAT-vif2 for an additional 12 h, followed by IP with an anti-Flag agarose beads and elution with Flag peptide. Purified HAUSP complexes were incubated with K48-Ub3-7 chains for the indicated intervals and IB with an anti-ubiquitin antibody. One percent of the IP complex was used as the input.



FIG. 3
a-g Inhibition of HAUSP function by vif1 or vif2 peptide activates p53-mediated anti tumor activity in vivo. (a) Growth inhibition of PELs induced by vif1/2 peptides. BC3, VG1, BCBL-1, and BJAB cells were treated with 100 μM TAT, TAT-vif1, or TAT-vif2 peptide for the indicated periods of time. The results were quantified as mean±s.d. of the combined results from three independent experiments; Data are mean±s. e. m.; n=200-300 cells from three independent experiments. *P<0.01 and **P<0.001. A Beckman Coulter Z2 Particle Count and size analyzer (BC Z2 CS analyzer) and trypan blue staining were used to determine cell death and for cell growth analysis. (b) vif1/2-induced cell cycle arrest of PELs. Asynchronously growing VG1 cells were treated with 100 μM peptide (TAT, TAT-vif1, or TAT-vif2 peptide) or 10 μM Nutlin-3a for 48 h. Cells were pulse-labeled with BrdU and analyzed for DNA content by flow cytometry. BrdU incorporation during the S phase is quantified as percentage of stained cells. The sub-G1 populations in TAT-vif2 peptide treated VG1 cells are denoted by arrow. Data are culled from 3 independent experiments. (c) vif1/2-induced cell death of PELs. Apoptosis in VG1 cells was assessed at 48 h after treatment with 10 μM Nutlin-3a or 100 μM of each peptide by Annexin V/PI staining and measured by flow cytometry analysis. Lower left quadrants represent viable cells (Annexin V- and PI-negative); lower right quadrants represent early apoptotic cells (Annexin V-positive, PI-negative) demonstrating cytoplasmic membrane integrity; upper right quadrants represent non-viable, late apoptotic cells (Annexin V- and PI positive). Numbers indicate the percentage of cells in each quadrant. (d) Effect of vif1/2 peptides on p53 and its transcription target protein levels. VG1 and BJAB cells were treated with the same dose as used in (b) and (c) for 6 h and aliquots of cell lysates containing 10 mg of protein were analyzed by IB with the indicated antibody. (e) vif1/2-induced tumor suppression in vivo. NOD/SCID mice received an injection of 5×106 BCBL-1-Luc cells, followed by intraperitoneal injection with 1 mg of TAT, TAT-vif1, and TAT-vif2 peptide for two weeks. Tumors were measured by in vivo bioluminescence imaging. (f and g) Combination therapy of vif1 and vif2 peptides. (f) BCBL-1 cells were treated with 25 μM of the indicated peptide for the indicated periods of time, followed by trypan blue staining for cell death analysis or cell number counting for cell growth. The results were quantified as mean±s.d. of the combined results from three independent experiments; Data are mean±s. e. m.; n=200-300 cells from three independent experiments. *P<0.05 and **P<0.01. (g) After establishment of tumors in NOD/SCID mice, TAT-vif1 and TAT-vif2 peptide were injected together for two weeks and tumors were measured by in vivo bioluminescence imaging.



FIG. 4. TRAF-like domain of HAUSP and vIRF4 (aa153-256) are responsible for their interaction. Schematic representation of the plasmid constructs. Left schematic describes HAUSP constructs. TRAF denotes the TRAF like domain, DUB denotes the de-ubiquitinase enzymatic domain. Right schematic depicts vIRF4 constructs; amino—terminal DNA—binding domain (DB), proline rich domain (PRD), and transactivation domain (TA) of cellular IRFs. (a and b) Communoprecipitation (Co-IP) of vIRF4 with the wt or several HAUSP mutants. 293T cells were transfected with the indicated HAUSP constructs along with vIRF4, followed by IP with an anti-V5 antibody and IB with an anti-Flag antibody. 1% of the whole cell lysate (WCL) was used as the input. (c and d) Co-IP of HAUSP with wt or several vIRF4 mutants. 293T cells were transfected with the indicated vIRF4 constructs along with HAUSP, followed by IP with an anti-V5 antibody and IB with an anti-Flag antibody. 1% of the WCL was used as the input. (e) At 48 h post-transfection with several GST-vIRF4 mutants along with HAUSP, 293T cells were used for GST pulldown, followed by IB with anti-Flag antibody.



FIG. 5. Typical isothermal titration calorimetric measurements of the interactions between the HAUSP TRAF domain and the vIRF4 protein derivatives or other peptides. Purified proteins and synthesized peptides were reconstituted in 150 mM NaCl and 10 mM HEPES (pH 7.0). The calorimetric assays were performed using a VPITC system. All experiments were carried out with a stirring speed of 300 rpm at 20° C., and the thermal power was recorded every 10 s. Data were analyzed using the ORIGIN software package (version 7.0). In each panel, the raw data are displayed in the upper FIG., and the integrated injection heats are displayed in the lower panel. Each titration against the HAUSP TRAF domain is indicated in each panel.



FIG. 6. The electron density map (Fo-Fc) showing viral peptide was calculated prior to inclusion of the peptide in the complex structure model and is contoured at 3.0σ.



FIG. 7. Surface representation of the TRAF domain-vIRF4 peptide complex. The HAUSP TRAF domain (in gray) forms a shallow groove at the waist of the surface structure. The vIRF4 peptide (in light gray) is positioned on the groove in a belttype arrangement around the waist.



FIG. 8. Structural comparison between the peptide-free (in yellow, PDB accession code 2F1W) and vIRF4-bound (in magenta) TRAF domain (in gray). No significant conformational differences are observed between the two structures except in the C-terminal region.



FIG. 9. Typical isothermal titration calorimetric measurements of the competitive binding of vIRF4 with TRAF domain against cellular substrates. Each peptide (MDM2137-152, p53350-364, and p53355-369) was first titrated into the HAUSP TRAF domain, resulting in association constants of 9.1×104 M−1, 6.5×104 M−1, and 6.7×104 M−1, respectively. When vIRF4202-216 was subsequently titrated against HAUSP cellular substrates as a competitor, the association constant of each titration was markedly increased to 10.9×106 M−1, 44.2×106 M−1, and 35.8×106 M−1, respectively, indicating a considerably tighter interaction between HAUSP TRAF domain and vIRF4 compared to its cellular substrates, MDM2 and p53. In each panel, the raw data are displayed in the upper FIG., and the integrated injection heats are displayed in the lower panel. Each competitive titration is indicated in the panel.



FIG. 10
a-b. The HAUSP TRAF domain HAUSP62-205 preferentially forms a stable complex with vIRF4153-216 in the presence of excess MDM2137-152. (a) HAUSP62-205 was reacted in the presence of a 5-fold excess amount of MDM2137-152 and subjected to size exclusion chromatography. MDM2137-152 was too small to be detected by peptide PAGE analysis using Pepti-Gel™ (Elpis Biotech. Inc., Korea), a polyacrylamide gel system used to separate small peptides (MW 2-30 kDa). It should be noted that ITC experiments revealed an interaction between HAUSP62-205 and MDM2137-152 (Kd=11.06 μM). (b) vIRF4153-216 was added to the HAUSP62-205 and MDM2137-152 reaction solution and subjected to size exclusion chromatography. vIRF4153-216 formed a stable complex with the HAUSP TRAF domain even in the presence of a 5-fold molar excess of MDM2 peptide. M, molecular size marker; R, reaction solution.



FIG. 11. The side chain assignments of the vIRF4153-256 tryptophans. The 2D 1H-15N HSQC spectra of vIRF4153-256 and its mutants vIRF4 (W204A)153-256 and vIRF4 (W232)153-256 are superimposed and are shown in black, red and blue contours, respectively. The assigned tryptophan residues are denoted. NMR measurements were performed with 0.1 mM 15N-labeled protein in 50 mM HEPES (pH 6.5) containing 10% D2O at 25° C. 1H-15N HSQC spectra were measured on a Bruker 900 MHz NMR spectrometer. All NMR spectra were processed with Topspin 2.1 and analyzed with SPARKY 3.1 program.



FIG. 12. The superimposed 1H-15N HSQC spectra of 15N-uniformly labeled vIRF4153-256 (black) and 15N-Trp selectively labeled vIRF4153-256 (red). The selected region near the Trp232 backbone signal is magnified, and its signal is denoted. Selective isotope (15N) labeling of tryptophan was performed for the tryptophan backbone assignment using an E. coli-based cell-free synthesis system. NMR measurements were performed with 0.1 mM 15N-labeled protein in 50 mM HEPES (pH 6.5) containing 10% D2O at 25° C. using a Bruker 900 MHz NMR spectrometer. All NMR spectra were processed with Topspin 2.1 and analyzed with SPARKY 3.1 program.



FIG. 13 shows an illustrative computing device suitable for use with the present disclosure.





DETAILED DESCRIPTION

Before the compositions and methods are described, it is to be understood that the invention is not limited to the particular methodologies, protocols, cell lines, assays, and reagents described, as these may vary. It is also to be understood that the terminology used herein is intended to describe particular embodiments of the present invention, and is in no way intended to limit the scope of the present invention as set forth in the appended claims.


Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods, devices, and materials are now described. All technical and patent publications cited herein are incorporated herein by reference in their entirety. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.


The practice of the present invention will employ, unless otherwise indicated, conventional techniques of tissue culture, immunology, molecular biology, microbiology, cell biology and recombinant DNA, which are within the skill of the art. See, e.g., Sambrook and Russell eds. (2001) Molecular Cloning: A Laboratory Manual, 3rd edition; the series Ausubel et al. eds. (2007) Current Protocols in Molecular Biology; the series Methods in Enzymology (Academic Press, Inc., N.Y.); MacPherson et al. (1991) PCR 1: A Practical Approach (IRL Press at Oxford University Press); MacPherson et al. (1995) PCR 2: A Practical Approach; Harlow and Lane eds. (1999) Antibodies, A Laboratory Manual; Freshney (2005) Culture of Animal Cells: A Manual of Basic Technique, 5th edition; Gait ed. (1984) Oligonucleotide Synthesis; U.S. Pat. No. 4,683,195; Hames and Higgins eds. (1984) Nucleic Acid Hybridization; Anderson (1999) Nucleic Acid Hybridization; Hames and Higgins eds. (1984) Transcription and Translation; Immobilized Cells and Enzymes (IRL Press (1986)); Perbal (1984) A Practical Guide to Molecular Cloning; Miller and Calos eds. (1987) Gene Transfer Vectors for Mammalian Cells (Cold Spring Harbor Laboratory); Makrides ed. (2003) Gene Transfer and Expression in Mammalian Cells; and Mayer and Walker eds. (1987) Immunochemical Methods in Cell and Molecular Biology (Academic Press, London).


All numerical designations, e.g., pH, temperature, time, concentration, and molecular weight, including ranges, are approximations which are varied (+) or (−) by increments of 0.1. It is to be understood, although not always explicitly stated that all numerical designations are preceded by the term “about”. It also is to be understood, although not always explicitly stated, that the reagents described herein are merely exemplary and that equivalents of such are known in the art.


DEFINITIONS

As used in the specification and claims, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a cell” includes a plurality of cells, including mixtures thereof.


As used herein, the term “comprising” or “comprises” is intended to mean that the compositions and methods include the recited elements, but not excluding others. “Consisting essentially of” when used to define compositions and methods, shall mean excluding other elements of any essential significance to the combination for the stated purpose. Thus, a composition consisting essentially of the elements as defined herein would not exclude trace contaminants from the isolation and purification method and pharmaceutically acceptable carriers, such as phosphate buffered saline, preservatives and the like. “Consisting of” shall mean excluding more than trace elements of other ingredients and substantial method steps for administering the compositions of this invention or process steps to produce a composition or achieve an intended result. Embodiments defined by each of these transition terms are within the scope of this invention.


The term “isolated” as used herein with respect to nucleic acids, such as DNA or RNA, refers to molecules separated from other DNAs or RNAs, respectively that are present in the natural source of the macromolecule. The term “isolated peptide fragment” is meant to include peptide fragments which are not naturally occurring as fragments and would not be found in the natural state. The term “isolated” is also used herein to refer to polypeptides and proteins that are isolated from other cellular proteins and is meant to encompass both purified and recombinant polypeptides. In other embodiments, the term “isolated” means separated from constituents, cellular and otherwise, in which the cell, tissue, polynucleotide, peptide, polypeptide, protein, antibody or fragment(s) thereof, which are normally associated in nature. For example, an isolated cell is a cell that is separated form tissue or cells of dissimilar phenotype or genotype. As is apparent to those of skill in the art, a non-naturally occurring polynucleotide, peptide, polypeptide, protein, antibody or fragment(s) thereof, does not require “isolation” to distinguish it from its naturally occurring counterpart.


The term “purified” refers to a composition being substantially free from contaminants. With respect to polynucleotides and polypeptides, purified intends the composition being substantially free from contamination from polynucleotides or polypeptides with different sequences. In certain embodiments, it also refers to polynucleotides and polypeptides substantially free from cell debris or cell culture media.


The term “recombinant” refers to a form of artificial DNA that is created by combining two or more sequences that would not normally occur in their natural environment. A recombinant protein is a protein that is derived from recombinant DNA.


The term “binding” or “binds” as used herein are meant to include interactions between molecules that may be covalent or non-covalent which, in one embodiment, can be detected using, for example, a hybridization assay. The terms are also meant to include “binding” interactions between molecules. Interactions may be, for example, protein-protein, antibody-protein, protein-nucleic acid, protein-small molecule or small molecule-nucleic acid in nature. This binding can result in the formation of a “complex” comprising the interacting molecules. A “complex” refers to the binding of two or more molecules held together by covalent or non-covalent bonds, interactions or forces.


The term “polypeptide” is used interchangeably with the term “protein” and in its broadest sense refers to a compound of two or more subunit amino acids, amino acid analogs or peptidomimetics. The subunits may be linked by peptide bonds. In another embodiment, the subunit may be linked by other bonds, e.g., ester, ether, etc. As used herein the term “amino acid” refers to natural and/or unnatural or synthetic amino acids, including glycine and both the D and L optical isomers, amino acid analogs and peptidomimetics. A peptide of three or more amino acids is commonly called an oligopeptide if the peptide chain is short. If the peptide chain is long, the peptide is commonly called a polypeptide or a protein. The term “peptide fragment,” as used herein, also refers to a peptide chain.


The phrase “biologically equivalent polypeptide” or “biologically equivalent peptide fragment” refers to protein, polynucleotide, or peptide fragment which hybridizes to the exemplified polynucleotide or peptide fragment under stringent conditions and which exhibit similar biological activity in vivo, e.g., approximately 100%, or alternatively, over 90% or alternatively over 85% or alternatively over 70%, as compared to the standard or control biological activity. Additional embodiments within the scope of this invention are identified by having more than 60%, or alternatively, more than 65%, or alternatively, more than 70%, or alternatively, more than 75%, or alternatively, more than 80%, or alternatively, more than 85%, or alternatively, more than 90%, or alternatively, more than 95%, or alternatively more than 97%, or alternatively, more than 98% or 99% sequence homology. Percentage homology can be determined by sequence comparison using programs such as BLAST run under appropriate conditions. In one aspect, the program is run under default parameters.


As understood by those of skill in the art, a “retro-inverso” refers to an isomer of a linear peptide in which the direction of the sequence is reversed (“retro”) and the chirality of each amino acid residue is inverted (“inverso”). Compared to the parent peptide, a helical retro-inverso peptide can substantially retain the original spatial conformation of the side chains but has reversed peptide bonds, resulting in a retro-inverso isomer with a topology that closely resembles the parent peptide, since all peptide backbone hydrogen bond interactions are involved in maintaining the helical structure. See Jameson et al., (1994) Nature 368:744-746 (1994) and Brady et al. (1994) Nature 368:692-693. The net result of combining D-enantiomers and reverse synthesis is that the positions of carbonyl and amino groups in each amide bond are exchanged, while the position of the side-chain groups at each alpha carbon is preserved. Unless specifically stated otherwise, it is presumed that any given L-amino acid sequence of the invention may be made into an D retro-inverso peptide by synthesizing a reverse of the sequence for the corresponding native L-amino acid sequence.


The term “polynucleotide” refers to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides or analogs thereof polynucleotides can have any three-dimensional structure and may perform any function, known or unknown. The following are non-limiting examples of polynucleotides: a gene or gene fragment (for example, a probe, primer, or EST), exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, ribozymes, cDNA, RNAi, siRNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes and primers. A polynucleotide can comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure can be imparted before or after assembly of the polynucleotide. The sequence of nucleotides can be interrupted by non-nucleotide components. A polynucleotide can be further modified after polymerization, such as by conjugation with a labeling component. The term also refers to both double- and single-stranded molecules. Unless otherwise specified or required, any embodiment of this invention that is a polynucleotide encompasses both the double-stranded form and each of two complementary single-stranded forms known or predicted to make up the double-stranded form.


A polynucleotide is composed of a specific sequence of four nucleotide bases: adenine (A); cytosine (C); guanine (G); thymine (T); and uracil (U) for thymine when the polynucleotide is RNA. Thus, the term “polynucleotide sequence” is the alphabetical representation of a polynucleotide molecule. This alphabetical representation can be input into databases in a computer having a central processing unit and used for bioinformatics applications such as functional genomics and homology searching.


“Homology” or “identity” or “similarity” are synonymously and refers to sequence similarity between two peptides or between two nucleic acid molecules. Homology can be determined by comparing a position in each sequence which may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same base or amino acid, then the molecules are homologous at that position. A degree of homology between sequences is a function of the number of matching or homologous positions shared by the sequences. An “unrelated” or “non-homologous” sequence shares less than 40% identity, or alternatively less than 25% identity, with one of the sequences of the present invention.


A polynucleotide or polynucleotide region (or a polypeptide or polypeptide region) has a certain percentage (for example, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99%) of “sequence identity” to another sequence means that, when aligned, that percentage of bases (or amino acids) are the same in comparing the two sequences. This alignment and the percent homology or sequence identity can be determined using software programs known in the art, for example those described in Ausubel et al. eds. (2007) Current Protocols in Molecular Biology. Preferably, default parameters are used for alignment. One alignment program is BLAST, using default parameters. In particular, programs are BLASTN and BLASTP, using the following default parameters: Genetic code=standard; filter=none; strand=both; cutoff=60; expect=10; Matrix=BLOSUM62; Descriptions=50 sequences; sort by ═HIGH SCORE; Databases=non-redundant, GenBank+EMBL+DDBJ+PDB+GenBank CDS translations+SwissProtein+SPupdate+PIR. Details of these programs can be found at the following Internet address: http://www.ncbi.nlm.nih.gov/blast/Blast.cgi, last accessed on Nov. 26, 2007. Biologically equivalent polynucleotides are those having the specified percent homology and encoding a polypeptide having the same or similar biological activity.


The term “non-contiguous” refers to the presence of an intervening peptide, nucleotide, polypeptide or polynucleotide between a specified region and/or sequence. For example, two polypeptide sequences are non-contiguous because the two sequences are separated by a polypeptide sequences that is not homologous to either of the two sequences. Non-limiting intervening sequences are comprised of at least a single amino acid or nucleotide.


A “gene” refers to a polynucleotide containing at least one open reading frame (ORF) that is capable of encoding a particular polypeptide or protein after being transcribed and translated. Any of the polynucleotide or polypeptide sequences described herein may be used to identify larger fragments or full-length coding sequences of the gene with which they are associated. Methods of isolating larger fragment sequences are known to those of skill in the art.


The term “express” refers to the production of a gene product such as RNA or a polypeptide or protein.


As used herein, “expression” refers to the process by which polynucleotides are transcribed into mRNA and/or the process by which the transcribed mRNA is subsequently being translated into peptides, polypeptides, or proteins. If the polynucleotide is derived from genomic DNA, expression may include splicing of the mRNA in an eukaryotic cell.


Various proteins are also disclosed herein with their GenBank Accession Numbers for their human proteins and coding sequences. However, the proteins are not limited to human-derived proteins having the amino acid sequences represented by the disclosed GenBank Accession numbers, but may have an amino acid sequence derived from other animals, particularly, a warm-blooded animal (e.g., rat, guinea pig, mouse, chicken, rabbit, pig, sheep, cow, monkey, etc.).


As used herein, “interferon regulatory factors” or “IRFs” refer to proteins which regulate transcription of interferons. IRFs can play a critical role in antiviral defense, immune response, cell growth regulation and apoptosis. Non-limiting examples of cellular IRF genes include human IRF-1, IRF-2, IRF-3, IRF-4/Pip/ICSAT, IRF-5, IRF-6, IRF-7, ICSBP/IRF-8 and ISGF3γ/p48/IRF-9, as well as virus-encoded analogues of cellular IRF. These factors share significant homology in the N-terminal 115 amino acids, which contains the DNA-binding domain and is characterized by five tryptophan repeats.


As used herein, the term “vIRF-4 interferon regulatory factor” or “vIRF4” refers to a protein having an amino acid sequence substantially identical to any of the representative vIRF4 sequences of GenBank Accession No. YP001129412.


As used herein, a “vIRF4 peptide” or “vIRF4 peptide fragment” refers to a peptide fragment of the vIRF4 protein, or a peptide that is at least about 70%, or alternatively at least about 75%, or about 80%, or about 85%, or about 90%, or about 95%, or about 98%, or about 99% identical to a peptide fragment of the vIRF4 protein.


As used herein, the term “Herpes virus-associated ubiquitin-specific protease”, “HAUSP”, “HAUSP Deubiquitinase”, or “ubiquitin specific peptidase 7” refers to a protein having an amino acid sequence substantially identical to any of the representative HAUSP sequences of GenBank Accession Nos. NP003461.2 (human), NP001003918.2 (mouse) and NP001019961.1 (rat). Suitable cDNA encoding HAUSP are provided at GenBank Accession Nos. NM003470.2 (human), NM001003918.2 (mouse) and NM001024790.1 (rat).


As used herein, the term “HAUSP activity” refers to any biological activity associated with the full length native HAUSP protein. In one embodiment, the activity of HAUSP refers to destabilization of p53. In suitable embodiments, the HAUSP activity is equivalent to the activity of a protein having an amino acid sequence represented by GenBank Accession No. NP003461.2, NP001003918.2 and NP001019961.1. Increasing or decreasing HAUSP activity, in one embodiment, refers to increasing or decreasing the expression of the HAUSP mRNA or protein and in another embodiment, refers to increasing or decreasing HAUSP's capability to destabilize p53. Measurement of transcriptional activity can be performed using any known method, such as immunohistochemistry, reporter assay or RT-PCR, which can also be used to determine whether the activity of HAUSP is increased or decreased. Measurement of HAUSP's capability to destabilize p53 can be measured by protein assays measuring the expression of the p53 protein or a tumor cell's ability to arrest cell cycle, a function of the p53 protein.


As used herein, the term “p53” refers to a protein having an amino acid sequence substantially identical to any of the representative p53 sequences of GenBank Accession Nos. NP000537.3 (human), NP035770.2 (mouse) and NP112251.2 (rat). Suitable cDNA encoding HAUSP are provided at GenBank Accession Nos. NM000546.4 (human), NM011640.3 (mouse) and NM030989.3 (rat).


As used herein, the term “p53 activity” refers to any biological activity associated with the full length native p53 protein. In one embodiment, the activity of p53 refers to the transcription regulation of a gene regulated by p53. In suitable embodiments, the p53 activity is equivalent to the activity of a protein having an amino acid sequence represented by GenBank Accession No. NP000537.3 (human), NP035770.2 (mouse) and NP112251.2 (rat). Increasing or decreasing p53 activity, in one embodiment, refers to increasing or decreasing the expression of the p53 mRNA or protein and in another embodiment, refers to decreasing or increasing p53's degradation. Measurement of transcriptional activity can be performed using any known method, such as immunohistochemistry, reporter assay or RT-PCR, which can also be used to determine whether the activity of p53 is increased or decreased. Measurement of p53's capability to regulate gene transcription can be measured by protein assays measuring the expression of proteins regulated by p53 or a tumor cell's ability to arrest cell cycle.


As used herein, the term “MDM2 p53 binding protein homolog” or “MDM2” refers to a protein having an amino acid sequence substantially identical to any of the representative MDM2 sequences of GenBank Accession Nos. NP002383.2 (human), NP034916.1 (mouse) and NP001101569.1 (rat). Suitable cDNA encoding HAUSP are provided at GenBank Accession Nos. NM002392.3 (human), NM010786.3 (mouse) and NM001108099.1 (rat).


As used herein, the term “MDM2 activity” refers to any biological activity associated with the full length native MDM2 protein. In one embodiment, the activity of MDM2 refers to the inactivation of p53. In suitable embodiments, the MDM2 activity is equivalent to the activity of a protein having an amino acid sequence represented by GenBank Accession No. NP002383.2 (human), NP034916.1 (mouse) and NP001101569.1 (rat). Increasing or decreasing MDM2 activity, in one embodiment, refers to increasing or decreasing the expression of the MDM2 mRNA or protein and in another embodiment, refers to increasing or decreasing of p53's inactivation. Measurement of transcriptional activity can be performed using any known method, such as immunohistochemistry, reporter assay or RT-PCR, which can also be used to determine whether the activity of MDM2 is increased or decreased. Measurement of MDM2's capability to inactivate p53 can be measured by protein assays measuring the expression of p53 or a tumor cell's ability to arrest cell cycle.


Increasing or decreasing of a gene's activity, in some embodiments, refers to at least about 10% increase or decrease, or alternatively at least about 20%, or about 30%, or about 40%, or about 50%, or about 60%, or about 70%, or about 80%, or about 90%, or about 95%, or about 98%, or about 99% of the gene's activity.


“Short interfering RNA” (siRNA) refers to sequence-specific or gene specific suppression of gene expression (protein synthesis) that is mediated by double-stranded RNA molecules, generally, from about 10 to about 30 nucleotides long that are capable of mediating RNA interference (RNAi). As used herein, the term siRNA includes short hairpin RNAs (shRNAs).


The term “encode” as it is applied to polynucleotides refers to a polynucleotide which is said to “encode” a polypeptide if, in its native state or when manipulated by methods well known to those skilled in the art, it can be transcribed and/or translated to produce the mRNA for the polypeptide and/or a fragment thereof. The antisense strand is the complement of such a nucleic acid, and the encoding sequence can be deduced there from.


Applicants have provided herein the polypeptide and/or polynucleotide sequences for use in gene and protein transfer and expression techniques described below. It should be understood, although not always explicitly stated that the sequences provided herein can be used to provide the expression product as well as substantially identical sequences that produce a protein that has the same biological properties. These “biologically equivalent” or “biologically active” polypeptides are encoded by equivalent polynucleotides as described herein. They may possess at least 60%, or alternatively, at least 65%, or alternatively, at least 70%, or alternatively, at least 75%, or alternatively, at least 80%, or alternatively at least 85%, or alternatively at least 90%, or alternatively at least 95% or alternatively at least 98%, identical primary amino acid sequence to the reference polypeptide when compared using sequence identity methods run under default conditions. Specific polypeptide sequences are provided as examples of particular embodiments. Modifications to the sequences to amino acids with alternate amino acids that have similar charge.


A “gene delivery vehicle” is defined as any molecule that can carry inserted polynucleotides into a host cell. Examples of gene delivery vehicles are liposomes, micelles, biocompatible polymers, including natural polymers and synthetic polymers; lipoproteins; polypeptides; polysaccharides; lipopolysaccharides; artificial viral envelopes; metal particles; and bacteria, or viruses, such as baculovirus, adenovirus and retrovirus, bacteriophage, cosmid, plasmid, fungal vectors and other recombination vehicles typically used in the art which have been described for expression in a variety of eukaryotic and prokaryotic hosts, and may be used for gene therapy as well as for simple protein expression.


A polynucleotide of this invention can be delivered to a cell or tissue using a gene delivery vehicle. “Gene delivery,” “gene transfer,” “transducing,” and the like as used herein, are terms referring to the introduction of an exogenous polynucleotide (sometimes referred to as a “transgene”) into a host cell, irrespective of the method used for the introduction. Such methods include a variety of well-known techniques such as vector-mediated gene transfer (by, e.g., viral infection/transfection, or various other protein-based or lipid-based gene delivery complexes) as well as techniques facilitating the delivery of “naked” polynucleotides (such as electroporation, “gene gun” delivery and various other techniques used for the introduction of polynucleotides). The introduced polynucleotide may be stably or transiently maintained in the host cell. Stable maintenance typically requires that the introduced polynucleotide either contains an origin of replication compatible with the host cell or integrates into a replicon of the host cell such as an extrachromosomal replicon (e.g., a plasmid) or a nuclear or mitochondrial chromosome. A number of vectors are known to be capable of mediating transfer of genes to mammalian cells, as is known in the art and described herein.


A “viral vector” is defined as a recombinantly produced virus or viral particle that comprises a polynucleotide to be delivered into a host cell, either in vivo, ex vivo or in vitro. Examples of viral vectors include retroviral vectors, adenovirus vectors, adeno-associated virus vectors, alphavirus vectors and the like. Alphavirus vectors, such as Semliki Forest virus-based vectors and Sindbis virus-based vectors, have also been developed for use in gene therapy and immunotherapy. See, Schlesinger and Dubensky (1999) Curr. Opin. Biotechnol. 5:434-439 and Ying, et al. (1999) Nat. Med. 5(7):823-827. In aspects where gene transfer is mediated by a retroviral vector, a vector construct refers to the polynucleotide comprising the retroviral genome or part thereof, and a therapeutic gene.


As used herein, “retroviral mediated gene transfer” or “retroviral transduction” carries the same meaning and refers to the process by which a gene or nucleic acid sequences are stably transferred into the host cell by virtue of the virus entering the cell and integrating its genome into the host cell genome. The virus can enter the host cell via its normal mechanism of infection or be modified such that it binds to a different host cell surface receptor or ligand to enter the cell. As used herein, retroviral vector refers to a viral particle capable of introducing exogenous nucleic acid into a cell through a viral or viral-like entry mechanism.


Retroviruses carry their genetic information in the form of RNA; however, once the virus infects a cell, the RNA is reverse-transcribed into the DNA form which integrates into the genomic DNA of the infected cell. The integrated DNA form is called a provirus.


In aspects where gene transfer is mediated by a DNA viral vector, such as an adenovirus (Ad) or adeno-associated virus (AAV), a vector construct refers to the polynucleotide comprising the viral genome or part thereof, and a transgene. Adenoviruses (Ads) are a relatively well characterized, homogenous group of viruses, including over 50 serotypes. See, e.g., International PCT Application No. WO 95/27071. Ads do not require integration into the host cell genome. Recombinant Ad derived vectors, particularly those that reduce the potential for recombination and generation of wild-type virus, have also been constructed. See, International PCT Application Nos. WO 95/00655 and WO 95/11984. Wild-type AAV has high infectivity and specificity integrating into the host cell's genome. See, Hermonat and Muzyczka (1984) Proc. Natl. Acad. Sci. USA 81:6466-6470 and Lebkowski et al. (1988) Mol. Cell. Biol. 8:3988-3996.


Vectors that contain both a promoter and a cloning site into which a polynucleotide can be operatively linked are well known in the art. Such vectors are capable of transcribing RNA in vitro or in vivo, and are commercially available from sources such as Stratagene (La Jolla, Calif.) and Promega Biotech (Madison, Wis.). In order to optimize expression and/or in vitro transcription, it may be necessary to remove, add or alter 5′ and/or 3′ untranslated portions of the clones to eliminate extra, potential inappropriate alternative translation initiation codons or other sequences that may interfere with or reduce expression, either at the level of transcription or translation. Alternatively, consensus ribosome binding sites can be inserted immediately 5′ of the start codon to enhance expression.


Gene delivery vehicles also include DNA/liposome complexes, micelles and targeted viral protein-DNA complexes. Liposomes that also comprise a targeting antibody or fragment thereof can be used in the methods of this invention. To enhance delivery to a cell, the nucleic acid or proteins of this invention can be conjugated to antibodies or binding fragments thereof which bind cell surface antigens. In addition to the delivery of polynucleotides to a cell or cell population, direct introduction of the proteins described herein to the cell or cell population can be done by the non-limiting technique of protein transfection, alternatively culturing conditions that can enhance the expression and/or promote the activity of the proteins of this invention are other non-limiting techniques.


The terms “culture” or “culturing” refer to the in vitro propagation of cells or organisms on or in media of various kinds. It is understood that the descendants of a cell grown in culture may not be completely identical (i.e., morphologically, genetically, or phenotypically) to the parent cell.


A “composition” is intended to mean a combination of active polypeptide, polynucleotide or antibody and another compound or composition, inert (e.g. a detectable label) or active (e.g. a gene delivery vehicle) alone or in combination with a carrier which can in one embodiment be a simple carrier like saline or pharmaceutically acceptable or a solid support as defined below.


A “pharmaceutical composition” is intended to include the combination of an active polypeptide, polynucleotide or antibody with a carrier, inert or active such as a solid support, making the composition suitable for diagnostic or therapeutic use in vitro, in vivo or ex vivo.


As used herein, the term “pharmaceutically acceptable carrier” encompasses any of the standard pharmaceutical carriers, such as a phosphate buffered saline solution, water, and emulsions, such as an oil/water or water/oil emulsion, and various types of wetting agents. The compositions also can include stabilizers and preservatives. For examples of carriers, stabilizers and adjuvants, see Martin (1975) Remington's Pharm. Sci., 15th Ed. (Mack Publ. Co., Easton).


The phrase “solid support” refers to non-aqueous surfaces such as “culture plates” “gene chips” or “microarrays.” Such gene chips or microarrays can be used for diagnostic and therapeutic purposes by a number of techniques known to one of skill in the art. In one technique, oligonucleotides are arrayed on a gene chip for determining the DNA sequence by the hybridization approach, such as that outlined in U.S. Pat. Nos. 6,025,136 and 6,018,041. The polynucleotides of this invention can be modified to probes, which in turn can be used for detection of a genetic sequence. Such techniques have been described, for example, in U.S. Pat. Nos. 5,968,740 and 5,858,659. A probe also can be affixed to an electrode surface for the electrochemical detection of nucleic acid sequences such as described by Kayem et al. U.S. Pat. No. 5,952,172 and by Kelley et al. (1999) Nucleic Acids Res. 27:4830-4837.


A “subject,” “individual” or “patient” is used interchangeably herein, and refers to a vertebrate, preferably a mammal, more preferably a human. Mammals include, but are not limited to, murines, rats, rabbits, simians, bovines, ovines, porcines, canines, felines, farm animals, sport animals, pets, equines, and primates, particularly humans.


“Cell,” “host cell” or “recombinant host cell” are terms used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. The cells can be of any one or more of the type murine, rat, rabbit, simian, bovine, ovine, porcine, canine, feline, equine, and primate, particularly human. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.


The terms “disease” and “disorder” are used inclusively and any disease that may be associated with cancer or apoptosis. As used herein, “cancer” may refer both to precancerous cells as well as cancerous cells of a tumor such as a solid tumor.


“Treating,” “treatment,” or “ameliorating” of a disease includes: (1) preventing the disease, i.e., causing the clinical symptoms of the disease not to develop in a patient that may be predisposed to the disease but does not yet experience or display symptoms of the disease; (2) inhibiting the disease, i.e., arresting or reducing the development of the disease or its clinical symptoms; or (3) relieving the disease, i.e., causing regression of the disease or its clinical symptoms.


The term “suffering” as it related to the term “treatment” refers to a patient or individual who has been diagnosed with or is predisposed to a disease. A patient may also be referred to being “at risk of suffering” from a disease. This patient has not yet developed characteristic disease pathology, however are know to be predisposed to the disease due to family history, being genetically predispose to developing the disease, or diagnosed with a disease or disorder that predisposes them to developing the disease to be treated.


DESCRIPTIVE EMBODIMENTS
Compositions

One embodiment of the present disclosure provides a purified, isolated or recombinant vIRF4 peptide fragment, wherein the fragment comprises, or alternatively consists essentially of, or yet alternatively consists of, an amino acid sequence: vIRF4 aa 153-256; vIRF4 aa 608-758; vIRF4 aa 202-208; vIRF4 aa 211-216; vIRF4 aa 202-216 (vif1); vIRF4 aa 209-216; vIRF4 aa 153-216; or vIRF4 aa 217-236; and vIRF4 aa 220-236 (vif2), or a biological equivalent of each thereof.


The amino acid sequence of vIRF4 is provided in GenBank accession number: YP001129412.1 and reproduced below.










Amino acid sequence of vIRF4 (SEQ ID NO: 3):










  1
MPKAGGSEWA TLWIIDALEN NKFPYFSWFD RNNLLFAAPA PLPAGSDIPP GWYSVYHAFD






 61
EECDRVYGPS PVVGQTVYGR FGRLLRGTRR AVVRNDLRYS DTFGGSYVVW QLVRTPFKNC





121
TYCYGAAYGP EKLQRFIQCL LSPPMQTTAT RRSDTREQSY EEAGAAAPAP PKAPSGLRGR





181
PRKSNRYYNV GDITTEQKAA CSVWIPVNEG ASTSGMGSSG TRQVTQASSF TWRVPGDPPA





241
PSTLTGPSDP HSSGAGLPGT APPKPQHETR LAGTVSGVSG VAQTPGDTGQ LAPPMRDGSR





301
LPSTSPWIPA CFPWGDLPVT GWWPQGASGL PEKVHPPTTG QFDPLSPRWT YTGIPSSQLN





361
PAAPSWIPPH AQAGTFVGEF SQGAPLAPQG LLPQSGQCAS AWLPRRETGA EGACGASTEG





421
RAPQGAASER VYPFEPQPPS APAPGYAKPS CYNWSPLAEP PATRPIRAPV WHPPVGHAVV





481
PEVRTPLWIP WSSGGAPNQG LSHTQGGASA TPSAGAPPTP EVAERQEPSS SGIPYVCQGD





541
NMATGYRRVT TSSGALEVEI IDLTGDSDTP STTVASTPLP VSGPRVFQPT VLYSAPEPAV





601
NPEVSHLPTE LERRECVCPG SGERPRVPLV STYAGDRYAV GGYGPEQSLV PPPLGLPLTL





661
SNLQGEDICT WEEGLGNILS ELQEEPSSST RQATDRRRPR SRSPHGRRTP VSHSGPEKPP





721
SKMFFDPPDS QRVSFVVEIF VYGNLRGTLR REGDAGEAML CSWPVGDTLG HLCQSFVPEL





781
LRIPRLTVPS PEQMEILNRV FEGLGHGFPI FCSMSGIYSR NATQVEGWWF GNPNSRYERI





841
LRSFSPRVPQ QLFNTARYLA TTAAIPQTPL SVNPVTCGTV FFGASPASTE NFQNVPLTVK





901
IFIGSIWDSL H






In another embodiment, the present disclosure provides a purified, isolated or recombinant vIRF4 peptide comprising two non-contiguous vIRF4 peptide fragments described above.


Another embodiment of the present disclosure provides a purified, isolated or recombinant retro-inverso peptide of any of the above vIRF4 peptides or peptide fragments.


In yet another embodiment, the present disclosure provides an isolated polypeptide consisting essentially of (A) SEQ ID NO: 1 or an equivalent thereof and/or (B) SEQ ID NO: 2 or an equivalent thereof.


SEQ ID NO: 1 corresponds to amino acids 202-216 of vIRF4 (202SVWIPVNEGASTSGM216). It is shown that the upstream region 202-208 is important for the binding activity of this peptide. An equivalent of SEQ ID NO: 1, therefore, includes a sequence that shares the same 202-208 sequence with SEQ ID NO: 1 while having at least about 70%, or about 75%, or about 80%, or about 85%, or about 90%, or about 95%, or about 98% sequence identity with SEQ ID NO: 1 overall.


SEQ ID NO: 2 corresponds to amino acids 220-236 of vIRF4 (220TRQVTQASSFTWRVPG236). It is shown that W232 and nearby amino acids are involved in binding to the HAUSP catalytic domain and thus are important for the binding activity of this peptide. An equivalent of SEQ ID NO: 2, therefore, includes a sequence that maintains W232 while having at least about 70%, or about 75%, or about 80%, or about 85%, or about 90%, or about 95%, or about 98% sequence identity with SEQ ID NO: 2 overall.


In one aspect, the polypeptide consists essentially of SEQ ID NO: 1 and/or SEQ ID NO: 2. In another aspect, the polypeptide consists essentially of (A) SEQ ID NO: 1 or an equivalent thereof. In yet another aspect, the polypeptide consists essentially of (B) SEQ ID NO: 2 or an equivalent thereof.


In another aspect, the polypeptide of claim 1, wherein the polypeptide consists essentially of (A) SEQ ID NO: 1 of an equivalent thereof and (B) SEQ ID NO: 2 or an equivalent thereof. Such a polypeptide can comprise a peptide linker between (A) and (B).


A “linker” or “peptide linker” refers to a peptide sequence linked to a polypeptide sequence at both ends of the linker peptide sequence. In one aspect, the linker is from about 1 to about 50 amino acid residues long or alternatively 1 to about 45, about 1 to about 40, about 1 to about 35, about 1 to about 30, about 1 to about 25, about 1 to about 20, about 1 to about 15, about 1 to about 10, about 1 to about 9, about 1 to about 8, about 1 to about 7, about 1 to about 6, about 1 to about 5, about 2 to about 40, about 2 to about 30, about 2 to about 25, about 2 to about 20, about 2 to about 15, about 2 to about 10, about 2 to about 9, about 2 to about 8, about 2 to about 7, about 2 to about 6, about 2 to about 5, about 3 to about 40, about 3 to about 30, about 3 to about 20, about 3 to about 15, about 3 to about 10, about 3 to about 9, about 3 to about 8, about 3 to about 7, about 3 to about 5, about 4 to about 40, about 4 to about 30, about 4 to about 20, about 4 to about 10, about 4 to about 8, about 4 to about 6, about 5 to about 40, about 5 to about 30, about 5 to about 20, about or 5 to about 10 amino acid residues long. In a particular aspect, the linker is from about 1 to about 20 amino acid residues long. In another particular aspect, the linker is from about 3 to 10 amino acid residues long.


Any of the above peptides or polypeptides can further comprise a cell penetrating peptide (CPP).


Cell penetrating peptides, (CPPs) or cell penetrating domains, as used herein, refer to short peptides that facilitate cellular uptake of various molecular cargos (from small chemical molecules to nanosize particles and large fragments of DNA). A “cargo”, such as a protein, is associated with the peptides either through chemical linkage via covalent bonds or through non-covalent interactions. The function of the CPPs are to deliver the cargo into cells, a process that commonly occurs through endocytosis with the cargo delivered to the endosomes of living mammalian cells. CPPs typically have an amino acid composition containing either a high relative abundance of positively charged amino acids such as lysine or arginine, or have sequences that contain an alternating pattern of polar/charged amino acids and non-polar, hydrophobic amino acids. It was previously reported that the human immunodeficiency virus transactivator of transcription (HIV-TAT) protein can be delivered to cells using a CPP.


A CPP employed in accordance with one aspect of the invention may include 3 to 35 amino acids, preferably 5 to 25 amino acids, more preferably 10 to 25 amino acids, or even more preferably 15 to 25 amino acids.


A CPP may also be chemically modified, such as prenylated near the C-terminus of the CPP. Prenylation is a post-translation modification resulting in the addition of a 15 (farneysyl) or 20 (geranylgeranyl) carbon isoprenoid chain on the peptide. A chemically modified CPP can be even shorter and still possess the cell penetrating property. Accordingly, a CPP, pursuant to another aspect of the invention, is a chemically modified CPP with 2 to 35 amino acids, preferably 5 to 25 amino acids, more preferably 10 to 25 amino acids, or even more preferably 15 to 25 amino acids.


A CPP suitable for carrying out one aspect of the invention may include at least one basic amino acid such as arginine, lysine and histidine. In another aspect, the CPP may include more, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, or more such basic amino acids, or alternatively about 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50% of the amino acids are basic amino acids. In one embodiment, the CPP contains at least two consecutive basic amino acids, or alternatively at least three, or at least five consecutive basic amino acids. In a particular aspect, the CPP includes at least two, three, four, or five consecutive arginine. In a further aspect, the CPP includes more arginine than lysine or histidine, or preferably includes more arginine than lysine and histidine combined.


CPPs may include acidic amino acids but the number of acidic amino acids should be smaller than the number of basic amino acids. In one embodiment, the CPP includes at most one acidic amino acid. In a preferred embodiment, the CPP does not include acidic amino acid. In a particular embodiment, a suitable CPP is the HIV-TAT peptide.


CPPs can be linked to a protein recombinantly, covalently or non-covalently. A recombinant protein having a CPP peptide can be prepared in bacteria, such as E. coli, a mammalian cell such as a human HEK293 cell, or any cell suitable for protein expression. Covalent and non-covalent methods have also been developed to form CPP/protein complexes. A CPP, Pep-1, has been shown to form a protein complex and proven effective for delivery (Kameyama et al. (2006) Bioconjugate Chem. 17:597-602).


CPPs also include cationic conjugates which also may be used to facilitate delivery of the proteins into the cells or tissue of interest. Cationic conjugates may include a plurality of residues including amines, guanidines, amidines, N-containing heterocycles, or combinations thereof. In related embodiments, the cationic conjugate may comprise a plurality of reactive units selected from the group consisting of alpha-amino acids, beta-amino acids, gamma-amino acids, cationically functionalized monosaccharides, cationically functionalized ethylene glycols, ethylene imines, substituted ethylene imines, N-substituted spermine, N-substituted spermidine, and combinations thereof. The cationic conjugate also may be an oligomer including an oligopeptide, oligoamide, cationically functionalized oligoether, cationically functionalized oligosaccharide, oligoamine, oligoethyleneimine, and the like, as well as combinations thereof. The oligomers may be oligopeptides where amino acid residues of the oligopeptide are capable of forming positive charges. The oligopeptides may contain 5 to 25 amino acids; preferably 5 to 15 amino acids; more preferably 5 to 10 cationic amino acids or other cationic subunits.


Recombinant proteins anchoring CPP to the proteins can be generated to be used for delivery to cells or tissue.


In further embodiments, the present disclosure also provides polynucleotides encoding the peptides of the present disclosure, antibodies that specifically bind to the peptides of the present disclosure, and compositions comprising the peptides or polynucleotides of the present disclosure. A composition is also provided, comprising a first polypeptide consisting essentially of SEQ ID NO: 1 or an equivalent thereof and a second polypeptide consisting essentially of SEQ ID NO: 2 or an equivalent thereof.


Polypeptides comprising the amino acid sequences of the disclosure can be prepared by expressing polynucleotides encoding the polypeptide sequences of this disclosure in an appropriate host cell. This can be accomplished by methods of recombinant DNA technology known to those skilled in the art. Accordingly, this disclosure also provides methods for recombinantly producing the polypeptides of this disclosure in a eukaryotic or prokaryotic host cells, as well as the isolated host cells used to produce the proteins. The proteins and polypeptides of this disclosure also can be obtained by chemical synthesis using a commercially available automated peptide synthesizer such as those manufactured by Perkin Elmer/Applied Biosystems, Inc., Model 430A or 431A, Foster City, Calif., USA. The synthesized protein or polypeptide can be precipitated and further purified, for example by high performance liquid chromatography (HPLC). Accordingly, this disclosure also provides a process for chemically synthesizing the proteins of this disclosure by providing the sequence of the protein and reagents, such as amino acids and enzymes and linking together the amino acids in the proper orientation and linear sequence.


It is known to those skilled in the art that modifications can be made to any peptide to provide it with altered properties. Polypeptides of the disclosure can be modified to include unnatural amino acids. Thus, the peptides may comprise D-amino acids, a combination of D- and L-amino acids, and various “designer” amino acids (e.g., β-methyl amino acids, C-α-methyl amino acids, and N-α-methyl amino acids, etc.) to convey special properties to peptides. Additionally, by assigning specific amino acids at specific coupling steps, peptides with α-helices, β turns, β sheets, α-turns, and cyclic peptides can be generated. Generally, it is believed that α-helical secondary structure or random secondary structure is preferred.


In a further embodiment, subunits of polypeptides that confer useful chemical and structural properties will be chosen. For example, peptides comprising D-amino acids may be resistant to L-amino acid-specific proteases in vivo. Modified compounds with D-amino acids may be synthesized with the amino acids aligned in reverse order to produce the peptides of the disclosure as retro-inverso peptides. In addition, the present disclosure envisions preparing peptides that have better defined structural properties, and the use of peptidomimetics, and peptidomimetic bonds, such as ester bonds, to prepare peptides with novel properties. In another embodiment, a peptide may be generated that incorporates a reduced peptide bond, i.e., R1—CH2NH—R2, where R1, and R2 are amino acid residues or sequences. A reduced peptide bond may be introduced as a dipeptide subunit. Such a molecule would be resistant to peptide bond hydrolysis, e.g., protease activity. Such molecules would provide ligands with unique function and activity, such as extended half-lives in vivo due to resistance to metabolic breakdown, or protease activity. Furthermore, it is well known that in certain systems constrained peptides show enhanced functional activity (Hruby (1982) Life Sciences 31:189-199 and Hruby et al. (1990) Biochem J. 268:249-262); the present disclosure provides a method to produce a constrained peptide that incorporates random sequences at all other positions.


Non-classical amino acids may be incorporated in the peptides of the disclosure in order to introduce particular conformational motifs, examples of which include without limitation: 1,2,3,4-tetrahydroisoquinoline-3-carboxylate (Kazrnierski et al. (1991) J. Am. Chem. Soc. 113:2275-2283); (2S,3S)-methyl-phenylalanine, (2S,3R)-methyl-phenylalanine, (2R,3S)-methyl-phenylalanine and (2R,3R)-methyl-phenylalanine (Kazmierski & Hruby (1991) Tetrahedron Lett. 32(41):5769-5772); 2-aminotetrahydronaphthalene-2-carboxylic acid (Landis (1989) Ph.D. Thesis, University of Arizona); hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (Miyake et al. (1989) J. Takeda Res. Labs. 43:53-76) histidine isoquinoline carboxylic acid (Zechel et al. (1991) Int. J. Pep. Protein Res. 38(2):131-138); and HIC (histidine cyclic urea), (Dharanipragada et al. (1993) Int. J. Pep. Protein Res. 42(1):68-77) and (Dharanipragada et al. (1992) Acta. Crystallogr. C. 48:1239-1241).


The following amino acid analogs and peptidomimetics may be incorporated into a peptide to induce or favor specific secondary structures: LL-Acp (LL-3-amino-2-propenidone-6-carboxylic acid), a β-turn inducing dipeptide analog (Kemp et al. (1985) J. Org. Chem. 50:5834-5838); β-sheet inducing analogs (Kemp et al. (1988) Tetrahedron Lett. 29:5081-5082); β-turn inducing analogs (Kemp et al. (1988) Tetrahedron Lett. 29:5057-5060); α-helix inducing analogs (Kemp et al. (1988) Tetrahedron Lett. 29:4935-4938); α-turn inducing analogs (Kemp et al. (1989) J. Org. Chem. 54:109:115); analogs provided by the following references: Nagai & Sato (1985) Tetrahedron Lett. 26:647-650; and DiMaio et al. (1989) J. Chem. Soc. Perkin Trans. p. 1687; a Gly-Ala turn analog (Kahn et al. (1989) Tetrahedron Lett. 30:2317); amide bond isostere (Clones et al. (1988) Tetrahedron Lett. 29:3853-3856); tetrazole (Zabrocki et al. (1988) J. Am. Chem. Soc. 110:5875-5880); DTC (Samanen et al. (1990) Int. J. Protein Pep. Res. 35:501:509); and analogs taught in Olson et al. (1990) J. Am. Chem. Sci. 112:323-333 and Garvey et al. (1990) J. Org. Chem. 56:436. Conformationally restricted mimetics of beta turns and beta bulges, and peptides containing them, are described in U.S. Pat. No. 5,440,013.


It is known to those skilled in the art that modifications can be made to any peptide by substituting one or more amino acids with one or more functionally equivalent amino acids that does not alter the biological function of the peptide. In one aspect, the amino acid that is substituted by an amino acid that possesses similar intrinsic properties including, but not limited to, hydrophobicity, size, or charge. Methods used to determine the appropriate amino acid to be substituted and for which amino acid are know to one of skill in the art. Non-limiting examples include empirical substitution models as described by Dahoff et al. (1978) In Atlas of Protein Sequence and Structure Vol. 5 suppl. 2 (ed. M. O. Dayhoff), pp. 345-352. National Biomedical Research Foundation, Washington D.C.; PAM matrices including Dayhoff matrices (Dahoff et al. (1978), supra, or JTT matrices as described by Jones et al. (1992) Comput. Appl. Biosci. 8:275-282 and Gonnet et al. (1992) Science 256:1443-1145; the empirical model described by Adach & Hasegawa (1996) J. Mol. Evol. 42:459-468; the block substitution matrices (BLOSUM) as described by Henikoff & Henikoff (1992) Proc. Natl. Acad. Sci. USA 89:1-1; Poisson models as described by Nei (1987) Molecular Evolutionary Genetics. Columbia University Press, New York.; and the Maximum Likelihood (ML) Method as described by Müller et al. (2002) Mol. Biol. Evol. 19:8-13.


In another aspect, any of the above compositions further comprises a carrier. The carrier can be a solid phase carrier, a gel, an aqueous liquid carrier, a paste, a liposome, a micelle, albumin, polyethylene glycol, a pharmaceutically acceptable polymer, or a pharmaceutically acceptable carrier, such a phosphate buffered saline.


The compositions of the disclosure can be manufactured by methods well known in the art such as conventional granulating, mixing, dissolving, encapsulating, lyophilizing, or emulsifying processes, among others. Compositions may be produced in various forms, including granules, precipitates, or particulates, powders, including freeze dried, rotary dried or spray dried powders, amorphous powders, injections, emulsions, elixirs, suspensions or solutions. Compositions may optionally contain stabilizers, pH modifiers, surfactants, bioavailability modifiers and combinations of these.


Compositions may be prepared as liquid suspensions or solutions using a sterile liquid, such as oil, water, alcohol, and combinations thereof. Pharmaceutically suitable surfactants, suspending agents or emulsifying agents, may be added for oral or parenteral administration. Suspensions may include oils, such as peanut oil, sesame oil, cottonseed oil, corn oil and olive oil. Suspension preparation may also contain esters of fatty acids, such as ethyl oleate, isopropyl myristate, fatty acid glycerides and acetylated fatty acid glycerides. Suspension compositions may include alcohols, such as ethanol, isopropyl alcohol, hexadecyl alcohol, glycerol and propylene glycol. Ethers, such as poly(ethyleneglycol), petroleum hydrocarbons, such as mineral oil and petrolatum, and water may also be used in suspension compositions.


The compositions of this disclosure are formulated for pharmaceutical administration to a mammal, preferably a human being. Such compositions of the disclosure may be administered in a variety of ways, preferably topically or by injection.


Sterile injectable forms of the compositions of this disclosure may be aqueous or oleaginous suspension. These suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed including synthetic mono- or di-glycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents which are commonly used in the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions. Other commonly used surfactants, such as Tweens, Spans and other emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms may also be used for the purposes of formulation. Compounds may be formulated for parenteral administration by injection such as by bolus injection or continuous infusion. A unit dosage form for injection may be in ampoules or in multi-dose containers.


In addition to dosage forms described above, pharmaceutically acceptable excipients and carriers and dosage forms are generally known to those skilled in the art and are included in the disclosure. It should be understood that a specific dosage and treatment regimen for any particular subject will depend upon a variety of factors, including the activity of the specific antidote employed, the age, body weight, general health, sex and diet, renal and hepatic function of the subject, and the time of administration, rate of excretion, drug combination, judgment of the treating physician or veterinarian and severity of the particular disease being treated.


Polypeptide Conjugates

Another aspect of the disclosure provides a peptide conjugate comprising, or alternatively consisting essentially of, or alternatively consisting of, a carrier covalently or non-covalently linked to an isolated polypeptide of the disclosure. In some embodiments, the carrier comprises a liposome, or alternatively a micelle, or alternatively a pharmaceutically acceptable polymer, or a pharmaceutically acceptable carrier.


The polypeptides and polypeptide conjugates of the disclosure can be used in a variety of formulations, which may vary depending on the intended use. For example, one or more can be covalently or non-covalently linked (complexed) to various other molecules, the nature of which may vary depending on the particular purpose. For example, a peptide of the disclosure can be covalently or non-covalently complexed to a macromolecular carrier, including, but not limited to, natural and synthetic polymers, proteins, polysaccharides, polypeptides (amino acids), polyvinyl alcohol, polyvinyl pyrrolidone, and lipids. A peptide can be conjugated to a fatty acid, for introduction into a liposome, see U.S. Pat. No. 5,837,249. A peptide of the disclosure can be complexed covalently or non-covalently with a solid support, a variety of which are known in the art and described herein. An antigenic peptide epitope of the disclosure can be associated with an antigen-presenting matrix such as an MHC complex with or without co-stimulatory molecules.


Examples of protein carriers include, but are not limited to, superantigens, serum albumin, tetanus toxoid, ovalbumin, thyroglobulin, myoglobulin, and immunoglobulin.


Peptide-protein carrier polymers may be formed using conventional cross-linking agents such as carbodimides. Examples of carbodimides are 1-cyclohexyl-3-(2-morpholinyl-(4-ethyl) carbodiimide (CMC), 1-ethyl-3-(3-dimethyaminopropyl) carbodiimide (EDC) and 1-ethyl-3-(4-azonia-44-dimethylpentyl) carbodiimide.


Examples of other suitable cross-linking agents are cyanogen bromide, glutaraldehyde and succinic anhydride. In general, any of a number of homo-bifunctional agents including a homo-bifunctional aldehyde, a homo-bifunctional epoxide, a homo-bifunctional imido-ester, a homo-bifunctional N-hydroxysuccinimide ester, a homo-bifunctional maleimide, a homo-bifunctional alkyl halide, a homo-bifunctional pyridyl disulfide, a homo-bifunctional aryl halide, a homo-bifunctional hydrazide, a homo-bifunctional diazonium derivative and a homo-bifunctional photoreactive compound may be used. Also included are hetero-bifunctional compounds, for example, compounds having an amine-reactive and a sulfhydryl-reactive group, compounds with an amine-reactive and a photoreactive group and compounds with a carbonyl-reactive and a sulfhydryl-reactive group.


Specific examples of such homo-bifunctional cross-linking agents include the bifunctional N-hydroxysuccinimide esters dithiobis(succinimidylpropionate), disuccinimidyl suberate, and disuccinimidyl tartrate; the bifunctional imido-esters dimethyl adipimidate, dimethyl pimelimidate, and dimethyl suberimidate; the bifunctional sulfhydryl-reactive crosslinkers 1,4-di-[3′-(2′-pyridyldithio) propionamido]butane, bismaleimidohexane, and bis-N-maleimido-1,8-octane; the bifunctional aryl halides 1,5-difluoro-2,4-dinitrobenzene and 4,4′-difluoro-3,3′-dinitrophenylsulfone; bifunctional photoreactive agents such as bis-[b-(4-azidosalicylamido)ethyl]disulfide; the bifunctional aldehydes formaldehyde, malondialdehyde, succinaldehyde, glutaraldehyde, and adipaldehyde; a bifunctional epoxide such as 1,4-butaneodiol diglycidyl ether; the bifunctional hydrazides adipic acid dihydrazide, carbohydrazide, and succinic acid dihydrazide; the bifunctional diazoniums o-tolidine, diazotized and bis-diazotized benzidine; the bifunctional alkylhalides N1N′-ethylene-bis(iodoacetamide), N1N′-hexamethylene-bis(iodoacetamide), N1N′-undecamethylene-bis(iodoacetamide), as well as benzylhalides and halomustards, such as a1a′-diiodo-p-xylene sulfonic acid and tri(2-chloroethyl)amine, respectively.


Examples of common hetero-bifunctional cross-linking agents that may be used to effect the conjugation of proteins to peptides include, but are not limited to, SMCC (succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate), MBS (m-maleimidobenzoyl-N-hydroxysuccinimide ester), SIAB (N-succinimidyl(4-iodoacteyl)aminobenzoate), SMPB (succinimidyl-4-(p-maleimidophenyl)butyrate), GMBS (N-(γ-maleimidobutyryloxy)succinimide ester), MPBH (4-(4-N-maleimidopohenyl) butyric acid hydrazide), M2C2H (4-(N-maleimidomethyl) cyclohexane-1-carboxyl-hydrazide), SMPT (succinimidyloxycarbonyl-α-methyl-α-(2-pyridyldithio)toluene), and SPDP (N-succinimidyl 3-(2-pyridyldithio)propionate).


Cross-linking may be accomplished by coupling a carbonyl group to an amine group or to a hydrazide group by reductive amination.


The polypeptides or the compositions of the disclosure also may be formulated as non-covalent attachment of monomers through ionic, adsorptive, or biospecific interactions. Complexes of peptides with highly positively or negatively charged molecules may be done through salt bridge formation under low ionic strength environments, such as in deionized water. Large complexes can be created using charged polymers such as poly-(L-glutamic acid) or poly-(L-lysine) which contain numerous negative and positive charges, respectively. Adsorption of peptides may be done to surfaces such as microparticle latex beads or to other hydrophobic polymers, forming non-covalently associated peptide-superantigen complexes effectively mimicking cross-linked or chemically polymerized protein. Finally, peptides may be non-covalently linked through the use of biospecific interactions between other molecules. For instance, utilization of the strong affinity of biotin for proteins such as avidin or streptavidin or their derivatives could be used to form peptide complexes. These biotin-binding proteins contain four binding sites that can interact with biotin in solution or be covalently attached to another molecule. (See Wilchek (1988) Anal. Biochem. 171:1-32). Peptides can be modified to possess biotin groups using common biotinylation reagents such as the N-hydroxysuccinimidyl ester of D-biotin (NHS-biotin) which reacts with available amine groups on the protein. Biotinylated peptides then can be incubated with avidin or streptavidin to create large complexes. The molecular mass of such polymers can be regulated through careful control of the molar ratio of biotinylated peptide to avidin or streptavidin.


Also provided by this application are the peptides and polypeptides described herein conjugated to a label, e.g., a tag (His-tag), label e.g., a fluorescent or bioluminescent label, for use in the diagnostic methods. For example, detectably labeled peptides and polypeptides can be bound to a column and used for the detection and purification of antibodies. Suitable fluorescent labels include, but are not limited to, fluorescein, rhodamine, tetramethylrhodamine, eosin, erythrosin, coumarin, methyl-coumarins, pyrene, Malacite green, stilbene, Lucifer Yellow, Cascade Blue™, and Texas Red. Other suitable optical dyes are described in Haugland, Richard P. (1996) Molecular Probes Handbook.


The polypeptides or the compositions of the disclosure also can be combined with various liquid phase carriers, such as sterile or aqueous solutions, pharmaceutically acceptable carriers, suspensions and emulsions. Examples of non-aqueous solvents include propyl ethylene glycol, polyethylene glycol and vegetable oils. When used to prepare antibodies, the carriers also can include an adjuvant that is useful to non-specifically augment a specific immune response. A skilled artisan can easily determine whether an adjuvant is required and select one. However, for the purpose of illustration only, suitable adjuvants include, but are not limited to, Freund's Complete Adjuvant, Freund's Incomplete Adjuvant and mineral salts.


Isolated Polynucleotides, Host Cells and Compositions

Yet another aspect of the disclosure provides an isolated polynucleotide encoding for an isolated polypeptide, an antibody, or a biologically active fragment of the antibody of the disclosure. Also provided is a DNA construct comprising an expression vector and a polynucleotide. In one aspect of the DNA construct, the vector is a plasmid vector, a yeast artificial chromosome, or a viral vector. In one aspect, the vector of the DNA construct comprises a protein tag. Protein tags can be selected from a GST-tag, a myc-tag, or a FLAG-tag provided in expression constructs commercially available from, e.g., Invitrogen, Carlbad, Calif.


Another aspect of the disclosure provides an isolated host cell transformed with a polynucleotide or a DNA construct of the disclosure. The isolated host cells can be a prokaryotic or a eukaryotic cell. Yet another aspect of the disclosure provides an isolated transformed host cell expressing an isolated polypeptide, an antibody or a biologically active fragment of the antibody of the disclosure. The isolated host cells can be a prokaryotic or a eukaryotic cell.


Also provided are polynucleotides encoding substantially homologous and biologically equivalent polypeptides to the inventive polypeptides and polypeptide complexes. Substantially homologous and biologically equivalent intends those having varying degrees of homology, such as at least 80%, or alternatively, at least 85%, or alternatively at least 90%, or alternatively, at least 95%, or alternatively at least 98% homologous as defined above or those which hybridize under stringent condition to the polynucleotide or its complement and which encode polypeptides having the biological activity as described herein. It should be understood although not always explicitly stated that embodiments to substantially homologous polypeptides and polynucleotides are intended for each aspect of this disclosure, e.g., polypeptides, polynucleotides and antibodies.


The polynucleotides of this disclosure can be replicated using conventional recombinant techniques. Alternatively, the polynucleotides can be replicated using PCR technology. PCR is the subject matter of U.S. Pat. Nos. 4,683,195; 4,800,159; 4,754,065; and 4,683,202 and described in PCR: The Polymerase Chain Reaction (Mullis et al. eds, Birkhauser Press, Boston (1994)) and references cited therein. Yet further, one of skill in the art can use the sequences provided herein and a commercial DNA synthesizer to replicate the DNA. Accordingly, this disclosure also provides a process for obtaining the polynucleotides of this disclosure by providing the linear sequence of the polynucleotide, appropriate primer molecules, chemicals such as enzymes and instructions for their replication and chemically replicating or linking the nucleotides in the proper orientation to obtain the polynucleotides. In a separate embodiment, these polynucleotides are further isolated. Still further, one of skill in the art can operatively link the polynucleotides to regulatory sequences for their expression in a host cell, described below. The polynucleotides and regulatory sequences are inserted into the host cell (prokaryotic or eukaryotic) for replication and amplification. The DNA so amplified can be isolated from the cell by methods well known to those of skill in the art. A process for obtaining polynucleotides by this method is further provided herein as well as the polynucleotides so obtained.


Also provided are host cells comprising one or more of the polypeptides or polynucleotides of this disclosure. In one aspect, the polypeptides are expressed and can be isolated from the host cells. In another aspect, the polypeptides are expressed and secreted. In yet another aspect, the polypeptides are expressed and present on the cell surface (extracellularly). Suitable cells containing the inventive polypeptides include prokaryotic and eukaryotic cells, which include, but are not limited to bacterial cells, algae cells, yeast cells, insect cells, plant cells, animal cells, mammalian cells, murine cells, rat cells, sheep cells, simian cells and human cells. A non-limiting example of algae cells is red alga Griffithsia sp. from which Griffithsin was isolated (Toshiyuki et al. (2005) J. Biol. Chem. 280(10):9345-53). A non-limiting example of plant cells is a Nicotiana benthamiana leaf cell from which Griffithsin can be produced in a large scale (O'Keefe (2009) Proc. Nat. Acad. Sci. USA 106(15):6099-6104). Examples of bacterial cells include Escherichia coli (Giomarelli et al. (2006), supra), Salmonella enteric, Streptococcus gordonii and lactobacillus (Liu et al. (2007) Cellular Microbiology 9:120-130; Rao et al. (2005) PNAS 102:11993-11998; Chang et al. (2003) PNAS 100(20):11672-11677; Liu et al. (2006) Antimicrob. Agents & Chemotherapy 50(10):3250-3259). The cells can be purchased from a commercial vendor such as the American Type Culture Collection (ATCC, Rockville Md., USA) or cultured from an isolate using methods known in the art. Examples of suitable eukaryotic cells include, but are not limited to 293T HEK cells, as well as the hamster cell line CHO, BHK-21; the murine cell lines designated NIH3T3, NSO, C127, the simian cell lines COS, Vero; and the human cell lines HeLa, PER.C6 (commercially available from Crucell) U-937 and Hep G2. A non-limiting example of insect cells include Spodoptera frugiperda. Examples of yeast useful for expression include, but are not limited to Saccharomyces, Schizosaccharomyces, Hansenula, Candida, Torulopsis, Yarrowia, or Pichia. See e.g., U.S. Pat. Nos. 4,812,405; 4,818,700; 4,929,555; 5,736,383; 5,955,349; 5,888,768 and 6,258,559.


Antibody Compositions

The disclosure, in another aspect, provides an antibody that binds an isolated polypeptide of the disclosure. The antibody can be a polyclonal antibody, a monoclonal antibody, a chimeric antibody, a humanized antibody or a derivative or fragment thereof as defined below. In one aspect, the antibody is detectably labeled or further comprises a detectable label conjugated to it.


Also provided is a composition comprising the antibody and a carrier. Further provided is a biologically active fragment of the antibody, or a composition comprising the antibody fragment. Suitable carriers are defined supra.


Further provided is an antibody-peptide complex comprising, or alternatively consisting essentially of, or yet alternatively consisting of, the antibody and a polypeptide specifically bound to the antibody. In one aspect, the polypeptide is the polypeptide against which the antibody is raised.


This disclosure also provides an antibody capable of specifically forming a complex with a protein or polypeptide of this disclosure, which are useful in the therapeutic methods of this disclosure. The term “antibody” includes polyclonal antibodies and monoclonal antibodies, antibody fragments, as well as derivatives thereof (described above). The antibodies include, but are not limited to mouse, rat, and rabbit or human antibodies. Antibodies can be produced in cell culture, in phage, or in various animals, including but not limited to cows, rabbits, goats, mice, rats, hamsters, guinea pigs, sheep, dogs, cats, monkeys, chimpanzees, apes, etc. The antibodies are also useful to identify and purify therapeutic polypeptides.


Methods of the Disclosure

Yet another embodiment of the present disclosure provides a method of increasing or inducing apoptosis in a cell, comprising contacting the cell with an effective amount of one or more of any of the above peptides, polynucleotides or compositions, thereby increasing or inducing apoptosis in the cell. Apoptosis of a cell can be measured by commercially available kits. In one aspect, the method leads to about 5%, or alternatively about 10%, or about 20%, or about 30%, or about 40, or about 50%, or about 60%, or about 70%, or about 80%, or about 90%, or about 95% increase of apoptosis.


Also provided is a method of increasing p53 activity in a cell with functional p53, comprising contacting the cell with an effective amount of one or more of any of the above peptides, polynucleotides or compositions, thereby increasing p53 activity in the cell. p53 activity in a cell can be measured, for example, by the cell's capability to arrest cell cycle in response to DNA damage. In one aspect, the method leads to about 5%, or alternatively about 10%, or about 20%, or about 30%, or about 40, or about 50%, or about 60%, or about 70%, or about 80%, or about 90%, or about 95% increase of p53 activity.


Further provided is a method of increasing MDM2 activity in a cell, comprising contacting the cell with an effective amount of one or more of any of the above peptides, polynucleotides or compositions, thereby increasing MDM2 activity in the cell. MDM2 activity in a cell can be measured, for example, by the cell's capability to inactivate p53. In one aspect, the method leads to about 5%, or alternatively about 10%, or about 20%, or about 30%, or about 40, or about 50%, or about 60%, or about 70%, or about 80%, or about 90%, or about 95% increase of MDM2 activity.


Still further, provided is a method of decreasing HAUSP activity in a cell, comprising contacting the cell with an effective amount of one or more of any of the above peptides, polynucleotides or compositions, thereby decreasing HAUSP activity in the cell. HAUSP activity in a cell can be measured, for example, by the cell's capability to destabilize p53. In one aspect, the method leads to about 5%, or alternatively about 10%, or about 20%, or about 30%, or about 40, or about 50%, or about 60%, or about 70%, or about 80%, or about 90%, or about 95% decrease of HAUSP activity.


In yet another embodiment, the present disclosure provides a method of inhibiting enzyme substrate interaction between p53 and MDM2 in a cell, comprising contacting the cell with an effective amount of one or more of any of the above peptides, polynucleotides or compositions, thereby inhibiting enzyme substrate interaction between p53 and MDM2 in the cell.


Provided also is a method of competitively blocking substrate binding of the TRAF domain of HAUSP in a cell, comprising contacting the cell with an effective amount of one or more of any of the above peptides, polynucleotides or compositions, thereby competitively blocking substrate binding of the TRAF domain of HAUSP in the cell.


Still further provided is a method for suppressing deubiquitination activity of HAUSP in a cell comprising contacting the cell with an effective amount of one or more of any of the above peptides, polynucleotides or compositions, thereby suppressing deubiquitination activity of HAUSP in a cell.


In one embodiment, the present disclosure provides a method of inhibiting the growth of a cancer cell, comprising contacting the cell with an effective amount of one or more of any of the above peptides, polynucleotides or compositions, thereby inhibiting the growth of the cancer cell. The compositions are useful in treating cancer, e.g., through regulation of p53 activity in a cancer cell. The compositions can be combined with another anticancer agent for use on the methods disclosed herein.


Another embodiment provides a method for tuning p53-mediated anti-tumor activity in a cell with functional p53, comprising contacting the cell with an effective amount of one or more of any of the above peptides, polynucleotides or compositions, thereby tuning p53-mediated anti-tumor activity in a cell.


A method is also provided, for stabilizing a p53 protein in a cell, comprising contacting the cell with any of the above peptides, polypeptide or compositions, thereby stabilizing the p53 protein in the cell.


Yet also provided is a method for inhibiting cell growth, promoting cell cycle arrest, promoting apoptosis or promoting cell death, comprising contacting the cell with any of the above peptides, polypeptide or compositions, thereby inhibiting cell growth, promoting cell cycle arrest, promoting apoptosis or promoting cell death of the cell.


In any of the above methods, the contacting can be in vitro or in vivo. In another embodiment, the cell can be a tumor cell. In some aspects, the cell comprises a wild-type p53.


Method for treating cancer in a subject are also provided, comprising administering to the subject an effective amount of any of the above peptides, polynucleotides or compositions, thereby treating cancer in the subject.


In one aspect, the cancer is an adenocarcinoma, a leukemia, a lymphoma, a melanoma, a myeloma, a sarcoma or a teratocarcinoma. In another aspect, the cancer is in one or more of adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid or uterus. In another aspect, the method further comprises administering to the subject a second chemotherapeutic agent.


Route of administration for the methods can be any methods disclosed herein, including but not limited to injection, parenteral administration, inhalation, or topical application.


The present disclosure also provides a screen for a possible therapeutic agent that is useful in any of the above methods, comprising contacting the agent with the catalytic domain of HAUSP (206-560) and comparing the physical interaction of the therapeutic agent to the HAUSP catalytic domain to the interaction of an isolated or purified vIRF4 peptide fragment to the HAUSP catalytic domain, wherein an interaction that is substantially similar or greater than the interaction of vIRF4 peptide interaction identifies the agent as a possible therapeutic agent.


Kits

An aspect of the disclosure provides a kit for use in inhibiting cell growth, promoting cell cycle arrest, promoting apoptosis or promoting cell death, comprising, or alternatively consisting essentially of, or alternatively consisting of, an isolated polypeptide of the disclosure, and instructions to use.


Kits may further comprise suitable packaging and/or instructions for use of the compositions. The compositions can be in a dry or lyophilized form, in a solution, particularly a sterile solution, or in a gel or cream. The kit may contain a device for administration or for dispensing the compositions, including, but not limited to, syringe, pepitte, transdermal patch and/or microneedle.


The kits may include other therapeutic compounds for use in conjunction with the compounds described herein. These compounds can be provided in a separate form or mixed with the compounds of the present disclosure.


The kits will include appropriate instructions for preparation and administration of the composition, side effects of the compositions, and any other relevant information. The instructions can be in any suitable format, including, but not limited to, printed matter, videotape, computer readable disk, or optical disc.


In another aspect of the disclosure, kits for treating a subject who suffers from or is susceptible to the conditions described herein are provided, comprising a container comprising a dosage amount of a composition as disclosed herein, and instructions for use. The container can be any of those known in the art and appropriate for storage and delivery.


Kits may also be provided that contain sufficient dosages of the effective composition or compound to provide effective treatment for a subject for an extended period, such as a week, 2 weeks, 3, weeks, 4 weeks, 6 weeks, or 8 weeks or more.


Three-Dimensional Structures and Sequences

The present disclosure demonstrates that vif1 and vif2 interact with HAUSP at its TRAF domain and catalytic domain respectively and inhibits HAUSP's activity. Computer-aided methods are thus provided for determining or designing an agent that interacts with HAUSP at one or more such binding amino acid sites or domains, thereby identifying an agent that interacts with HAUSP. Such an agent is also a potential agent that binds HAUSP and thus inhibits the activity of HAUSP. Therefore, the present disclosure provides methods to identify HAUSP inhibitors. Interaction between an agent and a protein refers to the existence of a short distance between an atom of the agent and an atom of the protein, which short distance results in electrical forces between then, either attractive or repulsive.


As shown in FIG. 1c, the amino acids in the HAUSP TRAF responsible for interacting with vIRF4 include R104, R152, R153, S155, D164, W165 or G166. The amino acids with HAUSP's catalytic domain include C223, D481 or H464. Additionally, N218, N226, D295, D482 or H456 within the catalytic domain are also involved in the binding of a substrate to the catalytic domain. The catalytic domain of HAUSP is known in the art and has been discussed in Hu, M. et al. (2006) PLoS Biol. 4: e27.


The locations of the amino acids of HAUSP refer to those in human HAUSP, the sequence of which is provided in SEQ ID NO: 4. It would be readily appreciated by one of skill in the art that for a different HAUSP sequence, either a human variant, or HAUSP sequence from a different species, the corresponding locations of these amino acids can be readily obtained by methods known in the art including, for example, sequence alignment. Accordingly, in the present disclosure, a HAUSP sequence encompasses the human HAUSP sequence represented by SEQ ID NO. 4 and HAUSP variants and HAUSP sequences from other species.


The amino acid sequence of vIRF4 is provided in GenBank accession number: YP001129412.1 and reproduced supra. The amino acid sequence of HAUSP is provided in GenBank accession number: NP003461.2 and reproduced below.










Amino acid sequence of HAUSP (SEQ ID NO: 4):










   1
mnhqqqqqqq kageqqlsep edmemeagdt ddppritqnp vingnvalsd ghntaeedme






  61
ddtswrseat fqftverfsr lsesvlsppc fvrnlpwkim vmprfypdrp hqksvgfflq





 121
cnaesdstsw schaqavlki inyrddeksf srrishlffh kendwgfsnf mawsevtdpe





 181
kgfidddkvt fevfvqadap hgvawdskkh tgyvglknqg atcymnsllq tlfftnqlrk





 241
avymmptegd dssksvplal grvfyelghs dkpvgtkklt ksfgwetlds fmghdvqelc





 301
rvlldnvenk mkgtcvegti pklfrgkmvs yiqckevdyr sdrredyydi qlsikgkkni





 361
fesfvdyvav eqldgdnkyd agehglqeae kgvkfltlpp vlhlqlmrfm ydpqtdqnik





 421
indrfefpeq lpldeflqkt dpkdpanyil havlvhsgdn hgghyvvyln pkgdgkwckf





 481
dddvvsrctk eeaiehnygg hdddlsvrhc tnaymlvyir esklsevlqa vtdhdipqql





 541
verlqeekri eaqkrkerqe ahlymqvqiv aedqfcghqg ndmydeekvk ytvfkvlkns





 601
slaefvqsls qtmgfpqdqi rlwpmqarsn gtkrpamldn eadgnktmie lsdnenpwti





 661
fletvdpela asgatlpkfd kdhdvmlflk mydpktrsln ycghiytpis ckirdllpvm





 721
cdragfiqdt slilyeevkp niteriqdyd vsldkaldel mdgdiivfqk ddpendnsel





 781
ptakeyfrdl yhrvdvifcd ktipndpgfv vtlsnrmnyf qvaktvaqrl ntdpmllqff





 841
ksqgyrdgpg nplrhnyegt lrdllqffkp rqpkklyyqq lkmkitdfen rrsfkciwln





 901
sqfreeeitl ypdkhgcvrd lleeckkave lgekasgklr lleivsykii gvhqedelle





 961
clspatsrtf rieeipldqv didkenemlv tvahfhkevf gtfgipfllr ihqgehfrev





1021
mkriqslldi qekefekfkf aivmmgrhqy inedeyevnl kdfepqpgnm shprpwlgld





1081
hfnkapkrsr ytylekaiki hn






vif1 (SEQ ID NO: 1) corresponds to amino acids 202-216 of vIRF4 (202SVWIPVNEGASTSGM216). vif2 (SEQ ID NO: 2) corresponds to amino acids 220-236 of vIRF4 (220TRQVTQASSFTWRVPG236).


Table 3 shows the X, Y and Z atomic coordinates for the vIRF4-HAUSP TRAF domain complex. The table includes 3 chains (A, B, and W) in the coordinates. A, B, and W are coordinates for HAUSP TRAF domain (aa63-205), vIRF4 (aa202-216) which corresponds to vif1, and water molecules (1-238), respectively.


The coordinates of Table 3 provide a measure of atomic location in Angstroms. The coordinates are a relative set of positions that define a shape in three dimensions. It is understood by one of skill in the art that an entirely different set of coordinates having a different origin or axes could define a similar or the same structure. Further, variation of the relative atomic positions of the atoms of the structure so that the root mean square deviation of the conserved residue backbone atoms (i.e. the nitrogen-carbon-carbon backbone atoms of the protein amino acid residues) is less than 2.0 Å, or alternatively less than 1.0 Å or alternatively less than 0.5 Å, when superimposed on the coordinates for the residue backbone atoms, would result in a structure that is substantially identical to the structure in Table 3 in terms of both its structural characteristics and potency for structure-based drug design of HAUSP inhibitors. In the same vein, changing the number and/or positions of the water molecules would not generally affect the structure-based design.


In Silico Drug Design and Methods of Using the Designed Drug

The present invention provides the three-dimensional structure of the vIRF4-HAUSP TRAF domain complex and the binding positions on HAUSP TRAF domain and the catalytic domain for vIRF4. Accordingly, the disclosure permits the use of virtual design techniques, also known as computer-aided, in silico design or modeling, to design, select, and synthesize agents capable of interacting with, binding to, or inhibiting HAUSP. In turn, the candidate agents may be effective in the treatment of a disease such as cancer. Thus, the present disclosure also provides agents identified or designed by the in silico methods.


Methods of in silico molecule or drug designs are well known in the art, see generally Kapetanovic (2008) Chem Biol. Interact., 171(2):165-76. Briefly, the atomic coordinates of the three-dimensional structure are input into a computer so that images of the structure and various parameters are shown on the display. The design typically involves positioning a three-dimensional structure to the three-dimensional structure of the target molecule. The positioning can be controlled by the user with assistance from a computer's graphic interface, and can be further guided by a computer algorithm looking for potential good matches. Positioning also involves moving either or both of the three-dimensional structures around at any dimension.


Then, the resultant data are input into a virtual compound library. Since a virtual compound library is contained in a virtual screening software such as DOCK-4 (Kuntz, UCSF), the above-described data may be input into such a software. Candidate drugs may be searched for, using a three-dimensional structure database of virtual or non-virtual drug candidate compounds, such as MDDR (Prous Science, Spain).


A candidate agent is found to be able to bind to HAUSP if a desired interaction between the candidate agent and HAUSP is found. The interaction can be quantitative, e.g, strength of interaction and/or number of interaction sites, or qualitative, e.g., interaction or lack of interaction. The output of the method, accordingly, can be quantitative or qualitative. In one aspect, therefore, the present disclosure also provides a method for identifying an agent that does not bind HAUSP.


The potential inhibitory or binding effect (i.e., interaction or association) of a compound may be analyzed prior to its actual synthesis and testing by the use of computer modeling techniques. If the theoretical structure of the given compound suggests insufficient interaction and association between it and HAUSP, synthesis and testing of the compound may be obviated. However, if computer modeling indicates a strong interaction, the molecule may then be synthesized and tested for its ability to bind to or inhibit HAUSP using various methods such as in vitro or in vivo experiments. Methods of testing an agent's ability to bind HAUSP, inhibit HAUSP, inhibit cell growth, promote cell cycle arrest, promote apoptosis or promote cell death are known in the art. In this manner, synthesis of inoperative compounds may be avoided.


One skilled in the art may use any of several methods to screen chemical or biological entities or fragments for their ability to associate with HAUSP and more particularly with the specific binding sites. Selected fragments or chemical entities may then be positioned in a variety of orientations, or docked, within an individual binding site of HAUSP as defined supra. Docking may be accomplished using software such as QUANTA, SYBYL, followed by energy minimization and molecular dynamics with standard molecular mechanics forcefields, such as CHARMM and AMBER.


Commercial computer programs are also available for in silico design. Examples include, without limitation, GRID (Oxford University, Oxford, UK), MCSS (Molecular Simulations, Burlington, Mass.), AUTODOCK (Scripps Research Institute, La Jolla, Calif.), DOCK (University of California, San Francisco, Calif.), GLIDE (Schrodinger Inc.), FlexX (Tripos Inc.) and GOLD (Cambridge Crystallographic Data Centre).


Once a compound has been designed or selected by the above methods, the efficiency with which that compound may bind to HAUSP may be tested and optimized by computational evaluation. For example, an effective HAUSP inhibitor may preferably demonstrate a relatively small difference in energy between its bound and free states (i.e., a small deformation energy of binding). Thus, the most efficient HAUSP inhibitor should preferably be designed with deformation energy of binding of not greater than about 10 kcal/mole, preferably, not greater than 7 kcal/mole. HAUSP inhibitors may interact with HAUSP in more than one conformation that is similar in overall binding energy. In those cases, the deformation energy of binding is taken to be the difference between the energy of the free agent and the average energy of the conformations observed when the agent binds to HAUSP.


A compound designed or selected, as binding to HAUSP may be further computationally optimized so that in its bound state it would preferably lack repulsive electrostatic interaction with the target protein. Such non-complementary (e.g., electrostatic) interactions include repulsive charge-charge, dipole-dipole, and charge-dipole interactions. Specifically, the sum of all electrostatic interactions between the agent and HAUSP when the compound is bound to HAUSP, preferably make a neutral or favorable contribution to the enthalpy of binding.


Computer softwares are also available in the art to evaluate compound deformation energy and electrostatic interaction. Examples include, without limitation, Gaussian 92 [Gaussian, Inc., Pittsburgh, Pa.]; AMBER [University of California at San Francisco]; QUANTA/CHARMM [Molecular Simulations, Inc., Burlington, Mass.]; and Insight II/Discover [Biosysm Technologies Inc., San Diego, Calif.].


Once an HAUSP-binding agent has been optimally selected or designed, as described above, substitutions may then be made in some of its atoms or side groups in order to improve or modify its binding properties. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. It should, of course, be understood that components known in the art to alter conformation should be avoided. Such substituted chemical compounds may then be analyzed for efficiency of fit to HAUSP by the same computer methods described in detail, above.


This disclosure allows one skilled in the art to study the binding of a candidate agent to HAUSP by exposing either individual agents or mixtures of agents (such as may be obtained from combinatorial libraries) into HAUSP crystals or, alternatively, by co-crystallization of the substances of interest with HAUSP, using methods known to those of ordinary skill in the art, and the crystallization conditions based on those described in the following examples. Acquisition and analysis of X-ray diffraction data from these crystals can be then performed using standard methods. If agents bind to HAUSP then positive difference electron density will be observed in the Fourier maps calculated using the X-ray diffraction intensities and phases obtained from the HAUSP models presented in Table 3. Models of the chemical entities can than be built into the electron density using standard methods and the resulting structures can be refined against the X-ray diffraction data, providing experimental data describing the interaction of the molecules of interest with HAUSP. Those skilled in the art can use these models to design HAUSP inhibitors based either on purely structural data or on combination of structural data with enzyme-activity based structure-activity relationship and in silico drug design.


The present disclosure also provides methods of using the identified agents. In one embodiment, the present disclosure provides a method of increasing or inducing apoptosis in a cell, comprising contacting the cell with an effective amount of one or more of any of the above identified agents, thereby increasing or inducing apoptosis in the cell. Apoptosis of a cell can be measured by commercially available kits. In one aspect, the method leads to about 5%, or alternatively about 10%, or about 20%, or about 30%, or about 40, or about 50%, or about 60%, or about 70%, or about 80%, or about 90%, or about 95% increase of apoptosis.


Also provided is a method of increasing p53 activity in a cell with functional p53, comprising contacting the cell with an effective amount of one or more of any of the above identified agents, thereby increasing p53 activity in the cell. p53 activity in a cell can be measured, for example, by the cell's capability to arrest cell cycle in response to DNA damage. In one aspect, the method leads to about 5%, or alternatively about 10%, or about 20%, or about 30%, or about 40, or about 50%, or about 60%, or about 70%, or about 80%, or about 90%, or about 95% increase of p53 activity.


Further provided is a method of increasing MDM2 activity in a cell, comprising contacting the cell with an effective amount of one or more of any of the above identified agents, thereby increasing MDM2 activity in the cell. MDM2 activity in a cell can be measured, for example, by the cell's capability to inactivate p53. In one aspect, the method leads to about 5%, or alternatively about 10%, or about 20%, or about 30%, or about 40, or about 50%, or about 60%, or about 70%, or about 80%, or about 90%, or about 95% increase of MDM2 activity.


Still further, provided is a method of decreasing HAUSP activity in a cell, comprising contacting the cell with an effective amount of one or more of any of the above identified agents, thereby decreasing HAUSP activity in the cell. HAUSP activity in a cell can be measured, for example, by the cell's capability to destabilize p53. In one aspect, the method leads to about 5%, or alternatively about 10%, or about 20%, or about 30%, or about 40, or about 50%, or about 60%, or about 70%, or about 80%, or about 90%, or about 95% decrease of HAUSP activity.


In yet another embodiment, the present disclosure provides a method of inhibiting enzyme substrate interaction between p53 and MDM2 in a cell, comprising contacting the cell with an effective amount of one or more of any of the above identified agents, thereby inhibiting enzyme substrate interaction between p53 and MDM2 in the cell.


Provided also is a method of competitively blocking substrate binding of the TRAF domain of HAUSP in a cell, comprising contacting the cell with an effective amount of one or more of any of the above identified agents, thereby competitively blocking substrate binding of the TRAF domain of HAUSP in the cell.


Still further provided is a method for suppressing deubiquitination activity of HAUSP in a cell comprising contacting the cell with an effective amount of one or more of any of the above identified agents, thereby suppressing deubiquitination activity of HAUSP in a cell.


In one embodiment, the present disclosure provides a method of inhibiting the growth of a cancer cell, comprising contacting the cell with an effective amount of one or more of any of the above identified agents, thereby inhibiting the growth of the cancer cell.


Another embodiment provides a method for tuning p53-mediated anti-tumor activity in a cell with functional p53, comprising contacting the cell with an effective amount of one or more of any of the above identified agents, thereby tuning p53-mediated anti-tumor activity in a cell.


A method is also provided, for stabilizing a p53 protein in a cell, comprising contacting the cell with any of the above identified agents, thereby stabilizing the p53 protein in the cell.


Yet also provided is a method for inhibiting cell growth, promoting cell cycle arrest, promoting apoptosis or promoting cell death, comprising contacting the cell with any of the above identified agents, thereby inhibiting cell growth, promoting cell cycle arrest, promoting apoptosis or promoting cell death of the cell.


In any of the above methods, the contacting can be in vitro or in vivo. In another embodiment, the cell can be a tumor cell. In some aspects, the cell comprises a wild-type p53.


Method for treating cancer in a subject are also provided, comprising administering to the subject an effective amount of any of the above identified agents, thereby treating cancer in the subject.


In one aspect, the cancer is an adenocarcinoma, a leukemia, a lymphoma, a melanoma, a myeloma, a sarcoma or a teratocarcinoma. In another aspect, the cancer is in one or more of adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid or uterus. In another aspect, the method further comprises administering to the subject a second chemotherapeutic agent.


Route of administration for the methods can be any methods disclosed herein, including but not limited to injection or topical application.


Computing Devices of the Present Technology


FIG. 13 is a block diagram illustrating an example computing device 900 that is arranged for identifying an agent suitable for binding or inhibiting the activity of HAUSP in accordance with the present disclosure. In a very basic configuration 901, computing device 900 typically includes one or more processors 910 and system memory 920. A memory bus 930 may be used for communicating between the processor 910 and the system memory 920.


Depending on the desired configuration, processor 910 may be of any type including but not limited to a microprocessor (μP), a microcontroller (μC), a digital signal processor (DSP), or any combination thereof. Processor 910 may include one more levels of caching, such as a level one cache 911 and a level two cache 912, a processor core 913, and registers 914. An example processor core 913 may include an arithmetic logic unit (ALU), a floating point unit (FPU), a digital signal processing core (DSP Core), or any combination thereof. An example memory controller 915 may also be used with the processor 910, or in some implementations the memory controller 915 may be an internal part of the processor 910.


Depending on the desired configuration, the system memory 920 may be of any type including but not limited to volatile memory (such as RAM), non-volatile memory (such as ROM, flash memory, etc.) or any combination thereof. System memory 920 may include an operating system 921, one or more applications 922, and program data 924. Application 922 may include a method 923 for constructing a three-dimensional structure based on X, Y and Z atomic coordinates. Program Data 924 may include atomic coordinates 925 that may be useful for identifying an agent suitable for binding or inhibiting the activity of HAUSP as will be further described below. In some embodiments, application 922 may be arranged to operate with program data 924 on an operating system 921 such that identification of an agent suitable for inhibiting HAUSP activity may be provided as described herein. This described basic configuration is illustrated in FIG. 2 by those components within dashed line 901.


Computing device 900 may have additional features or functionality, and additional interfaces to facilitate communications between the basic configuration 901 and any required devices and interfaces. For example, a bus/interface controller 940 may be used to facilitate communications between the basic configuration 901 and one or more data storage devices 950 via a storage interface bus 941. The data storage devices 950 may be removable storage devices 951, non-removable storage devices 952, or a combination thereof. Examples of removable storage and non-removable storage devices include magnetic disk devices such as flexible disk drives and hard-disk drives (HDD), optical disk drives such as compact disk (CD) drives or digital versatile disk (DVD) drives, solid state drives (SSD), and tape drives to name a few. Example computer storage media may include volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data.


System memory 920, removable storage 951 and non-removable storage 952 are all examples of computer storage media. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which may be used to store the desired information and which may be accessed by computing device 900. Any such computer storage media may be part of device 900.


Computing device 900 may also include an interface bus 942 for facilitating communication from various interface devices (e.g., output interfaces, peripheral interfaces, and communication interfaces) to the basic configuration 901 via the bus/interface controller 940. Example output devices 960 include a graphics processing unit 961 and an audio processing unit 962, which may be configured to communicate to various external devices such as a display or speakers via one or more A/V ports 963. Example peripheral interfaces 970 include a serial interface controller 971 or a parallel interface controller 972, which may be configured to communicate with external devices such as input devices (e.g., keyboard, mouse, pen, voice input device, touch input device, etc.) or other peripheral devices (e.g., printer, scanner, etc.) via one or more I/O ports 973. An example communication device 980 includes a network controller 981, which may be arranged to facilitate communications with one or more other computing devices 990 over a network communication link via one or more communication ports 982.


The network communication link may be one example of a communication media. Communication media may typically be embodied by computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and may include any information delivery media. A “modulated data signal” may be a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media may include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, radio frequency (RF), microwave, infrared (IR) and other wireless media. The term computer readable media as used herein may include both storage media and communication media.


Computing device 900 may be implemented as a portion of a small-form factor portable (or mobile) electronic device such as a cell phone, a personal data assistant (PDA), a personal media player device, a wireless web-watch device, a personal headset device, an application specific device, or a hybrid device that include any of the above functions. Computing device 900 may also be implemented as a personal computer including both laptop computer and non-laptop computer configurations.


EXAMPLES

The disclosure is further understood by reference to the following examples, which are intended to be purely exemplary of the disclosure. The present disclosure is not limited in scope by the exemplified embodiments, which are intended as illustrations of single aspects of the disclosure only. Any methods that are functionally equivalent are within the scope of the disclosure. Various modifications of the disclosure in addition to those described herein will become apparent to those skilled in the art from the foregoing description and accompanying figures. Such modifications fall within the scope of the appended claims.


Example 1

This example shows that two short peptides, vif1 and vif2, derived from Kaposi's-sarcoma-associated-herpesvirus vIRF4 as potent and selective HAUSP antagonists. Thus, these virus-derived-short peptides represent biologically active HAUSP antagonists, potentially leading to a paradigm shift in p53-targeted anti-cancer therapy.


Materials and Methods
Cell Culture and Transfection Reagents.

293T cells were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin (Gibco-BRL). PEL cell line BC-1 is derived from a HIV-positive patient and coinfected with KSHV and EBV. BC3, VG1, and BCBL-1 cell lines are negative for HIV and infected by only KSHV. PEL cell lines and KSHV-negative control cells (BJAB) were cultured in RPMI 1640 medium supplemented with 10% FBS and 1% penicillin-streptomycin. The prostatic human tumor cell lines LnCap, PC3, and DU145 were kept in culture in RPMI 1640 medium supplemented with 10% FBS and 1% penicillin-streptomycin. The human osteosarcoma cell line SJSA-1 was maintained in RPMI 1640 medium supplemented with 10% FBS and 1% penicillin-streptomycin. The MCF7 human breast cancer cell line was grown in DMEM, supplemented with 10% FBS, 2 mM L-glutamine (Gibco-BRL), and 1% penicillin-streptomycin. The BCBL-1 luciferase (BCBL-1-Luc) cell line was maintained in RPMI 1640 medium supplemented with 10% FBS, 1% penicillin-streptomycin, and 100 μg/ml Hygromycin. Transient transfections were performed with calcium phosphate (Clontech), according to the manufacturer's instructions.


Plasmid Construction.

All constructs for transient and stable expression in mammalian cells were derived from the pcDNA4N5·His, pEF-IRES-Puro, pEBG-GST, or pCMV-3×Flag expression vectors. DNA fragments corresponding to the coding sequence of the KSHV-vIRF4 and human HAUSP gene were amplified from template DNA by polymerase chain reaction (PCR) and subcloned into pcDNA4N5.His at EcoRI and NotI, into pEF-IRES-Puro at EcoRI and XbaI, into pCMV-3×Flag at the BamHI and NotI, or into pEBG-GST at the BamHI and NotI restriction sites. Several vIRF4 mutants were generated via PCR and have been described in reference 1. The genes corresponding to vIRF4153-256, vIRF4153-216, HAUSP62-205, and HAUSP62-560 were fused to a hexahistidine-tag2 and expressed in E. coli BL21 (DE3) RIPL cells (Stratagene, Inc.). The deletion mutants vIRF4153-256/Δ202-216 and vIRF4153-256/Δ202-216/Δ237-256 were generated using the QuikChange protocol (Stratagene, Inc.). For NMR experiments, Trp204 and Trp232 of vIRF4153-256 were mutated to alanine All constructs were sequenced using an ABI PRISM 377 automatic DNA sequencer to verify 100% correspondence with the original sequence.


Yeast Two-Hybrid Screen.

Yeast transformation with the KSHV library was performed using a method described in reference 3. Library screening and recovery of plasmids were performed according to the manufacturer's instructions (Clontech).


Immunoblotting and Immunoprecipitation.

For immunoblotting, polypeptides were resolved by SDS-PAGE and transferred onto a PVDF membrane (Bio-Rad). The membranes were blocked using 5% non-fat milk, then probed with the indicated antibodies. The primary antibodies were purchased from the following sources: p53 (D0-1), MDM2 (SMP14), p21 (187), and Ubiquitin (P4D1) antibodies from Santa Cruz Biotechnology; HAUSP antibody from Calbiochem; β-Tubulin, Flag (M2), and GST antibody from Sigma; Au antibody from Covance; V5 antibody from Bethyl Laboratories, Inc. Immunodetection was achieved using a chemiluminescence reagent (Denville Scientific) and a Fuji Phosphor Imager (BAS-1500; Fuji Film Co., Tokyo, Japan). For immunoprecipitation, cells were harvested, then lysed in a 1% NP40 lysis buffer supplemented with complete protease inhibitor cocktail (Roche). After pre-clearing using protein A/G agarose beads (Amersham Biosciences) for 1 h at 4° C., whole-cell lysates (WCL) were used for immunoprecipitation with the indicated antibodies. Generally, 1-4 μg of a commercial antibody was added to 1 ml of the cell lysate and incubated at 4° C. for 3 h. After adding the protein A/G agarose beads, incubation was continued for an additional 2 h. Immunoprecipitates were extensively washed using an 1% NP40 lysis buffer and eluted by boiling for 5 min in an 2×SDS-PAGE loading buffer (SIGMA). For GST pulldowns, cells were collected and lysed in the NP40 buffer supplemented with completed protease inhibitor cocktail. Post-centrifugation supernatants were precleared with protein A/G bead for 1 h at 4° C. Pre-cleared lysates were mixed with 50% slurry of glutathione-conjugated Sepharose beads (Amersham Biosciences) and the binding reaction incubated for 1 h at 4° C. Precipitates were then washed extensively with a lysis buffer. Protein bound to glutathione beads were eluted by boiling them with an SDS loading buffer for 5 min.


Protein Purification.

Protein expression was induced by 0.5 mM IPTG at 18° C. for 18 h. Recombinant proteins were purified as described in reference 4. HAUSP domain proteins were treated with recombinant TEV protease to remove the hexahistidine-tag. Purified proteins were dialyzed against 100 mM NaCl and 20 mM Tris-HCl (pH 7.5). For NMR, E. coli cells harboring an expression plasmid for vIRF4153-256 and its mutants were grown in M9 minimal media enriched with 15NH4Cl as the sole nitrogen source (99% 15N; Cambridge Isotope Laboratories, Inc.). Selective isotope (15N) labeling of tryptophan was performed for the tryptophan backbone assignments using an E. coli-based cell-free synthesis system5.


All 15N-labeled proteins were expressed and purified as described for the native proteins. Purified 15N-labeled proteins were dialyzed against 50 mM HEPES (pH 6.5) as a final step.


Isothermal Titration Calorimetry (ITC)

Purified proteins and synthesized peptides (Peptron Inc., Deajeon, Korea) were reconstituted in 150 mM NaCl and 10 mM HEPES (pH 7.0). The calorimetric assays were performed using a VP-ITC system (MicroCal Inc., Northampton, Mass.). Samples were degassed by vacuum aspiration for 15 min prior to loading. All experiments were carried out with a stirring speed of 300 rpm at 20° C., and the thermal power was recorded every 10 s. Data were analyzed using the ORIGIN software package (version 7.0) supplied with the instrument. The amino acid sequences of the peptides used in the ITC experiments were as follows: vIRF4202-216, SVWIPVNEGASTSGM; vIRF4209-216, EGASTSGM; EBNA1435-449, EQGPADDPGEGPSTG; MDM2137-152, LVQELQEEKPSSSHL; p53350-364, LKDAQAGKEPGGSRA; p53355-369, AGKEPGGSRAHSSHL. Each set of ITC experiments was repeated two or three times.


Crystallization, Data Collection, and Structure Determination

Crystallization trials were carried out using in situ proteolysis technique. Trypsin-treated protein complexes was used immediately for crystallization trials. Crystals were grown for one week under conditions of 5% PEG 3350 and 0.2 M magnesium formate (pH 5.9) in the alternate reservoir containing a 1.5 M NaCl solution. Crystals were transferred to a cryoprotectant solution containing 30% PEG 3350 and 0.2 M magnesium formate (pH 5.9), incubated for 2 h, and then retrieved and placed immediately in a −173° C. nitrogen gas stream. X-ray diffraction data were collected at 1.6 Å resolution on beamline 4A at the Pohang Accelerator Laboratory (Pohang, Korea). All data were processed using the HKL2000 program suite (Ref 7). Crystal of the protein complex belongs to space group P3221. There is one complex in the asymmetric unit with a packing density of ˜2.26 Å3/Da, corresponding to an estimated solvent content of approximately 45.72%. The crystal structure was determined by molecular replacement using the MOLREP program (Kim, Y. et al. (2010) J. Biol. Chem 285: 14020-14030) using the HAUSP TRAF domain structure (PDB accession code 2F1W) as a search model. The initial model was used as a guide to build the remainder of the protein manually into electron density maps with the program COOT. The refinement was performed with REFMAC5. The refinement included the translation-liberation-screw procedure. The final refined model resulted in Rfree and Rcryst values of 0.174 and 0.158, respectively. The model contains 143 amino acids of the HAUSP TRAF domain, 15 residues of vIRF4, and 238 water molecules, and satisfies the quality criteria limits of the program PROCHECK. The crystallographic data statistics are summarized in Table 2. The atomic coordinates and structure factor amplitudes of the protein complex have been deposited in the Protein Data Bank (PDB)12 under the accession code 2XXN and are further provided in Table 3.


NMR Spectroscopy


1H-15N HSQC spectra of vIRF4153-256 and its mutants were measured on a Bruker 900 MHz NMR spectrometer at the Korea Basic Science Institute (Ochang, Korea). NMR measurements were performed with 0.1 mM 15N-labeled protein in 50 mM HEPES (pH 6.5) containing 10% D2O at 25° C. All NMR spectra were processed with Topspin 2.1 and analyzed with SPARKY 3.1 program.


Purification of vIRF4-HAUSP Complexes and Flag Elution


For vIRF4-HAUSP complex elutions, 293T cells were transfected as described above with the indicated constructs. After 48 h, cells were collected, lysed in 1% NP40 lysis buffer and lysates were incubated with anti-Flag M2 affinity gel (SIGMA). After binding of FLAG-tagged proteins, beads were washed three times with 1% NP40 lysis buffer and eluted in DUB buffer (25 mM Tris/HCl (pH 7.5), 50 mM NaCl, 10 mM MgCl2, 2 mM DTT, and 2 mM ATP) containing with 0.4 mg/ml Flag (M2)-peptide for 30 min at RT. Flag-peptide was removed and elutes were used for in vitro DUB assay.


In Vitro Ubiquitination Assay

MDM2 auto-ubiquitination assays were performed in 10 μl reaction volumes with the following components as indicated: 100 μM ubiquitin (Boston Biochem), 100 nM E1 (Boston Biochem), 5 μM Ubc5b (E2, Boston Biochem), 600 μM MDM2 (E3, Boston Biochem), and ubiquitination reaction buffer (40 mM Tris-HCl (pH 7.6), 5 mM MgCl2, 2 mM ATP, 2 mM DTT). Reactions were incubated at 37° C. for 3 h and prepared for immunoblot analysis as indicated.


In Vitro De-Ubiquitination (DUB) Assay

All DUB reactions were continuous. Either ubiquitinated MDM2 or poly—ubiquitin chain (K48 Ub3-7, or K63 Ub3-7, Boston Biochem) were used as a substrate. In vitro DUB activity was assayed by incubating the substrate with purified HAUSP (USP7, Boston Biochem) in DUB buffer for the indicated time at 37° C. The reaction was terminated by the addition of an equal volume of 2×SDS—PAGE sample buffer. Proteins were resolved on 15% SDS—PAGE and blotted with anti—ubiquitin antibody.


Cell Proliferation and Viability Assays

4×105 cells were treated with the peptides for the indicated periods of time and their viability was measured by trypan blue (Gibco) exclusion, followed by analyses using the Backman Coulter Z2 particle count and size analyzer (BC Z2 CS Analyzer). A minimum of 100 cells per sample using triplicate samples was counted per condition per experiment.


Cell Cycle and Apoptosis Assay

The proportion of cells at the S phase was determined by measuring incorporation of BrdU and 7-amino-actionomycin D (ADD) into DNA. Cells were grown at a density of 5×106 cells/ml indicated periods with the treatment of either peptide or Nutlin-3a. The cells were pulse-labeled with 10 μM BrdU for 30 min. Cells were permeabilized, fixed and BrdU-, 7AAD-stained using the BrdU Flow Kit (BD Pharmingen) according to manufacturer's instructions. Stained cells were analyzed by flow cytometry to determine the cell-cycle distribution on a FACS Scan (BD FACSCanto™ II). Apoptosis was measured by dual-labeling with the Annexin V-FITC Apoptosis Detection kit I (BD biosciences-Pharmingen) according to the manufacturer's instruction and analyzed by Flow Jo software.


In Vivo Bioimaging

Female NOD/SCID mice (4-6 weeks old) were purchased from Jackson Laboratory and maintained under specific pathogen free conditions in a temperature and humidity controlled environment. 5×106 BCBL-1-Luc cells were injected intraperitoneally and treatment commenced after tumors were established. Mice were injected intraperitoneally with D-luciferin (50 μl; 75 mg/kg body weight) and were exposed for 1 min beginning 12 min after injection of D-luciferin to generate a bioluminescent image using an IVIS imaging system (Xenogen). D-luciferin firefly potassium salt was purchased from Xenogen and data were analysed with Igor Pro image analysis software (WaveMetrics). A region of interest (ROI) was manually selected over signal intensity and the area of the ROI was manually selected over signal intensity with the area of the ROI kept constant. Data are presented as average radiance (photons/s−1. cm−1sr−1 [steradian] within the ROI. Finally, the mice were humanely killed by CO2 inhalation immediately after the development of PEL, as defined by a weight gain of greater than 10% total body mass within a 1-week period.


Results

Ubiquitin-specific-protease HAUSP plays pivotal roles in the stability of p53 tumor suppressor and its negative regulator MDM2 (Ref. 1-5), raising HAUSP as a potential therapeutic target for tuning p53-mediated anti-tumor activity. Here, this example reports the discovery of two short peptides, vif1 and vif2, derived from Kaposi's-sarcoma-associated-herpesvirus vIRF4 as potent and selective HAUSP antagonists. Co-crystal structural analysis of HAUSP-vIRF4 complex reveals a belt-type interaction, resulting in a bilateral inhibition of HAUSP activity. First, the vIRF4 15-amino-acid-sequence vif1 peptide binds the TRAF domain of HAUSP with a high affinity, competitively blocking substrate binding. Second, the vIRF4 17-amino-acid-sequence vif2 peptide broadly binds the TRAF and catalytic domains of HAUSP, robustly suppressing its deubiquitination activity. Consequently, peptide treatments comprehensively blocked HAUSP activity, leading to p53-dependent cell-cycle-arrest, apoptosis, and tumor regression in culture and xenografted mouse model. Thus, these virus-derived-short peptides represent biologically active HAUSP antagonists, potentially leading to a paradigm shift in p53-targeted anti-cancer therapy.


HAUSP has been shown to interact with a number of herpesviral proteins including ICP0 of HSV (α-herpesvirus) and EBNA-1 of Epstein-Barr virus (EBV, γ-1 herpesvirus). Hence, to study the HAUSP interaction network in KSHV (γ-2 herpesvirus), this study performed a yeast-two hybrid screen with a KSHV library (Ref 6) and Mass Spectrometry analysis. Both studies independently discovered a novel interaction between HAUSP and vIRF4 (FIG. 1a). Detailed binding assays indicate that the HAUSP TRAF domain (HAUSP62-205) specifically interacts with the vIRF4 aa 153-256 region (vIRF4153-256) (FIG. 4). Isothermal titration calorimetry (ITC) assay also revealed a robust interaction between vIRF4 and HAUSP with a dissociation constant (Kd=76 nM) of HAUSP62-205 and vIRF4153-256, remarkably higher than those (Kd=0.5-15 μM) reported for other HAUSP TRAF domain binding substrates (Ref 1, 7-9) (Table 1a and FIG. 5). To gain further insight into the molecular basis of the HAUSP-vIRF4 interaction, the HAUSP62-205-vIRF4153-256 complex was crystallized using an in situ proteolysis technique (Ref. 10). The three-dimensional structure of this crystallized complex was determined by the molecular replacement method using the HAUSP TRAF domain (PDB accession code 2F1W) as a search model, and refined to 1.6 Å resolution (FIG. 1b). All residues of HAUSP62-205, with the exception of Asp62, are included in the final model, whereas only 15 residues (Ser202 to Met216) of vIRF4 are visible in the electron density map (FIG. 6). The overall structure of the HAUSP TRAF domain comprises a typical eight-stranded anti-parallel β-sandwich fold (FIG. 1b) that forms a shallow groove at the waist of the surface structure (FIGS. 1d and 7). No significant conformational changes were observed between the peptide-free (PDB accession code 2F1W) and vIRF4-bound TRAF domain except that the C-terminal region of TRAF domain was less extended upon vIRF4-binding than in a free form (FIG. 8).









TABLE 1a







Thermodynamic parameters of the interactions between the HAUSP


TRAF domain and the vIRF4 protein derivatives or other peptides.















Ka
Kd
ΔH
TΔS
ΔG



n
(106M−1)
(μM)
(kcal mol−1)
(kcal mol−1)
(kcal mol−1)

















vIRF4153-256
1.13 ± 0.18
13.20 ± 0.85 
0.076 ± 0.01 
−17.69 ± 1.17
−10.05
−7.64


vIRF4153-216
0.82 ± 0.09
1.84 ± 0.10
0.54 ± 0.03
−15.76 ± 0.18
−7.35
−8.41


vIRF4153-256/Δ202-216
0.65 ± 0.08
0.29 ± 0.05
3.45 ± 0.02
−62.09 ± 9.56
−54.79
−7.30


vIRF4153-256/Δ202-216/Δ237-256
0.89 ± 0.07
0.25 ± 0.03
4.03 ± 0.03
−41.35 ± 3.99
−33.99
−7.36


vIRF4202-216
0.84 ± 0.01
2.59 ± 0.05
0.39 ± 0.01
−19.22 ± 0.05
−10.63
−8.60


vIRF4209-216
0.81 ± 0.01
0.10 ± 0.01
9.57 ± 0.19
−17.06 ± 0.21
−10.31
−6.74


MDM2137-152
0.84 ± 0.06
0.09 ± 0.00
11.06 ± 1.40 
−16.48 ± 1.68
−9.82
−6.66


p53350-364
1.15 ± 0.02
0.06 ± 0.00
15.46 ± 0.60 
 −3.86 ± 0.09
2.59
−6.45


p53355-369
1.07 ± 0.01
0.07 ± 0.00
15.07 ± 1.17 
 −4.69 ± 0.18
1.19
−5.87


EBNA1435-449
0.81 ± 0.01
2.10 ± 0.15
0.48 ± 0.04
−17.17 ± 0.13
−8.69
−8.48
















TABLE 1b







Thermodynamic parameters of competitive binding of vIRF4 with TRAF


domain against cellular substrates.















Kobs
Kd
ΔHobs
Ka
ΔHa


Titration
n
(106M−1)
(μM)
(kcal mol−1)
(106M−1)
(kcal mol−1)
















vIRF4202-216 to
0.703 ± 0.001
10.875 ± 1.308
0.092
−25.870 ± 0.240
0.091
−16.480


MDM2137-152-


TRAF


vIRF4202-216 to
0.779 ± 0.007
44.200 ± 4.200
0.023
−19.070 ± 0.194
0.065
−3.863


p53350-364-TRAF


vIRF4202-216 to
0.761 ± 0.008
35.800 ± 3.400
0.028
−19.150 ± 0.203
0.067
−4.688


p53355-369-TRAF









Unlike previous studies that used synthetic peptides of 4-7 amino acids in length in complex with the HAUSP TRAF domain (Ref 1, 7-9), an in situ proteolysis treatment of the HAUSP62-205-vIRF4153-256 protein complex yielded a crystal structure with a remarkably longer 15-residue vIRF4 peptide consisting of an upstream (Ser202 to Asn208) and downstream (Ala211 to Met216) region positioned on the groove in a belt-type arrangement around the waist (FIGS. 1b and d and FIG. 7). The downstream region contains the well-conserved four-residue consensus sequence P/A××S (where x indicates any amino acid) binding motif shared by p53, MDM2, MDM4, and EBNA1 peptides, which binds to the same substrate-recognition site of the TRAF domain through conserved contacts (FIG. 1d). The equivalent motif of vIRF4 consists of Ala211, Ser212, Thr213 and Ser214, and engages in extensive polar and nonpolar interactions with one side of the TRAF β-sheet, particularly the β7 strand (FIGS. 1b and c). The methyl group of Ala211 participates in hydrophobic interactions with the side chains of TRAF Ile154, Trp165, and Phe167. Of note, the vIRF4 Ser212 makes decisive contacts with the TRAF Gly166 through backbone-backbone interactions, while the vIRF4 Thr213 methyl group participates in van der Waals interactions with the aliphatic portions of the side chains of TRAF Glu162 and Trp165 (FIG. 1c). The backbone amide of Ser214, the most highly conserved residue among all HAUSP TRAF binding substrates, is hydrogen-bonded with the TRAF Aps164 side chain carboxyl group and Arg104 side chain amino group (FIGS. 1c and d). These interaction patterns are similar to those reported for other peptides as seen in References 1 and 7-9. In addition to the consensus residues of the 4-amino acid motif, the backbones of the two C-terminal vIRF4 peptide residues, Gly215 and Met216, participate in water molecule-mediated hydrogen bonding with the TRAF Lys161 backbone and Asp154 side chain, respectively.









TABLE 2





Crystallographic data collection and refinement statistics
















Dataset
HAUSP62-205-vIRF4153-256 complex


Beamline (PAL)
4A(MXW)


Wavelength
0.9999


Space group
P3221


Cell dimensions (Å)


A
72.46


B
72.46


C
53.84


Resolution (Å)
1.60(1.66-1.60)


No. of total reflections
476,332


No. of unique reflections
21,908


Redundancy
21.7(21.8)


Completeness (%)
100(100)


Rsym (%)a
 6.1(26.6)


I/Ω(I)
65.2(11.9)


Refinement


Resolution (Å)
30.00-1.60


Reflections in work/test sets
20,747/1,118 


Rcryst/Rfree (%)b,c
15.8/17.4


R.m.s. deviations


Bond lengths (Å)
0.008


Bond angles (°)
1.131


Model composition
158 residues



238 waters


Geometry


Most favored regions (%)
88.5


Additional allowed regions
11.5


(%)


PDB accession code
2XXN





The numbers in parentheses describe the relevant value for the highest resolution shell.



aRsym= Σ|Ii − <I>|/ΣI where Ii is the intensity of the i-th observation and <I> is the mean intensity of the reflections.




bRcryst= Σ||Fobs| − |Fcalc||/Σ|Fobs| where Fcalc and Fobs are the calculated and observed structure factor amplitude, respectively.




cRfree= Σ||Fobs| − |Fcalc||/Σ|Fobs| where all reflections belong to a test set of randomly selected data.














TABLE 3





X, Y and Z atomic coordinates of vIRF4-HAUSP TRAF domain complex

















HEADER
----
XX-XXX-9- XXXX


COMPND
---










REMARK
3




REMARK
3
REFINEMENT.


REMARK
3
 PROGRAM:
REFMAC 5.2.0019


REMARK
3
 AUTHORS:
MURSHUDOV, VAGIN, DODSON


REMARK
3









REMARK
3
  REFINEMENT TARGET: MAXIMUM LIKELIHOOD


REMARK
3


REMARK
3
 DATA USED IN REFINEMENT.











REMARK
3
 RESOLUTION RANGE HIGH
(ANGSTROMS):
 1.60


REMARK
3
 RESOLUTION RANGE LOW
(ANGSTROMS):
 30.00


REMARK
3
 DATA CUTOFF
(SIGMA(F)):
NONE











REMARK
3
 COMPLETENESS FOR RANGE
(%):
 99.99










REMARK
3
 NUMBER OF REFLECTIONS:
 20747


REMARK
3










REMARK
3
 FIT TO DATA USED IN REFINEMENT.



REMARK
3
 CROSS-VALIDATION METHOD:
THROUGHOUT


REMARK
3
 FREE R VALUE TEST SET SELECTION:
RANDOM











REMARK
3
 R VALUE
(WORKING + TEST SET):
0.15861


REMARK
3
 R VALUE
(WORKING SET):
 0.15777


REMARK
3
 FREE R VALUE:

 0.17426











REMARK
3
 FREE R VALUE TEST SET SIZE
(%):
 5.1










REMARK
3
 FREE R VALUE TEST SET COUNT:
 1118


REMARK
3









REMARK
3
 FIT IN THE HIGHEST RESOLUTION BIN.











REMARK
3
 TOTAL NUMBER OF BINS USED:
20 



REMARK
3
 BIN RESOLUTION RANGE HIGH:
1.601


REMARK
3
 BIN RESOLUTION RANGE LOW:
1.643












REMARK
3
 REFLECTION IN BIN
(WORKING SET):
1539



REMARK
3
 BIN COMPLETENESS
(WORKING + TEST) (%):
100.00


REMARK
3
 BIN R VALUE
(WORKING SET):
0.143











REMARK
3
 BIN FREE R VALUE SET COUNT:
72



REMARK
3
 BIN FREE R VALUE:
0.216


REMARK
3









REMARK
3
 NUMBER OF NON-HYDROGEN ATOMS USED IN REFINEMENT.










REMARK
3
 ALL ATOMS:
1562


REMARK
3


REMARK
3
 B VALUES.











REMARK
3
 FROM WILSON PLOT
(A**2):
NULL


REMARK
3
 MEAN B VALUE
(OVERALL, A**2):
14.858









REMARK
3
 OVERALL ANISOTROPIC B VALUE.











REMARK
3
  B11 (A**2):
0.50



REMARK
3
  B22 (A**2):
0.50


REMARK
3
  B33 (A**2):
−0.75


REMARK
3
  B12 (A**2):
0.25


REMARK
3
  B13 (A**2):
0.00


REMARK
3
  B23 (A**2):
0.00


REMARK
3









REMARK
3
 ESTIMATED OVERALL COORDINATE ERROR.











REMARK
3
 ESU BASED ON R VALUE
(A):
0.124


REMARK
3
 ESU BASED ON FREE R VALUE
(A):
0.078


REMARK
3
 ESU BASED ON MAXIMUM LIKELIHOOD
(A):
0.045


REMARK
3
 ESU FOR B VALUES BASED ON MAXIMUM LIKELIHOOD
(A**2):
2.754


REMARK
3


REMARK
3
CORRELATION COEFFICIENTS.










REMARK
3
 CORRELATION COEFFICIENT FO-FC:
0.963


REMARK
3
 CORRELATION COEFFICIENT FO-FC FREE:
0.956


REMARK
3













REMARK
3
 RMS DEVIATIONS FROM IDEAL VALUES
COUNT
RMS
WEIGHT















REMARK
3
 BOND LENGTHS REFINED ATOMS
(A):
1369;
0.008;
0.022















REMARK
3
 BOND ANGLES REFINED ATOMS
(DEGREES):
1865;
1.131;
1.902



REMARK
3
 TORSION ANGLES, PERIOD 1
(DEGREES):
164;
6.325;
5.000


REMARK
3
 TORSION ANGLES, PERIOD 2
(DEGREES):
69;
35.456;
23.188


REMARK
3
 TORSION ANGLES, PERIOD 3
(DEGREES):
213;
11.676;
15.000


REMARK
3
 TORSION ANGLES, PERIOD 4
(DEGREES):
9;
10.770;
15.000


REMARK
3
 CHIRAL-CENTER RESTRAINTS
(A**3):
190;
0.081;
0.200














REMARK
3
 GENERAL PLANES REFINED ATOMS
(A):
1086;
0.003;
0.020



REMARK
3
 NON-BONDED CONTACTS REFINED ATOMS
(A):
607;
0.191;
0.200


REMARK
3
 NON-BONDED TORSION REFINED ATOMS
(A):
943;
0.305;
0.200


REMARK
3
 H-BOND (X...Y) REFINED ATOMS
(A):
157;
0.122;
0.200


REMARK
3
 SYMMETRY VDW REFINED ATOMS
(A):
49;
0.158;
0.200


REMARK
3
 SYMMETRY H-BOND REFINED ATOMS
(A):
49;
0.140;
0.200


REMARK
3













REMARK
3
 ISOTROPIC THERMAL FACTOR RESTRAINTS.
COUNT
RMS
WEIGHT















REMARK
3
 MAIN-CHAIN BOND REFINED ATOMS
(A**2):
841;
1.376;
3.000



REMARK
3
 MAIN-CHAIN ANGLE REFINED ATOMS
(A**2):
1332;
1.912;
5.000


REMARK
3
 SIDE-CHAIN BOND REFINED ATOMS
(A**2):
623;
2.367;
8.000


REMARK
3
 SIDE-CHAIN ANGLE REFINED ATOMS
(A**2):
533;
3.334;
11.000


REMARK
3













REMARK
3
ANISOTROPIC THERMAL FACTOR RESTRAINTS.
COUNT
RMS
WEIGHT















REMARK
3
 RIGID-BOND RESTRAINTS
(A**2):
1464;
1.300;
3.000



REMARK
3
 SPHERICITY; FREE ATOMS
(A**2):
240;
1.820;
3.000


REMARK
3
 SPHERICITY; BONDED ATOMS
(A**2):
1322;
1.466;
3.000


REMARK
3


REMARK
3
 NCS RESTRAINTS STATISTICS









REMARK
3
 NUMBER OF NCS GROUPS: NULL


REMARK
3


REMARK
3


REMARK
3
 TLS DETAILS


REMARK
3
 NUMBER OF TLS GROUPS:  NULL


REMARK
3


REMARK
3


REMARK
3
 BULK SOLVENT MODELLING.


REMARK
3
 METHOD USED: MASK


REMARK
3
 PARAMETERS FOR MASK CALCULATION


REMARK
3
 VDW PROBE RADIUS:   1.20


REMARK
3
 ION PROBE RADIUS:   0.80


REMARK
3
 SHRINKAGE RADIUS:   0.80


REMARK
3


REMARK
3
 OTHER REFINEMENT REMARKS: NULL


REMARK
3








REMARK
[No title given]












CRYST1
 72.462
72.462
53.840
90.00 90.00
120.00 P 32 2 1











SCALE1
0.013800
0.007968
0.000000
0.00000


SCALE2
0.000000
0.015935
0.000000
0.00000


SCALE3
0.000000
0.000000
0.018574
0.00000




















ATOM
1
N
THR
A
63
−18.464
−20.926
−15.505
1.00
26.89

A
N


ANISOU
1
N
THR
A
63
3347
3414
3456
12
1
−7
A
N


ATOM
2
CA
THR
A
63
−19.723
−21.698
−15.733
1.00
26.28

A
C


ANISOU
2
CA
THR
A
63
3254
3376
3357
62
29
−37
A
C


ATOM
3
CB
THR
A
63
−19.603
−23.148
−15.213
1.00
27.79

A
C


ANISOU
3
CB
THR
A
63
3559
3469
3530
43
43
12
A
C


ATOM
4
OG1
THR
A
63
−20.766
−23.886
−15.594
1.00
30.77

A
O


ANISOU
4
OG1
THR
A
63
3816
3922
3954
−27
−106
−35
A
O


ATOM
5
CG2
THR
A
63
−19.443
−23.189
−13.686
1.00
29.37

A
C


ANISOU
5
CG2
THR
A
63
3771
3752
3637
−4
−23
23
A
C


ATOM
6
C
THR
A
63
−20.942
−21.006
−15.109
1.00
24.04

A
C


ANISOU
6
C
THR
A
63
2958
3099
3077
8
−40
−15
A
C


ATOM
7
O
THR
A
63
−20.816
−20.304
−14.105
1.00
24.81

A
O


ANISOU
7
O
THR
A
63
3010
3233
3182
39
−17
−61
A
O


ATOM
8
N
SER
A
64
−22.115
−21.216
−15.707
1.00
21.22

A
N


ANISOU
8
N
SER
A
64
2646
2721
2695
69
67
−34
A
N


ATOM
9
CA
SER
A
64
−23.348
−20.556
−15.255
1.00
18.31

A
C


ANISOU
9
CA
SER
A
64
2348
2372
2236
−13
0
1
A
C


ATOM
10
CB
SER
A
64
−24.462
−20.687
−16.301
1.00
18.45

A
C


ANISOU
10
CB
SER
A
64
2230
2447
2332
−14
−3
−10
A
C


ATOM
11
OG
SER
A
64
−24.178
−19.908
−17.446
1.00
19.58

A
O


ANISOU
11
OG
SER
A
64
2498
2447
2496
44
−1
113
A
O


ATOM
12
C
SER
A
64
−23.862
−21.061
−13.915
1.00
16.22

A
C


ANISOU
12
C
SER
A
64
2015
2041
2107
−10
15
−54
A
C


ATOM
13
O
SER
A
64
−24.464
−20.299
−13.163
1.00
14.38

A
O


ANISOU
13
O
SER
A
64
1682
1823
1957
−81
20
−62
A
O


ATOM
14
N
TRP
A
65
−23.615
−22.337
−13.623
1.00
15.42

A
N


ANISOU
14
N
TRP
A
65
1936
1985
1938
−40
−4
−35
A
N


ATOM
15
CA
TRP
A
65
−24.185
−22.985
−12.440
1.00
15.65

A
C


ANISOU
15
CA
TRP
A
65
2000
1980
1966
−46
−17
−7
A
C


ATOM
16
CB
TRP
A
65
−24.426
−24.483
−12.694
1.00
17.87

A
C


ANISOU
16
CB
TRP
A
65
2377
2139
2273
−63
3
−108
A
C


ATOM
17
CG
TRP
A
65
−23.196
−25.245
−13.113
1.00
20.62

A
C


ANISOU
17
CG
TRP
A
65
2570
2614
2649
10
56
−10
A
C


ATOM
18
CD1
TRP
A
65
−22.767
−25.461
−14.390
1.00
22.14

A
C


ANISOU
18
CD1
TRP
A
65
2818
2863
2730
23
21
−57
A
C


ATOM
19
NE1
TRP
A
65
−21.608
−26.201
−14.384
1.00
23.49

A
N


ANISOU
19
NE1
TRP
A
65
2935
3029
2960
75
−30
−22
A
N


ATOM
20
CE2
TRP
A
65
−21.269
−26.487
−13.087
1.00
22.75

A
C


ANISOU
20
CE2
TRP
A
65
2839
2965
2840
144
25
33
A
C


ATOM
21
CD2
TRP
A
65
−22.251
−25.901
−12.255
1.00
22.32

A
C


ANISOU
21
CD2
TRP
A
65
2816
2905
2761
68
−1
−8
A
C


ATOM
22
CE3
TRP
A
65
−22.135
−26.050
−10.865
1.00
22.09

A
C


ANISOU
22
CE3
TRP
A
65
2745
2885
2765
97
−18
37
A
C


ATOM
23
CZ3
TRP
A
65
−21.055
−26.772
−10.356
1.00
23.36

A
C


ANISOU
23
CZ3
TRP
A
65
2884
3077
2916
125
−5
7
A
C


ATOM
24
CH2
TRP
A
65
−20.094
−27.340
−11.213
1.00
23.04

A
C


ANISOU
24
CH2
TRP
A
65
2859
3038
2856
119
−16
32
A
C


ATOM
25
CZ2
TRP
A
65
−20.184
−27.209
−12.577
1.00
23.30

A
C


ANISOU
25
CZ2
TRP
A
65
2879
3110
2865
96
−6
26
A
C


ATOM
26
C
TRP
A
65
−23.374
−22.783
−11.160
1.00
14.29

A
C


ANISOU
26
C
TRP
A
65
1809
1784
1838
−34
8
13
A
C


ATOM
27
O
TRP
A
65
−23.796
−23.223
−10.082
1.00
14.84

A
O


ANISOU
27
O
TRP
A
65
1917
1857
1863
−40
−27
−64
A
O


ATOM
28
N
ARG
A
66
−22.231
−22.100
−11.277
1.00
12.75

A
N


ANISOU
28
N
ARG
A
66
1661
1614
1571
25
−82
−22
A
N


ATOM
29
CA
ARG
A
66
−21.365
−21.812
−10.125
1.00
11.91

A
C


ANISOU
29
CA
ARG
A
66
1562
1479
1486
3
−19
−30
A
C


ATOM
30
CB
ARG
A
66
−20.234
−20.858
−10.514
1.00
11.45

A
C


ANISOU
30
CB
ARG
A
66
1481
1480
1390
23
−34
−22
A
C


ATOM
31
CG
ARG
A
66
−20.712
−19.481
−10.934
1.00
11.33

A
C


ANISOU
31
CG
ARG
A
66
1392
1411
1501
−46
18
−17
A
C


ATOM
32
CD
ARG
A
66
−19.600
−18.671
−11.547
1.00
12.10

A
C


ANISOU
32
CD
ARG
A
66
1581
1501
1514
−19
66
106
A
C


ATOM
33
NE
ARG
A
66
−20.140
−17.505
−12.237
1.00
11.70

A
N


ANISOU
33
NE
ARG
A
66
1523
1477
1447
100
−3
−18
A
N


ATOM
34
CZ
ARG
A
66
−19.399
−16.560
−12.803
1.00
14.43

A
C


ANISOU
34
CZ
ARG
A
66
1915
1804
1764
−77
29
101
A
C


ATOM
35
NH1
ARG
A
66
−19.985
−15.538
−13.411
1.00
14.13

A
N


ANISOU
35
NH1
ARG
A
66
1714
1732
1922
95
32
−11
A
N


ATOM
36
NH2
ARG
A
66
−18.075
−16.639
−12.768
1.00
18.07

A
N


ANISOU
36
NH2
ARG
A
66
2062
2431
2373
48
−19
61
A
N


ATOM
37
C
ARG
A
66
−22.162
−21.229
−8.962
1.00
12.13

A
C


ANISOU
37
C
ARG
A
66
1558
1529
1520
35
−9
−26
A
C


ATOM
38
O
ARG
A
66
−23.109
−20.463
−9.166
1.00
13.42

A
O


ANISOU
38
O
ARG
A
66
1666
1790
1643
75
−94
−30
A
O


ATOM
39
N
SER
A
67
−21.767
−21.593
−7.746
1.00
11.67

A
N


ANISOU
39
N
SER
A
67
1535
1433
1466
−13
3
−48
A
N


ATOM
40
CA
SER
A
67
−22.494
−21.188
−6.549
1.00
11.04

A
C


ANISOU
40
CA
SER
A
67
1447
1319
1429
−22
−5
−57
A
C


ATOM
41
CB
SER
A
67
−22.182
−22.132
−5.384
1.00
12.14

A
C


ANISOU
41
CB
SER
A
67
1649
1446
1516
−78
0
37
A
C


ATOM
42
OG
SER
A
67
−20.813
−22.069
−5.029
1.00
15.70

A
O


ANISOU
42
OG
SER
A
67
1870
2016
2079
61
−10
−9
A
O


ATOM
43
C
SER
A
67
−22.202
−19.748
−6.144
1.00
10.63

A
C


ANISOU
43
C
SER
A
67
1307
1287
1446
−41
35
−45
A
C


ATOM
44
O
SER
A
67
−22.981
−19.143
−5.411
1.00
11.07

A
O


ANISOU
44
O
SER
A
67
1387
1330
1488
−32
92
−61
A
O


ATOM
45
N
GLU
A
68
−21.080
−19.205
−6.609
1.00
10.01

A
N


ANISOU
45
N
GLU
A
68
1365
1137
1302
−41
98
−91
A
N


ATOM
46
CA
GLU
A
68
−20.685
−17.851
−6.219
1.00
10.57

A
C


ANISOU
46
CA
GLU
A
68
1367
1266
1382
−68
82
−12
A
C


ATOM
47
CB
GLU
A
68
−19.967
−17.850
−4.865
1.00
11.60

A
C


ANISOU
47
CB
GLU
A
68
1480
1435
1492
15
25
−13
A
C


ATOM
48
CG
GLU
A
68
−18.644
−18.609
−4.836
1.00
12.93

A
C


ANISOU
48
CG
GLU
A
68
1510
1672
1732
84
−6
−5
A
C


ATOM
49
CD
GLU
A
68
−18.017
−18.649
−3.455
1.00
14.87

A
C


ANISOU
49
CD
GLU
A
68
2016
1806
1829
44
−81
−31
A
C


ATOM
50
OE1
GLU
A
68
−18.716
−19.004
−2.478
1.00
16.77

A
O


ANISOU
50
OE1
GLU
A
68
2085
2171
2116
19
49
−23
A
O


ATOM
51
OE2
GLU
A
68
−16.814
−18.335
−3.350
1.00
18.03

A
O


ANISOU
51
OE2
GLU
A
68
2081
2323
2445
−50
−99
−19
A
O


ATOM
52
C
GLU
A
68
−19.827
−17.175
−7.275
1.00
10.24

A
C


ANISOU
52
C
GLU
A
68
1341
1226
1324
−27
65
17
A
C


ATOM
53
O
GLU
A
68
−19.202
−17.844
−8.099
1.00
10.96

A
O


ANISOU
53
O
GLU
A
68
1472
1323
1371
−32
108
−41
A
O


ATOM
54
N
ALA
A
69
−19.814
−15.845
−7.240
1.00
9.63

A
N


ANISOU
54
N
ALA
A
69
1253
1223
1183
−54
68
10
A
N


ATOM
55
CA
ALA
A
69
−18.995
−15.044
−8.141
1.00
9.82

A
C


ANISOU
55
CA
ALA
A
69
1263
1256
1211
−51
17
21
A
C


ATOM
56
CB
ALA
A
69
−19.629
−14.966
−9.526
1.00
11.13

A
C


ANISOU
56
CB
ALA
A
69
1464
1469
1295
−16
−70
25
A
C


ATOM
57
C
ALA
A
69
−18.809
−13.651
−7.582
1.00
9.58

A
C


ANISOU
57
C
ALA
A
69
1220
1230
1189
43
9
31
A
C


ATOM
58
O
ALA
A
69
−19.622
−13.170
−6.791
1.00
9.70

A
O


ANISOU
58
O
ALA
A
69
1284
1278
1124
41
52
51
A
O


ATOM
59
N
THR
A
70
−17.724
−13.016
−7.998
1.00
10.14

A
N


ANISOU
59
N
THR
A
70
1336
1260
1257
−51
17
39
A
N


ATOM
60
CA
THR
A
70
−17.475
−11.623
−7.692
1.00
10.28

A
C


ANISOU
60
CA
THR
A
70
1312
1290
1305
38
65
−5
A
C


ATOM
61
CB
THR
A
70
−16.168
−11.451
−6.895
1.00
11.52

A
C


ANISOU
61
CB
THR
A
70
1458
1525
1393
20
2
−15
A
C


ATOM
62
OG1
THR
A
70
−16.253
−12.203
−5.678
1.00
13.25

A
O


ANISOU
62
OG1
THR
A
70
1740
1737
1558
103
3
112
A
O


ATOM
63
CG2
THR
A
70
−15.924
−9.994
−6.565
1.00
12.01

A
C


ANISOU
63
CG2
THR
A
70
1534
1578
1451
−40
−68
−16
A
C


ATOM
64
C
THR
A
70
−17.386
−10.898
−9.021
1.00
10.88

A
C


ANISOU
64
C
THR
A
70
1436
1337
1361
53
20
8
A
C


ATOM
65
O
THR
A
70
−16.662
−11.330
−9.921
1.00
11.45

A
O


ANISOU
65
O
THR
A
70
1587
1413
1351
57
220
50
A
O


ATOM
66
N
PHE
A
71
−18.152
−9.821
−9.164
1.00
9.84

A
N


ANISOU
66
N
PHE
A
71
1334
1212
1191
26
14
18
A
N


ATOM
67
CA
PHE
A
71
−18.051
−8.996
−10.367
1.00
9.82

A
C


ANISOU
67
CA
PHE
A
71
1340
1175
1215
−13
−4
11
A
C


ATOM
68
CB
PHE
A
71
−19.067
−9.419
−11.453
1.00
10.67

A
C


ANISOU
68
CB
PHE
A
71
1420
1396
1240
26
−24
−21
A
C


ATOM
69
CG
PHE
A
71
−20.513
−9.161
−11.108
1.00
10.86

A
C


ANISOU
69
CG
PHE
A
71
1478
1371
1278
−31
−49
−91
A
C


ATOM
70
CD1
PHE
A
71
−21.208
−8.123
−11.725
1.00
11.50

A
C


ANISOU
70
CD1
PHE
A
71
1501
1460
1408
−12
−38
−83
A
C


ATOM
71
CE1
PHE
A
71
−22.552
−7.887
−11.439
1.00
12.15

A
C


ANISOU
71
CE1
PHE
A
71
1589
1679
1348
143
−16
−18
A
C


ATOM
72
CZ
PHE
A
71
−23.224
−8.703
−10.530
1.00
13.50

A
C


ANISOU
72
CZ
PHE
A
71
1581
1655
1894
33
78
20
A
C


ATOM
73
CE2
PHE
A
71
−22.547
−9.751
−9.908
1.00
13.14

A
C


ANISOU
73
CE2
PHE
A
71
1546
1708
1737
19
15
59
A
C


ATOM
74
CD2
PHE
A
71
−21.194
−9.982
−10.211
1.00
12.77

A
C


ANISOU
74
CD2
PHE
A
71
1530
1642
1680
−17
97
72
A
C


ATOM
75
C
PHE
A
71
−18.133
−7.516
−10.030
1.00
9.72

A
C


ANISOU
75
C
PHE
A
71
1271
1187
1234
−42
67
−50
A
C


ATOM
76
O
PHE
A
71
−18.745
−7.136
−9.028
1.00
9.21

A
O


ANISOU
76
O
PHE
A
71
1273
1114
1113
−111
72
−57
A
O


ATOM
77
N
GLN
A
72
−17.484
−6.699
−10.859
1.00
9.52

A
N


ANISOU
77
N
GLN
A
72
1368
1089
1160
1
34
36
A
N


ATOM
78
CA
GLN
A
72
−17.462
−5.252
−10.672
1.00
10.17

A
C


ANISOU
78
CA
GLN
A
72
1313
1205
1346
−43
−14
34
A
C


ATOM
79
CB
GLN
A
72
−16.025
−4.724
−10.685
1.00
10.42

A
C


ANISOU
79
CB
GLN
A
72
1257
1274
1427
−33
−25
23
A
C


ATOM
80
CG
GLN
A
72
−15.152
−5.289
−9.574
1.00
11.96

A
C


ANISOU
80
CG
GLN
A
72
1539
1542
1462
36
−118
−17
A
C


ATOM
81
CD
GLN
A
72
−13.849
−4.532
−9.396
1.00
14.73

A
C


ANISOU
81
CD
GLN
A
72
1690
1852
2053
−55
28
−18
A
C


ATOM
82
OE1
GLN
A
72
−13.333
−3.910
−10.330
1.00
16.24

A
O


ANISOU
82
OE1
GLN
A
72
2081
2127
1963
78
−14
25
A
O


ATOM
83
NE2
GLN
A
72
−13.307
−4.582
−8.186
1.00
17.78

A
N


ANISOU
83
NE2
GLN
A
72
2314
2302
2139
39
−94
−27
A
N


ATOM
84
C
GLN
A
72
−18.276
−4.536
−11.739
1.00
10.02

A
C


ANISOU
84
C
GLN
A
72
1325
1214
1268
−21
8
20
A
C


ATOM
85
O
GLN
A
72
−18.533
−5.079
−12.815
1.00
10.87

A
O


ANISOU
85
O
GLN
A
72
1587
1185
1359
−72
−71
−3
A
O


ATOM
86
N
PHE
A
73
−18.674
−3.309
−11.422
1.00
9.55

A
N


ANISOU
86
N
PHE
A
73
1277
1173
1179
−28
4
31
A
N


ATOM
87
CA
PHE
A
73
−19.400
−2.453
−12.343
1.00
10.16

A
C


ANISOU
87
CA
PHE
A
73
1363
1184
1312
−25
29
42
A
C


ATOM
88
CB
PHE
A
73
−20.906
−2.580
−12.102
1.00
11.41

A
C


ANISOU
88
CB
PHE
A
73
1415
1421
1501
−39
−8
−8
A
C


ATOM
89
CG
PHE
A
73
−21.749
−1.693
−12.978
1.00
13.61

A
C


ANISOU
89
CG
PHE
A
73
1623
1579
1968
−77
−43
110
A
C


ATOM
90
CD1
PHE
A
73
−21.536
−1.639
−14.353
1.00
16.84

A
C


ANISOU
90
CD1
PHE
A
73
2158
2126
2116
−30
−101
27
A
C


ATOM
91
CE1
PHE
A
73
−22.320
−0.825
−15.166
1.00
17.86

A
C


ANISOU
91
CE1
PHE
A
73
2223
2239
2324
53
−104
−14
A
C


ATOM
92
CZ
PHE
A
73
−23.341
−0.072
−14.599
1.00
17.48

A
C


ANISOU
92
CZ
PHE
A
73
2091
2150
2401
62
−115
34
A
C


ATOM
93
CE2
PHE
A
73
−23.573
−0.125
−13.232
1.00
16.60

A
C


ANISOU
93
CE2
PHE
A
73
2083
1928
2298
−12
−150
59
A
C


ATOM
94
CD2
PHE
A
73
−22.775
−0.938
−12.423
1.00
16.59

A
C


ANISOU
94
CD2
PHE
A
73
2051
1931
2323
21
−13
35
A
C


ATOM
95
C
PHE
A
73
−18.921
−1.021
−12.125
1.00
10.43

A
C


ANISOU
95
C
PHE
A
73
1359
1266
1337
−50
37
−12
A
C


ATOM
96
O
PHE
A
73
−19.100
−0.448
−11.045
1.00
10.43

A
O


ANISOU
96
O
PHE
A
73
1364
1283
1316
−5
2
7
A
O


ATOM
97
N
THR
A
74
−18.291
−0.460
−13.154
1.00
10.48

A
N


ANISOU
97
N
THR
A
74
1373
1279
1329
−54
3
53
A
N


ATOM
98
CA
THR
A
74
−17.791
0.908
−13.089
1.00
10.00

A
C


ANISOU
98
CA
THR
A
74
1270
1232
1296
8
−1
29
A
C


ATOM
99
CB
THR
A
74
−16.405
1.045
−13.757
1.00
10.88

A
C


ANISOU
99
CB
THR
A
74
1338
1390
1407
−10
51
67
A
C


ATOM
100
OG1
THR
A
74
−15.465
0.209
−13.071
1.00
12.56

A
O


ANISOU
100
OG1
THR
A
74
1554
1624
1595
120
−42
49
A
O


ATOM
101
CG2
THR
A
74
−15.911
2.491
−13.702
1.00
12.17

A
C


ANISOU
101
CG2
THR
A
74
1583
1450
1590
−36
0
41
A
C


ATOM
102
C
THR
A
74
−18.791
1.843
−13.743
1.00
10.58

A
C


ANISOU
102
C
THR
A
74
1405
1295
1320
39
−22
4
A
C


ATOM
103
O
THR
A
74
−19.197
1.630
−14.891
1.00
12.22

A
O


ANISOU
103
O
THR
A
74
1623
1537
1484
62
−136
−67
A
O


ATOM
104
N
VAL
A
75
−19.191
2.866
−12.996
1.00
8.87

A
N


ANISOU
104
N
VAL
A
75
1134
1123
1113
21
−42
27
A
N


ATOM
105
CA
VAL
A
75
−20.092
3.895
−13.506
1.00
8.97

A
C


ANISOU
105
CA
VAL
A
75
1139
1118
1152
32
−8
37
A
C


ATOM
106
CB
VAL
A
75
−21.221
4.219
−12.495
1.00
9.39

A
C


ANISOU
106
CB
VAL
A
75
1206
1161
1200
−14
−10
31
A
C


ATOM
107
CG1
VAL
A
75
−22.162
5.294
−13.046
1.00
10.02

A
C


ANISOU
107
CG1
VAL
A
75
1191
1280
1336
38
17
63
A
C


ATOM
108
CG2
VAL
A
75
−21.998
2.951
−12.148
1.00
10.06

A
C


ANISOU
108
CG2
VAL
A
75
1296
1200
1326
−38
78
98
A
C


ATOM
109
C
VAL
A
75
−19.282
5.145
−13.839
1.00
9.25

A
C


ANISOU
109
C
VAL
A
75
1171
1192
1151
10
40
−3
A
C


ATOM
110
O
VAL
A
75
−18.720
5.794
−12.954
1.00
9.46

A
O


ANISOU
110
O
VAL
A
75
1160
1305
1131
−74
−11
46
A
O


ATOM
111
N
GLU
A
76
−19.218
5.464
−15.128
1.00
9.19

A
N


ANISOU
111
N
GLU
A
76
1179
1194
1117
72
−3
34
A
N


ATOM
112
CA
GLU
A
76
−18.520
6.653
−15.606
1.00
10.34

A
C


ANISOU
112
CA
GLU
A
76
1307
1280
1342
12
57
25
A
C


ATOM
113
CB
GLU
A
76
−17.936
6.401
−17.005
1.00
11.38

A
C


ANISOU
113
CB
GLU
A
76
1509
1434
1379
62
22
23
A
C


ATOM
114
CG
GLU
A
76
−16.971
5.205
−17.017
1.00
12.98

A
C


ANISOU
114
CG
GLU
A
76
1652
1642
1639
142
86
−12
A
C


ATOM
115
CD
GLU
A
76
−16.141
5.083
−18.284
1.00
14.84

A
C


ANISOU
115
CD
GLU
A
76
1880
1969
1788
0
131
−48
A
C


ATOM
116
OE1
GLU
A
76
−16.139
6.014
−19.119
1.00
15.37

A
O


ANISOU
116
OE1
GLU
A
76
1993
1973
1875
146
40
−8
A
O


ATOM
117
OE2
GLU
A
76
−15.472
4.035
−18.428
1.00
17.42

A
O


ANISOU
117
OE2
GLU
A
76
2173
2144
2301
120
125
−61
A
O


ATOM
118
C
GLU
A
76
−19.461
7.857
−15.591
1.00
9.82

A
C


ANISOU
118
C
GLU
A
76
1220
1228
1285
−15
8
41
A
C


ATOM
119
O
GLU
A
76
−20.687
7.691
−15.551
1.00
9.99

A
O


ANISOU
119
O
GLU
A
76
1229
1236
1330
48
22
52
A
O


ATOM
120
N
ARG
A
77
−18.883
9.061
−15.613
1.00
9.86

A
N


ANISOU
120
N
ARG
A
77
1250
1222
1274
28
−11
32
A
N


ATOM
121
CA
ARG
A
77
−19.646
10.310
−15.493
1.00
9.91

A
C


ANISOU
121
CA
ARG
A
77
1310
1272
1184
18
−27
44
A
C


ATOM
122
CB
ARG
A
77
−20.357
10.659
−16.812
1.00
9.80

A
C


ANISOU
122
CB
ARG
A
77
1227
1339
1157
23
−22
−15
A
C


ATOM
123
CG
ARG
A
77
−19.393
10.876
−17.977
1.00
9.96

A
C


ANISOU
123
CG
ARG
A
77
1275
1350
1160
−49
15
110
A
C


ATOM
124
CD
ARG
A
77
−20.129
11.137
−19.290
1.00
10.02

A
C


ANISOU
124
CD
ARG
A
77
1284
1315
1207
−48
−41
39
A
C


ATOM
125
NE
ARG
A
77
−20.990
10.017
−19.664
1.00
8.29

A
N


ANISOU
125
NE
ARG
A
77
1145
1139
864
47
−110
109
A
N


ATOM
126
CZ
ARG
A
77
−20.565
8.878
−20.204
1.00
8.45

A
C


ANISOU
126
CZ
ARG
A
77
1069
1272
871
67
0
18
A
C


ATOM
127
NH1
ARG
A
77
−19.271
8.685
−20.453
1.00
10.03

A
N


ANISOU
127
NH1
ARG
A
77
1119
1628
1065
191
−24
0
A
N


ATOM
128
NH2
ARG
A
77
−21.438
7.924
−20.489
1.00
9.87

A
N


ANISOU
128
NH2
ARG
A
77
1196
1385
1168
75
−54
0
A
N


ATOM
129
C
ARG
A
77
−20.621
10.241
−14.316
1.00
10.02

A
C


ANISOU
129
C
ARG
A
77
1311
1293
1202
8
−42
11
A
C


ATOM
130
O
ARG
A
77
−21.784
10.646
−14.410
1.00
10.80

A
O


ANISOU
130
O
ARG
A
77
1351
1419
1335
2
−25
−62
A
O


ATOM
131
N
PHE
A
78
−20.118
9.723
−13.197
1.00
10.10

A
N


ANISOU
131
N
PHE
A
78
1332
1320
1187
15
−52
74
A
N


ATOM
132
CA
PHE
A
78
−20.946
9.437
−12.028
1.00
10.56

A
C


ANISOU
132
CA
PHE
A
78
1374
1420
1220
31
−56
61
A
C


ATOM
133
CB
PHE
A
78
−20.079
8.823
−10.921
1.00
10.67

A
C


ANISOU
133
CB
PHE
A
78
1397
1433
1225
60
−70
120
A
C


ATOM
134
CG
PHE
A
78
−20.864
8.320
−9.746
1.00
10.80

A
C


ANISOU
134
CG
PHE
A
78
1355
1461
1289
14
1
11
A
C


ATOM
135
CD1
PHE
A
78
−21.455
7.063
−9.778
1.00
12.26

A
C


ANISOU
135
CD1
PHE
A
78
1590
1525
1545
−30
5
11
A
C


ATOM
136
CE1
PHE
A
78
−22.183
6.588
−8.690
1.00
12.35

A
C


ANISOU
136
CE1
PHE
A
78
1544
1668
1481
2
0
17
A
C


ATOM
137
CZ
PHE
A
78
−22.323
7.376
−7.553
1.00
12.16

A
C


ANISOU
137
CZ
PHE
A
78
1489
1630
1503
19
6
11
A
C


ATOM
138
CE2
PHE
A
78
−21.735
8.634
−7.506
1.00
13.14

A
C


ANISOU
138
CE2
PHE
A
78
1632
1689
1671
−3
27
62
A
C


ATOM
139
CD2
PHE
A
78
−21.007
9.103
−8.601
1.00
11.38

A
C


ANISOU
139
CD2
PHE
A
78
1503
1424
1398
1
−2
−68
A
C


ATOM
140
C
PHE
A
78
−21.716
10.659
−11.512
1.00
11.19

A
C


ANISOU
140
C
PHE
A
78
1443
1481
1327
2
−17
39
A
C


ATOM
141
O
PHE
A
78
−22.885
10.549
−11.129
1.00
10.86

A
O


ANISOU
141
O
PHE
A
78
1395
1437
1294
76
−75
63
A
O


ATOM
142
N
SER
A
79
−21.059
11.818
−11.520
1.00
12.31

A
N


ANISOU
142
N
SER
A
79
1581
1560
1535
−46
−19
14
A
N


ATOM
143
CA
SER
A
79
−21.664
13.067
−11.051
1.00
13.55

A
C


ANISOU
143
CA
SER
A
79
1751
1647
1752
−20
20
−32
A
C


ATOM
144
CB
SER
A
79
−20.648
14.212
−11.132
1.00
14.54

A
C


ANISOU
144
CB
SER
A
79
1846
1772
1905
−87
30
−56
A
C


ATOM
145
OG
SER
A
79
−20.305
14.504
−12.477
1.00
14.92

A
O


ANISOU
145
OG
SER
A
79
1888
1828
1954
−19
−23
−58
A
O


ATOM
146
C
SER
A
79
−22.946
13.451
−11.801
1.00
13.74

A
C


ANISOU
146
C
SER
A
79
1756
1680
1785
−15
19
−17
A
C


ATOM
147
O
SER
A
79
−23.792
14.175
−11.260
1.00
14.71

A
O


ANISOU
147
O
SER
A
79
1903
1759
1927
−11
69
−68
A
O


ATOM
148
N
ARG
A
80
−23.086
12.962
−13.034
1.00
13.31

A
N


ANISOU
148
N
ARG
A
80
1706
1682
1670
−24
4
53
A
N


ATOM
149
CA
ARG
A
80
−24.244
13.287
−13.877
1.00
14.00

A
C


ANISOU
149
CA
ARG
A
80
1777
1831
1710
−5
−29
40
A
C


ATOM
150
CB
ARG
A
80
−23.831
13.456
−15.349
1.00
14.93

A
C


ANISOU
150
CB
ARG
A
80
1921
1984
1768
40
−17
−28
A
C


ATOM
151
CG
ARG
A
80
−22.732
14.485
−15.628
1.00
17.11

A
C


ANISOU
151
CG
ARG
A
80
2083
2261
2156
−71
86
78
A
C


ATOM
152
CD
ARG
A
80
−22.936
15.833
−14.927
1.00
19.20

A
C


ANISOU
152
CD
ARG
A
80
2482
2373
2439
−21
0
10
A
C


ATOM
153
NE
ARG
A
80
−24.141
16.551
−15.347
1.00
19.10

A
N


ANISOU
153
NE
ARG
A
80
2486
2340
2430
−13
−39
22
A
N


ATOM
154
CZ
ARG
A
80
−24.203
17.420
−16.357
1.00
18.53

A
C


ANISOU
154
CZ
ARG
A
80
2436
2300
2306
−10
−36
−57
A
C


ATOM
155
NH1
ARG
A
80
−23.128
17.688
−17.089
1.00
19.67

A
N


ANISOU
155
NH1
ARG
A
80
2428
2565
2480
−81
−75
−116
A
N


ATOM
156
NH2
ARG
A
80
−25.353
18.020
−16.641
1.00
18.48

A
N


ANISOU
156
NH2
ARG
A
80
2437
2334
2250
−10
−61
−36
A
N


ATOM
157
C
ARG
A
80
−25.384
12.273
−13.785
1.00
13.95

A
C


ANISOU
157
C
ARG
A
80
1807
1801
1693
20
−24
50
A
C


ATOM
158
O
ARG
A
80
−26.434
12.462
−14.402
1.00
13.84

A
O


ANISOU
158
O
ARG
A
80
1823
1811
1626
1
−65
55
A
O


ATOM
159
N
LEU
A
81
−25.188
11.199
−13.022
1.00
13.49

A
N


ANISOU
159
N
LEU
A
81
1814
1730
1583
−11
40
7
A
N


ATOM
160
CA
LEU
A
81
−26.218
10.170
−12.898
1.00
14.01

A
C


ANISOU
160
CA
LEU
A
81
1854
1810
1659
−21
0
21
A
C


ATOM
161
CB
LEU
A
81
−25.710
9.008
−12.039
1.00
13.70

A
C


ANISOU
161
CB
LEU
A
81
1843
1771
1591
−13
−30
34
A
C


ATOM
162
CG
LEU
A
81
−26.387
7.647
−12.184
1.00
14.88

A
C


ANISOU
162
CG
LEU
A
81
2012
1849
1791
−1
−2
26
A
C


ATOM
163
CD1
LEU
A
81
−26.105
7.050
−13.561
1.00
17.57

A
C


ANISOU
163
CD1
LEU
A
81
2410
2252
2012
69
−16
−124
A
C


ATOM
164
CD2
LEU
A
81
−25.886
6.718
−11.089
1.00
15.63

A
C


ANISOU
164
CD2
LEU
A
81
2052
1924
1962
12
−23
106
A
C


ATOM
165
C
LEU
A
81
−27.504
10.760
−12.312
1.00
14.38

A
C


ANISOU
165
C
LEU
A
81
1805
1845
1814
−1
−34
6
A
C


ATOM
166
O
LEU
A
81
−27.464
11.485
−11.315
1.00
15.15

A
O


ANISOU
166
O
LEU
A
81
1899
2000
1858
−72
−19
−15
A
O


ATOM
167
N
SER
A
82
−28.636
10.455
−12.944
1.00
14.49

A
N


ANISOU
167
N
SER
A
82
1834
1942
1728
13
−17
7
A
N


ATOM
168
CA
SER
A
82
−29.929
10.988
−12.506
1.00
14.83

A
C


ANISOU
168
CA
SER
A
82
1872
1937
1827
41
−22
10
A
C


ATOM
169
CB
SER
A
82
−30.504
11.928
−13.564
1.00
15.32

A
C


ANISOU
169
CB
SER
A
82
2006
1954
1860
7
−18
31
A
C


ATOM
170
OG
SER
A
82
−30.493
11.315
−14.840
1.00
15.85

A
O


ANISOU
170
OG
SER
A
82
2115
1928
1979
78
−43
−51
A
O


ATOM
171
C
SER
A
82
−30.939
9.894
−12.186
1.00
15.63

A
C


ANISOU
171
C
SER
A
82
1982
2029
1929
13
−17
11
A
C


ATOM
172
O
SER
A
82
−31.923
10.132
−11.482
1.00
17.33

A
O


ANISOU
172
O
SER
A
82
2051
2330
2202
23
45
−45
A
O


ATOM
173
N
GLU
A
83
−30.686
8.699
−12.705
1.00
15.55

A
N


ANISOU
173
N
GLU
A
83
1979
2020
1908
21
12
34
A
N


ATOM
174
CA
GLU
A
83
−31.594
7.569
−12.563
1.00
16.48

A
C


ANISOU
174
CA
GLU
A
83
2105
2101
2054
0
25
−9
A
C


ATOM
175
CB
GLU
A
83
−32.574
7.576
−13.737
1.00
17.35

A
C


ANISOU
175
CB
GLU
A
83
2145
2188
2258
121
−26
40
A
C


ATOM
176
CG
GLU
A
83
−33.666
6.534
−13.728
1.00
19.95

A
C


ANISOU
176
CG
GLU
A
83
2375
2561
2645
15
−81
−1
A
C


ATOM
177
CD
GLU
A
83
−34.613
6.718
−14.899
1.00
21.13

A
C


ANISOU
177
CD
GLU
A
83
2667
2715
2646
39
−116
−7
A
C


ATOM
178
OE1
GLU
A
83
−34.558
5.901
−15.847
1.00
20.81

A
O


ANISOU
178
OE1
GLU
A
83
2587
2668
2652
40
−71
−48
A
O


ATOM
179
OE2
GLU
A
83
−35.389
7.703
−14.880
1.00
21.64

A
O


ANISOU
179
OE2
GLU
A
83
2551
2650
3020
103
33
30
A
O


ATOM
180
C
GLU
A
83
−30.770
6.287
−12.536
1.00
15.76

A
C


ANISOU
180
C
GLU
A
83
1986
2065
1937
−21
27
21
A
C


ATOM
181
O
GLU
A
83
−29.560
6.315
−12.803
1.00
16.85

A
O


ANISOU
181
O
GLU
A
83
2019
2249
2135
80
70
77
A
O


ATOM
182
N
SER
A
84
−31.418
5.171
−12.210
1.00
14.84

A
N


ANISOU
182
N
SER
A
84
1940
1910
1788
45
33
−58
A
N


ATOM
183
CA
SER
A
84
−30.746
3.879
−12.129
1.00
14.50

A
C


ANISOU
183
CA
SER
A
84
1836
1959
1716
67
57
−22
A
C


ATOM
184
CB
SER
A
84
−31.758
2.758
−11.896
1.00
16.92

A
C


ANISOU
184
CB
SER
A
84
2128
2118
2181
3
17
8
A
C


ATOM
185
OG
SER
A
84
−32.636
2.640
−12.997
1.00
20.82

A
O


ANISOU
185
OG
SER
A
84
2692
2802
2416
−54
−24
−51
A
O


ATOM
186
C
SER
A
84
−29.916
3.579
−13.378
1.00
13.57

A
C


ANISOU
186
C
SER
A
84
1671
1860
1626
45
31
17
A
C


ATOM
187
O
SER
A
84
−30.358
3.811
−14.509
1.00
15.25

A
O


ANISOU
187
O
SER
A
84
1794
2213
1787
126
−19
−29
A
O


ATOM
188
N
VAL
A
85
−28.707
3.085
−13.145
1.00
11.51

A
N


ANISOU
188
N
VAL
A
85
1498
1533
1342
−5
73
−19
A
N


ATOM
189
CA
VAL
A
85
−27.867
2.506
−14.187
1.00
11.01

A
C


ANISOU
189
CA
VAL
A
85
1400
1459
1323
−13
16
−8
A
C


ATOM
190
CB
VAL
A
85
−26.543
3.315
−14.379
1.00
11.36

A
C


ANISOU
190
CB
VAL
A
85
1458
1544
1315
−38
−10
2
A
C


ATOM
191
CG1
VAL
A
85
−25.686
3.321
−13.104
1.00
11.46

A
C


ANISOU
191
CG1
VAL
A
85
1514
1582
1260
−22
−23
−23
A
C


ATOM
192
CG2
VAL
A
85
−25.746
2.800
−15.575
1.00
12.06

A
C


ANISOU
192
CG2
VAL
A
85
1532
1614
1438
−14
62
6
A
C


ATOM
193
C
VAL
A
85
−27.627
1.041
−13.793
1.00
10.89

A
C


ANISOU
193
C
VAL
A
85
1433
1435
1270
7
−37
17
A
C


ATOM
194
O
VAL
A
85
−27.478
0.729
−12.604
1.00
10.38

A
O


ANISOU
194
O
VAL
A
85
1417
1405
1122
−12
−80
32
A
O


ATOM
195
N
LEU
A
86
−27.627
0.148
−14.782
1.00
11.92

A
N


ANISOU
195
N
LEU
A
86
1627
1565
1337
27
−23
−30
A
N


ATOM
196
CA
LEU
A
86
−27.548
−1.293
−14.540
1.00
12.57

A
C


ANISOU
196
CA
LEU
A
86
1701
1619
1456
−21
16
−31
A
C


ATOM
197
CB
LEU
A
86
−28.808
−1.998
−15.054
1.00
14.67

A
C


ANISOU
197
CB
LEU
A
86
1834
2055
1686
−6
−124
−77
A
C


ATOM
198
CG
LEU
A
86
−30.088
−2.206
−14.255
1.00
18.99

A
C


ANISOU
198
CG
LEU
A
86
2198
2666
2352
−55
35
61
A
C


ATOM
199
CD1
LEU
A
86
−31.122
−2.832
−15.188
1.00
19.39

A
C


ANISOU
199
CD1
LEU
A
86
2507
2447
2413
−68
−44
−56
A
C


ATOM
200
CD2
LEU
A
86
−29.876
−3.096
−13.050
1.00
18.92

A
C


ANISOU
200
CD2
LEU
A
86
2421
2446
2323
−22
23
15
A
C


ATOM
201
C
LEU
A
86
−26.369
−1.910
−15.263
1.00
12.04

A
C


ANISOU
201
C
LEU
A
86
1664
1454
1456
−14
−17
−37
A
C


ATOM
202
O
LEU
A
86
−26.082
−1.548
−16.411
1.00
11.99

A
O


ANISOU
202
O
LEU
A
86
1861
1342
1352
−68
22
−14
A
O


ATOM
203
N
SER
A
87
−25.714
−2.865
−14.606
1.00
10.94

A
N


ANISOU
203
N
SER
A
87
1506
1297
1353
−74
−4
−89
A
N


ATOM
204
CA
SER
A
87
−24.643
−3.634
−15.231
1.00
10.99

A
C


ANISOU
204
CA
SER
A
87
1402
1376
1396
−52
−22
−18
A
C


ATOM
205
CB
SER
A
87
−23.838
−4.381
−14.162
1.00
11.35

A
C


ANISOU
205
CB
SER
A
87
1536
1324
1453
−77
10
94
A
C


ATOM
206
OG
SER
A
87
−24.556
−5.508
−13.678
1.00
10.16

A
O


ANISOU
206
OG
SER
A
87
1421
1266
1172
−130
97
9
A
O


ATOM
207
C
SER
A
87
−25.222
−4.649
−16.218
1.00
10.28

A
C


ANISOU
207
C
SER
A
87
1338
1268
1300
−37
13
25
A
C


ATOM
208
O
SER
A
87
−26.416
−4.958
−16.161
1.00
10.16

A
O


ANISOU
208
O
SER
A
87
1337
1310
1213
−30
5
−11
A
O


ATOM
209
N
PRO
A
88
−24.375
−5.174
−17.123
1.00
9.76

A
N


ANISOU
209
N
PRO
A
88
1321
1142
1246
−36
−7
56
A
N


ATOM
210
CA
PRO
A
88
−24.777
−6.374
−17.852
1.00
9.74

A
C


ANISOU
210
CA
PRO
A
88
1381
1168
1152
−14
51
6
A
C


ATOM
211
CB
PRO
A
88
−23.613
−6.630
−18.819
1.00
10.87

A
C


ANISOU
211
CB
PRO
A
88
1395
1378
1356
−3
125
78
A
C


ATOM
212
CG
PRO
A
88
−22.721
−5.456
−18.730
1.00
12.34

A
C


ANISOU
212
CG
PRO
A
88
1655
1490
1544
−61
39
−99
A
C


ATOM
213
CD
PRO
A
88
−23.027
−4.706
−17.492
1.00
10.76

A
C


ANISOU
213
CD
PRO
A
88
1308
1371
1409
−9
13
9
A
C


ATOM
214
C
PRO
A
88
−24.906
−7.548
−16.868
1.00
9.08

A
C


ANISOU
214
C
PRO
A
88
1229
1129
1093
6
−3
20
A
C


ATOM
215
O
PRO
A
88
−24.340
−7.489
−15.767
1.00
9.18

A
O


ANISOU
215
O
PRO
A
88
1183
1147
1159
−5
−1
14
A
O


ATOM
216
N
PRO
A
89
−25.648
−8.603
−17.249
1.00
8.97

A
N


ANISOU
216
N
PRO
A
89
1227
1095
1085
−34
−16
94
A
N


ATOM
217
CA
PRO
A
89
−25.827
−9.730
−16.327
1.00
8.49

A
C


ANISOU
217
CA
PRO
A
89
1131
1045
1049
10
−2
64
A
C


ATOM
218
CB
PRO
A
89
−26.858
−10.607
−17.038
1.00
9.49

A
C


ANISOU
218
CB
PRO
A
89
1224
1184
1199
−65
−10
21
A
C


ATOM
219
CG
PRO
A
89
−26.740
−10.259
−18.479
1.00
9.61

A
C


ANISOU
219
CG
PRO
A
89
1369
1078
1206
−87
−83
55
A
C


ATOM
220
CD
PRO
A
89
−26.382
−8.802
−18.515
1.00
9.23

A
C


ANISOU
220
CD
PRO
A
89
1283
1043
1182
−18
−81
−15
A
C


ATOM
221
C
PRO
A
89
−24.554
−10.535
−16.065
1.00
9.06

A
C


ANISOU
221
C
PRO
A
89
1134
1230
1079
40
16
31
A
C


ATOM
222
O
PRO
A
89
−23.672
−10.635
−16.933
1.00
9.00

A
O


ANISOU
222
O
PRO
A
89
1132
1224
1062
45
47
104
A
O


ATOM
223
N
CYS
A
90
−24.480
−11.090
−14.861
1.00
8.66

A
N


ANISOU
223
N
CYS
A
90
1068
1138
1083
48
19
64
A
N


ATOM
224
CA
CYS
A
90
−23.442
−12.031
−14.473
1.00
9.10

A
C


ANISOU
224
CA
CYS
A
90
1165
1088
1204
17
10
0
A
C


ATOM
225
CB
CYS
A
90
−22.590
−11.442
−13.354
1.00
9.62

A
C


ANISOU
225
CB
CYS
A
90
1201
1154
1300
10
−29
14
A
C


ATOM
226
SG
CYS
A
90
−21.304
−12.542
−12.743
1.00
12.22

A
S


ANISOU
226
SG
CYS
A
90
1512
1486
1645
172
−258
6
A
S


ATOM
227
C
CYS
A
90
−24.162
−13.268
−13.971
1.00
8.12

A
C


ANISOU
227
C
CYS
A
90
1077
1006
1001
2
23
8
A
C


ATOM
228
O
CYS
A
90
−25.013
−13.170
−13.082
1.00
8.45

A
O


ANISOU
228
O
CYS
A
90
1087
1072
1050
41
72
−13
A
O


ATOM
229
N
PHE
A
91
−23.832
−14.430
−14.534
1.00
8.30

A
N


ANISOU
229
N
PHE
A
91
1093
1056
1006
30
15
8
A
N


ATOM
230
CA
PHE
A
91
−24.534
−15.666
−14.173
1.00
8.82

A
C


ANISOU
230
CA
PHE
A
91
1190
1067
1096
−2
20
−36
A
C


ATOM
231
CB
PHE
A
91
−24.652
−16.611
−15.378
1.00
10.41

A
C


ANISOU
231
CB
PHE
A
91
1395
1234
1327
46
−51
−130
A
C


ATOM
232
CG
PHE
A
91
−25.838
−16.318
−16.250
1.00
10.03

A
C


ANISOU
232
CG
PHE
A
91
1258
1340
1212
−11
9
−70
A
C


ATOM
233
CD1
PHE
A
91
−25.809
−15.262
−17.156
1.00
11.40

A
C


ANISOU
233
CD1
PHE
A
91
1491
1335
1504
71
49
−59
A
C


ATOM
234
CE1
PHE
A
91
−26.908
−14.983
−17.962
1.00
14.03

A
C


ANISOU
234
CE1
PHE
A
91
1665
1903
1762
−53
−92
−73
A
C


ATOM
235
CZ
PHE
A
91
−28.054
−15.763
−17.853
1.00
12.66

A
C


ANISOU
235
CZ
PHE
A
91
1579
1624
1607
15
−13
−2
A
C


ATOM
236
CE2
PHE
A
91
−28.094
−16.819
−16.952
1.00
12.50

A
C


ANISOU
236
CE2
PHE
A
91
1552
1762
1435
39
−10
−3
A
C


ATOM
237
CD2
PHE
A
91
−26.993
−17.091
−16.153
1.00
11.75

A
C


ANISOU
237
CD2
PHE
A
91
1413
1524
1528
−40
2
−79
A
C


ATOM
238
C
PHE
A
91
−23.954
−16.395
−12.970
1.00
9.54

A
C


ANISOU
238
C
PHE
A
91
1235
1205
1185
−31
6
−16
A
C


ATOM
239
O
PHE
A
91
−22.753
−16.681
−12.913
1.00
9.84

A
O


ANISOU
239
O
PHE
A
91
1226
1189
1324
−80
−1
89
A
O


ATOM
240
N
VAL
A
92
−24.839
−16.678
−12.014
1.00
9.87

A
N


ANISOU
240
N
VAL
A
92
1299
1276
1177
−99
−14
19
A
N


ATOM
241
CA
VAL
A
92
−24.536
−17.451
−10.808
1.00
9.57

A
C


ANISOU
241
CA
VAL
A
92
1284
1122
1231
−46
−14
4
A
C


ATOM
242
CB
VAL
A
92
−24.266
−16.529
−9.583
1.00
9.74

A
C


ANISOU
242
CB
VAL
A
92
1286
1218
1198
−33
−19
17
A
C


ATOM
243
CG1
VAL
A
92
−23.947
−17.342
−8.327
1.00
10.73

A
C


ANISOU
243
CG1
VAL
A
92
1519
1349
1209
21
−55
18
A
C


ATOM
244
CG2
VAL
A
92
−23.126
−15.571
−9.871
1.00
11.56

A
C


ANISOU
244
CG2
VAL
A
92
1462
1480
1451
−125
62
122
A
C


ATOM
245
C
VAL
A
92
−25.754
−18.336
−10.551
1.00
9.77

A
C


ANISOU
245
C
VAL
A
92
1251
1173
1290
−3
3
50
A
C


ATOM
246
O
VAL
A
92
−26.895
−17.862
−10.610
1.00
9.36

A
O


ANISOU
246
O
VAL
A
92
1215
996
1346
29
69
−9
A
O


ATOM
247
N
ARG
A
93
−25.519
−19.622
−10.292
1.00
9.60

A
N


ANISOU
247
N
ARG
A
93
1256
1071
1320
−18
34
−35
A
N


ATOM
248
CA
ARG
A
93
−26.610
−20.584
−10.048
1.00
9.98

A
C


ANISOU
248
CA
ARG
A
93
1246
1220
1325
−27
34
−8
A
C


ATOM
249
CB
ARG
A
93
−27.293
−20.320
−8.693
1.00
9.44

A
C


ANISOU
249
CB
ARG
A
93
1217
1073
1298
−24
31
−35
A
C


ATOM
250
CG
ARG
A
93
−26.422
−20.598
−7.476
1.00
10.65

A
C


ANISOU
250
CG
ARG
A
93
1416
1248
1384
2
12
55
A
C


ATOM
251
CD
ARG
A
93
−26.157
−22.078
−7.295
1.00
11.56

A
C


ANISOU
251
CD
ARG
A
93
1492
1354
1547
77
23
87
A
C


ATOM
252
NE
ARG
A
93
−25.795
−22.368
−5.912
1.00
12.18

A
N


ANISOU
252
NE
ARG
A
93
1586
1532
1510
47
5
−14
A
N


ATOM
253
CZ
ARG
A
93
−25.640
−23.591
−5.417
1.00
13.44

A
C


ANISOU
253
CZ
ARG
A
93
1731
1618
1758
56
−21
58
A
C


ATOM
254
NH1
ARG
A
93
−25.794
−24.656
−6.202
1.00
14.85

A
N


ANISOU
254
NH1
ARG
A
93
2023
1795
1826
−19
−13
−38
A
N


ATOM
255
NH2
ARG
A
93
−25.322
−23.747
−4.135
1.00
13.60

A
N


ANISOU
255
NH2
ARG
A
93
1738
1746
1685
−17
51
32
A
N


ATOM
256
C
ARG
A
93
−27.640
−20.592
−11.180
1.00
10.60

A
C


ANISOU
256
C
ARG
A
93
1352
1246
1430
26
−1
−8
A
C


ATOM
257
O
ARG
A
93
−28.849
−20.731
−10.944
1.00
11.66

A
O


ANISOU
257
O
ARG
A
93
1378
1473
1580
−9
−23
10
A
O


ATOM
258
N
ASN
A
94
−27.141
−20.437
−12.404
1.00
10.85

A
N


ANISOU
258
N
ASN
A
94
1481
1226
1416
9
−40
−5
A
N


ATOM
259
CA
ASN
A
94
−27.958
−20.469
−13.622
1.00
11.43

A
C


ANISOU
259
CA
ASN
A
94
1449
1425
1469
23
−58
−33
A
C


ATOM
260
CB
ASN
A
94
−28.664
−21.827
−13.775
1.00
12.00

A
C


ANISOU
260
CB
ASN
A
94
1582
1404
1574
5
−55
−32
A
C


ATOM
261
CG
ASN
A
94
−27.708
−22.952
−14.152
1.00
14.57

A
C


ANISOU
261
CG
ASN
A
94
1785
1856
1895
162
31
−18
A
C


ATOM
262
OD1
ASN
A
94
−26.654
−22.719
−14.741
1.00
14.37

A
O


ANISOU
262
OD1
ASN
A
94
1874
1656
1929
−1
−33
25
A
O


ATOM
263
ND2
ASN
A
94
−28.083
−24.183
−13.816
1.00
19.38

A
N


ANISOU
263
ND2
ASN
A
94
2339
2213
2813
−96
68
31
A
N


ATOM
264
C
ASN
A
94
−28.954
−19.311
−13.768
1.00
11.41

A
C


ANISOU
264
C
ASN
A
94
1519
1341
1477
5
−65
−65
A
C


ATOM
265
O
ASN
A
94
−29.873
−19.381
−14.589
1.00
12.02

A
O


ANISOU
265
O
ASN
A
94
1496
1431
1639
−45
−85
−95
A
O


ATOM
266
N
LEU
A
95
−28.758
−18.249
−12.979
1.00
10.07

A
N


ANISOU
266
N
LEU
A
95
1312
1208
1306
8
−46
−55
A
N


ATOM
267
CA
LEU
A
95
−29.573
−17.036
−13.079
1.00
9.67

A
C


ANISOU
267
CA
LEU
A
95
1267
1188
1219
−18
46
26
A
C


ATOM
268
CB
LEU
A
95
−30.400
−16.817
−11.804
1.00
9.09

A
C


ANISOU
268
CB
LEU
A
95
1188
1126
1139
54
41
−26
A
C


ATOM
269
CG
LEU
A
95
−31.550
−17.794
−11.523
1.00
10.36

A
C


ANISOU
269
CG
LEU
A
95
1364
1351
1222
−132
48
7
A
C


ATOM
270
CD1
LEU
A
95
−32.174
−17.491
−10.170
1.00
11.04

A
C


ANISOU
270
CD1
LEU
A
95
1471
1408
1314
80
140
−47
A
C


ATOM
271
CD2
LEU
A
95
−32.619
−17.757
−12.612
1.00
11.47

A
C


ANISOU
271
CD2
LEU
A
95
1414
1447
1497
30
−98
174
A
C


ATOM
272
C
LEU
A
95
−28.705
−15.806
−13.324
1.00
9.14

A
C


ANISOU
272
C
LEU
A
95
1137
1231
1105
−31
33
24
A
C


ATOM
273
O
LEU
A
95
−27.547
−15.771
−12.891
1.00
9.94

A
O


ANISOU
273
O
LEU
A
95
1197
1402
1179
−11
−38
72
A
O


ATOM
274
N
PRO
A
96
−29.258
−14.794
−14.018
1.00
8.42

A
N


ANISOU
274
N
PRO
A
96
1071
1082
1045
−16
−7
−49
A
N


ATOM
275
CA
PRO
A
96
−28.524
−13.546
−14.232
1.00
8.93

A
C


ANISOU
275
CA
PRO
A
96
1192
1170
1031
−41
−25
−13
A
C


ATOM
276
CB
PRO
A
96
−29.201
−12.959
−15.469
1.00
9.01

A
C


ANISOU
276
CB
PRO
A
96
1054
1283
1086
−7
−58
41
A
C


ATOM
277
CG
PRO
A
96
−30.627
−13.448
−15.385
1.00
8.38

A
C


ANISOU
277
CG
PRO
A
96
1043
1095
1046
−40
3
16
A
C


ATOM
278
CD
PRO
A
96
−30.583
−14.782
−14.678
1.00
8.95

A
C


ANISOU
278
CD
PRO
A
96
1117
1141
1141
28
−6
16
A
C


ATOM
279
C
PRO
A
96
−28.649
−12.576
−13.056
1.00
8.76

A
C


ANISOU
279
C
PRO
A
96
1119
1139
1069
7
10
−25
A
C


ATOM
280
O
PRO
A
96
−29.748
−12.373
−12.532
1.00
9.95

A
O


ANISOU
280
O
PRO
A
96
1133
1397
1251
−6
52
−71
A
O


ATOM
281
N
TRP
A
97
−27.521
−11.981
−12.672
1.00
7.82

A
N


ANISOU
281
N
TRP
A
97
1077
983
913
−33
7
−7
A
N


ATOM
282
CA
TRP
A
97
−27.455
−11.007
−11.586
1.00
7.32

A
C


ANISOU
282
CA
TRP
A
97
1017
839
925
−13
−57
22
A
C


ATOM
283
CB
TRP
A
97
−26.579
−11.528
−10.436
1.00
8.04

A
C


ANISOU
283
CB
TRP
A
97
1024
990
1039
−33
−60
41
A
C


ATOM
284
CG
TRP
A
97
−27.054
−12.854
−9.896
1.00
8.39

A
C


ANISOU
284
CG
TRP
A
97
1182
956
1050
14
35
108
A
C


ATOM
285
CD1
TRP
A
97
−26.851
−14.083
−10.459
1.00
9.20

A
C


ANISOU
285
CD1
TRP
A
97
1345
1038
1114
−106
27
22
A
C


ATOM
286
NE1
TRP
A
97
−27.447
−15.063
−9.693
1.00
8.57

A
N


ANISOU
286
NE1
TRP
A
97
1147
1069
1041
−79
51
112
A
N


ATOM
287
CE2
TRP
A
97
−28.043
−14.475
−8.610
1.00
8.37

A
C


ANISOU
287
CE2
TRP
A
97
1082
994
1105
−60
71
28
A
C


ATOM
288
CD2
TRP
A
97
−27.822
−13.080
−8.704
1.00
8.09

A
C


ANISOU
288
CD2
TRP
A
97
1134
952
986
37
−48
19
A
C


ATOM
289
CE3
TRP
A
97
−28.338
−12.242
−7.703
1.00
9.38

A
C


ANISOU
289
CE3
TRP
A
97
1193
1244
1127
71
85
84
A
C


ATOM
290
CZ3
TRP
A
97
−29.049
−12.818
−6.654
1.00
9.85

A
C


ANISOU
290
CZ3
TRP
A
97
1390
1262
1090
9
55
8
A
C


ATOM
291
CH2
TRP
A
97
−29.252
−14.207
−6.592
1.00
9.05

A
C


ANISOU
291
CH2
TRP
A
97
1129
1191
1119
15
93
17
A
C


ATOM
292
CZ2
TRP
A
97
−28.759
−15.050
−7.557
1.00
8.61

A
C


ANISOU
292
CZ2
TRP
A
97
1127
1126
1019
−60
35
48
A
C


ATOM
293
C
TRP
A
97
−26.878
−9.705
−12.123
1.00
6.97

A
C


ANISOU
293
C
TRP
A
97
881
884
885
−12
22
−2
A
C


ATOM
294
O
TRP
A
97
−25.985
−9.720
−12.964
1.00
7.97

A
O


ANISOU
294
O
TRP
A
97
1076
1013
941
−29
81
−100
A
O


ATOM
295
N
LYS
A
98
−27.400
−8.584
−11.637
1.00
7.05

A
N


ANISOU
295
N
LYS
A
98
941
838
900
17
10
−44
A
N


ATOM
296
CA
LYS
A
98
−26.926
−7.272
−12.052
1.00
7.40

A
C


ANISOU
296
CA
LYS
A
98
949
927
937
37
2
−6
A
C


ATOM
297
CB
LYS
A
98
−27.930
−6.606
−12.994
1.00
7.63

A
C


ANISOU
297
CB
LYS
A
98
975
1007
918
41
−62
−17
A
C


ATOM
298
CG
LYS
A
98
−28.139
−7.321
−14.327
1.00
8.28

A
C


ANISOU
298
CG
LYS
A
98
1134
1131
880
104
−48
−42
A
C


ATOM
299
CD
LYS
A
98
−29.200
−6.599
−15.148
1.00
8.27

A
C


ANISOU
299
CD
LYS
A
98
1223
840
1080
34
−170
50
A
C


ATOM
300
CE
LYS
A
98
−29.497
−7.328
−16.450
1.00
10.05

A
C


ANISOU
300
CE
LYS
A
98
1505
1224
1089
40
13
−39
A
C


ATOM
301
NZ
LYS
A
98
−30.547
−6.617
−17.239
1.00
11.71

A
N


ANISOU
301
NZ
LYS
A
98
1571
1472
1405
−26
−85
36
A
N


ATOM
302
C
LYS
A
98
−26.715
−6.368
−10.855
1.00
8.33

A
C


ANISOU
302
C
LYS
A
98
1087
1033
1046
−25
48
−24
A
C


ATOM
303
O
LYS
A
98
−27.384
−6.512
−9.827
1.00
8.66

A
O


ANISOU
303
O
LYS
A
98
1240
1042
1010
−1
138
39
A
O


ATOM
304
N
ILE
A
99
−25.787
−5.428
−11.004
1.00
8.09

A
N


ANISOU
304
N
ILE
A
99
1088
942
1044
−84
24
−47
A
N


ATOM
305
CA
ILE
A
99
−25.645
−4.327
−10.056
1.00
8.52

A
C


ANISOU
305
CA
ILE
A
99
1150
1030
1058
−2
−40
−67
A
C


ATOM
306
CB
ILE
A
99
−24.171
−3.912
−9.898
1.00
7.98

A
C


ANISOU
306
CB
ILE
A
99
1040
1049
942
13
28
11
A
C


ATOM
307
CG1
ILE
A
99
−23.401
−5.004
−9.150
1.00
9.10

A
C


ANISOU
307
CG1
ILE
A
99
1219
1197
1042
83
57
73
A
C


ATOM
308
CD1
ILE
A
99
−21.902
−4.885
−9.255
1.00
9.94

A
C


ANISOU
308
CD1
ILE
A
99
1127
1329
1320
−8
11
54
A
C


ATOM
309
CG2
ILE
A
99
−24.045
−2.559
−9.185
1.00
10.85

A
C


ANISOU
309
CG2
ILE
A
99
1566
1175
1380
−41
−53
−48
A
C


ATOM
310
C
ILE
A
99
−26.478
−3.152
−10.547
1.00
9.09

A
C


ANISOU
310
C
ILE
A
99
1227
1093
1134
−53
−4
7
A
C


ATOM
311
O
ILE
A
99
−26.423
−2.796
−11.731
1.00
9.17

A
O


ANISOU
311
O
ILE
A
99
1273
1074
1136
−45
36
14
A
O


ATOM
312
N
MET
A
100
−27.264
−2.579
−9.635
1.00
9.65

A
N


ANISOU
312
N
MET
A
100
1316
1241
1110
−106
61
−79
A
N


ATOM
313
CA
MET
A
100
−28.069
−1.397
−9.915
1.00
11.20

A
C


ANISOU
313
CA
MET
A
100
1569
1321
1367
−69
43
−59
A
C


ATOM
314
CB
MET
A
100
−29.566
−1.685
−9.752
1.00
12.58

A
C


ANISOU
314
CB
MET
A
100
1727
1562
1491
−142
9
−55
A
C


ATOM
315
CG
MET
A
100
−30.447
−0.537
−10.232
1.00
16.94

A
C


ANISOU
315
CG
MET
A
100
2187
2119
2132
148
21
33
A
C


ATOM
316
SD
MET
A
100
−32.202
−0.922
−10.377
1.00
24.38

A
S


ANISOU
316
SD
MET
A
100
2696
3323
3244
−32
−113
23
A
S


ATOM
317
CE
MET
A
100
−32.523
−1.506
−8.720
1.00
24.89

A
C


ANISOU
317
CE
MET
A
100
3112
3340
3006
−28
4
24
A
C


ATOM
318
C
MET
A
100
−27.653
−0.266
−8.985
1.00
9.85

A
C


ANISOU
318
C
MET
A
100
1430
1143
1169
−71
9
19
A
C


ATOM
319
O
MET
A
100
−27.589
−0.446
−7.770
1.00
10.15

A
O


ANISOU
319
O
MET
A
100
1566
1095
1195
−39
0
46
A
O


ATOM
320
N
VAL
A
101
−27.366
0.895
−9.570
1.00
8.59

A
N


ANISOU
320
N
VAL
A
101
1153
1141
969
−64
22
37
A
N


ATOM
321
CA
VAL
A
101
−26.928
2.065
−8.822
1.00
9.06

A
C


ANISOU
321
CA
VAL
A
101
1248
1070
1124
3
−7
33
A
C


ATOM
322
CB
VAL
A
101
−25.433
2.368
−9.109
1.00
9.23

A
C


ANISOU
322
CB
VAL
A
101
1134
1170
1203
−53
−81
1
A
C


ATOM
323
CG1
VAL
A
101
−24.998
3.703
−8.501
1.00
11.39

A
C


ANISOU
323
CG1
VAL
A
101
1556
1232
1538
−7
−102
−31
A
C


ATOM
324
CG2
VAL
A
101
−24.550
1.241
−8.580
1.00
11.48

A
C


ANISOU
324
CG2
VAL
A
101
1455
1304
1604
120
−61
29
A
C


ATOM
325
C
VAL
A
101
−27.787
3.262
−9.221
1.00
9.48

A
C


ANISOU
325
C
VAL
A
101
1265
1162
1174
15
−25
−2
A
C


ATOM
326
O
VAL
A
101
−28.082
3.445
−10.400
1.00
10.46

A
O


ANISOU
326
O
VAL
A
101
1535
1246
1192
23
−54
139
A
O


ATOM
327
N
MET
A
102
−28.190
4.067
−8.242
1.00
9.57

A
N


ANISOU
327
N
MET
A
102
1376
1130
1132
8
−40
−8
A
N


ATOM
328
CA
MET
A
102
−29.042
5.230
−8.518
1.00
11.64

A
C


ANISOU
328
CA
MET
A
102
1637
1388
1398
114
−26
−70
A
C


ATOM
329
CB
MET
A
102
−30.518
4.813
−8.586
1.00
13.39

A
C


ANISOU
329
CB
MET
A
102
1772
1643
1673
26
−50
−56
A
C


ATOM
330
CG
MET
A
102
−31.111
4.349
−7.249
1.00
16.67

A
C


ANISOU
330
CG
MET
A
102
2134
2299
1900
14
99
−133
A
C


ATOM
331
SD
MET
A
102
−32.685
3.498
−7.425
1.00
22.19

A
S


ANISOU
331
SD
MET
A
102
2552
2876
3004
−131
326
−36
A
S


ATOM
332
CE
MET
A
102
−32.116
1.846
−7.781
1.00
22.70

A
C


ANISOU
332
CE
MET
A
102
2921
2849
2854
13
39
−66
A
C


ATOM
333
C
MET
A
102
−28.858
6.294
−7.446
1.00
10.76

A
C


ANISOU
333
C
MET
A
102
1497
1261
1329
60
−27
8
A
C


ATOM
334
O
MET
A
102
−28.578
5.959
−6.301
1.00
11.31

A
O


ANISOU
334
O
MET
A
102
1727
1340
1230
72
−61
13
A
O


ATOM
335
N
PRO
A
103
−29.019
7.580
−7.808
1.00
9.24

A
N


ANISOU
335
N
PRO
A
103
1308
1145
1056
88
1
7
A
N


ATOM
336
CA
PRO
A
103
−29.138
8.581
−6.744
1.00
10.20

A
C


ANISOU
336
CA
PRO
A
103
1460
1172
1245
17
−28
1
A
C


ATOM
337
CB
PRO
A
103
−28.972
9.913
−7.482
1.00
10.28

A
C


ANISOU
337
CB
PRO
A
103
1484
1224
1197
2
−19
33
A
C


ATOM
338
CG
PRO
A
103
−29.371
9.617
−8.903
1.00
10.32

A
C


ANISOU
338
CG
PRO
A
103
1522
1234
1165
102
−59
−31
A
C


ATOM
339
CD
PRO
A
103
−29.112
8.165
−9.159
1.00
9.86

A
C


ANISOU
339
CD
PRO
A
103
1392
1233
1122
130
47
59
A
C


ATOM
340
C
PRO
A
103
−30.519
8.475
−6.102
1.00
10.89

A
C


ANISOU
340
C
PRO
A
103
1455
1346
1337
12
−13
−20
A
C


ATOM
341
O
PRO
A
103
−31.498
8.142
−6.786
1.00
12.15

A
O


ANISOU
341
O
PRO
A
103
1591
1641
1384
−77
12
−104
A
O


ATOM
342
N
ARG
A
104
−30.591
8.723
−4.795
1.00
10.97

A
N


ANISOU
342
N
ARG
A
104
1490
1370
1310
−9
−44
33
A
N


ATOM
343
CA
ARG
A
104
−31.847
8.638
−4.053
1.00
11.90

A
C


ANISOU
343
CA
ARG
A
104
1551
1461
1509
21
−27
−31
A
C


ATOM
344
CB
ARG
A
104
−31.901
7.365
−3.199
1.00
13.49

A
C


ANISOU
344
CB
ARG
A
104
1795
1657
1673
27
1
73
A
C


ATOM
345
CG
ARG
A
104
−31.609
6.050
−3.914
1.00
19.10

A
C


ANISOU
345
CG
ARG
A
104
2642
2201
2416
112
107
−175
A
C


ATOM
346
CD
ARG
A
104
−32.871
5.363
−4.390
1.00
24.82

A
C


ANISOU
346
CD
ARG
A
104
3004
3173
3253
−109
−64
−98
A
C


ATOM
347
NE
ARG
A
104
−33.795
5.030
−3.306
1.00
26.71

A
N


ANISOU
347
NE
ARG
A
104
3448
3329
3371
−71
94
33
A
N


ATOM
348
CZ
ARG
A
104
−34.706
4.060
−3.370
1.00
26.55

A
C


ANISOU
348
CZ
ARG
A
104
3367
3389
3333
−26
−35
−21
A
C


ATOM
349
NH1
ARG
A
104
−34.808
3.307
−4.456
1.00
25.25

A
N


ANISOU
349
NH1
ARG
A
104
3206
3024
3363
−29
44
34
A
N


ATOM
350
NH2
ARG
A
104
−35.509
3.838
−2.340
1.00
28.14

A
N


ANISOU
350
NH2
ARG
A
104
3534
3571
3588
−90
64
80
A
N


ATOM
351
C
ARG
A
104
−31.949
9.811
−3.107
1.00
12.05

A
C


ANISOU
351
C
ARG
A
104
1530
1534
1515
26
−23
−47
A
C


ATOM
352
O
ARG
A
104
−30.956
10.211
−2.510
1.00
10.96

A
O


ANISOU
352
O
ARG
A
104
1387
1409
1368
118
−59
−114
A
O


ATOM
353
N
PHE
A
105
−33.150
10.355
−2.954
1.00
13.20

A
N


ANISOU
353
N
PHE
A
105
1593
1743
1679
23
−23
−52
A
N


ATOM
354
CA
PHE
A
105
−33.405
11.249
−1.829
1.00
14.40

A
C


ANISOU
354
CA
PHE
A
105
1791
1835
1844
26
17
−68
A
C


ATOM
355
CB
PHE
A
105
−32.916
12.686
−2.096
1.00
15.16

A
C


ANISOU
355
CB
PHE
A
105
1896
1907
1958
−10
−57
−7
A
C


ATOM
356
CG
PHE
A
105
−33.878
13.539
−2.881
1.00
15.62

A
C


ANISOU
356
CG
PHE
A
105
1947
1978
2011
34
4
22
A
C


ATOM
357
CD1
PHE
A
105
−34.742
14.421
−2.226
1.00
15.73

A
C


ANISOU
357
CD1
PHE
A
105
1924
1991
2063
41
9
30
A
C


ATOM
358
CE1
PHE
A
105
−35.634
15.223
−2.949
1.00
14.77

A
C


ANISOU
358
CE1
PHE
A
105
1858
1859
1894
−38
63
58
A
C


ATOM
359
CZ
PHE
A
105
−35.654
15.150
−4.337
1.00
15.16

A
C


ANISOU
359
CZ
PHE
A
105
1995
1827
1938
−10
−67
−34
A
C


ATOM
360
CE2
PHE
A
105
−34.788
14.281
−5.006
1.00
14.60

A
C


ANISOU
360
CE2
PHE
A
105
1748
1808
1991
−46
6
75
A
C


ATOM
361
CD2
PHE
A
105
−33.905
13.479
−4.274
1.00
14.93

A
C


ANISOU
361
CD2
PHE
A
105
1773
1980
1920
−40
−70
55
A
C


ATOM
362
C
PHE
A
105
−34.862
11.209
−1.416
1.00
15.21

A
C


ANISOU
362
C
PHE
A
105
1840
1955
1986
25
6
−56
A
C


ATOM
363
O
PHE
A
105
−35.718
10.723
−2.158
1.00
14.08

A
O


ANISOU
363
O
PHE
A
105
1640
1795
1913
92
61
−135
A
O


ATOM
364
N
TYR
A
106
−35.120
11.716
−0.216
1.00
16.61

A
N


ANISOU
364
N
TYR
A
106
2060
2186
2064
10
−32
−72
A
N


ATOM
365
CA
TYR
A
106
−36.456
11.747
0.344
1.00
18.54

A
C


ANISOU
365
CA
TYR
A
106
2259
2384
2403
24
35
−67
A
C


ATOM
366
CB
TYR
A
106
−36.519
10.873
1.602
1.00
22.35

A
C


ANISOU
366
CB
TYR
A
106
2780
3001
2710
−41
43
133
A
C


ATOM
367
CG
TYR
A
106
−36.264
9.409
1.297
1.00
28.28

A
C


ANISOU
367
CG
TYR
A
106
3724
3485
3538
48
23
−4
A
C


ATOM
368
CD1
TYR
A
106
−37.323
8.539
1.026
1.00
30.61

A
C


ANISOU
368
CD1
TYR
A
106
3834
3858
3939
−57
−31
0
A
C


ATOM
369
CE1
TYR
A
106
−37.097
7.194
0.728
1.00
31.66

A
C


ANISOU
369
CE1
TYR
A
106
3965
3944
4120
11
0
−21
A
C


ATOM
370
CZ
TYR
A
106
−35.797
6.710
0.697
1.00
31.30

A
C


ANISOU
370
CZ
TYR
A
106
4051
3824
4019
58
11
−48
A
C


ATOM
371
OH
TYR
A
106
−35.565
5.383
0.404
1.00
30.17

A
O


ANISOU
371
OH
TYR
A
106
3931
3673
3861
32
24
−67
A
O


ATOM
372
CE2
TYR
A
106
−34.727
7.556
0.956
1.00
31.63

A
C


ANISOU
372
CE2
TYR
A
106
4027
3914
4078
12
−6
−26
A
C


ATOM
373
CD2
TYR
A
106
−34.965
8.900
1.253
1.00
30.02

A
C


ANISOU
373
CD2
TYR
A
106
3712
3872
3822
18
6
32
A
C


ATOM
374
C
TYR
A
106
−36.817
13.199
0.625
1.00
16.36

A
C


ANISOU
374
C
TYR
A
106
1999
2145
2073
−7
−22
−34
A
C


ATOM
375
O
TYR
A
106
−35.946
13.991
0.992
1.00
14.66

A
O


ANISOU
375
O
TYR
A
106
1783
1864
1924
77
3
−39
A
O


ATOM
376
N
PRO
A
107
−38.093
13.564
0.414
1.00
15.44

A
N


ANISOU
376
N
PRO
A
107
1952
1974
1941
−11
−10
−47
A
N


ATOM
377
CA
PRO
A
107
−38.500
14.965
0.527
1.00
14.63

A
C


ANISOU
377
CA
PRO
A
107
1847
1881
1831
6
−32
−49
A
C


ATOM
378
CB
PRO
A
107
−40.009
14.932
0.243
1.00
15.54

A
C


ANISOU
378
CB
PRO
A
107
1876
2052
1976
2
−36
−14
A
C


ATOM
379
CG
PRO
A
107
−40.413
13.509
0.359
1.00
17.09

A
C


ANISOU
379
CG
PRO
A
107
2085
2127
2283
13
−14
−20
A
C


ATOM
380
CD
PRO
A
107
−39.217
12.687
0.034
1.00
15.97

A
C


ANISOU
380
CD
PRO
A
107
1989
2031
2048
−36
−44
−41
A
C


ATOM
381
C
PRO
A
107
−38.222
15.601
1.892
1.00
12.92

A
C


ANISOU
381
C
PRO
A
107
1604
1662
1642
14
13
10
A
C


ATOM
382
O
PRO
A
107
−38.020
16.813
1.963
1.00
12.19

A
O


ANISOU
382
O
PRO
A
107
1462
1599
1569
22
44
−31
A
O


ATOM
383
N
ASP
A
108
−38.196
14.784
2.942
1.00
12.69

A
N


ANISOU
383
N
ASP
A
108
1548
1728
1545
−41
34
−33
A
N


ATOM
384
CA
ASP
A
108
−37.968
15.281
4.305
1.00
12.74

A
C


ANISOU
384
CA
ASP
A
108
1558
1689
1594
−61
−24
−24
A
C


ATOM
385
CB
ASP
A
108
−38.678
14.399
5.347
1.00
15.04

A
C


ANISOU
385
CB
ASP
A
108
2020
2061
1634
−63
78
2
A
C


ATOM
386
CG
ASP
A
108
−40.189
14.347
5.148
1.00
22.22

A
C


ANISOU
386
CG
ASP
A
108
2566
3028
2847
−7
−98
−93
A
C


ATOM
387
OD1
ASP
A
108
−40.773
15.314
4.638
1.00
24.65

A
O


ANISOU
387
OD1
ASP
A
108
3157
3037
3171
119
−20
65
A
O


ATOM
388
OD2
ASP
A
108
−40.806
13.326
5.518
1.00
26.59

A
O


ANISOU
388
OD2
ASP
A
108
3411
3273
3419
−201
119
141
A
O


ATOM
389
C
ASP
A
108
−36.492
15.407
4.668
1.00
11.23

A
C


ANISOU
389
C
ASP
A
108
1435
1496
1336
−53
37
−12
A
C


ATOM
390
O
ASP
A
108
−36.175
15.871
5.728
1.00
10.52

A
O


ANISOU
390
O
ASP
A
108
1368
1289
1339
−144
42
71
A
O


ATOM
391
N
ARG
A
109
−35.611
14.987
3.766
1.00
10.39

A
N


ANISOU
391
N
ARG
A
109
1264
1331
1353
−50
−23
8
A
N


ATOM
392
CA
ARG
A
109
−34.159
15.112
3.943
1.00
9.64

A
C


ANISOU
392
CA
ARG
A
109
1206
1245
1210
−29
51
60
A
C


ATOM
393
CB
ARG
A
109
−33.543
13.824
4.524
1.00
10.51

A
C


ANISOU
393
CB
ARG
A
109
1354
1345
1296
−4
49
53
A
C


ATOM
394
CG
ARG
A
109
−34.026
13.422
5.924
1.00
11.90

A
C


ANISOU
394
CG
ARG
A
109
1612
1489
1420
−75
96
108
A
C


ATOM
395
CD
ARG
A
109
−33.442
14.300
7.030
1.00
14.72

A
C


ANISOU
395
CD
ARG
A
109
1927
1865
1801
−99
36
−42
A
C


ATOM
396
NE
ARG
A
109
−33.697
13.731
8.355
1.00
17.00

A
N


ANISOU
396
NE
ARG
A
109
2358
2197
1906
−71
−30
59
A
N


ATOM
397
CZ
ARG
A
109
−34.846
13.831
9.018
1.00
18.38

A
C


ANISOU
397
CZ
ARG
A
109
2323
2332
2329
−18
2
−31
A
C


ATOM
398
NH1
ARG
A
109
−35.880
14.485
8.494
1.00
18.80

A
N


ANISOU
398
NH1
ARG
A
109
2549
2225
2369
7
−64
−22
A
N


ATOM
399
NH2
ARG
A
109
−34.964
13.268
10.216
1.00
18.61

A
N


ANISOU
399
NH2
ARG
A
109
2471
2239
2362
−90
5
4
A
N


ATOM
400
C
ARG
A
109
−33.496
15.467
2.604
1.00
8.90

A
C


ANISOU
400
C
ARG
A
109
1125
1135
1122
19
28
12
A
C


ATOM
401
O
ARG
A
109
−32.674
14.697
2.089
1.00
9.27

A
O


ANISOU
401
O
ARG
A
109
1128
1121
1272
−35
14
−5
A
O


ATOM
402
N
PRO
A
110
−33.841
16.644
2.037
1.00
8.12

A
N


ANISOU
402
N
PRO
A
110
1030
1068
986
−1
13
22
A
N


ATOM
403
CA
PRO
A
110
−33.367
16.980
0.690
1.00
8.27

A
C


ANISOU
403
CA
PRO
A
110
1046
1104
992
−11
55
12
A
C


ATOM
404
CB
PRO
A
110
−34.154
18.247
0.350
1.00
8.05

A
C


ANISOU
404
CB
PRO
A
110
1087
1002
968
−38
−11
−15
A
C


ATOM
405
CG
PRO
A
110
−34.428
18.878
1.680
1.00
8.05

A
C


ANISOU
405
CG
PRO
A
110
1136
1012
912
0
16
7
A
C


ATOM
406
CD
PRO
A
110
−34.677
17.720
2.605
1.00
7.89

A
C


ANISOU
406
CD
PRO
A
110
1063
1006
930
−18
18
10
A
C


ATOM
407
C
PRO
A
110
−31.865
17.247
0.610
1.00
9.26

A
C


ANISOU
407
C
PRO
A
110
1127
1297
1095
−38
−13
4
A
C


ATOM
408
O
PRO
A
110
−31.315
17.333
−0.490
1.00
10.16

A
O


ANISOU
408
O
PRO
A
110
1224
1471
1167
−83
95
−33
A
O


ATOM
409
N
HIS
A
111
−31.223
17.371
1.768
1.00
8.41

A
N


ANISOU
409
N
HIS
A
111
1078
1112
1005
−81
−7
−28
A
N


ATOM
410
CA
HIS
A
111
−29.788
17.621
1.866
1.00
8.87

A
C


ANISOU
410
CA
HIS
A
111
1113
1144
1113
−28
−3
−23
A
C


ATOM
411
CB
HIS
A
111
−29.526
18.557
3.043
1.00
8.32

A
C


ANISOU
411
CB
HIS
A
111
1119
1049
994
−8
−35
6
A
C


ATOM
412
CG
HIS
A
111
−29.997
18.012
4.356
1.00
8.35

A
C


ANISOU
412
CG
HIS
A
111
1094
1060
1020
−23
34
−26
A
C


ATOM
413
ND1
HIS
A
111
−31.324
17.739
4.614
1.00
8.65

A
N


ANISOU
413
ND1
HIS
A
111
1109
1088
1090
28
15
−30
A
N


ATOM
414
CE1
HIS
A
111
−31.442
17.266
5.842
1.00
10.18

A
C


ANISOU
414
CE1
HIS
A
111
1290
1406
1171
47
25
10
A
C


ATOM
415
NE2
HIS
A
111
−30.242
17.228
6.392
1.00
8.78

A
N


ANISOU
415
NE2
HIS
A
111
1153
1053
1131
14
48
−97
A
N


ATOM
416
CD2
HIS
A
111
−29.320
17.690
5.484
1.00
8.92

A
C


ANISOU
416
CD2
HIS
A
111
1186
1109
1093
−24
−2
6
A
C


ATOM
417
C
HIS
A
111
−28.975
16.337
2.053
1.00
9.30

A
C


ANISOU
417
C
HIS
A
111
1175
1158
1200
−16
−5
−16
A
C


ATOM
418
O
HIS
A
111
−27.743
16.387
2.198
1.00
9.77

A
O


ANISOU
418
O
HIS
A
111
1126
1232
1355
40
9
−8
A
O


ATOM
419
N
GLN
A
112
−29.656
15.192
2.061
1.00
9.61

A
N


ANISOU
419
N
GLN
A
112
1257
1143
1253
23
19
−2
A
N


ATOM
420
CA
GLN
A
112
−28.989
13.920
2.347
1.00
9.93

A
C


ANISOU
420
CA
GLN
A
112
1266
1211
1296
18
3
−23
A
C


ATOM
421
CB
GLN
A
112
−29.508
13.320
3.659
1.00
10.03

A
C


ANISOU
421
CB
GLN
A
112
1301
1215
1296
58
−33
18
A
C


ATOM
422
CG
GLN
A
112
−29.125
14.135
4.896
1.00
11.18

A
C


ANISOU
422
CG
GLN
A
112
1485
1424
1337
26
−25
−85
A
C


ATOM
423
CD
GLN
A
112
−29.639
13.532
6.192
1.00
11.74

A
C


ANISOU
423
CD
GLN
A
112
1547
1433
1481
57
−25
71
A
C


ATOM
424
OE1
GLN
A
112
−30.627
12.798
6.204
1.00
14.14

A
O


ANISOU
424
OE1
GLN
A
112
1685
1916
1771
−79
−167
134
A
O


ATOM
425
NE2
GLN
A
112
−28.970
13.848
7.297
1.00
12.35

A
N


ANISOU
425
NE2
GLN
A
112
1650
1564
1479
66
−16
−65
A
N


ATOM
426
C
GLN
A
112
−29.091
12.912
1.203
1.00
9.55

A
C


ANISOU
426
C
GLN
A
112
1192
1204
1231
64
50
−3
A
C


ATOM
427
O
GLN
A
112
−29.205
11.703
1.441
1.00
10.58

A
O


ANISOU
427
O
GLN
A
112
1335
1256
1428
9
21
−55
A
O


ATOM
428
N
LYS
A
113
−29.025
13.411
−0.033
1.00
8.33

A
N


ANISOU
428
N
LYS
A
113
1125
996
1045
92
15
−73
A
N


ATOM
429
CA
LYS
A
113
−28.998
12.547
−1.215
1.00
8.24

A
C


ANISOU
429
CA
LYS
A
113
1167
999
965
69
16
−1
A
C


ATOM
430
CB
LYS
A
113
−28.677
13.361
−2.472
1.00
9.35

A
C


ANISOU
430
CB
LYS
A
113
1330
1177
1047
65
56
51
A
C


ATOM
431
CG
LYS
A
113
−28.789
12.575
−3.771
1.00
11.95

A
C


ANISOU
431
CG
LYS
A
113
1673
1462
1407
8
−27
−110
A
C


ATOM
432
CD
LYS
A
113
−28.822
13.501
−4.965
1.00
15.87

A
C


ANISOU
432
CD
LYS
A
113
2276
2014
1740
53
80
113
A
C


ATOM
433
CE
LYS
A
113
−27.480
14.126
−5.221
1.00
18.60

A
C


ANISOU
433
CE
LYS
A
113
2284
2438
2347
−9
−23
10
A
C


ATOM
434
NZ
LYS
A
113
−27.481
14.830
−6.539
1.00
22.06

A
N


ANISOU
434
NZ
LYS
A
113
2808
2934
2641
31
−27
272
A
N


ATOM
435
C
LYS
A
113
−27.974
11.428
−1.039
1.00
7.90

A
C


ANISOU
435
C
LYS
A
113
1096
947
957
6
0
−15
A
C


ATOM
436
O
LYS
A
113
−26.863
11.661
−0.562
1.00
8.43

A
O


ANISOU
436
O
LYS
A
113
1074
991
1139
44
20
1
A
O


ATOM
437
N
SER
A
114
−28.359
10.216
−1.423
1.00
7.25

A
N


ANISOU
437
N
SER
A
114
1043
835
877
72
−12
10
A
N


ATOM
438
CA
SER
A
114
−27.510
9.054
−1.212
1.00
7.39

A
C


ANISOU
438
CA
SER
A
114
1008
869
932
71
3
−24
A
C


ATOM
439
CB
SER
A
114
−28.177
8.102
−0.215
1.00
7.69

A
C


ANISOU
439
CB
SER
A
114
899
954
1069
70
7
62
A
C


ATOM
440
OG
SER
A
114
−29.419
7.628
−0.714
1.00
9.45

A
O


ANISOU
440
OG
SER
A
114
1315
1082
1192
−70
−53
−10
A
O


ATOM
441
C
SER
A
114
−27.243
8.307
−2.505
1.00
8.43

A
C


ANISOU
441
C
SER
A
114
1112
1067
1025
54
−19
−41
A
C


ATOM
442
O
SER
A
114
−27.944
8.490
−3.503
1.00
8.99

A
O


ANISOU
442
O
SER
A
114
1174
1226
1015
42
−1
−49
A
O


ATOM
443
N
VAL
A
115
−26.212
7.471
−2.478
1.00
9.32

A
N


ANISOU
443
N
VAL
A
115
1227
1114
1200
72
38
−131
A
N


ATOM
444
CA
VAL
A
115
−26.060
6.441
−3.494
1.00
9.13

A
C


ANISOU
444
CA
VAL
A
115
1251
1082
1136
27
29
−122
A
C


ATOM
445
CB
VAL
A
115
−24.592
5.986
−3.652
1.00
11.28

A
C


ANISOU
445
CB
VAL
A
115
1351
1405
1529
36
88
−177
A
C


ATOM
446
CG1
VAL
A
115
−24.470
4.977
−4.796
1.00
11.92

A
C


ANISOU
446
CG1
VAL
A
115
1643
1312
1575
−44
46
−198
A
C


ATOM
447
CG2
VAL
A
115
−23.683
7.174
−3.902
1.00
13.15

A
C


ANISOU
447
CG2
VAL
A
115
1686
1582
1729
−14
152
−12
A
C


ATOM
448
C
VAL
A
115
−26.908
5.247
−3.071
1.00
8.94

A
C


ANISOU
448
C
VAL
A
115
1173
1149
1073
31
−18
−24
A
C


ATOM
449
O
VAL
A
115
−26.730
4.715
−1.969
1.00
8.72

A
O


ANISOU
449
O
VAL
A
115
1203
1054
1057
33
−20
25
A
O


ATOM
450
N
GLY
A
116
−27.849
4.862
−3.931
1.00
8.41

A
N


ANISOU
450
N
GLY
A
116
1193
997
1004
−70
11
−56
A
N


ATOM
451
CA
GLY
A
116
−28.585
3.610
−3.779
1.00
8.13

A
C


ANISOU
451
CA
GLY
A
116
1086
980
1023
−12
−21
−15
A
C


ATOM
452
C
GLY
A
116
−27.838
2.537
−4.546
1.00
8.70

A
C


ANISOU
452
C
GLY
A
116
1194
998
1113
23
11
30
A
C


ATOM
453
O
GLY
A
116
−27.450
2.745
−5.701
1.00
9.35

A
O


ANISOU
453
O
GLY
A
116
1445
997
1110
84
41
−41
A
O


ATOM
454
N
PHE
A
117
−27.631
1.394
−3.898
1.00
7.90

A
N


ANISOU
454
N
PHE
A
117
1105
879
1019
−2
1
0
A
N


ATOM
455
CA
PHE
A
117
−26.783
0.331
−4.425
1.00
7.93

A
C


ANISOU
455
CA
PHE
A
117
1025
938
1049
−23
1
8
A
C


ATOM
456
CB
PHE
A
117
−25.422
0.441
−3.717
1.00
7.80

A
C


ANISOU
456
CB
PHE
A
117
921
974
1068
18
−39
1
A
C


ATOM
457
CG
PHE
A
117
−24.386
−0.596
−4.100
1.00
7.30

A
C


ANISOU
457
CG
PHE
A
117
965
939
871
−6
16
31
A
C


ATOM
458
CD1
PHE
A
117
−24.557
−1.493
−5.158
1.00
7.81

A
C


ANISOU
458
CD1
PHE
A
117
944
1018
1007
6
160
−15
A
C


ATOM
459
CE1
PHE
A
117
−23.558
−2.431
−5.470
1.00
8.26

A
C


ANISOU
459
CE1
PHE
A
117
980
1123
1034
63
−39
−34
A
C


ATOM
460
CZ
PHE
A
117
−22.368
−2.448
−4.739
1.00
8.35

A
C


ANISOU
460
CZ
PHE
A
117
1079
1120
974
−6
0
−26
A
C


ATOM
461
CE2
PHE
A
117
−22.183
−1.541
−3.697
1.00
6.67

A
C


ANISOU
461
CE2
PHE
A
117
803
865
868
39
34
85
A
C


ATOM
462
CD2
PHE
A
117
−23.186
−0.627
−3.387
1.00
7.00

A
C


ANISOU
462
CD2
PHE
A
117
857
848
955
−59
58
9
A
C


ATOM
463
C
PHE
A
117
−27.507
−0.994
−4.165
1.00
7.59

A
C


ANISOU
463
C
PHE
A
117
951
989
943
−46
43
−21
A
C


ATOM
464
O
PHE
A
117
−27.716
−1.381
−3.016
1.00
7.57

A
O


ANISOU
464
O
PHE
A
117
960
965
951
74
13
32
A
O


ATOM
465
N
PHE
A
118
−27.924
−1.661
−5.245
1.00
7.99

A
N


ANISOU
465
N
PHE
A
118
1085
930
1019
−30
−16
−58
A
N


ATOM
466
CA
PHE
A
118
−28.728
−2.885
−5.143
1.00
7.86

A
C


ANISOU
466
CA
PHE
A
118
950
1007
1031
−54
−17
−69
A
C


ATOM
467
CB
PHE
A
118
−30.182
−2.606
−5.561
1.00
8.59

A
C


ANISOU
467
CB
PHE
A
118
1018
1020
1227
−36
17
−34
A
C


ATOM
468
CG
PHE
A
118
−30.857
−1.569
−4.718
1.00
7.12

A
C


ANISOU
468
CG
PHE
A
118
888
781
1037
32
40
52
A
C


ATOM
469
CD1
PHE
A
118
−30.735
−0.212
−5.026
1.00
7.98

A
C


ANISOU
469
CD1
PHE
A
118
1028
887
1117
−48
65
101
A
C


ATOM
470
CE1
PHE
A
118
−31.341
0.752
−4.230
1.00
8.39

A
C


ANISOU
470
CE1
PHE
A
118
987
1015
1186
29
16
21
A
C


ATOM
471
CZ
PHE
A
118
−32.081
0.370
−3.111
1.00
10.08

A
C


ANISOU
471
CZ
PHE
A
118
1255
1284
1291
15
68
17
A
C


ATOM
472
CE2
PHE
A
118
−32.209
−0.973
−2.793
1.00
8.43

A
C


ANISOU
472
CE2
PHE
A
118
1011
1139
1054
7
6
−91
A
C


ATOM
473
CD2
PHE
A
118
−31.597
−1.939
−3.599
1.00
8.40

A
C


ANISOU
473
CD2
PHE
A
118
1087
1068
1035
15
100
−44
A
C


ATOM
474
C
PHE
A
118
−28.176
−4.031
−5.982
1.00
7.99

A
C


ANISOU
474
C
PHE
A
118
1042
973
1019
−31
24
−4
A
C


ATOM
475
O
PHE
A
118
−27.535
−3.811
−7.017
1.00
8.77

A
O


ANISOU
475
O
PHE
A
118
1212
1024
1097
−65
185
4
A
O


ATOM
476
N
LEU
A
119
−28.435
−5.252
−5.522
1.00
7.27

A
N


ANISOU
476
N
LEU
A
119
934
904
924
−10
−55
−42
A
N


ATOM
477
CA
LEU
A
119
−28.218
−6.454
−6.312
1.00
7.57

A
C


ANISOU
477
CA
LEU
A
119
948
953
975
25
−32
−6
A
C


ATOM
478
CB
LEU
A
119
−27.613
−7.560
−5.443
1.00
7.52

A
C


ANISOU
478
CB
LEU
A
119
1038
795
1023
23
−15
−10
A
C


ATOM
479
CG
LEU
A
119
−27.380
−8.937
−6.092
1.00
6.77

A
C


ANISOU
479
CG
LEU
A
119
1053
725
796
23
37
21
A
C


ATOM
480
CD1
LEU
A
119
−26.347
−8.872
−7.221
1.00
7.86

A
C


ANISOU
480
CD1
LEU
A
119
972
1215
799
39
−14
−47
A
C


ATOM
481
CD2
LEU
A
119
−26.928
−9.927
−5.022
1.00
7.98

A
C


ANISOU
481
CD2
LEU
A
119
1123
1030
879
75
−79
140
A
C


ATOM
482
C
LEU
A
119
−29.566
−6.889
−6.867
1.00
8.38

A
C


ANISOU
482
C
LEU
A
119
1053
1142
990
−34
18
−4
A
C


ATOM
483
O
LEU
A
119
−30.542
−6.972
−6.124
1.00
7.41

A
O


ANISOU
483
O
LEU
A
119
856
1138
823
−13
−12
−8
A
O


ATOM
484
N
GLN
A
120
−29.611
−7.136
−8.176
1.00
8.11

A
N


ANISOU
484
N
GLN
A
120
1086
1049
946
−46
−47
−79
A
N


ATOM
485
CA
GLN
A
120
−30.853
−7.456
−8.875
1.00
7.90

A
C


ANISOU
485
CA
GLN
A
120
1058
1025
917
−2
−17
22
A
C


ATOM
486
CB
GLN
A
120
−31.148
−6.388
−9.933
1.00
7.36

A
C


ANISOU
486
CB
GLN
A
120
970
983
842
61
−34
−14
A
C


ATOM
487
CG
GLN
A
120
−32.498
−6.533
−10.607
1.00
8.64

A
C


ANISOU
487
CG
GLN
A
120
1100
1257
926
−5
−30
71
A
C


ATOM
488
CD
GLN
A
120
−32.597
−5.702
−11.876
1.00
8.87

A
C


ANISOU
488
CD
GLN
A
120
1116
1258
996
−34
10
62
A
C


ATOM
489
OE1
GLN
A
120
−33.305
−4.691
−11.921
1.00
13.04

A
O


ANISOU
489
OE1
GLN
A
120
1748
1573
1632
113
−51
−25
A
O


ATOM
490
NE2
GLN
A
120
−31.893
−6.130
−12.918
1.00
7.19

A
N


ANISOU
490
NE2
GLN
A
120
995
875
860
−51
−19
8
A
N


ATOM
491
C
GLN
A
120
−30.761
−8.833
−9.521
1.00
8.65

A
C


ANISOU
491
C
GLN
A
120
1082
1116
1089
−14
2
−28
A
C


ATOM
492
O
GLN
A
120
−29.817
−9.110
−10.259
1.00
10.12

A
O


ANISOU
492
O
GLN
A
120
1245
1265
1335
−35
144
−175
A
O


ATOM
493
N
CYS
A
121
−31.749
−9.683
−9.248
1.00
8.28

A
N


ANISOU
493
N
CYS
A
121
1140
1016
989
−55
21
−18
A
N


ATOM
494
CA
CYS
A
121
−31.752
−11.057
−9.741
1.00
8.61

A
C


ANISOU
494
CA
CYS
A
121
1184
1031
1057
−11
−49
11
A
C


ATOM
495
CB
CYS
A
121
−31.891
−12.042
−8.580
1.00
8.32

A
C


ANISOU
495
CB
CYS
A
121
1131
1050
980
−37
−20
41
A
C


ATOM
496
SG
CYS
A
121
−31.857
−13.781
−9.084
1.00
10.85

A
S


ANISOU
496
SG
CYS
A
121
1381
1224
1517
50
−10
1
A
S


ATOM
497
C
CYS
A
121
−32.887
−11.305
−10.716
1.00
7.94

A
C


ANISOU
497
C
CYS
A
121
1043
962
1011
54
−30
6
A
C


ATOM
498
O
CYS
A
121
−34.056
−11.087
−10.382
1.00
8.48

A
O


ANISOU
498
O
CYS
A
121
1078
1150
994
4
43
−12
A
O


ATOM
499
N
ASN
A
122
−32.534
−11.758
−11.919
1.00
8.29

A
N


ANISOU
499
N
ASN
A
122
1086
1052
1012
−3
−72
−19
A
N


ATOM
500
CA
ASN
A
122
−33.509
−12.297
−12.874
1.00
8.55

A
C


ANISOU
500
CA
ASN
A
122
1075
1107
1066
−50
−61
−3
A
C


ATOM
501
CB
ASN
A
122
−34.060
−13.632
−12.333
1.00
8.59

A
C


ANISOU
501
CB
ASN
A
122
1147
1046
1069
−96
−5
−69
A
C


ATOM
502
CG
ASN
A
122
−34.610
−14.539
−13.425
1.00
9.19

A
C


ANISOU
502
CG
ASN
A
122
1184
1162
1144
−114
−66
−51
A
C


ATOM
503
OD1
ASN
A
122
−34.084
−14.586
−14.536
1.00
10.82

A
O


ANISOU
503
OD1
ASN
A
122
1469
1363
1280
−87
6
−122
A
O


ATOM
504
ND2
ASN
A
122
−35.662
−15.287
−13.096
1.00
9.27

A
N


ANISOU
504
ND2
ASN
A
122
1085
1267
1172
−57
8
−54
A
N


ATOM
505
C
ASN
A
122
−34.659
−11.335
−13.177
1.00
9.69

A
C


ANISOU
505
C
ASN
A
122
1233
1178
1271
14
17
−26
A
C


ATOM
506
O
ASN
A
122
−35.794
−11.769
−13.395
1.00
10.78

A
O


ANISOU
506
O
ASN
A
122
1255
1348
1492
−30
−36
54
A
O


ATOM
507
N
ALA
A
123
−34.371
−10.031
−13.198
1.00
10.30

A
N


ANISOU
507
N
ALA
A
123
1400
1280
1233
−52
2
−6
A
N


ATOM
508
CA
ALA
A
123
−35.427
−9.032
−13.383
1.00
11.45

A
C


ANISOU
508
CA
ALA
A
123
1503
1404
1442
−3
−45
−42
A
C


ATOM
509
CB
ALA
A
123
−34.970
−7.651
−12.932
1.00
11.66

A
C


ANISOU
509
CB
ALA
A
123
1574
1414
1443
−14
−23
−9
A
C


ATOM
510
C
ALA
A
123
−35.976
−8.977
−14.808
1.00
11.72

A
C


ANISOU
510
C
ALA
A
123
1551
1490
1413
8
−26
−12
A
C


ATOM
511
O
ALA
A
123
−37.053
−8.416
−15.029
1.00
13.82

A
O


ANISOU
511
O
ALA
A
123
1637
1858
1756
−4
−22
−2
A
O


ATOM
512
N
GLU
A
124
−35.254
−9.565
−15.764
1.00
11.75

A
N


ANISOU
512
N
GLU
A
124
1454
1576
1433
−71
−10
20
A
N


ATOM
513
CA
GLU
A
124
−35.724
−9.616
−17.154
1.00
11.81

A
C


ANISOU
513
CA
GLU
A
124
1464
1546
1478
−63
−25
−2
A
C


ATOM
514
CB
GLU
A
124
−34.586
−9.976
−18.116
1.00
11.87

A
C


ANISOU
514
CB
GLU
A
124
1534
1582
1393
−116
0
−3
A
C


ATOM
515
CG
GLU
A
124
−33.535
−8.873
−18.271
1.00
13.63

A
C


ANISOU
515
CG
GLU
A
124
1654
1667
1856
−115
40
21
A
C


ATOM
516
CD
GLU
A
124
−32.423
−9.233
−19.239
1.00
14.46

A
C


ANISOU
516
CD
GLU
A
124
1780
1894
1822
−29
15
24
A
C


ATOM
517
OE1
GLU
A
124
−32.664
−10.045
−20.161
1.00
15.69

A
O


ANISOU
517
OE1
GLU
A
124
1971
1925
2066
−24
−21
−74
A
O


ATOM
518
OE2
GLU
A
124
−31.307
−8.681
−19.092
1.00
14.00

A
O


ANISOU
518
OE2
GLU
A
124
1689
1838
1793
−97
26
−60
A
O


ATOM
519
C
GLU
A
124
−36.875
−10.604
−17.294
1.00
11.80

A
C


ANISOU
519
C
GLU
A
124
1497
1543
1442
−82
−39
75
A
C


ATOM
520
O
GLU
A
124
−37.580
−10.607
−18.307
1.00
12.58

A
O


ANISOU
520
O
GLU
A
124
1579
1762
1437
−103
−56
122
A
O


ATOM
521
N
SER
A
125
−37.062
−11.437
−16.270
1.00
10.53

A
N


ANISOU
521
N
SER
A
125
1309
1375
1316
−86
−20
71
A
N


ATOM
522
CA
SER
A
125
−38.156
−12.402
−16.244
1.00
10.74

A
C


ANISOU
522
CA
SER
A
125
1313
1357
1410
−49
4
34
A
C


ATOM
523
CB
SER
A
125
−37.721
−13.689
−15.534
1.00
10.67

A
C


ANISOU
523
CB
SER
A
125
1316
1304
1436
−91
−39
67
A
C


ATOM
524
OG
SER
A
125
−38.794
−14.620
−15.455
1.00
9.96

A
O


ANISOU
524
OG
SER
A
125
1176
1434
1174
−41
25
147
A
O


ATOM
525
C
SER
A
125
−39.359
−11.820
−15.522
1.00
11.17

A
C


ANISOU
525
C
SER
A
125
1390
1425
1428
−34
26
−9
A
C


ATOM
526
O
SER
A
125
−39.216
−11.141
−14.501
1.00
12.69

A
O


ANISOU
526
O
SER
A
125
1558
1764
1498
−142
−3
−56
A
O


ATOM
527
N
ASP
A
126
−40.544
−12.100
−16.053
1.00
10.83

A
N


ANISOU
527
N
ASP
A
126
1339
1449
1328
−22
41
−4
A
N


ATOM
528
CA
ASP
A
126
−41.788
−11.776
−15.364
1.00
11.66

A
C


ANISOU
528
CA
ASP
A
126
1454
1511
1467
−1
54
−27
A
C


ATOM
529
CB
ASP
A
126
−42.768
−11.080
−16.312
1.00
13.44

A
C


ANISOU
529
CB
ASP
A
126
1654
1775
1676
82
19
−12
A
C


ATOM
530
CG
ASP
A
126
−42.342
−9.663
−16.644
1.00
19.39

A
C


ANISOU
530
CG
ASP
A
126
2548
2133
2685
−66
−3
59
A
C


ATOM
531
OD1
ASP
A
126
−42.262
−8.831
−15.717
1.00
23.47

A
O


ANISOU
531
OD1
ASP
A
126
3270
2749
2898
−96
39
−119
A
O


ATOM
532
OD2
ASP
A
126
−42.089
−9.380
−17.830
1.00
24.10

A
O


ANISOU
532
OD2
ASP
A
126
3347
2847
2964
−25
139
49
A
O


ATOM
533
C
ASP
A
126
−42.415
−13.016
−14.723
1.00
10.58

A
C


ANISOU
533
C
ASP
A
126
1305
1333
1383
31
27
−55
A
C


ATOM
534
O
ASP
A
126
−43.560
−12.972
−14.263
1.00
11.39

A
O


ANISOU
534
O
ASP
A
126
1282
1509
1536
14
−18
0
A
O


ATOM
535
N
SER
A
127
−41.648
−14.109
−14.669
1.00
8.97

A
N


ANISOU
535
N
SER
A
127
1094
1181
1132
−66
−16
16
A
N


ATOM
536
CA
SER
A
127
−42.116
−15.358
−14.066
1.00
8.07

A
C


ANISOU
536
CA
SER
A
127
1063
1042
962
−12
−15
−36
A
C


ATOM
537
CB
SER
A
127
−41.129
−16.497
−14.309
1.00
9.22

A
C


ANISOU
537
CB
SER
A
127
1233
1077
1195
17
−8
44
A
C


ATOM
538
OG
SER
A
127
−41.496
−17.635
−13.540
1.00
9.95

A
O


ANISOU
538
OG
SER
A
127
1339
1284
1156
−101
87
117
A
O


ATOM
539
C
SER
A
127
−42.363
−15.230
−12.569
1.00
8.50

A
C


ANISOU
539
C
SER
A
127
1054
1169
1005
−81
7
−11
A
C


ATOM
540
O
SER
A
127
−41.522
−14.704
−11.825
1.00
8.68

A
O


ANISOU
540
O
SER
A
127
1048
1359
892
−56
−25
22
A
O


ATOM
541
N
THR
A
128
−43.514
−15.734
−12.135
1.00
8.35

A
N


ANISOU
541
N
THR
A
128
1072
1104
996
7
20
0
A
N


ATOM
542
CA
THR
A
128
−43.860
−15.743
−10.722
1.00
8.77

A
C


ANISOU
542
CA
THR
A
128
1078
1178
1078
−22
8
−11
A
C


ATOM
543
CB
THR
A
128
−45.379
−15.515
−10.512
1.00
9.07

A
C


ANISOU
543
CB
THR
A
128
1101
1194
1153
−17
14
43
A
C


ATOM
544
OG1
THR
A
128
−46.128
−16.401
−11.356
1.00
8.30

A
O


ANISOU
544
OG1
THR
A
128
1124
1133
896
72
22
85
A
O


ATOM
545
CG2
THR
A
128
−45.756
−14.069
−10.826
1.00
10.24

A
C


ANISOU
545
CG2
THR
A
128
1368
1272
1251
102
−12
−12
A
C


ATOM
546
C
THR
A
128
−43.426
−17.026
−10.013
1.00
8.99

A
C


ANISOU
546
C
THR
A
128
1046
1184
1184
−32
−6
−23
A
C


ATOM
547
O
THR
A
128
−43.651
−17.175
−8.811
1.00
9.62

A
O


ANISOU
547
O
THR
A
128
1199
1327
1129
−35
−34
−33
A
O


ATOM
548
N
ASER
A
129
−42.790
−17.932
−10.754
0.50
8.60

A
N


ANISOU
548
N
ASER
A
129
988
1141
1138
−43
−19
−22
A
N


ATOM
549
N
BSER
A
129
−42.801
−17.944
−10.750
0.50
9.02

A
N


ANISOU
549
N
BSER
A
129
1048
1191
1188
−40
−16
−33
A
N


ATOM
550
CA
ASER
A
129
−42.421
−19.248
−10.233
0.50
8.87

A
C


ANISOU
550
CA
ASER
A
129
1050
1156
1166
−35
−4
7
A
C


ATOM
551
CA
BSER
A
129
−42.425
−19.244
−10.191
0.50
9.70

A
C


ANISOU
551
CA
BSER
A
129
1167
1253
1265
−28
−11
16
A
C


ATOM
552
CB
ASER
A
129
−42.546
−20.304
−11.333
0.50
8.98

A
C


ANISOU
552
CB
ASER
A
129
1069
1174
1169
−25
17
−21
A
C


ATOM
553
CB
BSER
A
129
−42.547
−20.348
−11.247
0.50
10.49

A
C


ANISOU
553
CB
BSER
A
129
1325
1311
1351
−13
−27
−36
A
C


ATOM
554
OG
ASER
A
129
−43.878
−20.388
−11.810
0.50
8.95

A
O


ANISOU
554
OG
ASER
A
129
1021
1134
1244
−10
−37
−14
A
O


ATOM
555
OG
BSER
A
129
−41.544
−20.236
−12.240
0.50
12.38

A
O


ANISOU
555
OG
BSER
A
129
1514
1635
1555
−3
28
21
A
O


ATOM
556
C
ASER
A
129
−41.028
−19.328
−9.607
0.50
9.04

A
C


ANISOU
556
C
ASER
A
129
1100
1199
1136
−26
−4
5
A
C


ATOM
557
C
BSER
A
129
−41.034
−19.289
−9.558
0.50
9.51

A
C


ANISOU
557
C
BSER
A
129
1172
1246
1194
−37
1
4
A
C


ATOM
558
O
ASER
A
129
−40.800
−20.137
−8.706
0.50
9.31

A
O


ANISOU
558
O
ASER
A
129
1157
1292
1089
0
28
22
A
O


ATOM
559
O
BSER
A
129
−40.815
−20.038
−8.604
0.50
10.03

A
O


ANISOU
559
O
BSER
A
129
1260
1367
1185
−14
6
27
A
O


ATOM
560
N
TRP
A
130
−40.098
−18.509
−10.093
1.00
8.84

A
N


ANISOU
560
N
TRP
A
130
1046
1216
1095
−45
−26
−38
A
N


ATOM
561
CA
TRP
A
130
−38.701
−18.598
−9.649
1.00
8.35

A
C


ANISOU
561
CA
TRP
A
130
991
1172
1009
−37
10
−7
A
C


ATOM
562
CB
TRP
A
130
−37.747
−17.976
−10.682
1.00
8.36

A
C


ANISOU
562
CB
TRP
A
130
1034
1089
1054
−50
25
43
A
C


ATOM
563
CG
TRP
A
130
−37.778
−16.479
−10.695
1.00
7.48

A
C


ANISOU
563
CG
TRP
A
130
867
1024
950
−52
−42
−41
A
C


ATOM
564
CD1
TRP
A
130
−38.628
−15.681
−11.410
1.00
8.54

A
C


ANISOU
564
CD1
TRP
A
130
1066
1094
1084
38
−22
8
A
C


ATOM
565
NE1
TRP
A
130
−38.361
−14.355
−11.161
1.00
8.31

A
N


ANISOU
565
NE1
TRP
A
130
925
1130
1102
−120
−19
21
A
N


ATOM
566
CE2
TRP
A
130
−37.326
−14.273
−10.261
1.00
7.83

A
C


ANISOU
566
CE2
TRP
A
130
1014
1003
957
20
−75
−29
A
C


ATOM
567
CD2
TRP
A
130
−36.927
−15.594
−9.950
1.00
7.27

A
C


ANISOU
567
CD2
TRP
A
130
891
995
877
−119
−1
27
A
C


ATOM
568
CE3
TRP
A
130
−35.872
−15.791
−9.046
1.00
7.85

A
C


ANISOU
568
CE3
TRP
A
130
1009
1003
971
−47
10
104
A
C


ATOM
569
CZ3
TRP
A
130
−35.246
−14.673
−8.493
1.00
8.02

A
C


ANISOU
569
CZ3
TRP
A
130
1089
984
974
−10
−7
−7
A
C


ATOM
570
CH2
TRP
A
130
−35.664
−13.367
−8.828
1.00
8.48

A
C


ANISOU
570
CH2
TRP
A
130
1055
1114
1054
−17
−53
50
A
C


ATOM
571
CZ2
TRP
A
130
−36.694
−13.148
−9.711
1.00
8.52

A
C


ANISOU
571
CZ2
TRP
A
130
1038
1170
1031
−58
−44
18
A
C


ATOM
572
C
TRP
A
130
−38.459
−17.980
−8.270
1.00
8.45

A
C


ANISOU
572
C
TRP
A
130
1057
1137
1015
−24
3
20
A
C


ATOM
573
O
TRP
A
130
−39.125
−17.018
−7.871
1.00
8.94

A
O


ANISOU
573
O
TRP
A
130
1114
1210
1072
12
−16
43
A
O


ATOM
574
N
SER
A
131
−37.495
−18.547
−7.554
1.00
8.60

A
N


ANISOU
574
N
SER
A
131
1087
1203
976
−90
−32
19
A
N


ATOM
575
CA
SER
A
131
−36.959
−17.911
−6.357
1.00
8.21

A
C


ANISOU
575
CA
SER
A
131
1009
1142
970
−39
−22
−15
A
C


ATOM
576
CB
SER
A
131
−37.801
−18.247
−5.118
1.00
8.81

A
C


ANISOU
576
CB
SER
A
131
1179
1216
952
16
43
−38
A
C


ATOM
577
OG
SER
A
131
−37.711
−19.622
−4.798
1.00
10.00

A
O


ANISOU
577
OG
SER
A
131
1276
1265
1257
−59
47
52
A
O


ATOM
578
C
SER
A
131
−35.510
−18.336
−6.160
1.00
8.09

A
C


ANISOU
578
C
SER
A
131
995
1035
1042
−27
−21
−3
A
C


ATOM
579
O
SER
A
131
−35.093
−19.407
−6.614
1.00
8.79

A
O


ANISOU
579
O
SER
A
131
1048
1136
1155
−17
−18
−67
A
O


ATOM
580
N
CYS
A
132
−34.736
−17.490
−5.492
1.00
7.88

A
N


ANISOU
580
N
CYS
A
132
1007
969
1019
−13
−26
−29
A
N


ATOM
581
CA
CYS
A
132
−33.342
−17.815
−5.214
1.00
7.36

A
C


ANISOU
581
CA
CYS
A
132
920
931
947
−41
−20
−5
A
C


ATOM
582
CB
CYS
A
132
−32.465
−17.476
−6.427
1.00
7.98

A
C


ANISOU
582
CB
CYS
A
132
1049
1017
966
14
5
−11
A
C


ATOM
583
SG
CYS
A
132
−30.736
−17.921
−6.231
1.00
10.78

A
S


ANISOU
583
SG
CYS
A
132
1190
1504
1403
12
65
43
A
S


ATOM
584
C
CYS
A
132
−32.879
−17.041
−3.989
1.00
8.42

A
C


ANISOU
584
C
CYS
A
132
1091
1042
1067
−37
−30
−5
A
C


ATOM
585
O
CYS
A
132
−32.920
−15.812
−3.988
1.00
8.81

A
O


ANISOU
585
O
CYS
A
132
1186
961
1199
−44
−37
−28
A
O


ATOM
586
N
HIS
A
133
−32.464
−17.759
−2.947
1.00
8.66

A
N


ANISOU
586
N
HIS
A
133
1105
1199
986
−40
−58
−46
A
N


ATOM
587
CA
HIS
A
133
−31.915
−17.109
−1.757
1.00
8.71

A
C


ANISOU
587
CA
HIS
A
133
1145
1100
1064
−43
−36
−15
A
C


ATOM
588
CB
HIS
A
133
−32.153
−17.957
−0.499
1.00
9.67

A
C


ANISOU
588
CB
HIS
A
133
1356
1188
1129
32
−13
29
A
C


ATOM
589
CG
HIS
A
133
−32.348
−17.140
0.745
1.00
11.11

A
C


ANISOU
589
CG
HIS
A
133
1656
1305
1261
50
0
49
A
C


ATOM
590
ND1
HIS
A
133
−31.321
−16.454
1.354
1.00
12.16

A
N


ANISOU
590
ND1
HIS
A
133
1615
1536
1471
1
4
202
A
N


ATOM
591
CE1
HIS
A
133
−31.783
−15.817
2.414
1.00
12.03

A
C


ANISOU
591
CE1
HIS
A
133
1532
1505
1532
40
16
110
A
C


ATOM
592
NE2
HIS
A
133
−33.077
−16.073
2.521
1.00
14.12

A
N


ANISOU
592
NE2
HIS
A
133
1707
1785
1872
−78
−82
−7
A
N


ATOM
593
CD2
HIS
A
133
−33.454
−16.899
1.490
1.00
13.39

A
C


ANISOU
593
CD2
HIS
A
133
1739
1678
1672
108
−6
−3
A
C


ATOM
594
C
HIS
A
133
−30.425
−16.855
−1.976
1.00
9.12

A
C


ANISOU
594
C
HIS
A
133
1165
1120
1180
−35
−20
−37
A
C


ATOM
595
O
HIS
A
133
−29.694
−17.744
−2.409
1.00
10.56

A
O


ANISOU
595
O
HIS
A
133
1299
1259
1456
−7
−29
−174
A
O


ATOM
596
N
ALA
A
134
−29.974
−15.634
−1.707
1.00
7.59

A
N


ANISOU
596
N
ALA
A
134
849
994
1040
−46
−9
−69
A
N


ATOM
597
CA
ALA
A
134
−28.542
−15.337
−1.829
1.00
7.45

A
C


ANISOU
597
CA
ALA
A
134
913
946
973
−37
41
−43
A
C


ATOM
598
CB
ALA
A
134
−28.240
−14.723
−3.186
1.00
8.49

A
C


ANISOU
598
CB
ALA
A
134
1075
1127
1022
−13
88
46
A
C


ATOM
599
C
ALA
A
134
−28.017
−14.443
−0.714
1.00
7.55

A
C


ANISOU
599
C
ALA
A
134
981
962
925
44
−14
−11
A
C


ATOM
600
O
ALA
A
134
−28.754
−13.602
−0.188
1.00
7.77

A
O


ANISOU
600
O
ALA
A
134
973
1019
959
9
−64
−148
A
O


ATOM
601
N
GLN
A
135
−26.747
−14.669
−0.367
1.00
7.28

A
N


ANISOU
601
N
GLN
A
135
920
878
969
−103
−43
−19
A
N


ATOM
602
CA
GLN
A
135
−25.924
−13.764
0.435
1.00
7.54

A
C


ANISOU
602
CA
GLN
A
135
946
945
973
−44
−36
10
A
C


ATOM
603
CB
GLN
A
135
−24.893
−14.555
1.251
1.00
8.34

A
C


ANISOU
603
CB
GLN
A
135
1029
1059
1079
−16
−2
108
A
C


ATOM
604
CG
GLN
A
135
−25.450
−15.697
2.082
1.00
8.06

A
C


ANISOU
604
CG
GLN
A
135
1103
948
1011
−53
−16
−1
A
C


ATOM
605
CD
GLN
A
135
−26.329
−15.216
3.217
1.00
8.59

A
C


ANISOU
605
CD
GLN
A
135
1089
1100
1074
17
23
37
A
C


ATOM
606
OE1
GLN
A
135
−27.532
−15.470
3.237
1.00
9.30

A
O


ANISOU
606
OE1
GLN
A
135
1247
1044
1241
−125
−130
−34
A
O


ATOM
607
NE2
GLN
A
135
−25.732
−14.503
4.165
1.00
9.92

A
N


ANISOU
607
NE2
GLN
A
135
1455
1095
1219
−33
−72
−90
A
N


ATOM
608
C
GLN
A
135
−25.155
−12.879
−0.531
1.00
7.46

A
C


ANISOU
608
C
GLN
A
135
980
920
936
−47
−11
−18
A
C


ATOM
609
O
GLN
A
135
−24.818
−13.313
−1.631
1.00
9.19

A
O


ANISOU
609
O
GLN
A
135
1315
1044
1134
1
67
−81
A
O


ATOM
610
N
ALA
A
136
−24.853
−11.648
−0.130
1.00
7.15

A
N


ANISOU
610
N
ALA
A
136
982
800
936
−47
47
37
A
N


ATOM
611
CA
ALA
A
136
−23.932
−10.834
−0.926
1.00
7.19

A
C


ANISOU
611
CA
ALA
A
136
964
893
874
−50
−3
48
A
C


ATOM
612
CB
ALA
A
136
−24.649
−10.178
−2.116
1.00
7.20

A
C


ANISOU
612
CB
ALA
A
136
906
975
854
−60
−46
99
A
C


ATOM
613
C
ALA
A
136
−23.197
−9.786
−0.113
1.00
7.48

A
C


ANISOU
613
C
ALA
A
136
964
906
973
−23
12
−2
A
C


ATOM
614
O
ALA
A
136
−23.715
−9.270
0.876
1.00
8.26

A
O


ANISOU
614
O
ALA
A
136
1092
1093
955
9
67
−9
A
O


ATOM
615
N
VAL
A
137
−21.983
−9.481
−0.553
1.00
6.86

A
N


ANISOU
615
N
VAL
A
137
893
855
858
−15
66
2
A
N


ATOM
616
CA
VAL
A
137
−21.244
−8.335
−0.054
1.00
7.09

A
C


ANISOU
616
CA
VAL
A
137
889
912
891
−47
16
57
A
C


ATOM
617
CB
VAL
A
137
−19.767
−8.687
0.255
1.00
8.52

A
C


ANISOU
617
CB
VAL
A
137
996
1125
1117
21
37
10
A
C


ATOM
618
CG1
VAL
A
137
−19.040
−7.471
0.802
1.00
8.96

A
C


ANISOU
618
CG1
VAL
A
137
989
1129
1286
63
−58
24
A
C


ATOM
619
CG2
VAL
A
137
−19.686
−9.847
1.245
1.00
9.79

A
C


ANISOU
619
CG2
VAL
A
137
1253
1257
1210
36
−79
25
A
C


ATOM
620
C
VAL
A
137
−21.309
−7.256
−1.132
1.00
7.60

A
C


ANISOU
620
C
VAL
A
137
991
976
921
18
−2
27
A
C


ATOM
621
O
VAL
A
137
−20.846
−7.465
−2.260
1.00
8.81

A
O


ANISOU
621
O
VAL
A
137
1244
1095
1007
−24
54
22
A
O


ATOM
622
N
LEU
A
138
−21.885
−6.122
−0.777
1.00
7.11

A
N


ANISOU
622
N
LEU
A
138
941
868
892
−57
−41
35
A
N


ATOM
623
CA
LEU
A
138
−21.980
−4.966
−1.639
1.00
7.21

A
C


ANISOU
623
CA
LEU
A
138
926
872
942
39
−5
33
A
C


ATOM
624
CB
LEU
A
138
−23.367
−4.332
−1.535
1.00
7.73

A
C


ANISOU
624
CB
LEU
A
138
858
1062
1017
−70
−65
−43
A
C


ATOM
625
CG
LEU
A
138
−24.444
−4.880
−2.470
1.00
7.29

A
C


ANISOU
625
CG
LEU
A
138
868
978
924
−1
−81
0
A
C


ATOM
626
CD1
LEU
A
138
−24.637
−6.356
−2.194
1.00
10.19

A
C


ANISOU
626
CD1
LEU
A
138
1352
1216
1304
61
−7
−41
A
C


ATOM
627
CD2
LEU
A
138
−25.750
−4.149
−2.279
1.00
8.92

A
C


ANISOU
627
CD2
LEU
A
138
1101
1112
1176
60
−25
−10
A
C


ATOM
628
C
LEU
A
138
−20.887
−3.960
−1.253
1.00
7.98

A
C


ANISOU
628
C
LEU
A
138
1018
996
1017
−24
32
−51
A
C


ATOM
629
O
LEU
A
138
−20.891
−3.452
−0.184
1.00
8.00

A
O


ANISOU
629
O
LEU
A
138
1081
1131
829
−11
−10
−28
A
O


ATOM
630
N
LYS
A
139
−19.962
−3.727
−2.180
1.00
8.32

A
N


ANISOU
630
N
LYS
A
139
1115
1054
993
−24
49
−10
A
N


ATOM
631
CA
LYS
A
139
−18.766
−2.963
−1.906
1.00
8.61

A
C


ANISOU
631
CA
LYS
A
139
1125
1065
1083
−48
9
−15
A
C


ATOM
632
CB
LYS
A
139
−17.553
−3.895
−1.976
1.00
8.79

A
C


ANISOU
632
CB
LYS
A
139
1204
1075
1061
−11
66
−15
A
C


ATOM
633
CG
LYS
A
139
−16.213
−3.289
−1.618
1.00
10.07

A
C


ANISOU
633
CG
LYS
A
139
1246
1266
1315
−1
−1
−52
A
C


ATOM
634
CD
LYS
A
139
−15.100
−4.276
−1.884
1.00
14.75

A
C


ANISOU
634
CD
LYS
A
139
1675
1873
2055
199
40
−153
A
C


ATOM
635
CE
LYS
A
139
−15.112
−5.328
−0.866
1.00
20.39

A
C


ANISOU
635
CE
LYS
A
139
2645
2594
2507
−101
−52
151
A
C


ATOM
636
NZ
LYS
A
139
−14.258
−6.510
−1.192
1.00
26.36

A
N


ANISOU
636
NZ
LYS
A
139
3328
3271
3418
177
10
−27
A
N


ATOM
637
C
LYS
A
139
−18.576
−1.818
−2.908
1.00
8.91

A
C


ANISOU
637
C
LYS
A
139
1186
1086
1114
−48
−10
−42
A
C


ATOM
638
O
LYS
A
139
−18.818
−2.009
−4.049
1.00
9.28

A
O


ANISOU
638
O
LYS
A
139
1377
1076
1073
−83
36
−27
A
O


ATOM
639
N
AILE
A
140
−18.202
−0.638
−2.384
0.50
8.33

A
N


ANISOU
639
N
AILE
A
140
1066
1037
1063
−36
9
−9
A
N


ATOM
640
N
BILE
A
140
−18.171
−0.659
−2.369
0.50
9.02

A
N


ANISOU
640
N
BILE
A
140
1160
1122
1147
−43
2
−30
A
N


ATOM
641
CA
AILE
A
140
−17.676
0.417
−3.252
0.50
8.55

A
C


ANISOU
641
CA
AILE
A
140
1085
1035
1128
0
−13
−7
A
C


ATOM
642
CA
BILE
A
140
−17.678
0.428
−3.205
0.50
9.80

A
C


ANISOU
642
CA
BILE
A
140
1243
1213
1266
−20
−7
−2
A
C


ATOM
643
CB
AILE
A
140
−18.287
1.818
−2.977
0.50
8.53

A
C


ANISOU
643
CB
AILE
A
140
1043
1068
1129
29
−34
−22
A
C


ATOM
644
CB
BILE
A
140
−18.363
1.785
−2.863
0.50
10.23

A
C


ANISOU
644
CB
BILE
A
140
1305
1272
1309
16
−13
−15
A
C


ATOM
645
CG1
AILE
A
140
−19.805
1.795
−3.173
0.50
7.58

A
C


ANISOU
645
CG1
AILE
A
140
949
861
1069
20
−25
−10
A
C


ATOM
646
CG1
BILE
A
140
−17.909
2.883
−3.828
0.50
10.77

A
C


ANISOU
646
CG1
BILE
A
140
1307
1367
1420
6
0
32
A
C


ATOM
647
CD1
AILE
A
140
−20.494
3.156
−2.978
0.50
7.51

A
C


ANISOU
647
CD1
AILE
A
140
975
813
1067
24
−35
−16
A
C


ATOM
648
CD1
BILE
A
140
−18.637
4.189
−3.642
0.50
10.60

A
C


ANISOU
648
CD1
BILE
A
140
1411
1254
1364
−42
8
8
A
C


ATOM
649
CG2
AILE
A
140
−17.658
2.865
−3.898
0.50
10.28

A
C


ANISOU
649
CG2
AILE
A
140
1298
1297
1312
−10
8
60
A
C


ATOM
650
CG2
BILE
A
140
−18.146
2.175
−1.391
0.50
10.58

A
C


ANISOU
650
CG2
BILE
A
140
1322
1366
1333
18
−47
−49
A
C


ATOM
651
C
AILE
A
140
−16.166
0.454
−3.066
0.50
9.45

A
C


ANISOU
651
C
AILE
A
140
1154
1202
1233
2
−8
−6
A
C


ATOM
652
C
BILE
A
140
−16.154
0.483
−3.058
0.50
10.21

A
C


ANISOU
652
C
BILE
A
140
1274
1303
1301
−1
10
−7
A
C


ATOM
653
O
AILE
A
140
−15.670
0.553
−1.943
0.50
10.07

A
O


ANISOU
653
O
AILE
A
140
1264
1349
1212
−16
−19
−36
A
O


ATOM
654
O
BILE
A
140
−15.634
0.603
−1.947
0.50
10.83

A
O


ANISOU
654
O
BILE
A
140
1373
1446
1297
−16
−9
−33
A
O


ATOM
655
N
ILE
A
141
−15.432
0.390
−4.140
1.00
10.09

A
N


ANISOU
655
N
ILE
A
141
1236
1274
1325
−40
31
−31
A
N


ATOM
656
CA
ILE
A
141
−13.986
0.298
−4.150
1.00
11.31

A
C


ANISOU
656
CA
ILE
A
141
1337
1493
1469
−10
−26
0
A
C


ATOM
657
CB
ILE
A
141
−13.474
−0.261
−5.486
1.00
12.21

A
C


ANISOU
657
CB
ILE
A
141
1483
1557
1600
−26
26
−52
A
C


ATOM
658
CG1
ILE
A
141
−14.131
−1.604
−5.814
1.00
13.49

A
C


ANISOU
658
CG1
ILE
A
141
1648
1734
1742
−71
−10
−32
A
C


ATOM
659
CD1
ILE
A
141
−13.737
−2.703
−4.963
1.00
15.27

A
C


ANISOU
659
CD1
ILE
A
141
1941
1879
1983
17
−17
−1
A
C


ATOM
660
CG2
ILE
A
141
−11.957
−0.372
−5.499
1.00
14.29

A
C


ANISOU
660
CG2
ILE
A
141
1610
1951
1869
12
−7
−28
A
C


ATOM
661
C
ILE
A
141
−13.373
1.676
−3.916
1.00
12.83

A
C


ANISOU
661
C
ILE
A
141
1641
1575
1657
−46
−36
−9
A
C


ATOM
662
O
ILE
A
141
−13.717
2.638
−4.559
1.00
13.68

A
O


ANISOU
662
O
ILE
A
141
1782
1687
1727
−69
−114
46
A
O


ATOM
663
N
ASN
A
142
−12.471
1.744
−2.956
1.00
14.16

A
N


ANISOU
663
N
ASN
A
142
1763
1842
1774
−19
−75
44
A
N


ATOM
664
CA
ASN
A
142
−11.670
2.941
−2.777
1.00
16.00

A
C


ANISOU
664
CA
ASN
A
142
2057
1975
2049
−59
−38
−5
A
C


ATOM
665
CB
ASN
A
142
−11.263
3.105
−1.310
1.00
16.09

A
C


ANISOU
665
CB
ASN
A
142
2049
2063
2003
−11
−23
38
A
C


ATOM
666
CG
ASN
A
142
−10.795
4.513
−0.984
1.00
17.33

A
C


ANISOU
666
CG
ASN
A
142
2239
2182
2165
−26
−17
2
A
C


ATOM
667
OD1
ASN
A
142
−9.649
4.874
−1.246
1.00
19.37

A
O


ANISOU
667
OD1
ASN
A
142
2284
2590
2486
−113
22
38
A
O


ATOM
668
ND2
ASN
A
142
−11.680
5.309
−0.397
1.00
17.60

A
N


ANISOU
668
ND2
ASN
A
142
2228
2274
2185
−7
−51
6
A
N


ATOM
669
C
ASN
A
142
−10.456
2.789
−3.684
1.00
18.32

A
C


ANISOU
669
C
ASN
A
142
2255
2338
2369
−15
26
−6
A
C


ATOM
670
O
ASN
A
142
−9.644
1.878
−3.496
1.00
18.15

A
O


ANISOU
670
O
ASN
A
142
2153
2323
2422
−57
86
51
A
O


ATOM
671
N
TYR
A
143
−10.363
3.651
−4.695
1.00
21.17

A
N


ANISOU
671
N
TYR
A
143
2728
2649
2668
−36
−32
58
A
N


ATOM
672
CA
TYR
A
143
−9.307
3.535
−5.699
1.00
24.71

A
C


ANISOU
672
CA
TYR
A
143
3073
3205
3112
0
59
−14
A
C


ATOM
673
CB
TYR
A
143
−9.673
4.304
−6.980
1.00
26.93

A
C


ANISOU
673
CB
TYR
A
143
3369
3582
3281
46
−4
51
A
C


ATOM
674
CG
TYR
A
143
−9.139
5.717
−7.046
1.00
30.45

A
C


ANISOU
674
CG
TYR
A
143
3917
3786
3866
−5
−51
27
A
C


ATOM
675
CD1
TYR
A
143
−7.960
6.005
−7.735
1.00
31.76

A
C


ANISOU
675
CD1
TYR
A
143
3984
4037
4046
42
30
1
A
C


ATOM
676
CE1
TYR
A
143
−7.458
7.302
−7.794
1.00
32.72

A
C


ANISOU
676
CE1
TYR
A
143
4164
4083
4187
0
8
4
A
C


ATOM
677
CZ
TYR
A
143
−8.141
8.328
−7.160
1.00
32.35

A
C


ANISOU
677
CZ
TYR
A
143
4123
4024
4145
−46
−20
−1
A
C


ATOM
678
OH
TYR
A
143
−7.654
9.613
−7.219
1.00
32.61

A
O


ANISOU
678
OH
TYR
A
143
4132
4048
4210
−99
23
−7
A
O


ATOM
679
CE2
TYR
A
143
−9.316
8.069
−6.469
1.00
32.44

A
C


ANISOU
679
CE2
TYR
A
143
4150
4079
4097
−16
10
14
A
C


ATOM
680
CD2
TYR
A
143
−9.809
6.768
−6.417
1.00
31.86

A
C


ANISOU
680
CD2
TYR
A
143
4027
4064
4013
55
37
−15
A
C


ATOM
681
C
TYR
A
143
−7.937
3.954
−5.155
1.00
25.52

A
C


ANISOU
681
C
TYR
A
143
3166
3267
3264
−35
16
24
A
C


ATOM
682
O
TYR
A
143
−6.910
3.454
−5.614
1.00
25.74

A
O


ANISOU
682
O
TYR
A
143
3238
3224
3318
2
51
21
A
O


ATOM
683
N
ARG
A
144
−7.929
4.862
−4.178
1.00
26.54

A
N


ANISOU
683
N
ARG
A
144
3337
3386
3362
−35
35
−13
A
N


ATOM
684
CA
ARG
A
144
−6.677
5.348
−3.582
1.00
28.03

A
C


ANISOU
684
CA
ARG
A
144
3475
3600
3575
−48
−5
−19
A
C


ATOM
685
CB
ARG
A
144
−6.883
6.694
−2.879
1.00
28.74

A
C


ANISOU
685
CB
ARG
A
144
3551
3683
3684
−32
15
−76
A
C


ATOM
686
CG
ARG
A
144
−6.975
7.870
−3.828
1.00
32.40

A
C


ANISOU
686
CG
ARG
A
144
4117
4121
4073
24
−10
136
A
C


ATOM
687
CD
ARG
A
144
−6.626
9.180
−3.144
1.00
36.69

A
C


ANISOU
687
CD
ARG
A
144
4709
4547
4684
−37
−26
−139
A
C


ATOM
688
NE
ARG
A
144
−6.673
10.301
−4.082
1.00
39.42

A
N


ANISOU
688
NE
ARG
A
144
5109
4916
4954
−4
−15
55
A
N


ATOM
689
CZ
ARG
A
144
−5.662
10.686
−4.859
1.00
40.47

A
C


ANISOU
689
CZ
ARG
A
144
5121
5142
5113
−20
23
0
A
C


ATOM
690
NH1
ARG
A
144
−4.499
10.047
−4.825
1.00
41.15

A
N


ANISOU
690
NH1
ARG
A
144
5203
5208
5223
22
9
0
A
N


ATOM
691
NH2
ARG
A
144
−5.817
11.717
−5.678
1.00
40.63

A
N


ANISOU
691
NH2
ARG
A
144
5146
5134
5158
−6
12
8
A
N


ATOM
692
C
ARG
A
144
−6.057
4.349
−2.613
1.00
28.31

A
C


ANISOU
692
C
ARG
A
144
3536
3608
3612
−8
3
−6
A
C


ATOM
693
O
ARG
A
144
−4.837
4.185
−2.579
1.00
28.35

A
O


ANISOU
693
O
ARG
A
144
3513
3633
3625
−55
34
−8
A
O


ATOM
694
N
ASP
A
145
−6.903
3.689
−1.828
1.00
28.70

A
N


ANISOU
694
N
ASP
A
145
3583
3657
3666
−24
25
−1
A
N


ATOM
695
CA
ASP
A
145
−6.452
2.719
−0.837
1.00
29.49

A
C


ANISOU
695
CA
ASP
A
145
3693
3769
3741
−4
1
26
A
C


ATOM
696
CB
ASP
A
145
−6.292
3.399
0.532
1.00
29.90

A
C


ANISOU
696
CB
ASP
A
145
3731
3832
3797
−17
9
−14
A
C


ATOM
697
CG
ASP
A
145
−5.665
2.490
1.585
1.00
31.64

A
C


ANISOU
697
CG
ASP
A
145
3937
4044
4041
1
−23
76
A
C


ATOM
698
OD1
ASP
A
145
−5.312
1.331
1.278
1.00
32.60

A
O


ANISOU
698
OD1
ASP
A
145
4059
4161
4168
37
2
−5
A
O


ATOM
699
OD2
ASP
A
145
−5.524
2.951
2.739
1.00
33.81

A
O


ANISOU
699
OD2
ASP
A
145
4304
4346
4196
16
−32
−26
A
O


ATOM
700
C
ASP
A
145
−7.443
1.560
−0.769
1.00
29.99

A
C


ANISOU
700
C
ASP
A
145
3772
3834
3790
−11
−15
19
A
C


ATOM
701
O
ASP
A
145
−8.519
1.683
−0.182
1.00
29.17

A
O


ANISOU
701
O
ASP
A
145
3644
3734
3706
−18
−70
35
A
O


ATOM
702
N
ASP
A
146
−7.059
0.436
−1.374
1.00
31.04

A
N


ANISOU
702
N
ASP
A
146
3942
3926
3924
31
−8
−1
A
N


ATOM
703
CA
ASP
A
146
−7.897
−0.766
−1.450
1.00
32.43

A
C


ANISOU
703
CA
ASP
A
146
4105
4112
4106
−29
−10
10
A
C


ATOM
704
CB
ASP
A
146
−7.213
−1.848
−2.295
1.00
33.63

A
C


ANISOU
704
CB
ASP
A
146
4333
4221
4223
6
27
−16
A
C


ATOM
705
CG
ASP
A
146
−5.744
−2.029
−1.944
1.00
36.98

A
C


ANISOU
705
CG
ASP
A
146
4532
4828
4692
33
−41
−38
A
C


ATOM
706
OD1
ASP
A
146
−4.945
−1.100
−2.201
1.00
38.83

A
O


ANISOU
706
OD1
ASP
A
146
4891
4893
4968
−52
8
23
A
O


ATOM
707
OD2
ASP
A
146
−5.388
−3.106
−1.420
1.00
39.29

A
O


ANISOU
707
OD2
ASP
A
146
4981
4896
5050
25
−38
66
A
O


ATOM
708
C
ASP
A
146
−8.291
−1.334
−0.083
1.00
32.23

A
C


ANISOU
708
C
ASP
A
146
4085
4100
4060
−18
−22
1
A
C


ATOM
709
O
ASP
A
146
−9.197
−2.165
0.011
1.00
33.23

A
O


ANISOU
709
O
ASP
A
146
4212
4180
4232
−66
−44
25
A
O


ATOM
710
N
GLU
A
147
−7.608
−0.881
0.967
1.00
31.31

A
N


ANISOU
710
N
GLU
A
147
3953
3992
3953
4
5
23
A
N


ATOM
711
CA
GLU
A
147
−7.949
−1.259
2.337
1.00
30.28

A
C


ANISOU
711
CA
GLU
A
147
3800
3857
3849
22
−5
−13
A
C


ATOM
712
CB
GLU
A
147
−6.688
−1.322
3.216
1.00
30.72

A
C


ANISOU
712
CB
GLU
A
147
3869
3912
3892
−17
−22
20
A
C


ATOM
713
CG
GLU
A
147
−5.731
−2.459
2.843
1.00
31.95

A
C


ANISOU
713
CG
GLU
A
147
3986
4076
4079
27
−13
−18
A
C


ATOM
714
CD
GLU
A
147
−4.599
−2.655
3.844
1.00
33.14

A
C


ANISOU
714
CD
GLU
A
147
4125
4299
4169
18
−26
11
A
C


ATOM
715
OE1
GLU
A
147
−4.052
−1.651
4.352
1.00
33.55

A
O


ANISOU
715
OE1
GLU
A
147
4225
4252
4271
−24
−16
−29
A
O


ATOM
716
OE2
GLU
A
147
−4.246
−3.826
4.111
1.00
34.62

A
O


ANISOU
716
OE2
GLU
A
147
4404
4319
4430
49
0
31
A
O


ATOM
717
C
GLU
A
147
−9.002
−0.324
2.944
1.00
28.43

A
C


ANISOU
717
C
GLU
A
147
3607
3613
3581
−22
−39
59
A
C


ATOM
718
O
GLU
A
147
−9.500
−0.576
4.044
1.00
28.31

A
O


ANISOU
718
O
GLU
A
147
3575
3646
3537
3
−39
47
A
O


ATOM
719
N
LYS
A
148
−9.346
0.741
2.215
1.00
26.25

A
N


ANISOU
719
N
LYS
A
148
3267
3391
3315
−7
−7
−7
A
N


ATOM
720
CA
LYS
A
148
−10.344
1.718
2.665
1.00
23.89

A
C


ANISOU
720
CA
LYS
A
148
2969
3148
2959
−60
−88
24
A
C


ATOM
721
CB
LYS
A
148
−9.805
3.149
2.563
1.00
25.36

A
C


ANISOU
721
CB
LYS
A
148
3228
3228
3178
−35
−11
13
A
C


ATOM
722
CG
LYS
A
148
−8.724
3.497
3.583
1.00
28.07

A
C


ANISOU
722
CG
LYS
A
148
3447
3745
3473
−91
−120
7
A
C


ATOM
723
CD
LYS
A
148
−8.972
4.851
4.262
1.00
32.08

A
C


ANISOU
723
CD
LYS
A
148
4079
4007
4104
47
14
−117
A
C


ATOM
724
CE
LYS
A
148
−8.736
6.050
3.351
1.00
35.01

A
C


ANISOU
724
CE
LYS
A
148
4556
4356
4390
−28
45
40
A
C


ATOM
725
NZ
LYS
A
148
−9.949
6.443
2.570
1.00
37.34

A
N


ANISOU
725
NZ
LYS
A
148
4662
4778
4746
24
−31
5
A
N


ATOM
726
C
LYS
A
148
−11.676
1.612
1.909
1.00
21.28

A
C


ANISOU
726
C
LYS
A
148
2725
2709
2650
−22
2
−4
A
C


ATOM
727
O
LYS
A
148
−12.519
2.508
1.997
1.00
21.11

A
O


ANISOU
727
O
LYS
A
148
2694
2754
2573
−34
−35
5
A
O


ATOM
728
N
SER
A
149
−11.862
0.521
1.172
1.00
18.28

A
N


ANISOU
728
N
SER
A
149
2199
2515
2233
−14
−66
89
A
N


ATOM
729
CA
SER
A
149
−13.141
0.259
0.508
1.00
15.80

A
C


ANISOU
729
CA
SER
A
149
1967
2097
1938
−23
55
53
A
C


ATOM
730
CB
SER
A
149
−13.028
−0.934
−0.440
1.00
15.64

A
C


ANISOU
730
CB
SER
A
149
1989
2066
1889
−18
92
77
A
C


ATOM
731
OG
SER
A
149
−12.049
−0.688
−1.439
1.00
14.78

A
O


ANISOU
731
OG
SER
A
149
1739
2074
1803
59
83
140
A
O


ATOM
732
C
SER
A
149
−14.245
0.041
1.544
1.00
14.52

A
C


ANISOU
732
C
SER
A
149
1756
1947
1813
4
−35
73
A
C


ATOM
733
O
SER
A
149
−13.971
−0.289
2.704
1.00
15.50

A
O


ANISOU
733
O
SER
A
149
1866
2188
1834
13
−47
140
A
O


ATOM
734
N
PHE
A
150
−15.490
0.243
1.127
1.00
11.64

A
N


ANISOU
734
N
PHE
A
150
1501
1512
1411
−80
30
79
A
N


ATOM
735
CA
PHE
A
150
−16.615
0.193
2.048
1.00
11.37

A
C


ANISOU
735
CA
PHE
A
150
1413
1416
1492
−94
−3
−44
A
C


ATOM
736
CB
PHE
A
150
−17.286
1.564
2.146
1.00
12.04

A
C


ANISOU
736
CB
PHE
A
150
1554
1487
1535
−25
−55
−28
A
C


ATOM
737
CG
PHE
A
150
−18.481
1.593
3.065
1.00
13.68

A
C


ANISOU
737
CG
PHE
A
150
1729
1619
1849
−29
67
−71
A
C


ATOM
738
CD1
PHE
A
150
−19.717
2.006
2.595
1.00
16.32

A
C


ANISOU
738
CD1
PHE
A
150
1947
2111
2141
6
−7
−47
A
C


ATOM
739
CE1
PHE
A
150
−20.828
2.037
3.438
1.00
15.88

A
C


ANISOU
739
CE1
PHE
A
150
1796
2101
2138
0
38
24
A
C


ATOM
740
CZ
PHE
A
150
−20.705
1.639
4.763
1.00
16.38

A
C


ANISOU
740
CZ
PHE
A
150
1916
2139
2168
23
39
−54
A
C


ATOM
741
CE2
PHE
A
150
−19.472
1.217
5.247
1.00
17.08

A
C


ANISOU
741
CE2
PHE
A
150
2058
2201
2229
16
−17
21
A
C


ATOM
742
CD2
PHE
A
150
−18.370
1.189
4.397
1.00
16.08

A
C


ANISOU
742
CD2
PHE
A
150
2072
2070
1969
−31
12
−34
A
C


ATOM
743
C
PHE
A
150
−17.622
−0.841
1.589
1.00
10.87

A
C


ANISOU
743
C
PHE
A
150
1376
1397
1358
−92
−20
21
A
C


ATOM
744
O
PHE
A
150
−18.052
−0.816
0.441
1.00
10.76

A
O


ANISOU
744
O
PHE
A
150
1367
1353
1369
−129
−5
−28
A
O


ATOM
745
N
SER
A
151
−18.004
−1.738
2.492
1.00
9.88

A
N


ANISOU
745
N
SER
A
151
1220
1274
1261
−114
6
−40
A
N


ATOM
746
CA
SER
A
151
−18.947
−2.785
2.134
1.00
10.87

A
C


ANISOU
746
CA
SER
A
151
1316
1387
1427
−119
38
−27
A
C


ATOM
747
CB
SER
A
151
−18.217
−4.079
1.790
1.00
13.13

A
C


ANISOU
747
CB
SER
A
151
1695
1554
1738
−29
56
−86
A
C


ATOM
748
OG
SER
A
151
−17.541
−4.582
2.914
1.00
16.50

A
O


ANISOU
748
OG
SER
A
151
2134
1974
2163
153
−121
−4
A
O


ATOM
749
C
SER
A
151
−19.982
−3.035
3.210
1.00
9.39

A
C


ANISOU
749
C
SER
A
151
1129
1260
1180
−77
−37
−24
A
C


ATOM
750
O
SER
A
151
−19.743
−2.786
4.398
1.00
9.62

A
O


ANISOU
750
O
SER
A
151
1142
1254
1260
−133
9
−97
A
O


ATOM
751
N
ARG
A
152
−21.135
−3.535
2.767
1.00
8.45

A
N


ANISOU
751
N
ARG
A
152
1057
1098
1054
−133
38
−14
A
N


ATOM
752
CA
ARG
A
152
−22.254
−3.876
3.640
1.00
7.46

A
C


ANISOU
752
CA
ARG
A
152
916
950
970
20
25
−7
A
C


ATOM
753
CB
ARG
A
152
−23.293
−2.746
3.636
1.00
7.32

A
C


ANISOU
753
CB
ARG
A
152
947
944
890
42
−25
−27
A
C


ATOM
754
CG
ARG
A
152
−22.759
−1.427
4.199
1.00
7.25

A
C


ANISOU
754
CG
ARG
A
152
973
882
901
27
−57
−15
A
C


ATOM
755
CD
ARG
A
152
−23.690
−0.249
3.965
1.00
7.62

A
C


ANISOU
755
CD
ARG
A
152
939
915
1043
38
69
−21
A
C


ATOM
756
NE
ARG
A
152
−24.907
−0.319
4.770
1.00
8.37

A
N


ANISOU
756
NE
ARG
A
152
1056
1062
1064
43
87
−23
A
N


ATOM
757
CZ
ARG
A
152
−25.798
0.665
4.861
1.00
7.20

A
C


ANISOU
757
CZ
ARG
A
152
991
812
934
−22
54
61
A
C


ATOM
758
NH1
ARG
A
152
−25.597
1.813
4.214
1.00
6.94

A
N


ANISOU
758
NH1
ARG
A
152
1188
687
760
−46
−12
−42
A
N


ATOM
759
NH2
ARG
A
152
−26.881
0.509
5.611
1.00
6.93

A
N


ANISOU
759
NH2
ARG
A
152
915
852
866
23
49
38
A
N


ATOM
760
C
ARG
A
152
−22.855
−5.179
3.125
1.00
7.98

A
C


ANISOU
760
C
ARG
A
152
1049
996
988
30
5
−17
A
C


ATOM
761
O
ARG
A
152
−22.976
−5.364
1.911
1.00
8.37

A
O


ANISOU
761
O
ARG
A
152
1158
1070
952
−12
54
8
A
O


ATOM
762
N
ARG
A
153
−23.222
−6.071
4.047
1.00
7.77

A
N


ANISOU
762
N
ARG
A
153
929
1011
1011
0
51
−15
A
N


ATOM
763
CA
ARG
A
153
−23.685
−7.422
3.711
1.00
7.96

A
C


ANISOU
763
CA
ARG
A
153
1055
1003
965
−13
5
−9
A
C


ATOM
764
CB
ARG
A
153
−23.178
−8.439
4.739
1.00
9.24

A
C


ANISOU
764
CB
ARG
A
153
1151
1143
1216
18
−18
57
A
C


ATOM
765
CG
ARG
A
153
−21.682
−8.706
4.706
1.00
9.60

A
C


ANISOU
765
CG
ARG
A
153
1155
1353
1140
77
−14
85
A
C


ATOM
766
CD
ARG
A
153
−21.275
−9.601
5.871
1.00
10.87

A
C


ANISOU
766
CD
ARG
A
153
1438
1507
1187
88
−102
16
A
C


ATOM
767
NE
ARG
A
153
−21.454
−8.924
7.156
1.00
10.59

A
N


ANISOU
767
NE
ARG
A
153
1290
1450
1285
104
63
−55
A
N


ATOM
768
CZ
ARG
A
153
−21.306
−9.511
8.340
1.00
12.76

A
C


ANISOU
768
CZ
ARG
A
153
1783
1579
1486
−7
−88
52
A
C


ATOM
769
NH1
ARG
A
153
−20.967
−10.794
8.414
1.00
13.03

A
N


ANISOU
769
NH1
ARG
A
153
1796
1581
1572
155
−16
−83
A
N


ATOM
770
NH2
ARG
A
153
−21.495
−8.814
9.456
1.00
13.53

A
N


ANISOU
770
NH2
ARG
A
153
1860
1619
1660
141
62
−54
A
N


ATOM
771
C
ARG
A
153
−25.201
−7.525
3.662
1.00
8.40

A
C


ANISOU
771
C
ARG
A
153
1100
1062
1028
3
20
−23
A
C


ATOM
772
O
ARG
A
153
−25.906
−6.869
4.445
1.00
8.52

A
O


ANISOU
772
O
ARG
A
153
1170
1007
1060
16
39
−96
A
O


ATOM
773
N
ILE
A
154
−25.689
−8.382
2.763
1.00
7.37

A
N


ANISOU
773
N
ILE
A
154
920
931
950
−24
−2
−3
A
N


ATOM
774
CA
ILE
A
154
−27.122
−8.676
2.643
1.00
8.09

A
C


ANISOU
774
CA
ILE
A
154
1028
1024
1023
−18
−78
−18
A
C


ATOM
775
CB
ILE
A
154
−27.765
−8.019
1.380
1.00
8.49

A
C


ANISOU
775
CB
ILE
A
154
1204
965
1058
−11
−10
20
A
C


ATOM
776
CG1
ILE
A
154
−27.137
−8.577
0.093
1.00
9.25

A
C


ANISOU
776
CG1
ILE
A
154
1297
1219
997
32
16
−8
A
C


ATOM
777
CD1
ILE
A
154
−27.899
−8.237
−1.179
1.00
9.93

A
C


ANISOU
777
CD1
ILE
A
154
1391
1296
1086
94
−61
−28
A
C


ATOM
778
CG2
ILE
A
154
−27.684
−6.493
1.449
1.00
9.18

A
C


ANISOU
778
CG2
ILE
A
154
1304
996
1189
87
−7
−56
A
C


ATOM
779
C
ILE
A
154
−27.398
−10.180
2.607
1.00
8.06

A
C


ANISOU
779
C
ILE
A
154
1018
1068
977
−10
−4
10
A
C


ATOM
780
O
ILE
A
154
−26.501
−10.985
2.346
1.00
8.34

A
O


ANISOU
780
O
ILE
A
154
1053
1057
1057
47
−50
−15
A
O


ATOM
781
N
SER
A
155
−28.651
−10.536
2.887
1.00
7.39

A
N


ANISOU
781
N
SER
A
155
898
967
943
−59
−69
−71
A
N


ATOM
782
CA
SER
A
155
−29.171
−11.896
2.756
1.00
7.41

A
C


ANISOU
782
CA
SER
A
155
985
888
944
−22
19
58
A
C


ATOM
783
CB
SER
A
155
−29.049
−12.641
4.092
1.00
7.78

A
C


ANISOU
783
CB
SER
A
155
1133
924
900
−46
−54
15
A
C


ATOM
784
OG
SER
A
155
−29.624
−13.931
3.988
1.00
9.60

A
O


ANISOU
784
OG
SER
A
155
1308
1078
1260
−139
79
67
A
O


ATOM
785
C
SER
A
155
−30.636
−11.766
2.375
1.00
7.60

A
C


ANISOU
785
C
SER
A
155
1024
950
912
−32
−68
−54
A
C


ATOM
786
O
SER
A
155
−31.384
−11.068
3.058
1.00
8.97

A
O


ANISOU
786
O
SER
A
155
1037
1256
1117
38
−22
−158
A
O


ATOM
787
N
HIS
A
156
−31.064
−12.421
1.294
1.00
6.78

A
N


ANISOU
787
N
HIS
A
156
822
891
863
−42
−55
11
A
N


ATOM
788
CA
HIS
A
156
−32.408
−12.158
0.768
1.00
6.99

A
C


ANISOU
788
CA
HIS
A
156
908
830
918
−44
−77
−13
A
C


ATOM
789
CB
HIS
A
156
−32.398
−10.819
0.006
1.00
7.48

A
C


ANISOU
789
CB
HIS
A
156
959
941
942
−5
−100
97
A
C


ATOM
790
CG
HIS
A
156
−33.685
−10.473
−0.685
1.00
8.74

A
C


ANISOU
790
CG
HIS
A
156
1043
1183
1096
−13
−103
3
A
C


ATOM
791
ND1
HIS
A
156
−34.843
−10.157
−0.005
1.00
9.94

A
N


ANISOU
791
ND1
HIS
A
156
1232
1228
1318
−39
−69
−4
A
N


ATOM
792
CE1
HIS
A
156
−35.796
−9.868
−0.875
1.00
9.31

A
C


ANISOU
792
CE1
HIS
A
156
1224
1189
1126
−4
66
117
A
C


ATOM
793
NE2
HIS
A
156
−35.296
−9.977
−2.094
1.00
8.52

A
N


ANISOU
793
NE2
HIS
A
156
1102
1049
1088
147
45
10
A
N


ATOM
794
CD2
HIS
A
156
−33.975
−10.346
−2.003
1.00
7.82

A
C


ANISOU
794
CD2
HIS
A
156
990
979
1004
−102
−43
73
A
C


ATOM
795
C
HIS
A
156
−32.914
−13.282
−0.124
1.00
7.26

A
C


ANISOU
795
C
HIS
A
156
938
900
919
−24
−42
−48
A
C


ATOM
796
O
HIS
A
156
−32.153
−13.844
−0.921
1.00
7.76

A
O


ANISOU
796
O
HIS
A
156
1001
982
965
55
−44
−60
A
O


ATOM
797
N
LEU
A
157
−34.198
−13.602
0.021
1.00
7.31

A
N


ANISOU
797
N
LEU
A
157
919
887
973
−19
−29
−23
A
N


ATOM
798
CA
LEU
A
157
−34.883
−14.466
−0.940
1.00
7.39

A
C


ANISOU
798
CA
LEU
A
157
910
973
924
−66
−71
8
A
C


ATOM
799
CB
LEU
A
157
−36.075
−15.194
−0.304
1.00
8.06

A
C


ANISOU
799
CB
LEU
A
157
977
1112
975
−31
17
0
A
C


ATOM
800
CG
LEU
A
157
−36.843
−16.156
−1.225
1.00
8.39

A
C


ANISOU
800
CG
LEU
A
157
962
1044
1181
−70
63
−25
A
C


ATOM
801
CD1
LEU
A
157
−36.010
−17.390
−1.572
1.00
10.21

A
C


ANISOU
801
CD1
LEU
A
157
1443
1138
1298
121
27
−15
A
C


ATOM
802
CD2
LEU
A
157
−38.161
−16.573
−0.582
1.00
8.51

A
C


ANISOU
802
CD2
LEU
A
157
966
1115
1151
−119
83
6
A
C


ATOM
803
C
LEU
A
157
−35.358
−13.626
−2.117
1.00
7.23

A
C


ANISOU
803
C
LEU
A
157
903
950
895
−30
−10
21
A
C


ATOM
804
O
LEU
A
157
−36.324
−12.862
−2.001
1.00
7.46

A
O


ANISOU
804
O
LEU
A
157
1085
896
853
−3
6
−15
A
O


ATOM
805
N
PHE
A
158
−34.673
−13.770
−3.248
1.00
7.89

A
N


ANISOU
805
N
PHE
A
158
1066
1031
900
−26
−33
37
A
N


ATOM
806
CA
PHE
A
158
−35.055
−13.071
−4.472
1.00
7.30

A
C


ANISOU
806
CA
PHE
A
158
919
1009
846
−19
−21
14
A
C


ATOM
807
CB
PHE
A
158
−33.851
−12.939
−5.418
1.00
7.47

A
C


ANISOU
807
CB
PHE
A
158
840
1000
1000
−47
8
−34
A
C


ATOM
808
CG
PHE
A
158
−32.756
−12.047
−4.886
1.00
7.06

A
C


ANISOU
808
CG
PHE
A
158
899
838
945
15
−54
−50
A
C


ATOM
809
CD1
PHE
A
158
−31.832
−12.526
−3.952
1.00
7.57

A
C


ANISOU
809
CD1
PHE
A
158
973
1018
885
−57
−73
−46
A
C


ATOM
810
CE1
PHE
A
158
−30.825
−11.687
−3.445
1.00
7.26

A
C


ANISOU
810
CE1
PHE
A
158
919
922
919
−48
−49
54
A
C


ATOM
811
CZ
PHE
A
158
−30.730
−10.373
−3.896
1.00
7.71

A
C


ANISOU
811
CZ
PHE
A
158
1027
920
984
−49
36
−41
A
C


ATOM
812
CE2
PHE
A
158
−31.643
−9.890
−4.829
1.00
7.49

A
C


ANISOU
812
CE2
PHE
A
158
978
937
930
−68
58
−33
A
C


ATOM
813
CD2
PHE
A
158
−32.650
−10.726
−5.318
1.00
7.76

A
C


ANISOU
813
CD2
PHE
A
158
950
933
1065
−45
48
−19
A
C


ATOM
814
C
PHE
A
158
−36.201
−13.808
−5.154
1.00
7.67

A
C


ANISOU
814
C
PHE
A
158
978
978
959
−14
0
23
A
C


ATOM
815
O
PHE
A
158
−36.210
−15.031
−5.212
1.00
7.39

A
O


ANISOU
815
O
PHE
A
158
1024
931
853
40
−56
−84
A
O


ATOM
816
N
PHE
A
159
−37.178
−13.042
−5.631
1.00
7.55

A
N


ANISOU
816
N
PHE
A
159
915
1052
902
−4
−71
1
A
N


ATOM
817
CA
PHE
A
159
−38.284
−13.554
−6.448
1.00
7.48

A
C


ANISOU
817
CA
PHE
A
159
846
993
1004
−26
−57
55
A
C


ATOM
818
CB
PHE
A
159
−39.281
−14.383
−5.620
1.00
7.89

A
C


ANISOU
818
CB
PHE
A
159
951
1070
976
−25
31
47
A
C


ATOM
819
CG
PHE
A
159
−40.067
−13.586
−4.608
1.00
8.47

A
C


ANISOU
819
CG
PHE
A
159
1121
1109
988
−2
−7
−4
A
C


ATOM
820
CD1
PHE
A
159
−41.380
−13.217
−4.875
1.00
10.47

A
C


ANISOU
820
CD1
PHE
A
159
1256
1407
1315
62
103
−25
A
C


ATOM
821
CE1
PHE
A
159
−42.124
−12.500
−3.944
1.00
11.38

A
C


ANISOU
821
CE1
PHE
A
159
1547
1461
1316
77
67
−105
A
C


ATOM
822
CZ
PHE
A
159
−41.553
−12.140
−2.731
1.00
10.24

A
C


ANISOU
822
CZ
PHE
A
159
1443
1240
1209
39
58
−48
A
C


ATOM
823
CE2
PHE
A
159
−40.249
−12.509
−2.441
1.00
10.72

A
C


ANISOU
823
CE2
PHE
A
159
1373
1484
1215
−4
122
−19
A
C


ATOM
824
CD2
PHE
A
159
−39.507
−13.234
−3.380
1.00
9.25

A
C


ANISOU
824
CD2
PHE
A
159
1313
1067
1133
3
17
−26
A
C


ATOM
825
C
PHE
A
159
−38.938
−12.357
−7.131
1.00
8.40

A
C


ANISOU
825
C
PHE
A
159
1054
1081
1057
13
−5
42
A
C


ATOM
826
O
PHE
A
159
−38.514
−11.227
−6.910
1.00
9.21

A
O


ANISOU
826
O
PHE
A
159
1198
1157
1144
36
−65
47
A
O


ATOM
827
N
HIS
A
160
−39.958
−12.603
−7.949
1.00
9.79

A
N


ANISOU
827
N
HIS
A
160
1158
1306
1256
25
−91
−6
A
N


ATOM
828
CA
HIS
A
160
−40.540
−11.554
−8.802
1.00
10.74

A
C


ANISOU
828
CA
HIS
A
160
1372
1349
1358
−1
−93
34
A
C


ATOM
829
CB
HIS
A
160
−41.714
−12.095
−9.640
1.00
11.16

A
C


ANISOU
829
CB
HIS
A
160
1375
1422
1445
−3
−148
−8
A
C


ATOM
830
CG
HIS
A
160
−42.960
−12.382
−8.854
1.00
12.87

A
C


ANISOU
830
CG
HIS
A
160
1592
1613
1684
30
22
−43
A
C


ATOM
831
ND1
HIS
A
160
−43.133
−13.537
−8.116
1.00
13.38

A
N


ANISOU
831
ND1
HIS
A
160
1717
1824
1542
64
80
−41
A
N


ATOM
832
CE1
HIS
A
160
−44.330
−13.522
−7.555
1.00
14.93

A
C


ANISOU
832
CE1
HIS
A
160
1914
1897
1861
−79
75
42
A
C


ATOM
833
NE2
HIS
A
160
−44.941
−12.404
−7.904
1.00
16.71

A
N


ANISOU
833
NE2
HIS
A
160
1980
2205
2163
26
90
42
A
N


ATOM
834
CD2
HIS
A
160
−44.108
−11.674
−8.718
1.00
13.36

A
C


ANISOU
834
CD2
HIS
A
160
1650
1699
1727
43
−67
−36
A
C


ATOM
835
C
HIS
A
160
−40.916
−10.251
−8.088
1.00
12.03

A
C


ANISOU
835
C
HIS
A
160
1495
1509
1568
44
−39
−13
A
C


ATOM
836
O
HIS
A
160
−40.606
−9.164
−8.592
1.00
13.34

A
O


ANISOU
836
O
HIS
A
160
1811
1605
1653
−31
8
58
A
O


ATOM
837
N
LYS
A
161
−41.554
−10.357
−6.923
1.00
12.44

A
N


ANISOU
837
N
LYS
A
161
1502
1632
1594
45
−19
9
A
N


ATOM
838
CA
LYS
A
161
−42.019
−9.172
−6.174
1.00
13.18

A
C


ANISOU
838
CA
LYS
A
161
1682
1640
1685
20
−43
−87
A
C


ATOM
839
CB
LYS
A
161
−43.061
−9.554
−5.116
1.00
14.68

A
C


ANISOU
839
CB
LYS
A
161
1744
1852
1980
37
75
−27
A
C


ATOM
840
CG
LYS
A
161
−44.325
−10.236
−5.609
1.00
16.73

A
C


ANISOU
840
CG
LYS
A
161
2081
2126
2149
−54
−45
−70
A
C


ATOM
841
CD
LYS
A
161
−45.213
−10.629
−4.426
1.00
18.35

A
C


ANISOU
841
CD
LYS
A
161
2356
2353
2263
52
57
27
A
C


ATOM
842
CE
LYS
A
161
−46.378
−11.507
−4.858
1.00
21.33

A
C


ANISOU
842
CE
LYS
A
161
2687
2666
2753
−148
−14
−44
A
C


ATOM
843
NZ
LYS
A
161
−47.283
−11.851
−3.717
1.00
23.16

A
N


ANISOU
843
NZ
LYS
A
161
2925
2937
2937
−38
88
37
A
N


ATOM
844
C
LYS
A
161
−40.887
−8.432
−5.458
1.00
11.78

A
C


ANISOU
844
C
LYS
A
161
1442
1447
1585
34
−9
15
A
C


ATOM
845
O
LYS
A
161
−41.033
−7.264
−5.101
1.00
12.80

A
O


ANISOU
845
O
LYS
A
161
1514
1606
1744
91
−101
−98
A
O


ATOM
846
N
GLU
A
162
−39.783
−9.132
−5.212
1.00
10.06

A
N


ANISOU
846
N
GLU
A
162
1256
1255
1312
−40
−28
7
A
N


ATOM
847
CA
GLU
A
162
−38.626
−8.556
−4.518
1.00
9.39

A
C


ANISOU
847
CA
GLU
A
162
1145
1236
1187
17
−13
−25
A
C


ATOM
848
CB
GLU
A
162
−38.607
−8.960
−3.033
1.00
9.64

A
C


ANISOU
848
CB
GLU
A
162
1233
1211
1219
2
59
1
A
C


ATOM
849
CG
GLU
A
162
−39.862
−8.534
−2.251
1.00
10.48

A
C


ANISOU
849
CG
GLU
A
162
1214
1453
1314
119
18
−9
A
C


ATOM
850
CD
GLU
A
162
−39.719
−8.653
−0.739
1.00
12.33

A
C


ANISOU
850
CD
GLU
A
162
1647
1618
1421
54
44
45
A
C


ATOM
851
OE1
GLU
A
162
−40.551
−8.045
−0.019
1.00
15.74

A
O


ANISOU
851
OE1
GLU
A
162
2008
2186
1788
174
213
−55
A
O


ATOM
852
OE2
GLU
A
162
−38.800
−9.353
−0.264
1.00
11.73

A
O


ANISOU
852
OE2
GLU
A
162
1503
1625
1328
36
101
−27
A
O


ATOM
853
C
GLU
A
162
−37.364
−9.020
−5.231
1.00
9.24

A
C


ANISOU
853
C
GLU
A
162
1181
1213
1116
11
−55
−39
A
C


ATOM
854
O
GLU
A
162
−36.562
−9.782
−4.679
1.00
8.70

A
O


ANISOU
854
O
GLU
A
162
1089
1166
1050
13
−24
46
A
O


ATOM
855
N
ASN
A
163
−37.210
−8.579
−6.477
1.00
8.31

A
N


ANISOU
855
N
ASN
A
163
1045
1098
1016
−88
31
1
A
N


ATOM
856
CA
ASN
A
163
−36.124
−9.073
−7.321
1.00
8.08

A
C


ANISOU
856
CA
ASN
A
163
935
1096
1040
−14
−31
−42
A
C


ATOM
857
CB
ASN
A
163
−36.556
−9.246
−8.792
1.00
9.33

A
C


ANISOU
857
CB
ASN
A
163
1147
1318
1080
−83
−3
23
A
C


ATOM
858
CG
ASN
A
163
−36.849
−7.926
−9.495
1.00
12.12

A
C


ANISOU
858
CG
ASN
A
163
1543
1509
1552
20
−42
66
A
C


ATOM
859
OD1
ASN
A
163
−36.434
−6.859
−9.049
1.00
13.25

A
O


ANISOU
859
OD1
ASN
A
163
2013
1459
1562
70
−76
109
A
O


ATOM
860
ND2
ASN
A
163
−37.557
−8.006
−10.626
1.00
15.83

A
N


ANISOU
860
ND2
ASN
A
163
1868
2337
1809
2
−161
23
A
N


ATOM
861
C
ASN
A
163
−34.837
−8.266
−7.190
1.00
7.83

A
C


ANISOU
861
C
ASN
A
163
996
902
1077
−33
22
−46
A
C


ATOM
862
O
ASN
A
163
−33.853
−8.566
−7.853
1.00
8.84

A
O


ANISOU
862
O
ASN
A
163
1121
1123
1114
−51
71
−21
A
O


ATOM
863
N
ASP
A
164
−34.855
−7.236
−6.343
1.00
7.81

A
N


ANISOU
863
N
ASP
A
164
953
1035
981
−43
−45
−16
A
N


ATOM
864
CA
ASP
A
164
−33.615
−6.585
−5.948
1.00
8.54

A
C


ANISOU
864
CA
ASP
A
164
1145
1078
1021
−87
8
−3
A
C


ATOM
865
CB
ASP
A
164
−33.358
−5.282
−6.736
1.00
9.17

A
C


ANISOU
865
CB
ASP
A
164
1203
1073
1207
−21
21
91
A
C


ATOM
866
CG
ASP
A
164
−34.346
−4.162
−6.408
1.00
11.50

A
C


ANISOU
866
CG
ASP
A
164
1560
1325
1486
79
49
−65
A
C


ATOM
867
OD1
ASP
A
164
−34.694
−3.393
−7.331
1.00
12.64

A
O


ANISOU
867
OD1
ASP
A
164
1863
1429
1512
−14
79
49
A
O


ATOM
868
OD2
ASP
A
164
−34.760
−4.025
−5.243
1.00
13.39

A
O


ANISOU
868
OD2
ASP
A
164
2156
1493
1437
231
189
144
A
O


ATOM
869
C
ASP
A
164
−33.559
−6.389
−4.436
1.00
8.75

A
C


ANISOU
869
C
ASP
A
164
1120
1172
1032
−61
−46
−21
A
C


ATOM
870
O
ASP
A
164
−34.576
−6.497
−3.742
1.00
9.00

A
O


ANISOU
870
O
ASP
A
164
1187
1266
966
−17
−48
−93
A
O


ATOM
871
N
TRP
A
165
−32.359
−6.132
−3.935
1.00
8.36

A
N


ANISOU
871
N
TRP
A
165
1085
1164
928
−36
−51
−15
A
N


ATOM
872
CA
TRP
A
165
−32.135
−5.983
−2.501
1.00
7.64

A
C


ANISOU
872
CA
TRP
A
165
1048
969
887
−58
−64
36
A
C


ATOM
873
CB
TRP
A
165
−32.115
−7.352
−1.820
1.00
8.47

A
C


ANISOU
873
CB
TRP
A
165
1208
1046
964
−24
−72
55
A
C


ATOM
874
CG
TRP
A
165
−32.205
−7.304
−0.320
1.00
6.98

A
C


ANISOU
874
CG
TRP
A
165
937
793
923
8
−43
−15
A
C


ATOM
875
CD1
TRP
A
165
−31.184
−7.483
0.565
1.00
7.74

A
C


ANISOU
875
CD1
TRP
A
165
1145
847
950
−64
−82
20
A
C


ATOM
876
NE1
TRP
A
165
−31.650
−7.393
1.854
1.00
8.31

A
N


ANISOU
876
NE1
TRP
A
165
1011
1136
1009
54
73
53
A
N


ATOM
877
CE2
TRP
A
165
−33.000
−7.154
1.824
1.00
8.39

A
C


ANISOU
877
CE2
TRP
A
165
1086
1051
1049
25
−60
62
A
C


ATOM
878
CD2
TRP
A
165
−33.386
−7.093
0.465
1.00
7.46

A
C


ANISOU
878
CD2
TRP
A
165
1006
955
875
−72
−8
−53
A
C


ATOM
879
CE3
TRP
A
165
−34.734
−6.856
0.151
1.00
9.77

A
C


ANISOU
879
CE3
TRP
A
165
1185
1241
1288
166
31
−23
A
C


ATOM
880
CZ3
TRP
A
165
−35.645
−6.691
1.197
1.00
9.88

A
C


ANISOU
880
CZ3
TRP
A
165
1200
1384
1170
24
26
30
A
C


ATOM
881
CH2
TRP
A
165
−35.225
−6.753
2.544
1.00
9.96

A
C


ANISOU
881
CH2
TRP
A
165
1213
1396
1174
10
37
61
A
C


ATOM
882
CZ2
TRP
A
165
−33.911
−6.984
2.874
1.00
9.16

A
C


ANISOU
882
CZ2
TRP
A
165
1222
1159
1101
30
−28
43
A
C


ATOM
883
C
TRP
A
165
−30.804
−5.291
−2.313
1.00
7.80

A
C


ANISOU
883
C
TRP
A
165
1051
994
917
−49
−30
−14
A
C


ATOM
884
O
TRP
A
165
−29.848
−5.547
−3.047
1.00
8.44

A
O


ANISOU
884
O
TRP
A
165
1018
1128
1062
−125
30
−52
A
O


ATOM
885
N
GLY
A
166
−30.745
−4.410
−1.327
1.00
7.18

A
N


ANISOU
885
N
GLY
A
166
994
913
822
−67
52
−37
A
N


ATOM
886
CA
GLY
A
166
−29.551
−3.613
−1.115
1.00
7.20

A
C


ANISOU
886
CA
GLY
A
166
950
912
874
−63
0
−125
A
C


ATOM
887
C
GLY
A
166
−29.861
−2.432
−0.236
1.00
7.50

A
C


ANISOU
887
C
GLY
A
166
991
907
951
−11
16
−32
A
C


ATOM
888
O
GLY
A
166
−30.658
−2.543
0.687
1.00
8.47

A
O


ANISOU
888
O
GLY
A
166
1080
1157
982
−77
37
−75
A
O


ATOM
889
N
PHE
A
167
−29.240
−1.295
−0.539
1.00
6.71

A
N


ANISOU
889
N
PHE
A
167
995
761
793
−73
−35
−54
A
N


ATOM
890
CA
PHE
A
167
−29.288
−0.149
0.359
1.00
7.12

A
C


ANISOU
890
CA
PHE
A
167
1014
775
918
23
−26
−7
A
C


ATOM
891
CB
PHE
A
167
−27.939
0.001
1.068
1.00
7.94

A
C


ANISOU
891
CB
PHE
A
167
1083
900
1034
65
−88
4
A
C


ATOM
892
CG
PHE
A
167
−27.485
−1.249
1.758
1.00
7.68

A
C


ANISOU
892
CG
PHE
A
167
1056
877
985
53
61
64
A
C


ATOM
893
CD1
PHE
A
167
−26.656
−2.158
1.102
1.00
7.19

A
C


ANISOU
893
CD1
PHE
A
167
852
1027
851
81
−28
91
A
C


ATOM
894
CE1
PHE
A
167
−26.247
−3.325
1.735
1.00
7.20

A
C


ANISOU
894
CE1
PHE
A
167
982
800
952
43
23
13
A
C


ATOM
895
CZ
PHE
A
167
−26.675
−3.597
3.037
1.00
7.18

A
C


ANISOU
895
CZ
PHE
A
167
849
977
902
29
−18
−39
A
C


ATOM
896
CE2
PHE
A
167
−27.512
−2.701
3.695
1.00
7.41

A
C


ANISOU
896
CE2
PHE
A
167
909
924
983
26
−4
−9
A
C


ATOM
897
CD2
PHE
A
167
−27.914
−1.534
3.054
1.00
8.38

A
C


ANISOU
897
CD2
PHE
A
167
1180
1073
930
4
−26
38
A
C


ATOM
898
C
PHE
A
167
−29.629
1.129
−0.379
1.00
7.36

A
C


ANISOU
898
C
PHE
A
167
985
930
880
40
−25
11
A
C


ATOM
899
O
PHE
A
167
−28.857
1.586
−1.225
1.00
8.24

A
O


ANISOU
899
O
PHE
A
167
1121
996
1015
58
50
120
A
O


ATOM
900
N
ASER
A
168
−30.787
1.704
−0.063
0.50
6.68

A
N


ANISOU
900
N
ASER
A
168
888
861
788
16
−15
12
A
N


ATOM
901
N
BSER
A
168
−30.781
1.711
−0.049
0.50
7.40

A
N


ANISOU
901
N
BSER
A
168
952
966
893
22
−9
3
A
N


ATOM
902
CA
ASER
A
168
−31.179
2.982
−0.646
0.50
6.92

A
C


ANISOU
902
CA
ASER
A
168
882
871
877
39
−34
5
A
C


ATOM
903
CA
BSER
A
168
−31.195
2.982
−0.643
0.50
8.30

A
C


ANISOU
903
CA
BSER
A
168
1067
1029
1059
36
−40
13
A
C


ATOM
904
CB
ASER
A
168
−32.611
3.349
−0.252
0.50
7.14

A
C


ANISOU
904
CB
ASER
A
168
882
953
877
−23
−4
−4
A
C


ATOM
905
CB
BSER
A
168
−32.669
3.280
−0.351
0.50
9.56

A
C


ANISOU
905
CB
BSER
A
168
1124
1218
1290
8
−7
13
A
C


ATOM
906
OG
ASER
A
168
−33.540
2.465
−0.856
0.50
7.33

A
O


ANISOU
906
OG
ASER
A
168
771
990
1025
−11
−51
−46
A
O


ATOM
907
OG
BSER
A
168
−32.913
3.393
1.040
0.50
12.47

A
O


ANISOU
907
OG
BSER
A
168
1603
1643
1491
19
61
−83
A
O


ATOM
908
C
ASER
A
168
−30.213
4.065
−0.199
0.50
7.19

A
C


ANISOU
908
C
ASER
A
168
933
895
902
1
11
−10
A
C


ATOM
909
C
BSER
A
168
−30.317
4.122
−0.151
0.50
8.12

A
C


ANISOU
909
C
BSER
A
168
1025
1052
1008
3
−15
8
A
C


ATOM
910
O
ASER
A
168
−29.867
4.961
−0.976
0.50
7.57

A
O


ANISOU
910
O
ASER
A
168
1087
915
875
12
−7
−13
A
O


ATOM
911
O
BSER
A
168
−30.147
5.126
−0.848
0.50
8.95

A
O


ANISOU
911
O
BSER
A
168
1196
1131
1075
−17
−71
49
A
O


ATOM
912
N
ASN
A
169
−29.767
3.949
1.053
1.00
7.23

A
N


ANISOU
912
N
ASN
A
169
891
927
930
−6
−32
−15
A
N


ATOM
913
CA
ASN
A
169
−28.860
4.909
1.669
1.00
7.25

A
C


ANISOU
913
CA
ASN
A
169
970
890
893
47
−1
−58
A
C


ATOM
914
CB
ASN
A
169
−29.472
5.420
2.980
1.00
7.00

A
C


ANISOU
914
CB
ASN
A
169
932
874
853
3
−11
−27
A
C


ATOM
915
CG
ASN
A
169
−28.781
6.666
3.513
1.00
7.63

A
C


ANISOU
915
CG
ASN
A
169
1035
862
1003
2
25
0
A
C


ATOM
916
OD1
ASN
A
169
−27.994
7.310
2.813
1.00
8.56

A
O


ANISOU
916
OD1
ASN
A
169
1094
1071
1087
−154
−33
−52
A
O


ATOM
917
ND2
ASN
A
169
−29.080
7.014
4.769
1.00
9.47

A
N


ANISOU
917
ND2
ASN
A
169
1254
1272
1074
15
−19
−80
A
N


ATOM
918
C
ASN
A
169
−27.518
4.221
1.921
1.00
7.22

A
C


ANISOU
918
C
ASN
A
169
904
958
881
6
14
−58
A
C


ATOM
919
O
ASN
A
169
−27.082
4.080
3.068
1.00
7.62

A
O


ANISOU
919
O
ASN
A
169
1022
976
897
53
32
22
A
O


ATOM
920
N
PHE
A
170
−26.868
3.771
0.846
1.00
7.61

A
N


ANISOU
920
N
PHE
A
170
1038
865
989
−13
58
−20
A
N


ATOM
921
CA
PHE
A
170
−25.617
3.024
0.990
1.00
7.31

A
C


ANISOU
921
CA
PHE
A
170
928
907
941
−35
102
−48
A
C


ATOM
922
CB
PHE
A
170
−25.171
2.425
−0.351
1.00
7.73

A
C


ANISOU
922
CB
PHE
A
170
1087
935
916
25
66
−78
A
C


ATOM
923
CG
PHE
A
170
−23.955
1.548
−0.236
1.00
8.16

A
C


ANISOU
923
CG
PHE
A
170
967
993
1139
4
11
−77
A
C


ATOM
924
CD1
PHE
A
170
−24.086
0.203
0.094
1.00
9.17

A
C


ANISOU
924
CD1
PHE
A
170
1353
1025
1107
78
74
43
A
C


ATOM
925
CE1
PHE
A
170
−22.965
−0.619
0.210
1.00
9.76

A
C


ANISOU
925
CE1
PHE
A
170
1147
1311
1250
0
−11
−2
A
C


ATOM
926
CZ
PHE
A
170
−21.700
−0.095
0.000
1.00
10.16

A
C


ANISOU
926
CZ
PHE
A
170
1223
1435
1203
−2
77
81
A
C


ATOM
927
CE2
PHE
A
170
−21.556
1.246
−0.330
1.00
12.15

A
C


ANISOU
927
CE2
PHE
A
170
1403
1352
1861
75
−10
−98
A
C


ATOM
928
CD2
PHE
A
170
−22.681
2.062
−0.454
1.00
10.37

A
C


ANISOU
928
CD2
PHE
A
170
1210
1197
1535
−61
−22
−99
A
C


ATOM
929
C
PHE
A
170
−24.511
3.903
1.579
1.00
8.09

A
C


ANISOU
929
C
PHE
A
170
1059
1044
971
−8
−25
−31
A
C


ATOM
930
O
PHE
A
170
−23.832
3.517
2.533
1.00
8.39

A
O


ANISOU
930
O
PHE
A
170
1086
1014
1086
8
16
2
A
O


ATOM
931
N
MET
A
171
−24.361
5.086
0.986
1.00
8.66

A
N


ANISOU
931
N
MET
A
171
1163
1046
1082
−61
26
−11
A
N


ATOM
932
CA
MET
A
171
−23.431
6.119
1.424
1.00
9.27

A
C


ANISOU
932
CA
MET
A
171
1208
1061
1255
−52
0
5
A
C


ATOM
933
CB
MET
A
171
−22.057
5.925
0.776
1.00
11.05

A
C


ANISOU
933
CB
MET
A
171
1384
1433
1380
34
36
13
A
C


ATOM
934
CG
MET
A
171
−21.102
5.058
1.556
1.00
14.07

A
C


ANISOU
934
CG
MET
A
171
1644
1785
1917
43
12
89
A
C


ATOM
935
SD
MET
A
171
−19.456
5.076
0.817
1.00
17.43

A
S


ANISOU
935
SD
MET
A
171
1725
2416
2483
29
215
−170
A
S


ATOM
936
CE
MET
A
171
−18.961
6.774
1.083
1.00
15.84

A
C


ANISOU
936
CE
MET
A
171
1812
2008
2199
97
97
126
A
C


ATOM
937
C
MET
A
171
−24.004
7.453
0.971
1.00
8.25

A
C


ANISOU
937
C
MET
A
171
1073
1026
1037
−35
−18
−10
A
C


ATOM
938
O
MET
A
171
−24.790
7.501
0.019
1.00
8.60

A
O


ANISOU
938
O
MET
A
171
1082
1125
1059
−2
1
−73
A
O


ATOM
939
N
ALA
A
172
−23.617
8.537
1.640
1.00
8.44

A
N


ANISOU
939
N
ALA
A
172
1174
963
1068
−36
−32
0
A
N


ATOM
940
CA
ALA
A
172
−24.043
9.866
1.206
1.00
8.28

A
C


ANISOU
940
CA
ALA
A
172
1140
938
1069
−26
−49
10
A
C


ATOM
941
CB
ALA
A
172
−23.642
10.925
2.230
1.00
9.59

A
C


ANISOU
941
CB
ALA
A
172
1289
1164
1190
−47
−48
−62
A
C


ATOM
942
C
ALA
A
172
−23.435
10.183
−0.159
1.00
8.86

A
C


ANISOU
942
C
ALA
A
172
1190
1041
1136
0
−25
−10
A
C


ATOM
943
O
ALA
A
172
−22.260
9.907
−0.402
1.00
9.76

A
O


ANISOU
943
O
ALA
A
172
1288
1175
1244
34
80
−83
A
O


ATOM
944
N
TRP
A
173
−24.239
10.762
−1.047
1.00
8.97

A
N


ANISOU
944
N
TRP
A
173
1233
1126
1049
−63
−53
48
A
N


ATOM
945
CA
TRP
A
173
−23.769
11.143
−2.385
1.00
9.47

A
C


ANISOU
945
CA
TRP
A
173
1218
1235
1147
−2
20
7
A
C


ATOM
946
CB
TRP
A
173
−24.919
11.765
−3.185
1.00
10.07

A
C


ANISOU
946
CB
TRP
A
173
1272
1311
1244
38
1
150
A
C


ATOM
947
CG
TRP
A
173
−24.613
11.966
−4.649
1.00
11.50

A
C


ANISOU
947
CG
TRP
A
173
1407
1623
1340
37
34
46
A
C


ATOM
948
CD1
TRP
A
173
−24.080
13.084
−5.228
1.00
13.44

A
C


ANISOU
948
CD1
TRP
A
173
1673
1803
1629
0
53
51
A
C


ATOM
949
NE1
TRP
A
173
−23.950
12.900
−6.587
1.00
14.09

A
N


ANISOU
949
NE1
TRP
A
173
1877
1907
1568
52
−57
43
A
N


ATOM
950
CE2
TRP
A
173
−24.407
11.649
−6.909
1.00
12.99

A
C


ANISOU
950
CE2
TRP
A
173
1725
1744
1467
48
−24
115
A
C


ATOM
951
CD2
TRP
A
173
−24.837
11.031
−5.708
1.00
11.02

A
C


ANISOU
951
CD2
TRP
A
173
1218
1580
1388
84
50
68
A
C


ATOM
952
CE3
TRP
A
173
−25.354
9.731
−5.763
1.00
12.54

A
C


ANISOU
952
CE3
TRP
A
173
1530
1712
1522
22
−55
−48
A
C


ATOM
953
CZ3
TRP
A
173
−25.426
9.090
−7.002
1.00
14.73

A
C


ANISOU
953
CZ3
TRP
A
173
1975
1931
1691
43
8
−78
A
C


ATOM
954
CH2
TRP
A
173
−24.991
9.733
−8.176
1.00
14.59

A
C


ANISOU
954
CH2
TRP
A
173
1865
2000
1679
27
−58
−49
A
C


ATOM
955
CZ2
TRP
A
173
−24.480
11.004
−8.151
1.00
13.88

A
C


ANISOU
955
CZ2
TRP
A
173
1804
1900
1570
51
9
37
A
C


ATOM
956
C
TRP
A
173
−22.581
12.106
−2.311
1.00
10.32

A
C


ANISOU
956
C
TRP
A
173
1315
1312
1293
14
−7
54
A
C


ATOM
957
O
TRP
A
173
−21.614
11.974
−3.069
1.00
10.66

A
O


ANISOU
957
O
TRP
A
173
1286
1365
1400
2
24
38
A
O


ATOM
958
N
SER
A
174
−22.647
13.051
−1.377
1.00
11.02

A
N


ANISOU
958
N
SER
A
174
1387
1357
1444
−5
−49
−36
A
N


ATOM
959
CA
SER
A
174
−21.580
14.043
−1.214
1.00
12.25

A
C


ANISOU
959
CA
SER
A
174
1539
1477
1640
−56
1
−52
A
C


ATOM
960
CB
SER
A
174
−21.975
15.098
−0.180
1.00
13.17

A
C


ANISOU
960
CB
SER
A
174
1699
1525
1779
−38
15
−122
A
C


ATOM
961
OG
SER
A
174
−22.157
14.514
1.095
1.00
14.30

A
O


ANISOU
961
OG
SER
A
174
1910
1745
1777
61
−28
−132
A
O


ATOM
962
C
SER
A
174
−20.242
13.415
−0.831
1.00
12.61

A
C


ANISOU
962
C
SER
A
174
1601
1524
1665
−3
10
−3
A
C


ATOM
963
O
SER
A
174
−19.183
13.963
−1.147
1.00
14.20

A
O


ANISOU
963
O
SER
A
174
1664
1763
1968
−5
66
1
A
O


ATOM
964
N
GLU
A
175
−20.291
12.275
−0.156
1.00
11.97

A
N


ANISOU
964
N
GLU
A
175
1500
1496
1551
16
−16
−64
A
N


ATOM
965
CA
GLU
A
175
−19.064
11.603
0.245
1.00
12.97

A
C


ANISOU
965
CA
GLU
A
175
1617
1627
1684
40
−8
8
A
C


ATOM
966
CB
GLU
A
175
−19.272
10.831
1.535
1.00
14.04

A
C


ANISOU
966
CB
GLU
A
175
1684
1857
1794
16
−19
106
A
C


ATOM
967
CG
GLU
A
175
−19.411
11.789
2.708
1.00
20.91

A
C


ANISOU
967
CG
GLU
A
175
2730
2534
2680
134
−1
−243
A
C


ATOM
968
CD
GLU
A
175
−19.833
11.109
3.973
1.00
27.31

A
C


ANISOU
968
CD
GLU
A
175
3512
3593
3272
−166
−34
113
A
C


ATOM
969
OE1
GLU
A
175
−20.424
11.770
4.874
1.00
30.56

A
O


ANISOU
969
OE1
GLU
A
175
3991
3756
3863
65
44
−39
A
O


ATOM
970
OE2
GLU
A
175
−19.602
9.902
4.046
1.00
30.76

A
O


ANISOU
970
OE2
GLU
A
175
3890
3810
3989
82
−21
−19
A
O


ATOM
971
C
GLU
A
175
−18.459
10.734
−0.851
1.00
12.74

A
C


ANISOU
971
C
GLU
A
175
1600
1621
1619
−29
−40
−16
A
C


ATOM
972
O
GLU
A
175
−17.279
10.754
−1.063
1.00
12.98

A
O


ANISOU
972
O
GLU
A
175
1573
1707
1652
19
−31
−60
A
O


ATOM
973
N
VAL
A
176
−19.297
9.974
−1.536
1.00
11.84

A
N


ANISOU
973
N
VAL
A
176
1533
1487
1477
5
−68
47
A
N


ATOM
974
CA
VAL
A
176
−18.822
9.177
−2.664
1.00
12.53

A
C


ANISOU
974
CA
VAL
A
176
1616
1569
1577
6
17
−10
A
C


ATOM
975
CB
VAL
A
176
−19.952
8.317
−3.266
1.00
13.95

A
C


ANISOU
975
CB
VAL
A
176
1773
1730
1796
−53
2
−47
A
C


ATOM
976
CG1
VAL
A
176
−19.462
7.559
−4.495
1.00
16.72

A
C


ANISOU
976
CG1
VAL
A
176
2185
2165
2003
1
79
−131
A
C


ATOM
977
CG2
VAL
A
176
−20.475
7.340
−2.228
1.00
16.33

A
C


ANISOU
977
CG2
VAL
A
176
2182
2033
1990
−8
85
67
A
C


ATOM
978
C
VAL
A
176
−18.184
10.065
−3.741
1.00
12.61

A
C


ANISOU
978
C
VAL
A
176
1573
1601
1616
13
11
−2
A
C


ATOM
979
O
VAL
A
176
−17.164
9.697
−4.327
1.00
12.11

A
O


ANISOU
979
O
VAL
A
176
1423
1636
1541
30
8
−54
A
O


ATOM
980
N
THR
A
177
−18.770
11.240
−3.976
1.00
12.75

A
N


ANISOU
980
N
THR
A
177
1659
1566
1621
−14
0
12
A
N


ATOM
981
CA
THR
A
177
−18.308
12.140
−5.041
1.00
12.85

A
C


ANISOU
981
CA
THR
A
177
1647
1607
1629
−10
30
−9
A
C


ATOM
982
CB
THR
A
177
−19.480
12.935
−5.662
1.00
12.61

A
C


ANISOU
982
CB
THR
A
177
1650
1558
1582
−44
16
36
A
C


ATOM
983
OG1
THR
A
177
−20.097
13.747
−4.655
1.00
13.85

A
O


ANISOU
983
OG1
THR
A
177
1845
1624
1793
−11
18
−62
A
O


ATOM
984
CG2
THR
A
177
−20.520
11.988
−6.266
1.00
13.18

A
C


ANISOU
984
CG2
THR
A
177
1646
1780
1583
−3
−99
−43
A
C


ATOM
985
C
THR
A
177
−17.210
13.112
−4.593
1.00
13.90

A
C


ANISOU
985
C
THR
A
177
1780
1743
1758
−42
−6
−14
A
C


ATOM
986
O
THR
A
177
−16.725
13.913
−5.397
1.00
14.32

A
O


ANISOU
986
O
THR
A
177
1886
1770
1785
−89
20
−5
A
O


ATOM
987
N
ASP
A
178
−16.824
13.044
−3.319
1.00
14.23

A
N


ANISOU
987
N
ASP
A
178
1812
1804
1792
−60
−26
−20
A
N


ATOM
988
CA
ASP
A
178
−15.753
13.895
−2.784
1.00
15.67

A
C


ANISOU
988
CA
ASP
A
178
1921
2006
2028
−58
−46
−35
A
C


ATOM
989
CB
ASP
A
178
−15.868
13.977
−1.253
1.00
15.82

A
C


ANISOU
989
CB
ASP
A
178
1937
2070
2004
−13
−35
−5
A
C


ATOM
990
CG
ASP
A
178
−14.865
14.946
−0.622
1.00
17.73

A
C


ANISOU
990
CG
ASP
A
178
2192
2248
2295
−93
−57
−5
A
C


ATOM
991
OD1
ASP
A
178
−13.865
15.316
−1.275
1.00
17.71

A
O


ANISOU
991
OD1
ASP
A
178
2094
2223
2411
−143
−23
−65
A
O


ATOM
992
OD2
ASP
A
178
−15.082
15.334
0.547
1.00
20.34

A
O


ANISOU
992
OD2
ASP
A
178
2527
2677
2525
−75
9
−113
A
O


ATOM
993
C
ASP
A
178
−14.394
13.326
−3.196
1.00
16.33

A
C


ANISOU
993
C
ASP
A
178
2001
2093
2112
−33
−24
−19
A
C


ATOM
994
O
ASP
A
178
−14.006
12.257
−2.721
1.00
15.39

A
O


ANISOU
994
O
ASP
A
178
1832
1977
2039
−83
−27
2
A
O


ATOM
995
N
PRO
A
179
−13.651
14.045
−4.064
1.00
18.00

A
N


ANISOU
995
N
PRO
A
179
2263
2286
2289
−51
−18
35
A
N


ATOM
996
CA
PRO
A
179
−12.376
13.499
−4.555
1.00
19.70

A
C


ANISOU
996
CA
PRO
A
179
2450
2506
2530
7
39
−9
A
C


ATOM
997
CB
PRO
A
179
−11.821
14.629
−5.429
1.00
20.22

A
C


ANISOU
997
CB
PRO
A
179
2525
2579
2578
7
61
38
A
C


ATOM
998
CG
PRO
A
179
−13.017
15.429
−5.819
1.00
20.36

A
C


ANISOU
998
CG
PRO
A
179
2564
2651
2519
18
32
73
A
C


ATOM
999
CD
PRO
A
179
−13.925
15.379
−4.627
1.00
18.74

A
C


ANISOU
999
CD
PRO
A
179
2310
2350
2461
−12
5
24
A
C


ATOM
1000
C
PRO
A
179
−11.385
13.152
−3.439
1.00
20.94

A
C


ANISOU
1000
C
PRO
A
179
2625
2685
2645
6
−8
−10
A
C


ATOM
1001
O
PRO
A
179
−10.547
12.263
−3.613
1.00
21.83

A
O


ANISOU
1001
O
PRO
A
179
2665
2824
2806
90
−32
−92
A
O


ATOM
1002
N
GLU
A
180
−11.497
13.830
−2.300
1.00
20.90

A
N


ANISOU
1002
N
GLU
A
180
2650
2619
2671
−28
2
−21
A
N


ATOM
1003
CA
GLU
A
180
−10.583
13.604
−1.178
1.00
21.62

A
C


ANISOU
1003
CA
GLU
A
180
2721
2766
2728
−22
−18
13
A
C


ATOM
1004
CB
GLU
A
180
−10.626
14.782
−0.199
1.00
22.97

A
C


ANISOU
1004
CB
GLU
A
180
2827
3020
2882
−26
10
−94
A
C


ATOM
1005
CG
GLU
A
180
−10.666
16.150
−0.872
1.00
28.76

A
C


ANISOU
1005
CG
GLU
A
180
3734
3514
3678
102
69
173
A
C


ATOM
1006
CD
GLU
A
180
−9.829
17.179
−0.147
1.00
35.43

A
C


ANISOU
1006
CD
GLU
A
180
4581
4419
4460
−180
−130
−57
A
C


ATOM
1007
OE1
GLU
A
180
−10.413
18.133
0.415
1.00
38.47

A
O


ANISOU
1007
OE1
GLU
A
180
4900
4832
4886
62
46
−65
A
O


ATOM
1008
OE2
GLU
A
180
−8.585
17.030
−0.137
1.00
38.92

A
O


ANISOU
1008
OE2
GLU
A
180
4766
5039
4982
26
38
4
A
O


ATOM
1009
C
GLU
A
180
−10.842
12.286
−0.438
1.00
20.73

A
C


ANISOU
1009
C
GLU
A
180
2539
2693
2643
−24
−27
−11
A
C


ATOM
1010
O
GLU
A
180
−9.984
11.816
0.314
1.00
20.88

A
O


ANISOU
1010
O
GLU
A
180
2546
2763
2624
−27
−50
−2
A
O


ATOM
1011
N
LYS
A
181
−12.013
11.688
−0.658
1.00
19.55

A
N


ANISOU
1011
N
LYS
A
181
2448
2491
2491
−46
−24
−22
A
N


ATOM
1012
CA
LYS
A
181
−12.392
10.462
0.050
1.00
19.08

A
C


ANISOU
1012
CA
LYS
A
181
2365
2427
2459
2
−51
−9
A
C


ATOM
1013
CB
LYS
A
181
−13.912
10.390
0.272
1.00
20.60

A
C


ANISOU
1013
CB
LYS
A
181
2430
2642
2755
−25
−42
31
A
C


ATOM
1014
CG
LYS
A
181
−14.488
11.472
1.196
1.00
23.49

A
C


ANISOU
1014
CG
LYS
A
181
2919
2941
3067
21
38
−46
A
C


ATOM
1015
CD
LYS
A
181
−13.795
11.506
2.557
1.00
26.91

A
C


ANISOU
1015
CD
LYS
A
181
3455
3506
3262
42
−75
−26
A
C


ATOM
1016
CE
LYS
A
181
−14.495
12.447
3.532
1.00
29.64

A
C


ANISOU
1016
CE
LYS
A
181
3755
3887
3619
48
35
−146
A
C


ATOM
1017
NZ
LYS
A
181
−14.370
13.879
3.144
1.00
33.29

A
N


ANISOU
1017
NZ
LYS
A
181
4309
4086
4253
−10
−4
18
A
N


ATOM
1018
C
LYS
A
181
−11.873
9.180
−0.608
1.00
17.68

A
C


ANISOU
1018
C
LYS
A
181
2175
2318
2225
−38
−39
7
A
C


ATOM
1019
O
LYS
A
181
−11.787
8.141
0.048
1.00
18.47

A
O


ANISOU
1019
O
LYS
A
181
2349
2391
2276
−9
−34
19
A
O


ATOM
1020
N
GLY
A
182
−11.539
9.249
−1.896
1.00
15.85

A
N


ANISOU
1020
N
GLY
A
182
1859
2038
2124
−30
−47
−17
A
N


ATOM
1021
CA
GLY
A
182
−10.854
8.144
−2.573
1.00
15.07

A
C


ANISOU
1021
CA
GLY
A
182
1829
1964
1934
−60
−59
−27
A
C


ATOM
1022
C
GLY
A
182
−11.703
7.139
−3.334
1.00
13.88

A
C


ANISOU
1022
C
GLY
A
182
1772
1755
1745
−4
−13
43
A
C


ATOM
1023
O
GLY
A
182
−11.182
6.147
−3.834
1.00
14.21

A
O


ANISOU
1023
O
GLY
A
182
1785
1822
1794
−13
−41
0
A
O


ATOM
1024
N
PHE
A
183
−13.005
7.388
−3.428
1.00
13.33

A
N


ANISOU
1024
N
PHE
A
183
1703
1692
1669
−64
−20
41
A
N


ATOM
1025
CA
PHE
A
183
−13.896
6.481
−4.151
1.00
13.42

A
C


ANISOU
1025
CA
PHE
A
183
1705
1716
1677
−54
−14
29
A
C


ATOM
1026
CB
PHE
A
183
−15.266
6.406
−3.470
1.00
13.10

A
C


ANISOU
1026
CB
PHE
A
183
1658
1700
1620
−32
−17
2
A
C


ATOM
1027
CG
PHE
A
183
−15.217
5.840
−2.080
1.00
12.79

A
C


ANISOU
1027
CG
PHE
A
183
1599
1640
1619
−66
−23
9
A
C


ATOM
1028
CD1
PHE
A
183
−15.356
6.671
−0.973
1.00
12.94

A
C


ANISOU
1028
CD1
PHE
A
183
1627
1693
1595
−34
−23
1
A
C


ATOM
1029
CE1
PHE
A
183
−15.308
6.150
0.319
1.00
13.39

A
C


ANISOU
1029
CE1
PHE
A
183
1676
1744
1666
6
39
36
A
C


ATOM
1030
CZ
PHE
A
183
−15.110
4.784
0.511
1.00
13.62

A
C


ANISOU
1030
CZ
PHE
A
183
1850
1664
1661
−60
47
36
A
C


ATOM
1031
CE2
PHE
A
183
−14.971
3.942
−0.589
1.00
13.52

A
C


ANISOU
1031
CE2
PHE
A
183
1751
1736
1650
−64
−4
56
A
C


ATOM
1032
CD2
PHE
A
183
−15.021
4.476
−1.878
1.00
13.35

A
C


ANISOU
1032
CD2
PHE
A
183
1686
1697
1688
−24
−35
24
A
C


ATOM
1033
C
PHE
A
183
−14.056
6.857
−5.620
1.00
14.18

A
C


ANISOU
1033
C
PHE
A
183
1883
1749
1757
−18
−65
43
A
C


ATOM
1034
O
PHE
A
183
−14.352
6.007
−6.455
1.00
17.11

A
O


ANISOU
1034
O
PHE
A
183
2511
2047
1942
−43
−141
−10
A
O


ATOM
1035
N
ILE
A
184
−13.851
8.130
−5.932
1.00
12.48

A
N


ANISOU
1035
N
ILE
A
184
1589
1633
1519
−27
−27
35
A
N


ATOM
1036
CA
ILE
A
184
−14.110
8.634
−7.281
1.00
12.05

A
C


ANISOU
1036
CA
ILE
A
184
1525
1560
1493
−39
−21
18
A
C


ATOM
1037
CB
ILE
A
184
−15.175
9.767
−7.256
1.00
11.66

A
C


ANISOU
1037
CB
ILE
A
184
1525
1503
1402
−33
−4
30
A
C


ATOM
1038
CG1
ILE
A
184
−15.708
10.056
−8.665
1.00
11.51

A
C


ANISOU
1038
CG1
ILE
A
184
1433
1528
1412
24
−77
−20
A
C


ATOM
1039
CD1
ILE
A
184
−17.076
10.718
−8.670
1.00
11.78

A
C


ANISOU
1039
CD1
ILE
A
184
1503
1431
1540
54
0
62
A
C


ATOM
1040
CG2
ILE
A
184
−14.640
11.035
−6.558
1.00
13.01

A
C


ANISOU
1040
CG2
ILE
A
184
1727
1599
1619
−41
−13
−77
A
C


ATOM
1041
C
ILE
A
184
−12.811
9.075
−7.956
1.00
12.65

A
C


ANISOU
1041
C
ILE
A
184
1605
1686
1517
−50
43
−1
A
C


ATOM
1042
O
ILE
A
184
−11.970
9.720
−7.328
1.00
13.43

A
O


ANISOU
1042
O
ILE
A
184
1666
1792
1644
−118
−68
−16
A
O


ATOM
1043
N
ASP
A
185
−12.641
8.699
−9.223
1.00
12.01

A
N


ANISOU
1043
N
ASP
A
185
1525
1574
1466
−10
−33
23
A
N


ATOM
1044
CA
ASP
A
185
−11.475
9.117
−10.006
1.00
12.57

A
C


ANISOU
1044
CA
ASP
A
185
1555
1610
1611
−39
3
−4
A
C


ATOM
1045
CB
ASP
A
185
−10.375
8.055
−9.947
1.00
13.91

A
C


ANISOU
1045
CB
ASP
A
185
1770
1746
1770
43
−33
50
A
C


ATOM
1046
CG
ASP
A
185
−9.128
8.466
−10.710
1.00
17.35

A
C


ANISOU
1046
CG
ASP
A
185
1974
2326
2292
40
85
78
A
C


ATOM
1047
OD1
ASP
A
185
−8.411
9.375
−10.242
1.00
19.88

A
O


ANISOU
1047
OD1
ASP
A
185
2357
2579
2619
−52
39
−36
A
O


ATOM
1048
OD2
ASP
A
185
−8.873
7.881
−11.781
1.00
20.90

A
O


ANISOU
1048
OD2
ASP
A
185
2586
2774
2580
18
70
−111
A
O


ATOM
1049
C
ASP
A
185
−11.888
9.328
−11.449
1.00
13.03

A
C


ANISOU
1049
C
ASP
A
185
1646
1663
1641
−46
31
43
A
C


ATOM
1050
O
ASP
A
185
−12.507
8.445
−12.044
1.00
12.35

A
O


ANISOU
1050
O
ASP
A
185
1543
1620
1530
−72
73
16
A
O


ATOM
1051
N
ASP
A
186
−11.551
10.493
−12.014
1.00
14.38

A
N


ANISOU
1051
N
ASP
A
186
1770
1800
1893
−78
−5
64
A
N


ATOM
1052
CA
ASP
A
186
−11.929
10.816
−13.397
1.00
15.06

A
C


ANISOU
1052
CA
ASP
A
186
1858
1917
1947
−50
−4
54
A
C


ATOM
1053
CB
ASP
A
186
−11.142
9.914
−14.371
1.00
16.64

A
C


ANISOU
1053
CB
ASP
A
186
2027
2119
2176
−4
46
−23
A
C


ATOM
1054
CG
ASP
A
186
−11.304
10.313
−15.835
1.00
20.66

A
C


ANISOU
1054
CG
ASP
A
186
2607
2784
2458
−2
−31
56
A
C


ATOM
1055
OD1
ASP
A
186
−11.462
11.518
−16.132
1.00
23.13

A
O


ANISOU
1055
OD1
ASP
A
186
2913
2864
3011
−16
16
92
A
O


ATOM
1056
OD2
ASP
A
186
−11.256
9.403
−16.694
1.00
22.17

A
O


ANISOU
1056
OD2
ASP
A
186
2795
2908
2721
14
17
−57
A
O


ATOM
1057
C
ASP
A
186
−13.453
10.646
−13.553
1.00
14.16

A
C


ANISOU
1057
C
ASP
A
186
1778
1771
1832
−30
9
34
A
C


ATOM
1058
O
ASP
A
186
−13.943
10.174
−14.586
1.00
14.56

A
O


ANISOU
1058
O
ASP
A
186
1810
1879
1842
−83
11
107
A
O


ATOM
1059
N
ASP
A
187
−14.177
11.023
−12.492
1.00
13.07

A
N


ANISOU
1059
N
ASP
A
187
1589
1589
1789
−32
−33
48
A
N


ATOM
1060
CA
ASP
A
187
−15.645
10.908
−12.381
1.00
12.01

A
C


ANISOU
1060
CA
ASP
A
187
1541
1431
1593
−10
−29
51
A
C


ATOM
1061
CB
ASP
A
187
−16.352
11.884
−13.340
1.00
12.13

A
C


ANISOU
1061
CB
ASP
A
187
1530
1529
1549
−4
−60
64
A
C


ATOM
1062
CG
ASP
A
187
−17.732
12.317
−12.844
1.00
12.22

A
C


ANISOU
1062
CG
ASP
A
187
1603
1456
1584
−27
−3
30
A
C


ATOM
1063
OD1
ASP
A
187
−18.513
12.840
−13.664
1.00
13.12

A
O


ANISOU
1063
OD1
ASP
A
187
1607
1595
1783
−10
−98
74
A
O


ATOM
1064
OD2
ASP
A
187
−18.047
12.143
−11.647
1.00
12.27

A
O


ANISOU
1064
OD2
ASP
A
187
1661
1475
1525
41
−32
51
A
O


ATOM
1065
C
ASP
A
187
−16.159
9.474
−12.564
1.00
11.53

A
C


ANISOU
1065
C
ASP
A
187
1431
1432
1519
−6
−13
26
A
C


ATOM
1066
O
ASP
A
187
−17.283
9.261
−13.026
1.00
11.81

A
O


ANISOU
1066
O
ASP
A
187
1448
1480
1558
28
−87
43
A
O


ATOM
1067
N
LYS
A
188
−15.329
8.498
−12.196
1.00
10.71

A
N


ANISOU
1067
N
LYS
A
188
1397
1294
1378
−39
16
35
A
N


ATOM
1068
CA
LYS
A
188
−15.711
7.084
−12.247
1.00
9.82

A
C


ANISOU
1068
CA
LYS
A
188
1269
1264
1200
−45
73
25
A
C


ATOM
1069
CB
LYS
A
188
−14.735
6.274
−13.103
1.00
10.24

A
C


ANISOU
1069
CB
LYS
A
188
1263
1322
1304
65
6
38
A
C


ATOM
1070
CG
LYS
A
188
−14.510
6.790
−14.519
1.00
12.79

A
C


ANISOU
1070
CG
LYS
A
188
1703
1755
1401
23
−5
45
A
C


ATOM
1071
CD
LYS
A
188
−13.532
5.873
−15.238
1.00
14.78

A
C


ANISOU
1071
CD
LYS
A
188
1760
1969
1886
68
32
−64
A
C


ATOM
1072
CE
LYS
A
188
−13.233
6.338
−16.651
1.00
17.30

A
C


ANISOU
1072
CE
LYS
A
188
2231
2283
2059
1
20
37
A
C


ATOM
1073
NZ
LYS
A
188
−12.227
5.436
−17.288
1.00
18.60

A
N


ANISOU
1073
NZ
LYS
A
188
2343
2408
2315
55
−4
−36
A
N


ATOM
1074
C
LYS
A
188
−15.737
6.497
−10.839
1.00
10.19

A
C


ANISOU
1074
C
LYS
A
188
1292
1329
1250
−57
−20
70
A
C


ATOM
1075
O
LYS
A
188
−14.832
6.748
−10.036
1.00
10.21

A
O


ANISOU
1075
O
LYS
A
188
1292
1423
1163
−77
−2
129
A
O


ATOM
1076
N
VAL
A
189
−16.779
5.721
−10.553
1.00
9.70

A
N


ANISOU
1076
N
VAL
A
189
1280
1223
1183
−50
−25
63
A
N


ATOM
1077
CA
VAL
A
189
−16.910
5.010
−9.283
1.00
9.75

A
C


ANISOU
1077
CA
VAL
A
189
1275
1204
1224
−14
−2
42
A
C


ATOM
1078
CB
VAL
A
189
−18.102
5.541
−8.441
1.00
10.67

A
C


ANISOU
1078
CB
VAL
A
189
1392
1355
1308
−5
10
19
A
C


ATOM
1079
CG1
VAL
A
189
−18.280
4.729
−7.170
1.00
9.92

A
C


ANISOU
1079
CG1
VAL
A
189
1349
1266
1155
10
29
−16
A
C


ATOM
1080
CG2
VAL
A
189
−17.910
7.011
−8.100
1.00
10.70

A
C


ANISOU
1080
CG2
VAL
A
189
1433
1294
1337
29
12
−31
A
C


ATOM
1081
C
VAL
A
189
−17.119
3.536
−9.611
1.00
9.73

A
C


ANISOU
1081
C
VAL
A
189
1224
1233
1239
−7
−15
20
A
C


ATOM
1082
O
VAL
A
189
−17.898
3.208
−10.510
1.00
10.22

A
O


ANISOU
1082
O
VAL
A
189
1283
1321
1278
−47
−28
33
A
O


ATOM
1083
N
THR
A
190
−16.404
2.661
−8.904
1.00
8.62

A
N


ANISOU
1083
N
THR
A
190
1001
1118
1158
−41
52
109
A
N


ATOM
1084
CA
THR
A
190
−16.476
1.220
−9.145
1.00
10.00

A
C


ANISOU
1084
CA
THR
A
190
1270
1261
1267
−15
33
16
A
C


ATOM
1085
CB
THR
A
190
−15.078
0.599
−9.403
1.00
10.37

A
C


ANISOU
1085
CB
THR
A
190
1262
1302
1376
−24
42
41
A
C


ATOM
1086
OG1
THR
A
190
−14.460
1.259
−10.518
1.00
12.91

A
O


ANISOU
1086
OG1
THR
A
190
1593
1725
1588
−49
188
151
A
O


ATOM
1087
CG2
THR
A
190
−15.190
−0.900
−9.698
1.00
11.30

A
C


ANISOU
1087
CG2
THR
A
190
1503
1404
1385
88
48
−55
A
C


ATOM
1088
C
THR
A
190
−17.165
0.500
−7.992
1.00
10.17

A
C


ANISOU
1088
C
THR
A
190
1274
1312
1280
−74
5
−5
A
C


ATOM
1089
O
THR
A
190
−16.771
0.636
−6.823
1.00
10.42

A
O


ANISOU
1089
O
THR
A
190
1289
1407
1263
−49
30
42
A
O


ATOM
1090
N
PHE
A
191
−18.192
−0.264
−8.351
1.00
9.37

A
N


ANISOU
1090
N
PHE
A
191
1138
1221
1201
−84
2
80
A
N


ATOM
1091
CA
PHE
A
191
−18.969
−1.066
−7.424
1.00
9.38

A
C


ANISOU
1091
CA
PHE
A
191
1238
1215
1110
−9
53
−6
A
C


ATOM
1092
CB
PHE
A
191
−20.457
−0.853
−7.693
1.00
9.73

A
C


ANISOU
1092
CB
PHE
A
191
1251
1231
1214
37
72
−58
A
C


ATOM
1093
CG
PHE
A
191
−20.893
0.570
−7.515
1.00
9.51

A
C


ANISOU
1093
CG
PHE
A
191
1346
1072
1197
1
55
31
A
C


ATOM
1094
CD1
PHE
A
191
−20.729
1.507
−8.541
1.00
9.10

A
C


ANISOU
1094
CD1
PHE
A
191
1077
1122
1259
−12
−33
77
A
C


ATOM
1095
CE1
PHE
A
191
−21.119
2.835
−8.358
1.00
10.77

A
C


ANISOU
1095
CE1
PHE
A
191
1278
1342
1472
63
57
−30
A
C


ATOM
1096
CZ
PHE
A
191
−21.677
3.234
−7.151
1.00
11.13

A
C


ANISOU
1096
CZ
PHE
A
191
1399
1423
1408
18
36
48
A
C


ATOM
1097
CE2
PHE
A
191
−21.848
2.304
−6.125
1.00
11.38

A
C


ANISOU
1097
CE2
PHE
A
191
1584
1258
1483
33
22
26
A
C


ATOM
1098
CD2
PHE
A
191
−21.451
0.983
−6.311
1.00
9.78

A
C


ANISOU
1098
CD2
PHE
A
191
1286
1270
1161
14
149
76
A
C


ATOM
1099
C
PHE
A
191
−18.610
−2.529
−7.601
1.00
9.35

A
C


ANISOU
1099
C
PHE
A
191
1200
1167
1184
−11
74
34
A
C


ATOM
1100
O
PHE
A
191
−18.209
−2.948
−8.691
1.00
9.95

A
O


ANISOU
1100
O
PHE
A
191
1407
1210
1162
−31
82
−18
A
O


ATOM
1101
N
GLU
A
192
−18.751
−3.307
−6.533
1.00
8.73

A
N


ANISOU
1101
N
GLU
A
192
1193
1038
1085
17
48
−3
A
N


ATOM
1102
CA
GLU
A
192
−18.448
−4.731
−6.599
1.00
9.10

A
C


ANISOU
1102
CA
GLU
A
192
1188
1115
1155
10
56
47
A
C


ATOM
1103
CB
GLU
A
192
−17.030
−4.988
−6.095
1.00
9.49

A
C


ANISOU
1103
CB
GLU
A
192
1204
1161
1242
23
−42
−9
A
C


ATOM
1104
CG
GLU
A
192
−16.596
−6.443
−6.151
1.00
10.77

A
C


ANISOU
1104
CG
GLU
A
192
1430
1222
1440
49
−14
−55
A
C


ATOM
1105
CD
GLU
A
192
−15.300
−6.687
−5.410
1.00
14.30

A
C


ANISOU
1105
CD
GLU
A
192
1625
1923
1885
17
−109
−24
A
C


ATOM
1106
OE1
GLU
A
192
−15.359
−7.039
−4.211
1.00
15.66

A
O


ANISOU
1106
OE1
GLU
A
192
1851
2090
2009
18
−28
52
A
O


ATOM
1107
OE2
GLU
A
192
−14.225
−6.525
−6.026
1.00
15.91

A
O


ANISOU
1107
OE2
GLU
A
192
1854
2079
2113
−5
92
58
A
O


ATOM
1108
C
GLU
A
192
−19.444
−5.521
−5.768
1.00
9.57

A
C


ANISOU
1108
C
GLU
A
192
1258
1149
1229
−65
5
16
A
C


ATOM
1109
O
GLU
A
192
−19.814
−5.103
−4.675
1.00
9.65

A
O


ANISOU
1109
O
GLU
A
192
1385
1136
1145
3
65
43
A
O


ATOM
1110
N
VAL
A
193
−19.878
−6.661
−6.296
1.00
8.70

A
N


ANISOU
1110
N
VAL
A
193
1146
1018
1142
−26
26
17
A
N


ATOM
1111
CA
VAL
A
193
−20.701
−7.585
−5.526
1.00
8.08

A
C


ANISOU
1111
CA
VAL
A
193
1022
1016
1031
−20
0
57
A
C


ATOM
1112
CB
VAL
A
193
−22.153
−7.687
−6.085
1.00
9.31

A
C


ANISOU
1112
CB
VAL
A
193
1094
1216
1229
−31
−44
62
A
C


ATOM
1113
CG1
VAL
A
193
−22.904
−8.835
−5.432
1.00
13.05

A
C


ANISOU
1113
CG1
VAL
A
193
1687
1604
1668
−137
79
146
A
C


ATOM
1114
CG2
VAL
A
193
−22.911
−6.396
−5.856
1.00
11.14

A
C


ANISOU
1114
CG2
VAL
A
193
1412
1364
1456
42
23
44
A
C


ATOM
1115
C
VAL
A
193
−20.039
−8.958
−5.508
1.00
8.95

A
C


ANISOU
1115
C
VAL
A
193
1161
1090
1149
−53
33
−4
A
C


ATOM
1116
O
VAL
A
193
−19.600
−9.452
−6.544
1.00
9.30

A
O


ANISOU
1116
O
VAL
A
193
1294
1152
1088
−42
164
33
A
O


ATOM
1117
N
PHE
A
194
−19.954
−9.541
−4.315
1.00
8.32

A
N


ANISOU
1117
N
PHE
A
194
1106
982
1074
−33
−30
63
A
N


ATOM
1118
CA
PHE
A
194
−19.602
−10.951
−4.127
1.00
8.51

A
C


ANISOU
1118
CA
PHE
A
194
1064
1080
1089
29
37
6
A
C


ATOM
1119
CB
PHE
A
194
−18.548
−11.088
−3.020
1.00
9.07

A
C


ANISOU
1119
CB
PHE
A
194
1118
1236
1092
5
53
−1
A
C


ATOM
1120
CG
PHE
A
194
−18.262
−12.514
−2.600
1.00
10.30

A
C


ANISOU
1120
CG
PHE
A
194
1227
1325
1360
−43
28
20
A
C


ATOM
1121
CD1
PHE
A
194
−18.137
−13.533
−3.541
1.00
11.90

A
C


ANISOU
1121
CD1
PHE
A
194
1598
1519
1403
0
37
−35
A
C


ATOM
1122
CE1
PHE
A
194
−17.855
−14.839
−3.152
1.00
13.86

A
C


ANISOU
1122
CE1
PHE
A
194
1845
1646
1774
22
−11
59
A
C


ATOM
1123
CZ
PHE
A
194
−17.678
−15.141
−1.805
1.00
14.40

A
C


ANISOU
1123
CZ
PHE
A
194
1931
1727
1812
155
−89
53
A
C


ATOM
1124
CE2
PHE
A
194
−17.784
−14.133
−0.851
1.00
14.86

A
C


ANISOU
1124
CE2
PHE
A
194
2059
1688
1900
84
−39
9
A
C


ATOM
1125
CD2
PHE
A
194
−18.070
−12.822
−1.254
1.00
12.85

A
C


ANISOU
1125
CD2
PHE
A
194
1674
1712
1497
36
−2
126
A
C


ATOM
1126
C
PHE
A
194
−20.899
−11.655
−3.750
1.00
8.53

A
C


ANISOU
1126
C
PHE
A
194
1124
1087
1030
−30
12
−26
A
C


ATOM
1127
O
PHE
A
194
−21.403
−11.480
−2.636
1.00
8.92

A
O


ANISOU
1127
O
PHE
A
194
1220
1149
1021
−70
74
−70
A
O


ATOM
1128
N
AVAL
A
195
−21.451
−12.436
−4.674
0.50
7.81

A
N


ANISOU
1128
N
AVAL
A
195
988
1012
966
−56
11
−13
A
N


ATOM
1129
N
BVAL
A
195
−21.431
−12.432
−4.694
0.50
8.02

A
N


ANISOU
1129
N
BVAL
A
195
1014
1030
1002
−56
7
−17
A
N


ATOM
1130
CA
AVAL
A
195
−22.746
−13.076
−4.448
0.50
7.71

A
C


ANISOU
1130
CA
AVAL
A
195
984
973
971
−5
9
5
A
C


ATOM
1131
CA
BVAL
A
195
−22.701
−13.141
−4.540
0.50
8.13

A
C


ANISOU
1131
CA
BVAL
A
195
1026
1000
1062
−7
13
0
A
C


ATOM
1132
CB
AVAL
A
195
−23.780
−12.725
−5.563
0.50
7.92

A
C


ANISOU
1132
CB
AVAL
A
195
975
1074
962
−10
49
19
A
C


ATOM
1133
CB
BVAL
A
195
−23.512
−13.176
−5.867
0.50
8.50

A
C


ANISOU
1133
CB
BVAL
A
195
1064
1054
1111
12
25
−1
A
C


ATOM
1134
CG1
AVAL
A
195
−23.299
−13.183
−6.948
0.50
6.86

A
C


ANISOU
1134
CG1
AVAL
A
195
959
801
845
−22
−12
38
A
C


ATOM
1135
CG1
BVAL
A
195
−24.921
−13.727
−5.634
0.50
7.87

A
C


ANISOU
1135
CG1
BVAL
A
195
1017
971
1002
−26
−37
−12
A
C


ATOM
1136
CG2
AVAL
A
195
−25.161
−13.303
−5.231
0.50
7.43

A
C


ANISOU
1136
CG2
AVAL
A
195
883
933
1007
−31
−16
38
A
C


ATOM
1137
CG2
BVAL
A
195
−23.578
−11.806
−6.517
0.50
9.23

A
C


ANISOU
1137
CG2
BVAL
A
195
1155
1079
1273
−23
−30
26
A
C


ATOM
1138
C
AVAL
A
195
−22.600
−14.584
−4.260
0.50
7.96

A
C


ANISOU
1138
C
AVAL
A
195
1017
1006
1003
−13
21
−14
A
C


ATOM
1139
C
BVAL
A
195
−22.422
−14.582
−4.149
0.50
8.20

A
C


ANISOU
1139
C
BVAL
A
195
1016
1013
1085
−30
36
−17
A
C


ATOM
1140
O
AVAL
A
195
−21.994
−15.267
−5.086
0.50
7.51

A
O


ANISOU
1140
O
AVAL
A
195
983
935
936
49
−23
−58
A
O


ATOM
1141
O
BVAL
A
195
−21.562
−15.227
−4.744
0.50
7.95

A
O


ANISOU
1141
O
BVAL
A
195
956
931
1132
7
8
−82
A
O


ATOM
1142
N
GLN
A
196
−23.150
−15.082
−3.154
1.00
7.74

A
N


ANISOU
1142
N
GLN
A
196
1045
954
942
−4
40
−7
A
N


ATOM
1143
CA
GLN
A
196
−23.120
−16.504
−2.827
1.00
8.20

A
C


ANISOU
1143
CA
GLN
A
196
1127
1018
971
−51
17
21
A
C


ATOM
1144
CB
GLN
A
196
−22.436
−16.730
−1.479
1.00
9.37

A
C


ANISOU
1144
CB
GLN
A
196
1239
1178
1145
22
−52
57
A
C


ATOM
1145
CG
GLN
A
196
−20.946
−16.464
−1.510
1.00
10.39

A
C


ANISOU
1145
CG
GLN
A
196
1247
1253
1446
17
−24
6
A
C


ATOM
1146
CD
GLN
A
196
−20.322
−16.505
−0.132
1.00
14.85

A
C


ANISOU
1146
CD
GLN
A
196
1966
1983
1694
42
−159
−18
A
C


ATOM
1147
OE1
GLN
A
196
−20.594
−15.649
0.712
1.00
14.69

A
O


ANISOU
1147
OE1
GLN
A
196
1918
1807
1856
126
−155
20
A
O


ATOM
1148
NE2
GLN
A
196
−19.477
−17.507
0.106
1.00
16.84

A
N


ANISOU
1148
NE2
GLN
A
196
2104
2062
2231
116
−64
44
A
N


ATOM
1149
C
GLN
A
196
−24.562
−16.970
−2.801
1.00
8.65

A
C


ANISOU
1149
C
GLN
A
196
1152
1049
1084
14
−15
−33
A
C


ATOM
1150
O
GLN
A
196
−25.274
−16.756
−1.819
1.00
9.10

A
O


ANISOU
1150
O
GLN
A
196
1267
1052
1137
−18
77
61
A
O


ATOM
1151
N
ALA
A
197
−24.992
−17.587
−3.901
1.00
8.72

A
N


ANISOU
1151
N
ALA
A
197
1181
1129
1005
1
−13
−87
A
N


ATOM
1152
CA
ALA
A
197
−26.397
−17.906
−4.110
1.00
8.35

A
C


ANISOU
1152
CA
ALA
A
197
1120
1075
979
−11
43
−44
A
C


ATOM
1153
CB
ALA
A
197
−26.825
−17.504
−5.513
1.00
9.17

A
C


ANISOU
1153
CB
ALA
A
197
1127
1231
1125
−11
−11
60
A
C


ATOM
1154
C
ALA
A
197
−26.678
−19.381
−3.883
1.00
8.70

A
C


ANISOU
1154
C
ALA
A
197
1166
1064
1075
−11
21
1
A
C


ATOM
1155
O
ALA
A
197
−25.822
−20.226
−4.141
1.00
10.35

A
O


ANISOU
1155
O
ALA
A
197
1281
1252
1398
78
92
−29
A
O


ATOM
1156
N
ASP
A
198
−27.877
−19.678
−3.389
1.00
7.87

A
N


ANISOU
1156
N
ASP
A
198
1025
937
1027
36
10
−20
A
N


ATOM
1157
CA
ASP
A
198
−28.353
−21.060
−3.284
1.00
8.30

A
C


ANISOU
1157
CA
ASP
A
198
1000
1066
1089
−39
63
−20
A
C


ATOM
1158
CB
ASP
A
198
−29.470
−21.167
−2.238
1.00
8.73

A
C


ANISOU
1158
CB
ASP
A
198
1077
1221
1020
−28
82
4
A
C


ATOM
1159
CG
ASP
A
198
−28.975
−20.986
−0.813
1.00
8.67

A
C


ANISOU
1159
CG
ASP
A
198
1115
1088
1091
−45
27
−55
A
C


ATOM
1160
OD1
ASP
A
198
−29.844
−20.916
0.085
1.00
9.19

A
O


ANISOU
1160
OD1
ASP
A
198
1301
1099
1093
6
109
−119
A
O


ATOM
1161
OD2
ASP
A
198
−27.744
−20.929
−0.584
1.00
9.03

A
O


ANISOU
1161
OD2
ASP
A
198
1244
1077
1111
−39
−59
−58
A
O


ATOM
1162
C
ASP
A
198
−28.905
−21.518
−4.625
1.00
8.77

A
C


ANISOU
1162
C
ASP
A
198
1113
1121
1099
27
41
−2
A
C


ATOM
1163
O
ASP
A
198
−29.184
−20.699
−5.505
1.00
9.95

A
O


ANISOU
1163
O
ASP
A
198
1331
1224
1224
23
21
59
A
O


ATOM
1164
N
ALA
A
199
−29.077
−22.828
−4.781
1.00
9.51

A
N


ANISOU
1164
N
ALA
A
199
1222
1204
1187
−66
12
−74
A
N


ATOM
1165
CA
ALA
A
199
−29.779
−23.356
−5.949
1.00
9.57

A
C


ANISOU
1165
CA
ALA
A
199
1145
1239
1254
−34
1
−62
A
C


ATOM
1166
CB
ALA
A
199
−29.860
−24.864
−5.879
1.00
10.93

A
C


ANISOU
1166
CB
ALA
A
199
1367
1292
1494
9
−5
−84
A
C


ATOM
1167
C
ALA
A
199
−31.179
−22.737
−6.012
1.00
9.51

A
C


ANISOU
1167
C
ALA
A
199
1189
1174
1250
−62
−7
−7
A
C


ATOM
1168
O
ALA
A
199
−31.881
−22.691
−5.003
1.00
9.65

A
O


ANISOU
1168
O
ALA
A
199
1161
1254
1250
40
14
9
A
O


ATOM
1169
N
PRO
A
200
−31.569
−22.211
−7.184
1.00
10.35

A
N


ANISOU
1169
N
PRO
A
200
1242
1377
1312
8
12
−17
A
N


ATOM
1170
CA
PRO
A
200
−32.902
−21.629
−7.294
1.00
9.92

A
C


ANISOU
1170
CA
PRO
A
200
1233
1293
1244
−14
−17
30
A
C


ATOM
1171
CB
PRO
A
200
−32.834
−20.873
−8.620
1.00
10.89

A
C


ANISOU
1171
CB
PRO
A
200
1447
1419
1273
−12
15
44
A
C


ATOM
1172
CG
PRO
A
200
−31.866
−21.666
−9.429
1.00
12.00

A
C


ANISOU
1172
CG
PRO
A
200
1388
1731
1439
118
−11
58
A
C


ATOM
1173
CD
PRO
A
200
−30.813
−22.093
−8.445
1.00
11.26

A
C


ANISOU
1173
CD
PRO
A
200
1404
1621
1252
17
−10
53
A
C


ATOM
1174
C
PRO
A
200
−33.993
−22.691
−7.362
1.00
10.00

A
C


ANISOU
1174
C
PRO
A
200
1241
1238
1322
−19
7
−31
A
C


ATOM
1175
O
PRO
A
200
−33.712
−23.865
−7.638
1.00
10.98

A
O


ANISOU
1175
O
PRO
A
200
1345
1241
1587
−9
−30
−99
A
O


ATOM
1176
N
HIS
A
201
−35.225
−22.271
−7.098
1.00
9.36

A
N


ANISOU
1176
N
HIS
A
201
1178
1115
1263
14
10
−32
A
N


ATOM
1177
CA
HIS
A
201
−36.400
−23.091
−7.362
1.00
9.51

A
C


ANISOU
1177
CA
HIS
A
201
1202
1230
1182
−24
−3
6
A
C


ATOM
1178
CB
HIS
A
201
−37.246
−23.252
−6.098
1.00
10.70

A
C


ANISOU
1178
CB
HIS
A
201
1438
1365
1264
38
92
46
A
C


ATOM
1179
CG
HIS
A
201
−36.640
−24.161
−5.078
1.00
12.53

A
C


ANISOU
1179
CG
HIS
A
201
1496
1645
1621
98
−52
95
A
C


ATOM
1180
ND1
HIS
A
201
−36.005
−23.695
−3.947
1.00
15.43

A
N


ANISOU
1180
ND1
HIS
A
201
2031
2050
1783
35
5
−13
A
N


ATOM
1181
CE1
HIS
A
201
−35.575
−24.721
−3.233
1.00
15.94

A
C


ANISOU
1181
CE1
HIS
A
201
2033
2089
1933
73
−9
62
A
C


ATOM
1182
NE2
HIS
A
201
−35.907
−25.834
−3.861
1.00
17.34

A
N


ANISOU
1182
NE2
HIS
A
201
2195
2228
2167
10
−121
130
A
N


ATOM
1183
CD2
HIS
A
201
−36.578
−25.513
−5.015
1.00
14.12

A
C


ANISOU
1183
CD2
HIS
A
201
1755
1750
1860
−33
80
26
A
C


ATOM
1184
C
HIS
A
201
−37.236
−22.445
−8.461
1.00
9.30

A
C


ANISOU
1184
C
HIS
A
201
1148
1160
1225
14
−1
−12
A
C


ATOM
1185
O
HIS
A
201
−37.108
−21.248
−8.731
1.00
9.20

A
O


ANISOU
1185
O
HIS
A
201
1162
1157
1177
27
−72
−54
A
O


ATOM
1186
N
GLY
A
202
−38.074
−23.247
−9.107
1.00
9.47

A
N


ANISOU
1186
N
GLY
A
202
1134
1276
1188
12
7
−41
A
N


ATOM
1187
CA
GLY
A
202
−39.027
−22.733
−10.084
1.00
9.97

A
C


ANISOU
1187
CA
GLY
A
202
1216
1353
1221
0
−23
21
A
C


ATOM
1188
C
GLY
A
202
−38.414
−22.254
−11.386
1.00
10.98

A
C


ANISOU
1188
C
GLY
A
202
1373
1420
1377
−19
31
32
A
C


ATOM
1189
O
GLY
A
202
−38.982
−21.390
−12.052
1.00
12.50

A
O


ANISOU
1189
O
GLY
A
202
1622
1571
1558
−3
3
77
A
O


ATOM
1190
N
VAL
A
203
−37.262
−22.818
−11.751
1.00
11.11

A
N


ANISOU
1190
N
VAL
A
203
1365
1462
1394
−51
36
−15
A
N


ATOM
1191
CA
VAL
A
203
−36.601
−22.472
−13.015
1.00
12.08

A
C


ANISOU
1191
CA
VAL
A
203
1582
1563
1445
−14
43
4
A
C


ATOM
1192
CB
VAL
A
203
−35.182
−21.866
−12.805
1.00
12.03

A
C


ANISOU
1192
CB
VAL
A
203
1512
1552
1507
−23
60
−50
A
C


ATOM
1193
CG1
VAL
A
203
−35.259
−20.531
−12.068
1.00
13.35

A
C


ANISOU
1193
CG1
VAL
A
203
1885
1554
1632
−96
8
−114
A
C


ATOM
1194
CG2
VAL
A
203
−34.270
−22.820
−12.063
1.00
15.76

A
C


ANISOU
1194
CG2
VAL
A
203
2081
1920
1987
78
16
124
A
C


ATOM
1195
C
VAL
A
203
−36.525
−23.655
−13.986
1.00
12.37

A
C


ANISOU
1195
C
VAL
A
203
1637
1548
1516
23
−15
−24
A
C


ATOM
1196
O
VAL
A
203
−36.919
−23.528
−15.145
1.00
13.23

A
O


ANISOU
1196
O
VAL
A
203
1708
1714
1603
140
1
30
A
O


ATOM
1197
N
ALA
A
204
−36.018
−24.796
−13.511
1.00
13.12

A
N


ANISOU
1197
N
ALA
A
204
1730
1578
1678
0
5
−28
A
N


ATOM
1198
CA
ALA
A
204
−35.904
−26.001
−14.341
1.00
14.01

A
C


ANISOU
1198
CA
ALA
A
204
1825
1758
1739
43
0
−64
A
C


ATOM
1199
CB
ALA
A
204
−34.617
−26.756
−14.020
1.00
14.15

A
C


ANISOU
1199
CB
ALA
A
204
1789
1807
1779
18
−11
−47
A
C


ATOM
1200
C
ALA
A
204
−37.111
−26.916
−14.159
1.00
14.74

A
C


ANISOU
1200
C
ALA
A
204
1844
1900
1857
−4
−7
−47
A
C


ATOM
1201
O
ALA
A
204
−37.591
−27.105
−13.037
1.00
16.66

A
O


ANISOU
1201
O
ALA
A
204
2104
2177
2049
60
28
56
A
O


ATOM
1202
N
TRP
A
205
−37.588
−27.486
−15.266
1.00
14.96

A
N


ANISOU
1202
N
TRP
A
205
1886
1924
1875
27
−24
−3
A
N


ATOM
1203
CA
TRP
A
205
−38.736
−28.394
−15.254
1.00
15.22

A
C


ANISOU
1203
CA
TRP
A
205
1929
1985
1870
6
−17
5
A
C


ATOM
1204
CB
TRP
A
205
−39.268
−28.578
−16.681
1.00
15.26

A
C


ANISOU
1204
CB
TRP
A
205
1931
1988
1881
−25
−30
−45
A
C


ATOM
1205
CG
TRP
A
205
−40.327
−29.627
−16.839
1.00
14.96

A
C


ANISOU
1205
CG
TRP
A
205
1896
1967
1823
6
21
−2
A
C


ATOM
1206
CD1
TRP
A
205
−41.633
−29.554
−16.434
1.00
15.36

A
C


ANISOU
1206
CD1
TRP
A
205
1899
1934
2003
17
18
−6
A
C


ATOM
1207
NE1
TRP
A
205
−42.300
−30.710
−16.773
1.00
15.07

A
N


ANISOU
1207
NE1
TRP
A
205
1848
1924
1954
54
−2
17
A
N


ATOM
1208
CE2
TRP
A
205
−41.429
−31.550
−17.417
1.00
15.65

A
C


ANISOU
1208
CE2
TRP
A
205
1980
1926
2039
−8
64
12
A
C


ATOM
1209
CD2
TRP
A
205
−40.175
−30.899
−17.476
1.00
14.84

A
C


ANISOU
1209
CD2
TRP
A
205
1813
1944
1883
44
−8
−18
A
C


ATOM
1210
CE3
TRP
A
205
−39.101
−31.553
−18.096
1.00
13.59

A
C


ANISOU
1210
CE3
TRP
A
205
1657
1834
1672
82
−74
22
A
C


ATOM
1211
CZ3
TRP
A
205
−39.307
−32.823
−18.624
1.00
14.90

A
C


ANISOU
1211
CZ3
TRP
A
205
1864
1883
1913
21
−27
−12
A
C


ATOM
1212
CH2
TRP
A
205
−40.568
−33.445
−18.545
1.00
16.23

A
C


ANISOU
1212
CH2
TRP
A
205
2029
1991
2145
−30
32
−32
A
C


ATOM
1213
CZ2
TRP
A
205
−41.637
−32.826
−17.949
1.00
15.89

A
C


ANISOU
1213
CZ2
TRP
A
205
2013
1999
2027
−27
27
−24
A
C


ATOM
1214
C
TRP
A
205
−38.382
−29.748
−14.635
1.00
15.77

A
C


ANISOU
1214
C
TRP
A
205
2003
2022
1965
−2
4
28
A
C


ATOM
1215
O
TRP
A
205
−37.366
−30.358
−14.977
1.00
15.54

A
O


ANISOU
1215
O
TRP
A
205
1934
2028
1943
12
−6
46
A
O


ATOM
1216
OXT
TRP
A
205
−39.114
−30.263
−13.784
1.00
15.61

A
O


ANISOU
1216
OXT
TRP
A
205
2000
2033
1897
7
42
50
A
O


TER


ATOM
1217
N
SER
B
202
−12.218
−4.255
8.791
1.00
26.34

B
N


ANISOU
1217
N
SER
B
202
3332
3314
3363
−9
−8
−13
B
N


ATOM
1218
CA
SER
B
202
−12.959
−5.151
9.696
1.00
26.10

B
C


ANISOU
1218
CA
SER
B
202
3262
3321
3332
0
−11
−10
B
C


ATOM
1219
CB
SER
B
202
−12.667
−4.800
11.162
1.00
26.41

B
C


ANISOU
1219
CB
SER
B
202
3306
3383
3347
12
−3
−9
B
C


ATOM
1220
OG
SER
B
202
−11.294
−4.924
11.487
1.00
26.33

B
O


ANISOU
1220
OG
SER
B
202
3256
3354
3394
0
−34
0
B
O


ATOM
1221
C
SER
B
202
−14.465
−5.102
9.454
1.00
25.75

B
C


ANISOU
1221
C
SER
B
202
3234
3245
3303
−17
3
0
B
C


ATOM
1222
O
SER
B
202
−15.057
−4.027
9.460
1.00
25.89

B
O


ANISOU
1222
O
SER
B
202
3239
3267
3331
−1
22
31
B
O


ATOM
1223
N
VAL
B
203
−15.054
−6.283
9.289
1.00
24.73

B
N


ANISOU
1223
N
VAL
B
203
3062
3174
3159
−5
19
−3
B
N


ATOM
1224
CA
VAL
B
203
−16.490
−6.439
9.028
1.00
23.69

B
C


ANISOU
1224
CA
VAL
B
203
3004
3029
2969
10
40
6
B
C


ATOM
1225
CB
VAL
B
203
−16.723
−7.626
8.069
1.00
23.92

B
C


ANISOU
1225
CB
VAL
B
203
3026
3031
3030
25
7
4
B
C


ATOM
1226
CG1
VAL
B
203
−18.179
−7.854
7.804
1.00
24.83

B
C


ANISOU
1226
CG1
VAL
B
203
3132
3157
3144
−16
−14
0
B
C


ATOM
1227
CG2
VAL
B
203
−15.969
−7.390
6.761
1.00
24.95

B
C


ANISOU
1227
CG2
VAL
B
203
3167
3203
3109
−12
27
0
B
C


ATOM
1228
C
VAL
B
203
−17.283
−6.659
10.325
1.00
22.55

B
C


ANISOU
1228
C
VAL
B
203
2869
2815
2883
67
50
−12
B
C


ATOM
1229
O
VAL
B
203
−17.193
−7.729
10.926
1.00
23.38

B
O


ANISOU
1229
O
VAL
B
203
2996
2917
2970
55
71
−10
B
O


ATOM
1230
N
TRP
B
204
−18.049
−5.652
10.748
1.00
19.59

B
N


ANISOU
1230
N
TRP
B
204
2447
2561
2435
1
65
33
B
N


ATOM
1231
CA
TRP
B
204
−18.837
−5.775
11.972
1.00
17.14

B
C


ANISOU
1231
CA
TRP
B
204
2109
2166
2238
−4
−25
−1
B
C


ATOM
1232
CB
TRP
B
204
−18.304
−4.851
13.088
1.00
18.13

B
C


ANISOU
1232
CB
TRP
B
204
2330
2344
2213
−26
−4
−43
B
C


ATOM
1233
CG
TRP
B
204
−16.827
−4.950
13.412
1.00
18.57

B
C


ANISOU
1233
CG
TRP
B
204
2359
2420
2277
9
65
−23
B
C


ATOM
1234
CD1
TRP
B
204
−15.924
−3.938
13.392
1.00
19.14

B
C


ANISOU
1234
CD1
TRP
B
204
2416
2483
2373
−28
19
−21
B
C


ATOM
1235
NE1
TRP
B
204
−14.693
−4.389
13.759
1.00
20.89

B
N


ANISOU
1235
NE1
TRP
B
204
2622
2585
2729
44
−6
47
B
N


ATOM
1236
CE2
TRP
B
204
−14.779
−5.722
14.031
1.00
19.28

B
C


ANISOU
1236
CE2
TRP
B
204
2422
2532
2371
7
−13
−19
B
C


ATOM
1237
CD2
TRP
B
204
−16.115
−6.103
13.843
1.00
19.32

B
C


ANISOU
1237
CD2
TRP
B
204
2480
2469
2390
12
56
15
B
C


ATOM
1238
CE3
TRP
B
204
−16.466
−7.433
14.055
1.00
19.90

B
C


ANISOU
1238
CE3
TRP
B
204
2597
2455
2509
20
11
0
B
C


ATOM
1239
CZ3
TRP
B
204
−15.487
−8.311
14.452
1.00
20.20

B
C


ANISOU
1239
CZ3
TRP
B
204
2547
2580
2549
30
−22
21
B
C


ATOM
1240
CH2
TRP
B
204
−14.180
−7.901
14.643
1.00
20.07

B
C


ANISOU
1240
CH2
TRP
B
204
2565
2507
2554
42
37
11
B
C


ATOM
1241
CZ2
TRP
B
204
−13.802
−6.611
14.437
1.00
20.52

B
C


ANISOU
1241
CZ2
TRP
B
204
2628
2544
2626
33
27
31
B
C


ATOM
1242
C
TRP
B
204
−20.336
−5.540
11.828
1.00
15.25

B
C


ANISOU
1242
C
TRP
B
204
1984
1867
1942
−32
−17
63
B
C


ATOM
1243
O
TRP
B
204
−21.102
−6.115
12.546
1.00
14.65

B
O


ANISOU
1243
O
TRP
B
204
1726
1911
1929
13
25
70
B
O


ATOM
1244
N
ILE
B
205
−20.743
−4.652
10.934
1.00
12.92

B
N


ANISOU
1244
N
ILE
B
205
1654
1592
1664
−6
−86
−62
B
N


ATOM
1245
CA
ILE
B
205
−22.173
−4.324
10.896
1.00
12.06

B
C


ANISOU
1245
CA
ILE
B
205
1560
1491
1532
−80
−23
−42
B
C


ATOM
1246
CB
ILE
B
205
−22.519
−3.054
10.071
1.00
13.07

B
C


ANISOU
1246
CB
ILE
B
205
1665
1620
1680
35
−33
−42
B
C


ATOM
1247
CG1
ILE
B
205
−23.989
−2.686
10.302
1.00
14.88

B
C


ANISOU
1247
CG1
ILE
B
205
1736
1857
2062
20
66
18
B
C


ATOM
1248
CD1
ILE
B
205
−24.344
−1.290
9.940
1.00
16.48

B
C


ANISOU
1248
CD1
ILE
B
205
2090
1986
2187
59
−23
51
B
C


ATOM
1249
CG2
ILE
B
205
−22.230
−3.248
8.592
1.00
13.15

B
C


ANISOU
1249
CG2
ILE
B
205
1676
1753
1569
−53
30
72
B
C


ATOM
1250
C
ILE
B
205
−22.996
−5.543
10.466
1.00
11.30

B
C


ANISOU
1250
C
ILE
B
205
1461
1455
1377
−60
1
−12
B
C


ATOM
1251
O
ILE
B
205
−22.688
−6.173
9.452
1.00
10.83

B
O


ANISOU
1251
O
ILE
B
205
1473
1288
1355
0
52
−55
B
O


ATOM
1252
N
PRO
B
206
−23.998
−5.919
11.281
1.00
10.01

B
N


ANISOU
1252
N
PRO
B
206
1304
1292
1207
2
3
−105
B
N


ATOM
1253
CA
PRO
B
206
−24.786
−7.106
10.960
1.00
9.82

B
C


ANISOU
1253
CA
PRO
B
206
1197
1290
1245
−59
19
−6
B
C


ATOM
1254
CB
PRO
B
206
−25.863
−7.110
12.047
1.00
9.81

B
C


ANISOU
1254
CB
PRO
B
206
1294
1355
1079
10
−13
−17
B
C


ATOM
1255
CG
PRO
B
206
−25.188
−6.443
13.212
1.00
9.12

B
C


ANISOU
1255
CG
PRO
B
206
1178
1161
1128
−70
−47
−64
B
C


ATOM
1256
CD
PRO
B
206
−24.402
−5.333
12.577
1.00
9.52

B
C


ANISOU
1256
CD
PRO
B
206
1191
1295
1132
3
11
0
B
C


ATOM
1257
C
PRO
B
206
−25.424
−7.091
9.574
1.00
9.41

B
C


ANISOU
1257
C
PRO
B
206
1232
1134
1210
−46
7
−23
B
C


ATOM
1258
O
PRO
B
206
−25.744
−6.023
9.019
1.00
10.16

B
O


ANISOU
1258
O
PRO
B
206
1283
1287
1291
−5
−97
−37
B
O


ATOM
1259
N
VAL
B
207
−25.597
−8.290
9.028
1.00
9.57

B
N


ANISOU
1259
N
VAL
B
207
1229
1228
1179
−54
−53
−50
B
N


ATOM
1260
CA
VAL
B
207
−26.267
−8.479
7.751
1.00
9.38

B
C


ANISOU
1260
CA
VAL
B
207
1204
1196
1164
−1
−46
−39
B
C


ATOM
1261
CB
VAL
B
207
−26.438
−9.994
7.442
1.00
8.93

B
C


ANISOU
1261
CB
VAL
B
207
1253
1067
1072
−8
5
−13
B
C


ATOM
1262
CG1
VAL
B
207
−27.376
−10.680
8.450
1.00
12.21

B
C


ANISOU
1262
CG1
VAL
B
207
1419
1691
1530
−21
75
154
B
C


ATOM
1263
CG2
VAL
B
207
−26.923
−10.209
6.028
1.00
9.91

B
C


ANISOU
1263
CG2
VAL
B
207
1159
1406
1201
−57
−101
−8
B
C


ATOM
1264
C
VAL
B
207
−27.615
−7.737
7.719
1.00
9.35

B
C


ANISOU
1264
C
VAL
B
207
1241
1142
1171
47
2
−3
B
C


ATOM
1265
O
VAL
B
207
−28.354
−7.722
8.716
1.00
9.54

B
O


ANISOU
1265
O
VAL
B
207
1255
1234
1136
47
−18
117
B
O


ATOM
1266
N
ASN
B
208
−27.879
−7.082
6.585
1.00
9.61

B
N


ANISOU
1266
N
ASN
B
208
1286
1272
1094
78
14
−4
B
N


ATOM
1267
CA
ASN
B
208
−29.161
−6.423
6.275
1.00
9.61

B
C


ANISOU
1267
CA
ASN
B
208
1250
1169
1232
10
3
−31
B
C


ATOM
1268
CB
ASN
B
208
−30.342
−7.397
6.394
1.00
9.46

B
C


ANISOU
1268
CB
ASN
B
208
1229
1149
1217
−34
12
−43
B
C


ATOM
1269
CG
ASN
B
208
−30.405
−8.393
5.252
1.00
9.53

B
C


ANISOU
1269
CG
ASN
B
208
1310
1179
1132
47
58
−15
B
C


ATOM
1270
OD1
ASN
B
208
−29.924
−8.131
4.144
1.00
9.50

B
O


ANISOU
1270
OD1
ASN
B
208
1026
1368
1217
0
26
−66
B
O


ATOM
1271
ND2
ASN
B
208
−31.022
−9.539
5.513
1.00
11.56

B
N


ANISOU
1271
ND2
ASN
B
208
1548
1328
1517
−89
115
−19
B
N


ATOM
1272
C
ASN
B
208
−29.498
−5.127
7.012
1.00
9.14

B
C


ANISOU
1272
C
ASN
B
208
1172
1196
1106
−8
30
−49
B
C


ATOM
1273
O
ASN
B
208
−30.617
−4.625
6.880
1.00
9.37

B
O


ANISOU
1273
O
ASN
B
208
1200
1151
1211
29
−71
−5
B
O


ATOM
1274
N
GLU
B
209
−28.558
−4.575
7.777
1.00
9.37

B
N


ANISOU
1274
N
GLU
B
209
1282
1158
1119
−10
−44
−11
B
N


ATOM
1275
CA
GLU
B
209
−28.843
−3.323
8.488
1.00
8.53

B
C


ANISOU
1275
CA
GLU
B
209
1174
1051
1017
43
−83
21
B
C


ATOM
1276
CB
GLU
B
209
−27.710
−2.952
9.444
1.00
8.27

B
C


ANISOU
1276
CB
GLU
B
209
1123
950
1069
−97
−71
22
B
C


ATOM
1277
CG
GLU
B
209
−27.663
−3.826
10.687
1.00
8.89

B
C


ANISOU
1277
CG
GLU
B
209
1131
1267
978
−20
57
89
B
C


ATOM
1278
CD
GLU
B
209
−28.824
−3.555
11.629
1.00
8.85

B
C


ANISOU
1278
CD
GLU
B
209
1050
1255
1056
7
−6
−39
B
C


ATOM
1279
OE1
GLU
B
209
−28.771
−2.539
12.356
1.00
8.75

B
O


ANISOU
1279
OE1
GLU
B
209
1185
1017
1122
−57
−35
104
B
O


ATOM
1280
OE2
GLU
B
209
−29.779
−4.365
11.647
1.00
10.20

B
O


ANISOU
1280
OE2
GLU
B
209
1427
1197
1251
−93
−58
58
B
O


ATOM
1281
C
GLU
B
209
−29.089
−2.205
7.488
1.00
8.66

B
C


ANISOU
1281
C
GLU
B
209
1182
1082
1026
−4
−36
7
B
C


ATOM
1282
O
GLU
B
209
−28.200
−1.850
6.723
1.00
9.65

B
O


ANISOU
1282
O
GLU
B
209
1201
1199
1265
0
43
62
B
O


ATOM
1283
N
GLY
B
210
−30.312
−1.684
7.479
1.00
8.63

B
N


ANISOU
1283
N
GLY
B
210
1186
1102
992
45
−39
15
B
N


ATOM
1284
CA
GLY
B
210
−30.707
−0.656
6.514
1.00
8.72

B
C


ANISOU
1284
CA
GLY
B
210
1166
1112
1037
22
−2
28
B
C


ATOM
1285
C
GLY
B
210
−31.044
−1.166
5.118
1.00
9.63

B
C


ANISOU
1285
C
GLY
B
210
1329
1207
1122
20
8
11
B
C


ATOM
1286
O
GLY
B
210
−31.222
−0.361
4.198
1.00
9.32

B
O


ANISOU
1286
O
GLY
B
210
1234
1173
1134
99
−38
82
B
O


ATOM
1287
N
ALA
B
211
−31.129
−2.489
4.955
1.00
9.12

B
N


ANISOU
1287
N
ALA
B
211
1258
1198
1010
63
−3
−11
B
N


ATOM
1288
CA
ALA
B
211
−31.401
−3.098
3.644
1.00
9.06

B
C


ANISOU
1288
CA
ALA
B
211
1180
1163
1100
−19
−41
−46
B
C


ATOM
1289
CB
ALA
B
211
−30.811
−4.499
3.559
1.00
10.07

B
C


ANISOU
1289
CB
ALA
B
211
1313
1284
1229
11
−17
−23
B
C


ATOM
1290
C
ALA
B
211
−32.889
−3.128
3.314
1.00
9.89

B
C


ANISOU
1290
C
ALA
B
211
1272
1333
1152
−8
−37
−26
B
C


ATOM
1291
O
ALA
B
211
−33.739
−3.230
4.210
1.00
10.72

B
O


ANISOU
1291
O
ALA
B
211
1298
1606
1171
−1
7
34
B
O


ATOM
1292
N
SER
B
212
−33.188
−3.060
2.019
1.00
8.81

B
N


ANISOU
1292
N
SER
B
212
1166
1089
1091
−8
−63
19
B
N


ATOM
1293
CA
SER
B
212
−34.557
−3.127
1.517
1.00
8.42

B
C


ANISOU
1293
CA
SER
B
212
1109
1046
1045
12
5
−28
B
C


ATOM
1294
CB
SER
B
212
−35.282
−1.806
1.778
1.00
8.64

B
C


ANISOU
1294
CB
SER
B
212
1176
1047
1061
66
−20
−28
B
C


ATOM
1295
OG
SER
B
212
−34.782
−0.776
0.935
1.00
8.67

B
O


ANISOU
1295
OG
SER
B
212
1130
1132
1032
−50
17
−13
B
O


ATOM
1296
C
SER
B
212
−34.520
−3.379
0.016
1.00
8.18

B
C


ANISOU
1296
C
SER
B
212
1075
1051
983
−25
7
7
B
C


ATOM
1297
O
SER
B
212
−33.441
−3.407
−0.588
1.00
8.37

B
O


ANISOU
1297
O
SER
B
212
1050
1119
1012
70
12
−83
B
O


ATOM
1298
N
THR
B
213
−35.696
−3.550
−0.586
1.00
8.69

B
N


ANISOU
1298
N
THR
B
213
1132
1048
1123
−14
−27
−17
B
N


ATOM
1299
CA
THR
B
213
−35.820
−3.481
−2.042
1.00
9.11

B
C


ANISOU
1299
CA
THR
B
213
1203
1113
1144
−40
−21
11
B
C


ATOM
1300
CB
THR
B
213
−37.188
−3.993
−2.536
1.00
10.69

B
C


ANISOU
1300
CB
THR
B
213
1304
1295
1461
−69
−46
5
B
C


ATOM
1301
OG1
THR
B
213
−38.227
−3.161
−2.003
1.00
13.40

B
O


ANISOU
1301
OG1
THR
B
213
1393
1750
1948
72
−7
−62
B
O


ATOM
1302
CG2
THR
B
213
−37.418
−5.438
−2.121
1.00
9.46

B
C


ANISOU
1302
CG2
THR
B
213
1179
1234
1182
−38
−63
20
B
C


ATOM
1303
C
THR
B
213
−35.665
−2.020
−2.478
1.00
9.18

B
C


ANISOU
1303
C
THR
B
213
1206
1098
1183
−36
30
2
B
C


ATOM
1304
O
THR
B
213
−35.740
−1.102
−1.654
1.00
9.80

B
O


ANISOU
1304
O
THR
B
213
1425
1144
1154
−103
75
−30
B
O


ATOM
1305
N
SER
B
214
−35.459
−1.800
−3.770
1.00
9.33

B
N


ANISOU
1305
N
SER
B
214
1235
1135
1175
−56
1
3
B
N


ATOM
1306
CA
SER
B
214
−35.339
−0.436
−4.286
1.00
9.41

B
C


ANISOU
1306
CA
SER
B
214
1240
1106
1230
0
17
9
B
C


ATOM
1307
CB
SER
B
214
−34.632
−0.432
−5.639
1.00
9.49

B
C


ANISOU
1307
CB
SER
B
214
1219
1209
1179
12
−12
16
B
C


ATOM
1308
OG
SER
B
214
−35.445
−1.035
−6.626
1.00
9.77

B
O


ANISOU
1308
OG
SER
B
214
1284
1292
1136
−34
37
−73
B
O


ATOM
1309
C
SER
B
214
−36.691
0.261
−4.417
1.00
11.48

B
C


ANISOU
1309
C
SER
B
214
1398
1448
1514
66
−27
3
B
C


ATOM
1310
O
SER
B
214
−36.757
1.490
−4.457
1.00
12.35

B
O


ANISOU
1310
O
SER
B
214
1459
1534
1698
−17
22
−33
B
O


ATOM
1311
N
GLY
B
215
−37.758
−0.527
−4.501
1.00
13.83

B
N


ANISOU
1311
N
GLY
B
215
1643
1736
1875
−56
39
9
B
N


ATOM
1312
CA
GLY
B
215
−39.087
0.009
−4.795
1.00
17.70

B
C


ANISOU
1312
CA
GLY
B
215
2048
2223
2454
73
−31
17
B
C


ATOM
1313
C
GLY
B
215
−39.342
0.177
−6.286
1.00
21.31

B
C


ANISOU
1313
C
GLY
B
215
2684
2735
2679
19
−44
39
B
C


ATOM
1314
O
GLY
B
215
−40.440
0.568
−6.691
1.00
23.00

B
O


ANISOU
1314
O
GLY
B
215
2747
2974
3019
73
−24
44
B
O


ATOM
1315
N
MET
B
216
−38.332
−0.122
−7.104
1.00
23.06

B
N


ANISOU
1315
N
MET
B
216
2853
2955
2955
42
9
21
B
N


ATOM
1316
CA
MET
B
216
−38.442
−0.027
−8.564
1.00
25.50

B
C


ANISOU
1316
CA
MET
B
216
3283
3253
3152
18
−14
12
B
C


ATOM
1317
CB
MET
B
216
−37.054
−0.022
−9.214
1.00
26.35

B
C


ANISOU
1317
CB
MET
B
216
3348
3400
3264
75
34
47
B
C


ATOM
1318
CG
MET
B
216
−36.147
1.137
−8.803
1.00
30.19

B
C


ANISOU
1318
CG
MET
B
216
3766
3861
3845
−81
−42
−118
B
C


ATOM
1319
SD
MET
B
216
−36.215
2.556
−9.914
1.00
36.26

B
S


ANISOU
1319
SD
MET
B
216
4764
4465
4549
−27
14
188
B
S


ATOM
1320
CE
MET
B
216
−35.453
1.874
−11.388
1.00
37.40

B
C


ANISOU
1320
CE
MET
B
216
4742
4744
4724
−8
20
−24
B
C


ATOM
1321
C
MET
B
216
−39.267
−1.182
−9.125
1.00
26.30

B
C


ANISOU
1321
C
MET
B
216
3364
3312
3315
−9
−5
−2
B
C


ATOM
1322
O
MET
B
216
−39.044
−2.345
−8.778
1.00
27.09

B
O


ANISOU
1322
O
MET
B
216
3492
3355
3446
15
3
−27
B
O


TER


ATOM
1323
O
HOH
W
1
−17.577
−2.208
−15.264
1.00
17.35

W
O


ANISOU
1323
O
HOH
W
1
2356
2136
2102
−102
143
−68
W
O


ATOM
1324
O
HOH
W
2
−35.594
−10.276
2.592
1.00
13.91

W
O


ANISOU
1324
O
HOH
W
2
1942
1918
1424
13
114
54
W
O


ATOM
1325
O
HOH
W
3
−35.642
−20.809
−3.292
1.00
12.21

W
O


ANISOU
1325
O
HOH
W
3
1460
1644
1536
−77
0
16
W
O


ATOM
1326
O
HOH
W
4
−35.424
−25.035
−10.598
1.00
21.40

W
O


ANISOU
1326
O
HOH
W
4
3001
2529
2600
136
8
−42
W
O


ATOM
1327
O
HOH
W
5
−24.926
−5.147
6.517
1.00
9.57

W
O


ANISOU
1327
O
HOH
W
5
1355
1165
1118
−28
22
−18
W
O


ATOM
1328
O
HOH
W
6
−21.611
−13.148
−0.059
1.00
11.46

W
O


ANISOU
1328
O
HOH
W
6
1603
1565
1186
43
42
−59
W
O


ATOM
1329
O
HOH
W
7
−28.218
1.256
−17.427
1.00
20.49

W
O


ANISOU
1329
O
HOH
W
7
2734
2939
2114
−154
−80
22
W
O


ATOM
1330
O
HOH
W
8
−25.220
13.789
−0.043
1.00
12.25

W
O


ANISOU
1330
O
HOH
W
8
1643
1317
1696
−4
36
−62
W
O


ATOM
1331
O
HOH
W
9
−30.539
−6.374
9.900
1.00
8.90

W
O


ANISOU
1331
O
HOH
W
9
1262
1047
1071
−15
59
−72
W
O


ATOM
1332
O
HOH
W
10
−25.439
−2.441
6.588
1.00
8.37

W
O


ANISOU
1332
O
HOH
W
10
1283
936
963
−43
47
118
W
O


ATOM
1333
O
HOH
W
11
−39.528
−20.928
−6.391
1.00
10.80

W
O


ANISOU
1333
O
HOH
W
11
1291
1531
1283
−34
24
−34
W
O


ATOM
1334
O
HOH
W
12
−32.547
0.470
1.879
1.00
8.79

W
O


ANISOU
1334
O
HOH
W
12
1111
1151
1077
−132
−23
−50
W
O


ATOM
1335
O
HOH
W
13
−32.528
−2.452
9.104
1.00
14.12

W
O


ANISOU
1335
O
HOH
W
13
1651
1846
1869
−13
136
134
W
O


ATOM
1336
O
HOH
W
14
−32.888
−5.287
8.783
1.00
15.35

W
O


ANISOU
1336
O
HOH
W
14
1893
2080
1861
−98
48
143
W
O


ATOM
1337
O
HOH
W
15
−29.948
−1.948
14.783
1.00
9.36

W
O


ANISOU
1337
O
HOH
W
15
1334
1221
1000
14
9
123
W
O


ATOM
1338
O
HOH
W
16
−32.882
−20.658
−3.305
1.00
8.16

W
O


ANISOU
1338
O
HOH
W
16
1130
945
1024
−92
−48
27
W
O


ATOM
1339
O
HOH
W
17
−27.215
9.941
2.716
1.00
11.38

W
O


ANISOU
1339
O
HOH
W
17
1529
1280
1514
−74
65
−69
W
O


ATOM
1340
O
HOH
W
18
−35.273
−4.347
−9.780
1.00
13.71

W
O


ANISOU
1340
O
HOH
W
18
1785
2067
1359
112
13
−40
W
O


ATOM
1341
O
HOH
W
19
−15.860
−8.015
−12.860
1.00
16.32

W
O


ANISOU
1341
O
HOH
W
19
2085
2133
1981
42
249
22
W
O


ATOM
1342
O
HOH
W
20
−28.365
−24.659
−2.537
1.00
15.24

W
O


ANISOU
1342
O
HOH
W
20
2142
1926
1724
−11
−78
75
W
O


ATOM
1343
O
HOH
W
21
−31.479
−8.831
−12.989
1.00
10.82

W
O


ANISOU
1343
O
HOH
W
21
1453
1464
1193
−180
34
−54
W
O


ATOM
1344
O
HOH
W
22
−28.639
−9.218
11.256
1.00
13.05

W
O


ANISOU
1344
O
HOH
W
22
1770
1708
1479
32
104
−187
W
O


ATOM
1345
O
HOH
W
23
−21.886
−12.325
2.589
1.00
11.85

W
O


ANISOU
1345
O
HOH
W
23
1542
1523
1436
38
49
−34
W
O


ATOM
1346
O
HOH
W
24
−38.093
−5.281
−12.113
1.00
32.02

W
O


ANISOU
1346
O
HOH
W
24
4050
4058
4059
42
7
30
W
O


ATOM
1347
O
HOH
W
25
−21.736
−8.315
14.027
1.00
13.19

W
O


ANISOU
1347
O
HOH
W
25
1675
1680
1658
93
125
99
W
O


ATOM
1348
O
HOH
W
26
−28.734
−16.766
1.037
1.00
13.90

W
O


ANISOU
1348
O
HOH
W
26
1885
1640
1755
33
−45
140
W
O


ATOM
1349
O
HOH
W
27
−25.284
15.456
−2.469
1.00
17.12

W
O


ANISOU
1349
O
HOH
W
27
2290
2092
2123
−15
28
−24
W
O


ATOM
1350
O
HOH
W
28
−40.841
−15.176
−8.930
1.00
9.10

W
O


ANISOU
1350
O
HOH
W
28
1091
1222
1146
−155
−25
−10
W
O


ATOM
1351
O
HOH
W
29
−35.631
−27.098
−0.943
1.00
19.59

W
O


ANISOU
1351
O
HOH
W
29
2488
2391
2565
60
37
56
W
O


ATOM
1352
O
HOH
W
30
−38.170
−9.327
2.404
1.00
16.39

W
O


ANISOU
1352
O
HOH
W
30
1969
2260
2000
14
51
−24
W
O


ATOM
1353
O
HOH
W
31
−20.495
5.307
−21.147
1.00
16.72

W
O


ANISOU
1353
O
HOH
W
31
1994
2272
2088
5
13
−123
W
O


ATOM
1354
O
HOH
W
32
−35.426
−12.995
2.633
1.00
13.61

W
O


ANISOU
1354
O
HOH
W
32
1846
1709
1615
−145
143
−61
W
O


ATOM
1355
O
HOH
W
33
−32.186
−24.295
−2.822
1.00
16.23

W
O


ANISOU
1355
O
HOH
W
33
2117
1959
2089
15
61
108
W
O


ATOM
1356
O
HOH
W
34
−45.956
−19.042
−10.604
1.00
17.65

W
O


ANISOU
1356
O
HOH
W
34
2029
2282
2394
16
−146
90
W
O


ATOM
1357
O
HOH
W
35
−33.021
11.167
−6.944
1.00
28.87

W
O


ANISOU
1357
O
HOH
W
35
3762
3634
3574
13
−8
14
W
O


ATOM
1358
O
HOH
W
36
−14.625
3.563
−6.888
1.00
15.72

W
O


ANISOU
1358
O
HOH
W
36
1939
1996
2039
−106
−163
133
W
O


ATOM
1359
O
HOH
W
37
−24.167
−11.590
3.937
1.00
10.67

W
O


ANISOU
1359
O
HOH
W
37
1451
1258
1344
−95
−63
24
W
O


ATOM
1360
O
HOH
W
38
−32.756
−6.244
−15.553
1.00
13.42

W
O


ANISOU
1360
O
HOH
W
38
1598
2149
1352
14
119
19
W
O


ATOM
1361
O
HOH
W
39
−15.858
−14.584
−9.559
1.00
17.50

W
O


ANISOU
1361
O
HOH
W
39
2273
2077
2300
11
210
−98
W
O


ATOM
1362
O
HOH
W
40
−21.845
−6.027
6.765
1.00
11.35

W
O


ANISOU
1362
O
HOH
W
40
1489
1425
1398
41
36
−24
W
O


ATOM
1363
O
HOH
W
41
−16.117
9.727
−16.186
1.00
15.67

W
O


ANISOU
1363
O
HOH
W
41
1854
2053
2046
−49
16
91
W
O


ATOM
1364
O
HOH
W
42
−37.898
18.234
−0.349
1.00
17.94

W
O


ANISOU
1364
O
HOH
W
42
2225
2281
2312
−102
−32
6
W
O


ATOM
1365
O
HOH
W
43
−26.699
10.900
5.367
1.00
15.87

W
O


ANISOU
1365
O
HOH
W
43
2104
1830
2095
18
−84
−42
W
O


ATOM
1366
O
HOH
W
44
−17.856
13.967
−15.991
1.00
18.20

W
O


ANISOU
1366
O
HOH
W
44
2520
2142
2255
5
−38
116
W
O


ATOM
1367
O
HOH
W
45
−26.845
−18.369
−0.073
1.00
10.51

W
O


ANISOU
1367
O
HOH
W
45
1443
1278
1271
−16
118
−86
W
O


ATOM
1368
O
HOH
W
46
−28.467
6.084
−15.718
1.00
13.99

W
O


ANISOU
1368
O
HOH
W
46
1735
1678
1903
−40
119
59
W
O


ATOM
1369
O
HOH
W
47
−33.866
−16.919
−16.127
1.00
16.58

W
O


ANISOU
1369
O
HOH
W
47
2119
2153
2028
80
−121
−31
W
O


ATOM
1370
O
HOH
W
48
−38.316
−11.213
−11.870
1.00
18.45

W
O


ANISOU
1370
O
HOH
W
48
2405
2394
2212
105
24
104
W
O


ATOM
1371
O
HOH
W
49
−33.941
−13.483
−17.134
1.00
16.80

W
O


ANISOU
1371
O
HOH
W
49
2065
2389
1931
−101
3
184
W
O


ATOM
1372
O
HOH
W
50
−22.404
−10.184
12.149
1.00
18.83

W
O


ANISOU
1372
O
HOH
W
50
2481
2294
2380
51
−110
−61
W
O


ATOM
1373
O
HOH
W
51
−23.364
−19.986
−2.433
1.00
14.73

W
O


ANISOU
1373
O
HOH
W
51
1895
1758
1943
−2
−68
85
W
O


ATOM
1374
O
HOH
W
52
−25.212
14.790
2.470
1.00
20.54

W
O


ANISOU
1374
O
HOH
W
52
2668
2743
2393
−78
21
−149
W
O


ATOM
1375
O
HOH
W
53
−20.246
3.243
−16.893
1.00
14.04

W
O


ANISOU
1375
O
HOH
W
53
1934
1702
1699
100
17
−154
W
O


ATOM
1376
O
HOH
W
54
−32.491
−21.446
−0.561
1.00
14.89

W
O


ANISOU
1376
O
HOH
W
54
1759
1957
1940
−71
−30
201
W
O


ATOM
1377
O
HOH
W
55
−31.780
−18.709
−16.472
1.00
16.34

W
O


ANISOU
1377
O
HOH
W
55
2114
2049
2046
7
−106
110
W
O


ATOM
1378
O
HOH
W
56
−14.644
9.747
−3.176
1.00
14.24

W
O


ANISOU
1378
O
HOH
W
56
1736
1823
1851
17
−59
−41
W
O


ATOM
1379
O
HOH
W
57
−28.567
−4.470
−17.889
1.00
13.04

W
O


ANISOU
1379
O
HOH
W
57
1753
1840
1362
−80
−9
90
W
O


ATOM
1380
O
HOH
W
58
−31.086
10.207
2.626
1.00
21.18

W
O


ANISOU
1380
O
HOH
W
58
2560
2613
2873
17
52
−70
W
O


ATOM
1381
O
HOH
W
59
−35.331
−15.627
4.012
1.00
22.99

W
O


ANISOU
1381
O
HOH
W
59
2831
2974
2929
28
66
−111
W
O


ATOM
1382
O
HOH
W
60
−13.578
12.770
−10.122
1.00
19.99

W
O


ANISOU
1382
O
HOH
W
60
2444
2514
2638
−112
−54
30
W
O


ATOM
1383
O
HOH
W
61
−25.363
−22.141
−1.606
1.00
15.76

W
O


ANISOU
1383
O
HOH
W
61
1912
2231
1844
85
88
12
W
O


ATOM
1384
O
HOH
W
62
−34.201
−1.533
6.338
1.00
25.60

W
O


ANISOU
1384
O
HOH
W
62
3230
3301
3197
−47
32
−180
W
O


ATOM
1385
O
HOH
W
63
−28.843
16.175
−0.888
1.00
13.71

W
O


ANISOU
1385
O
HOH
W
63
1766
1603
1840
2
−77
−130
W
O


ATOM
1386
O
HOH
W
64
−32.349
−10.317
−15.467
1.00
15.26

W
O


ANISOU
1386
O
HOH
W
64
1965
1919
1915
−29
13
88
W
O


ATOM
1387
O
HOH
W
65
−15.843
12.358
−17.044
1.00
19.47

W
O


ANISOU
1387
O
HOH
W
65
2548
2380
2469
−105
−5
136
W
O


ATOM
1388
O
HOH
W
66
−22.682
13.344
4.939
1.00
29.16

W
O


ANISOU
1388
O
HOH
W
66
3643
3693
3744
8
32
−52
W
O


ATOM
1389
O
HOH
W
67
−24.719
−10.533
10.728
1.00
12.50

W
O


ANISOU
1389
O
HOH
W
67
1794
1533
1422
−53
−53
40
W
O


ATOM
1390
O
HOH
W
68
−17.609
−7.463
−2.544
1.00
16.67

W
O


ANISOU
1390
O
HOH
W
68
2053
2007
2275
−2
−7
50
W
O


ATOM
1391
O
HOH
W
69
−19.998
−12.784
6.418
1.00
17.72

W
O


ANISOU
1391
O
HOH
W
69
2454
2175
2104
61
−34
51
W
O


ATOM
1392
O
HOH
W
70
−25.511
16.648
−5.834
1.00
24.98

W
O


ANISOU
1392
O
HOH
W
70
3132
3142
3218
27
50
102
W
O


ATOM
1393
O
HOH
W
71
−30.370
−10.707
−17.365
1.00
13.92

W
O


ANISOU
1393
O
HOH
W
71
1689
1765
1834
−34
−20
81
W
O


ATOM
1394
O
HOH
W
72
−19.452
−12.124
3.846
1.00
16.88

W
O


ANISOU
1394
O
HOH
W
72
1903
2525
1984
103
−188
103
W
O


ATOM
1395
O
HOH
W
73
−33.633
−5.506
6.145
1.00
19.28

W
O


ANISOU
1395
O
HOH
W
73
2556
2560
2211
8
76
102
W
O


ATOM
1396
O
HOH
W
74
−24.032
−12.611
6.439
1.00
17.76

W
O


ANISOU
1396
O
HOH
W
74
2359
2169
2220
4
−23
−2
W
O


ATOM
1397
O
HOH
W
75
−38.807
−7.560
4.267
1.00
28.03

W
O


ANISOU
1397
O
HOH
W
75
3560
3598
3494
31
73
−52
W
O


ATOM
1398
O
HOH
W
76
−38.015
−3.860
1.333
1.00
16.98

W
O


ANISOU
1398
O
HOH
W
76
1874
2178
2399
−160
101
−36
W
O


ATOM
1399
O
HOH
W
77
−29.048
8.682
−15.205
1.00
13.39

W
O


ANISOU
1399
O
HOH
W
77
1807
1731
1551
16
75
−37
W
O


ATOM
1400
O
HOH
W
78
−20.384
17.139
−16.774
1.00
37.38

W
O


ANISOU
1400
O
HOH
W
78
4783
4692
4728
−23
−13
18
W
O


ATOM
1401
O
HOH
W
79
−24.430
0.007
−17.942
0.50
14.64

W
O


ANISOU
1401
O
HOH
W
79
1867
1909
1786
0
0
169
W
O


ATOM
1402
O
HOH
W
80
−32.935
7.930
−9.055
1.00
25.33

W
O


ANISOU
1402
O
HOH
W
80
3234
3315
3075
−28
−101
8
W
O


ATOM
1403
O
HOH
W
81
−19.049
−9.564
11.396
1.00
21.81

W
O


ANISOU
1403
O
HOH
W
81
2812
2658
2818
−51
12
−36
W
O


ATOM
1404
O
HOH
W
82
−36.583
6.046
−17.526
1.00
24.91

W
O


ANISOU
1404
O
HOH
W
82
3053
3195
3218
27
−17
−7
W
O


ATOM
1405
O
HOH
W
83
−32.166
−3.340
12.148
1.00
26.37

W
O


ANISOU
1405
O
HOH
W
83
3182
3418
3419
16
29
−90
W
O


ATOM
1406
O
HOH
W
84
−19.553
−4.605
6.544
1.00
17.63

W
O


ANISOU
1406
O
HOH
W
84
2104
2385
2209
6
−3
14
W
O


ATOM
1407
O
HOH
W
85
−34.283
−2.655
−13.801
1.00
25.53

W
O


ANISOU
1407
O
HOH
W
85
3362
3279
3059
104
−53
160
W
O


ATOM
1408
O
HOH
W
86
−22.754
−14.753
3.938
1.00
17.89

W
O


ANISOU
1408
O
HOH
W
86
2066
2435
2297
−56
−170
83
W
O


ATOM
1409
O
HOH
W
87
−37.426
−17.164
−14.510
1.00
18.90

W
O


ANISOU
1409
O
HOH
W
87
2487
2453
2243
−102
−83
−55
W
O


ATOM
1410
O
HOH
W
88
−8.317
−0.021
−4.957
1.00
25.19

W
O


ANISOU
1410
O
HOH
W
88
3012
3175
3383
0
15
−12
W
O


ATOM
1411
O
HOH
W
89
−15.400
8.594
−18.670
1.00
18.92

W
O


ANISOU
1411
O
HOH
W
89
2551
2432
2207
−39
104
52
W
O


ATOM
1412
O
HOH
W
90
−35.748
2.314
0.706
1.00
24.11

W
O


ANISOU
1412
O
HOH
W
90
2899
3219
3044
−2
90
−87
W
O


ATOM
1413
O
HOH
W
91
−13.793
−11.720
−9.912
1.00
35.53

W
O


ANISOU
1413
O
HOH
W
91
4426
4610
4464
20
34
−13
W
O


ATOM
1414
O
HOH
W
92
−32.293
−25.005
−9.762
1.00
27.57

W
O


ANISOU
1414
O
HOH
W
92
3560
3421
3495
13
7
−54
W
O


ATOM
1415
O
HOH
W
93
−25.119
−24.432
−16.225
1.00
26.44

W
O


ANISOU
1415
O
HOH
W
93
3476
3246
3324
46
−34
0
W
O


ATOM
1416
O
HOH
W
94
−23.288
14.915
−8.603
1.00
24.56

W
O


ANISOU
1416
O
HOH
W
94
3271
3026
3036
34
90
12
W
O


ATOM
1417
O
HOH
W
95
−39.205
−6.810
−7.586
1.00
19.40

W
O


ANISOU
1417
O
HOH
W
95
2316
2669
2386
80
82
108
W
O


ATOM
1418
O
HOH
W
96
−17.494
6.819
−21.327
1.00
20.51

W
O


ANISOU
1418
O
HOH
W
96
2543
2542
2708
−51
29
−90
W
O


ATOM
1419
O
HOH
W
97
−14.851
−11.603
−3.482
1.00
24.36

W
O


ANISOU
1419
O
HOH
W
97
2971
3335
2948
−72
−93
17
W
O


ATOM
1420
O
HOH
W
98
−25.386
13.341
4.826
1.00
19.48

W
O


ANISOU
1420
O
HOH
W
98
2611
2440
2349
29
−15
29
W
O


ATOM
1421
O
HOH
W
99
−12.094
−6.045
−4.402
1.00
27.97

W
O


ANISOU
1421
O
HOH
W
99
3373
3669
3587
16
−67
−43
W
O


ATOM
1422
O
HOH
W
100
−18.788
16.271
−2.585
1.00
27.23

W
O


ANISOU
1422
O
HOH
W
100
3384
3390
3572
−18
−1
65
W
O


ATOM
1423
O
HOH
W
101
−18.181
−18.672
2.543
1.00
37.98

W
O


ANISOU
1423
O
HOH
W
101
4803
4890
4737
32
−24
17
W
O


ATOM
1424
O
HOH
W
102
−14.157
−9.082
−10.112
1.00
36.38

W
O


ANISOU
1424
O
HOH
W
102
4628
4584
4610
6
20
4
W
O


ATOM
1425
O
HOH
W
103
−18.953
−15.029
2.825
1.00
23.49

W
O


ANISOU
1425
O
HOH
W
103
2940
3082
2904
79
−70
−62
W
O


ATOM
1426
O
HOH
W
104
−25.758
−24.902
−9.194
1.00
22.26

W
O


ANISOU
1426
O
HOH
W
104
2912
2822
2722
55
13
1
W
O


ATOM
1427
O
HOH
W
105
−35.360
−7.421
6.412
1.00
39.45

W
O


ANISOU
1427
O
HOH
W
105
5075
4972
4943
−21
−8
−10
W
O


ATOM
1428
O
HOH
W
106
−31.705
7.844
0.951
1.00
22.98

W
O


ANISOU
1428
O
HOH
W
106
2846
3014
2870
−48
51
−32
W
O


ATOM
1429
O
HOH
W
107
−33.789
5.332
−10.444
1.00
23.75

W
O


ANISOU
1429
O
HOH
W
107
2956
2984
3083
31
95
44
W
O


ATOM
1430
O
HOH
W
108
−37.766
8.496
−15.873
1.00
18.33

W
O


ANISOU
1430
O
HOH
W
108
2280
2400
2283
56
58
96
W
O


ATOM
1431
O
HOH
W
109
−16.849
10.178
−20.326
1.00
21.01

W
O


ANISOU
1431
O
HOH
W
109
2291
2795
2898
86
104
147
W
O


ATOM
1432
O
HOH
W
110
−16.652
14.848
−7.843
1.00
31.69

W
O


ANISOU
1432
O
HOH
W
110
4168
3973
3900
−88
46
1
W
O


ATOM
1433
O
HOH
W
111
−33.495
2.286
3.683
1.00
23.52

W
O


ANISOU
1433
O
HOH
W
111
2995
2923
3019
104
−52
−102
W
O


ATOM
1434
O
HOH
W
112
−14.233
−13.021
−1.395
1.00
35.05

W
O


ANISOU
1434
O
HOH
W
112
4390
4414
4513
−18
−6
46
W
O


ATOM
1435
O
HOH
W
113
−18.928
−6.369
4.488
1.00
20.99

W
O


ANISOU
1435
O
HOH
W
113
2668
2757
2549
−17
12
69
W
O


ATOM
1436
O
HOH
W
114
−16.254
13.811
−10.287
1.00
26.01

W
O


ANISOU
1436
O
HOH
W
114
3424
3287
3171
−123
−35
31
W
O


ATOM
1437
O
HOH
W
115
−44.321
−22.041
−13.782
1.00
23.76

W
O


ANISOU
1437
O
HOH
W
115
3036
3123
2869
15
−125
14
W
O


ATOM
1438
O
HOH
W
116
−10.049
6.870
−15.858
1.00
29.52

W
O


ANISOU
1438
O
HOH
W
116
3695
3816
3704
28
24
−34
W
O


ATOM
1439
O
HOH
W
117
−16.198
−8.979
−0.865
1.00
27.27

W
O


ANISOU
1439
O
HOH
W
117
3351
3563
3448
67
−1
67
W
O


ATOM
1440
O
HOH
W
118
−15.461
−14.732
−6.170
1.00
23.22

W
O


ANISOU
1440
O
HOH
W
118
3067
2849
2908
163
−34
−15
W
O


ATOM
1441
O
HOH
W
119
−15.355
−18.077
−1.105
1.00
33.10

W
O


ANISOU
1441
O
HOH
W
119
4121
4209
4247
59
−65
−37
W
O


ATOM
1442
O
HOH
W
120
−16.785
16.156
−14.795
1.00
37.45

W
O


ANISOU
1442
O
HOH
W
120
4779
4643
4808
−31
−17
−20
W
O


ATOM
1443
O
HOH
W
121
−11.446
−1.822
−9.921
1.00
39.00

W
O


ANISOU
1443
O
HOH
W
121
4874
4936
5007
20
−7
−7
W
O


ATOM
1444
O
HOH
W
122
−36.066
−28.974
−10.892
1.00
32.42

W
O


ANISOU
1444
O
HOH
W
122
4233
4097
3989
1
49
−39
W
O


ATOM
1445
O
HOH
W
123
−28.814
13.128
−9.171
1.00
37.88

W
O


ANISOU
1445
O
HOH
W
123
4909
4684
4800
−19
55
0
W
O


ATOM
1446
O
HOH
W
124
−23.858
−10.006
−19.805
1.00
17.03

W
O


ANISOU
1446
O
HOH
W
124
2000
2302
2167
65
58
−51
W
O


ATOM
1447
O
HOH
W
125
−35.853
−21.706
−0.604
1.00
20.83

W
O


ANISOU
1447
O
HOH
W
125
2571
2757
2585
91
12
−42
W
O


ATOM
1448
O
HOH
W
126
−26.086
13.362
−10.040
1.00
31.69

W
O


ANISOU
1448
O
HOH
W
126
3975
3998
4069
−19
0
−35
W
O


ATOM
1449
O
HOH
W
127
−12.675
−5.116
−14.495
1.00
16.99

W
O


ANISOU
1449
O
HOH
W
127
2019
2183
2255
−6
−34
41
W
O


ATOM
1450
O
HOH
W
128
−12.525
2.687
−8.526
1.00
31.55

W
O


ANISOU
1450
O
HOH
W
128
3907
3899
4181
−51
27
−27
W
O


ATOM
1451
O
HOH
W
129
−13.185
−9.266
−3.758
1.00
32.19

W
O


ANISOU
1451
O
HOH
W
129
4089
4077
4065
−21
−31
−46
W
O


ATOM
1452
O
HOH
W
130
−20.837
−20.749
−2.546
1.00
20.30

W
O


ANISOU
1452
O
HOH
W
130
2548
2495
2669
−20
−63
46
W
O


ATOM
1453
O
HOH
W
131
−42.049
−6.173
−0.979
1.00
34.99

W
O


ANISOU
1453
O
HOH
W
131
4453
4452
4391
79
−14
−10
W
O


ATOM
1454
O
HOH
W
132
−30.910
10.260
5.460
1.00
25.98

W
O


ANISOU
1454
O
HOH
W
132
3353
3229
3291
20
45
8
W
O


ATOM
1455
O
HOH
W
133
−16.355
−12.508
−12.425
1.00
34.47

W
O


ANISOU
1455
O
HOH
W
133
4344
4443
4310
4
19
−31
W
O


ATOM
1456
O
HOH
W
134
−33.787
−23.690
−0.535
1.00
20.72

W
O


ANISOU
1456
O
HOH
W
134
2709
2607
2556
−41
94
58
W
O


ATOM
1457
O
HOH
W
135
−17.202
14.602
1.995
1.00
32.29

W
O


ANISOU
1457
O
HOH
W
135
3975
4193
4102
−35
6
27
W
O


ATOM
1458
O
HOH
W
136
−36.490
−3.479
4.425
1.00
25.34

W
O


ANISOU
1458
O
HOH
W
136
3265
3153
3209
3
54
7
W
O


ATOM
1459
O
HOH
W
137
−13.537
−3.668
−13.089
1.00
20.02

W
O


ANISOU
1459
O
HOH
W
137
2513
2592
2501
−52
−17
93
W
O


ATOM
1460
O
HOH
W
138
−10.714
−2.940
−2.231
1.00
25.50

W
O


ANISOU
1460
O
HOH
W
138
3152
3252
3283
6
24
12
W
O


ATOM
1461
O
HOH
W
139
−15.629
−6.832
1.930
1.00
40.10

W
O


ANISOU
1461
O
HOH
W
139
5034
5119
5085
1
6
15
W
O


ATOM
1463
O
HOH
W
140
−12.895
9.296
−19.096
1.00
25.38

W
O


ANISOU
1463
O
HOH
W
140
3138
3277
3228
−41
62
81
W
O


ATOM
1464
O
HOH
W
141
−38.445
14.541
9.688
1.00
35.55

W
O


ANISOU
1464
O
HOH
W
141
4504
4437
4567
−8
13
−16
W
O


ATOM
1465
O
HOH
W
142
−12.063
−10.830
−6.318
1.00
43.73

W
O


ANISOU
1465
O
HOH
W
142
5511
5527
5577
22
1
0
W
O


ATOM
1466
O
HOH
W
143
−37.663
−3.372
−6.214
1.00
31.56

W
O


ANISOU
1466
O
HOH
W
143
4017
3925
4049
−31
−30
12
W
O


ATOM
1467
O
HOH
W
144
−32.757
12.064
1.336
1.00
18.33

W
O


ANISOU
1467
O
HOH
W
144
2347
2338
2278
−7
−14
−14
W
O


ATOM
1468
O
HOH
W
145
−6.861
1.812
−7.652
1.00
39.81

W
O


ANISOU
1468
O
HOH
W
145
5041
5026
5060
−11
4
9
W
O


ATOM
1469
O
HOH
W
146
−31.942
−14.561
−18.798
1.00
17.94

W
O


ANISOU
1469
O
HOH
W
146
2197
2389
2232
0
−43
−3
W
O


ATOM
1470
O
HOH
W
147
−9.446
−2.670
−4.750
1.00
36.51

W
O


ANISOU
1470
O
HOH
W
147
4572
4622
4678
32
7
13
W
O


ATOM
1471
O
HOH
W
148
−15.375
1.722
−17.052
1.00
35.42

W
O


ANISOU
1471
O
HOH
W
148
4536
4467
4455
9
−2
20
W
O


ATOM
1472
O
HOH
W
149
−38.919
−7.779
−17.024
1.00
28.36

W
O


ANISOU
1472
O
HOH
W
149
3582
3617
3578
−27
−50
36
W
O


ATOM
1473
O
HOH
W
150
−15.030
−16.764
−4.420
1.00
33.51

W
O


ANISOU
1473
O
HOH
W
150
4240
4207
4286
32
−26
29
W
O


ATOM
1474
O
HOH
W
151
−39.973
−4.759
−4.928
1.00
35.85

W
O


ANISOU
1474
O
HOH
W
151
4541
4532
4549
3
−24
23
W
O


ATOM
1475
O
HOH
W
152
−8.412
6.752
0.251
1.00
32.26

W
O


ANISOU
1475
O
HOH
W
152
4073
4073
4110
37
−75
19
W
O


ATOM
1476
O
HOH
W
153
−13.023
−8.221
−7.782
1.00
32.89

W
O


ANISOU
1476
O
HOH
W
153
4180
4143
4174
−3
60
−2
W
O


ATOM
1477
O
HOH
W
154
−13.208
11.082
−21.898
1.00
40.04

W
O


ANISOU
1477
O
HOH
W
154
4970
5090
5152
−37
12
−26
W
O


ATOM
1478
O
HOH
W
155
−19.149
4.119
−19.317
1.00
19.86

W
O


ANISOU
1478
O
HOH
W
155
2509
2559
2477
194
−63
18
W
O


ATOM
1479
O
HOH
W
156
−20.492
18.216
−1.534
1.00
32.66

W
O


ANISOU
1479
O
HOH
W
156
4148
4088
4175
22
24
5
W
O


ATOM
1480
O
HOH
W
157
−35.300
−5.432
−16.094
1.00
32.36

W
O


ANISOU
1480
O
HOH
W
157
4062
4127
4105
53
−28
13
W
O


ATOM
1481
O
HOH
W
158
−13.547
13.164
−15.727
1.00
29.38

W
O


ANISOU
1481
O
HOH
W
158
3685
3704
3775
10
−23
10
W
O


ATOM
1482
O
HOH
W
159
−22.959
17.330
−2.703
1.00
38.75

W
O


ANISOU
1482
O
HOH
W
159
4869
4973
4880
32
−16
47
W
O


ATOM
1483
O
HOH
W
160
−19.480
15.893
−8.204
1.00
40.98

W
O


ANISOU
1483
O
HOH
W
160
5240
5157
5173
6
−41
−3
W
O


ATOM
1484
O
HOH
W
161
−12.130
−6.363
−12.581
1.00
30.57

W
O


ANISOU
1484
O
HOH
W
161
3848
3881
3886
51
15
−22
W
O


ATOM
1485
O
HOH
W
162
−21.519
15.984
−5.415
1.00
34.15

W
O


ANISOU
1485
O
HOH
W
162
4372
4281
4324
1
22
−3
W
O


ATOM
1486
O
HOH
W
163
−10.642
−3.655
−7.326
1.00
30.22

W
O


ANISOU
1486
O
HOH
W
163
3734
3886
3861
−18
−35
−19
W
O


ATOM
1487
O
HOH
W
164
−16.003
15.845
−11.987
1.00
33.56

W
O


ANISOU
1487
O
HOH
W
164
4323
4156
4273
−51
−3
46
W
O


ATOM
1488
O
HOH
W
165
−41.661
−5.375
−8.117
1.00
48.81

W
O


ANISOU
1488
O
HOH
W
165
6200
6191
6153
−2
−7
7
W
O


ATOM
1489
O
HOH
W
166
−11.258
10.250
−4.887
1.00
29.05

W
O


ANISOU
1489
O
HOH
W
166
3706
3696
3636
−33
−60
10
W
O


ATOM
1490
O
HOH
W
167
−9.835
12.511
−10.978
1.00
34.26

W
O


ANISOU
1490
O
HOH
W
167
4285
4324
4407
−94
−5
−49
W
O


ATOM
1491
O
HOH
W
168
−21.373
−17.739
−15.785
1.00
30.47

W
O


ANISOU
1491
O
HOH
W
168
3866
3824
3888
11
37
4
W
O


ATOM
1492
O
HOH
W
169
−13.692
3.837
−10.947
1.00
41.82

W
O


ANISOU
1492
O
HOH
W
169
5256
5276
5356
−5
31
10
W
O


ATOM
1493
O
HOH
W
170
−26.343
−14.724
10.918
1.00
22.06

W
O


ANISOU
1493
O
HOH
W
170
2786
2785
2810
13
−40
−106
W
O


ATOM
1494
O
HOH
W
171
−38.666
−0.338
−0.808
1.00
29.54

W
O


ANISOU
1494
O
HOH
W
171
3749
3739
3734
109
51
−60
W
O


ATOM
1495
O
HOH
W
172
−46.649
−10.554
−10.990
1.00
29.25

W
O


ANISOU
1495
O
HOH
W
172
3652
3731
3729
20
24
−57
W
O


ATOM
1496
O
HOH
W
173
−35.288
9.861
−5.432
1.00
25.29

W
O


ANISOU
1496
O
HOH
W
173
3273
3302
3033
23
38
−38
W
O


ATOM
1497
O
HOH
W
174
−22.002
−14.472
6.571
1.00
25.70

W
O


ANISOU
1497
O
HOH
W
174
3178
3435
3150
33
−16
7
W
O


ATOM
1498
O
HOH
W
175
−39.622
−24.724
−14.785
1.00
26.21

W
O


ANISOU
1498
O
HOH
W
175
3239
3549
3169
−40
−90
−39
W
O


ATOM
1499
O
HOH
W
176
−33.595
−20.281
1.934
1.00
26.47

W
O


ANISOU
1499
O
HOH
W
176
3307
3394
3357
30
−11
−40
W
O


ATOM
1500
O
HOH
W
177
−20.591
−12.285
10.684
1.00
37.24

W
O


ANISOU
1500
O
HOH
W
177
4791
4685
4673
23
−1
32
W
O


ATOM
1501
O
HOH
W
178
−15.209
17.130
−7.820
1.00
37.87

W
O


ANISOU
1501
O
HOH
W
178
4819
4745
4825
−35
−18
23
W
O


ATOM
1502
O
HOH
W
179
−24.544
−12.959
9.249
1.00
17.12

W
O


ANISOU
1502
O
HOH
W
179
2550
2092
1862
3
48
50
W
O


ATOM
1503
O
HOH
W
180
−13.182
3.720
−19.624
1.00
27.68

W
O


ANISOU
1503
O
HOH
W
180
3398
3539
3579
−23
37
33
W
O


ATOM
1504
O
HOH
W
181
−32.038
5.011
−16.449
1.00
22.74

W
O


ANISOU
1504
O
HOH
W
181
2906
2861
2875
−61
−52
81
W
O


ATOM
1505
O
HOH
W
182
−16.553
−2.372
5.336
1.00
32.54

W
O


ANISOU
1505
O
HOH
W
182
4054
4144
4164
−36
22
32
W
O


ATOM
1506
O
HOH
W
183
−30.110
2.507
−17.061
1.00
34.18

W
O


ANISOU
1506
O
HOH
W
183
4413
4381
4193
−79
−5
17
W
O


ATOM
1507
O
HOH
W
184
−32.092
8.417
7.086
1.00
29.00

W
O


ANISOU
1507
O
HOH
W
184
3689
3625
3703
12
−36
65
W
O


ATOM
1508
O
HOH
W
185
−9.701
5.909
−13.328
1.00
34.86

W
O


ANISOU
1508
O
HOH
W
185
4426
4388
4431
−12
−38
0
W
O


ATOM
1509
O
HOH
W
186
−38.067
−26.038
−8.364
1.00
25.03

W
O


ANISOU
1509
O
HOH
W
186
3272
2997
3243
−73
−24
30
W
O


ATOM
1510
O
HOH
W
187
−36.886
14.089
11.945
1.00
37.28

W
O


ANISOU
1510
O
HOH
W
187
4701
4713
4750
5
−8
37
W
O


ATOM
1511
O
HOH
W
188
−12.458
5.260
−9.288
1.00
40.97

W
O


ANISOU
1511
O
HOH
W
188
5135
5172
5259
36
−25
−12
W
O


ATOM
1512
O
HOH
W
189
−16.715
−18.732
−8.679
1.00
29.83

W
O


ANISOU
1512
O
HOH
W
189
3648
3914
3773
−2
25
−51
W
O


ATOM
1513
O
HOH
W
190
−16.253
12.848
−19.583
1.00
28.21

W
O


ANISOU
1513
O
HOH
W
190
3690
3545
3483
−45
27
46
W
O


ATOM
1514
O
HOH
W
191
−12.648
−13.510
−6.689
1.00
40.82

W
O


ANISOU
1514
O
HOH
W
191
5107
5196
5205
−2
0
7
W
O


ATOM
1515
O
HOH
W
192
−33.188
−19.092
4.270
1.00
12.92

W
O


ANISOU
1515
O
HOH
W
192
1694
1561
1655
121
70
47
W
O


ATOM
1516
O
HOH
W
193
−32.033
−27.045
−3.388
1.00
16.55

W
O


ANISOU
1516
O
HOH
W
193
2364
1872
2053
89
127
15
W
O


ATOM
1517
O
HOH
W
194
−33.034
−27.618
−5.837
1.00
28.01

W
O


ANISOU
1517
O
HOH
W
194
3477
3704
3462
18
−37
−71
W
O


ATOM
1518
O
HOH
W
195
−29.766
−12.924
−19.046
1.00
19.43

W
O


ANISOU
1518
O
HOH
W
195
2679
2256
2448
61
−9
−37
W
O


ATOM
1519
O
HOH
W
196
−36.209
−14.072
−18.601
1.00
18.48

W
O


ANISOU
1519
O
HOH
W
196
2204
2554
2264
−15
−17
65
W
O


ATOM
1520
O
HOH
W
197
−19.632
−14.809
−18.078
1.00
31.61

W
O


ANISOU
1520
O
HOH
W
197
3966
4003
4040
−20
53
33
W
O


ATOM
1521
O
HOH
W
198
−35.965
−19.560
1.308
1.00
19.15

W
O


ANISOU
1521
O
HOH
W
198
2387
2481
2407
−40
102
24
W
O


ATOM
1522
O
HOH
W
199
−19.023
−16.574
5.048
1.00
34.92

W
O


ANISOU
1522
O
HOH
W
199
4450
4403
4414
8
−48
19
W
O


ATOM
1523
O
HOH
W
200
−32.264
1.311
−17.693
1.00
36.00

W
O


ANISOU
1523
O
HOH
W
200
4581
4589
4507
−42
24
13
W
O


ATOM
1524
O
HOH
W
201
−10.883
0.717
−9.050
1.00
34.47

W
O


ANISOU
1524
O
HOH
W
201
4350
4375
4371
18
34
49
W
O


ATOM
1525
O
HOH
W
202
−13.114
14.491
−13.396
1.00
37.67

W
O


ANISOU
1525
O
HOH
W
202
4739
4727
4846
−7
10
−10
W
O


ATOM
1526
O
HOH
W
203
−11.401
3.972
−12.449
1.00
26.95

W
O


ANISOU
1526
O
HOH
W
203
3391
3424
3424
2
48
72
W
O


ATOM
1527
O
HOH
W
204
−12.921
15.175
−17.404
1.00
41.19

W
O


ANISOU
1527
O
HOH
W
204
5215
5194
5240
−11
−14
10
W
O


ATOM
1528
O
HOH
W
205
−16.185
−18.758
−11.756
1.00
31.45

W
O


ANISOU
1528
O
HOH
W
205
3942
3975
4032
10
−48
15
W
O


ATOM
1529
O
HOH
W
206
−28.178
−14.281
−20.942
1.00
23.21

W
O


ANISOU
1529
O
HOH
W
206
2840
3032
2946
−7
−46
127
W
O


ATOM
1530
O
HOH
W
207
−41.608
−26.172
−15.525
1.00
20.83

W
O


ANISOU
1530
O
HOH
W
207
2559
2694
2661
88
30
4
W
O


ATOM
1531
O
HOH
W
208
−31.007
−28.137
−7.582
1.00
33.07

W
O


ANISOU
1531
O
HOH
W
208
4150
4277
4139
10
−3
0
W
O


ATOM
1532
O
HOH
W
209
−26.717
−16.429
−21.309
1.00
40.46

W
O


ANISOU
1532
O
HOH
W
209
5097
5127
5149
9
−6
−39
W
O


ATOM
1533
O
HOH
W
210
−14.590
−6.202
−14.654
1.00
24.63

W
O


ANISOU
1533
O
HOH
W
210
3087
3169
3102
−48
−23
−51
W
O


ATOM
1534
O
HOH
W
211
−18.534
14.288
−20.243
1.00
33.59

W
O


ANISOU
1534
O
HOH
W
211
4241
4262
4261
44
−18
40
W
O


ATOM
1535
O
HOH
W
212
−34.991
−9.772
5.173
1.00
24.50

W
O


ANISOU
1535
O
HOH
W
212
3186
3142
2980
−98
31
43
W
O


ATOM
1536
O
HOH
W
213
−29.145
−17.690
−20.575
1.00
36.77

W
O


ANISOU
1536
O
HOH
W
213
4717
4669
4584
−12
10
−37
W
O


ATOM
1537
O
HOH
W
214
−21.647
−14.722
−16.446
1.00
14.03

W
O


ANISOU
1537
O
HOH
W
214
1889
1799
1642
128
85
−42
W
O


ATOM
1538
O
HOH
W
215
−37.973
−12.129
0.160
1.00
11.11

W
O


ANISOU
1538
O
HOH
W
215
1540
1427
1253
−1
−9
−18
W
O


ATOM
1539
O
HOH
W
216
−34.433
−11.523
−21.527
1.00
18.28

W
O


ANISOU
1539
O
HOH
W
216
2122
2311
2514
−79
−15
−79
W
O


ATOM
1540
O
HOH
W
217
−45.244
−11.118
−13.348
1.00
24.99

W
O


ANISOU
1540
O
HOH
W
217
3218
2972
3306
5
107
−62
W
O


ATOM
1541
O
HOH
W
218
−11.731
6.833
−19.982
1.00
30.42

W
O


ANISOU
1541
O
HOH
W
218
3846
3957
3755
56
−19
21
W
O


ATOM
1542
O
HOH
W
219
−40.740
−7.456
−19.159
1.00
34.03

W
O


ANISOU
1542
O
HOH
W
219
4380
4300
4250
−3
−41
6
W
O


ATOM
1543
O
HOH
W
220
−15.766
−2.407
−13.856
1.00
21.48

W
O


ANISOU
1543
O
HOH
W
220
2767
2693
2702
71
111
57
W
O


ATOM
1544
O
HOH
W
221
−40.009
11.889
3.227
1.00
34.24

W
O


ANISOU
1544
O
HOH
W
221
4371
4376
4261
−25
43
12
W
O


ATOM
1545
O
HOH
W
222
−11.482
12.602
−8.555
1.00
32.40

W
O


ANISOU
1545
O
HOH
W
222
3999
4135
4178
−35
−12
−19
W
O


ATOM
1546
O
HOH
W
223
−39.301
−8.137
−13.677
1.00
28.89

W
O


ANISOU
1546
O
HOH
W
223
3672
3662
3641
36
74
−21
W
O


ATOM
1547
O
HOH
W
224
−9.153
7.193
−20.136
1.00
38.80

W
O


ANISOU
1547
O
HOH
W
224
4871
4925
4946
−9
7
4
W
O


ATOM
1548
O
HOH
W
225
−10.660
3.993
−21.569
1.00
31.87

W
O


ANISOU
1548
O
HOH
W
225
4006
4034
4069
39
−16
41
W
O


ATOM
1549
O
HOH
W
226
−14.607
−3.251
2.355
1.00
31.52

W
O


ANISOU
1549
O
HOH
W
226
4008
3990
3978
−25
−4
−29
W
O


ATOM
1550
O
HOH
W
227
−32.099
−9.968
8.246
1.00
21.51

W
O


ANISOU
1550
O
HOH
W
227
2911
2703
2558
−135
89
41
W
O


ATOM
1551
O
HOH
W
228
−18.947
−18.450
−15.806
1.00
35.58

W
O


ANISOU
1551
O
HOH
W
228
4477
4498
4544
11
23
−19
W
O


ATOM
1552
O
HOH
W
229
−14.617
−4.337
5.879
1.00
32.84

W
O


ANISOU
1552
O
HOH
W
229
4091
4198
4188
−3
24
−54
W
O


ATOM
1553
O
HOH
W
230
−18.632
−3.056
9.142
1.00
18.31

W
O


ANISOU
1553
O
HOH
W
230
2308
2415
2233
−181
−110
211
W
O


ATOM
1554
O
HOH
W
231
−19.875
0.003
8.973
0.50
29.26

W
O


ANISOU
1554
O
HOH
W
231
3656
3717
3745
0
0
−21
W
O


ATOM
1556
O
HOH
W
232
−18.267
−0.042
−16.681
1.00
31.38

W
O


ANISOU
1556
O
HOH
W
232
4059
3901
3962
46
−15
−13
W
O


ATOM
1557
O
HOH
W
233
−17.524
−0.238
7.354
1.00
31.55

W
O


ANISOU
1557
O
HOH
W
233
4057
4035
3897
−24
8
35
W
O


ATOM
1558
O
HOH
W
234
−31.339
12.412
8.912
1.00
36.68

W
O


ANISOU
1558
O
HOH
W
234
4620
4657
4660
−1
37
7
W
O


ATOM
1559
O
HOH
W
235
−39.183
−1.353
1.588
1.00
42.01

W
O


ANISOU
1559
O
HOH
W
235
5236
5367
5358
32
15
−2
W
O


ATOM
1560
O
HOH
W
236
−19.646
−23.489
−7.613
1.00
34.45

W
O


ANISOU
1560
O
HOH
W
236
4371
4389
4328
79
−10
5
W
O


ATOM
1561
O
HOH
W
237
−19.777
17.123
−13.589
1.00
43.45

W
O


ANISOU
1561
O
HOH
W
237
5492
5467
5551
9
−1
−6
W
O


ATOM
1562
O
HOH
W
238
−9.204
12.782
−15.255
1.00
46.73

W
O


ANISOU
1562
O
HOH
W
238
5930
5931
5896
−9
−6
−1
W
O


END









The upstream region (Ser202 to Asn208) of vIRF4, which binds to the HAUSP TRAF domain in a novel extended conformation, participates in extensive interactions with the other side of the β-sheet of the TRAF domain, especially the 136 strand (FIGS. 1b and d). The TRAF Arg153 appears to play a decisive and unique role in the interaction with the upstream region of the vIRF4 peptide: the TRAF Agr153 side chain amino group engages in hydrogen bonding with the vIRF4 Ile205 backbone oxygen and also participates in water molecule-mediated backbone-backbone interactions with the vIRF4 Pro206 (FIG. 1c). In addition, the β-carbon of TRAF Arg153 participates in hydrophobic interactions with the vIRF4 Val207 α-carbon and side chain, and the backbone oxygen of TRAF Arg153 directly interacts with the backbone nitrogen of peptide Asn208 (FIG. 1c). The vIRF4 Asn208 side chain participates in additional interactions with the TRAF Ser155 backbone amide and Trp165 indole nitrogen (FIG. 1c). On the other hand, the Glu209 and Gly210 residues located in the middle of the vIRF4 peptide grasp the TRAF β6 and β7 strands (FIGS. 1b and d): the vIRF4 Glu209 backbone oxygen interacts with the Arg152 side chain amino group on the TRAF β6 strand (FIG. 1c), and the vIRF4 Gly210 backbone oxygen forms a water molecule-mediated hydrogen bond with the Ser168 side chain hydroxyl group and backbone nitrogen on the TRAF β7 strand. Finally, the vIRF4 Ser202 backbone amide participates in water molecule-mediated interactions with the TRAF Ser151 backbone nitrogen and Ser149 backbone oxygen, and the vIRF4 Trp204 and Ile205 backbone nitrogens participate in water molecule-mediated interactions with the TRAF Ser151 backbone oxygen. These results indicate that the upstream region of the vIRF4 peptide may be vital for stabilizing its interaction with the HAUSP TRAF domain. In fact, ITC analysis demonstrated that the deletion of this upstream region (vIRF4209-216) resulted in a 25-fold decrease in TRAF binding affinity compared with the vIRF4202-216 peptide (Table 1a).


ITC binding affinity study indicates that the vIRF4202-216 peptide exhibits 28-40-fold tighter binding (Kd=0.39 μM) to the TRAF domain compared to the peptides derived from MDM2 and p53 (Table 1a). To evaluate whether vIRF4 competes with cellular substrates for binding to the HAUSP TRAF domain, each peptide (MDM2137-152, p53350-364, and p53355-369) was first titrated into the HAUSP TRAF domain, resulting in association constants (Ka) of 9.1×104 M−1, 6.5×104 M−1, and 6.7×104 M−1, respectively. When vIRF4202-216 was subsequently titrated against HAUSP cellular substrates as a competitor, the association constant (Kobs) of each titration was markedly increased to 10.9×106 M−1, 44.2×106 M−1, and 35.8×106 M−1, respectively, indicating a considerably tighter interaction between HAUSP TRAF domain and vIRF4202-216 compared to its cellular substrates, MDM2 and p53 (Table 1b and FIG. 9). To further gauge the competitive nature of vIRF4 binding, the TRAF domain was incubated with an equal molar amount of vIRF4153-216 in the presence of a 5-fold molar excess of MDM2137-152, and the mixture was then analyzed by size exclusion chromatography. The vIRF4202-216 peptide formed a stable complex with the TRAF even in the presence of a 5-fold molar excess of MDM2 peptide (FIG. 10). This competitive nature of vIRF4202-216 peptide binding is likely due to its upstream region, since the upstream-region-deleted vIRF4209-216 peptide exhibited comparable binding affinity with cellular substrates (Table 1a).


ITC analysis also showed that while vIRF4153-216 exhibited comparable TRAF binding affinity (Kd=0.54 μM) to that of vIRF4202-216, the C-terminally extended vIRF4153-256 exhibited a 7-fold higher affinity (Kd=0.076 μM) for the HAUSP TRAF domain. Deletion of residues 202-216 of vIRF4 (vIRF4153-256/Δ202-216, Kd=3.45 μM) led to a significant reduction of TRAF binding affinity, whereas an additional deletion of residues 237-256 (vIRF4153-256/Δ202-216/Δ237-256, Kd=4.03 μM) did not further affect TRAF binding affinity (Table 1a). These indicate that besides the vIRF4202-216 residues, the vIRF4217-236 sequence also plays an important role in TRAF binding. To further investigate this, this study analyzed NMR chemical shift perturbations of vIRF4153-256 in the presence of HAUSP62-205 (TRAF domain) or HAUSP62-560 (TRAF-Catalytic-domain). FIG. 2a shows the superposition of 2D 1H-15N correlation spectra of vIRF4153-256 in the absence and presence of each HAUSP fragment. Signal changes (denoted by blue triangles) of vIRF4153-256 were observed upon the binding of HAUSP62-205 (red contours) compared to free vIRF4153-256 (black contours), and additional changes (denoted by orange triangles) were detected upon the binding of HAUSP62-560 (blue contours).


2D 1H-15N correlation spectra and mutational analysis revealed that the ε-NH proton of Trp204 changed dramatically upon binding of TRAF-containing HAUSP62-205 (FIG. 2c, light gray contours and FIG. 11), consistent with crystal structure data showing that Trp204 is located in the TRAF binding region of vIRF4 (aa202-216). On the other hand, the ε-NH signal of Trp232 was evidently perturbed by binding of the TRAF-Catalytic-domain-containing HAUSP62-560, but not by binding of the TRAF-containing HAUSP62-205 (FIG. 2c, dark gray contours), suggesting that Trp232 is involved in vIRF4 interaction with the HAUSP catalytic domain. Selective isotope (15N) labeling of Trp232 was further carried out to identify backbone amide signals derived from residues located near the Trp232 by comparing vIRF4 wild-type (wt) and W232A mutant (FIG. 2b, denoted by light gray arrows and FIG. 12). This also indicates that the residues near the Trp232 are involved in binding to the HAUSP catalytic domain (FIG. 2a). Furthermore, the two short sequences of vIRF4, vIRF4202-216 and vIRF4220-236, were individually capable of interacting with full length HAUSP in vivo as efficiently as vIRF4202-256, whereas vIRF4237-256 showed little or no HAUSP binding. The experiment used cells that were single transfected with the indicated vIRF4 constructs. The cells were harvested, followed by GST-pulldown and IB with an anti-HAUSP antibody. 1% of the WCL was used as the input. Based on these results, this example postulated a bilateral mode of interaction between vIRF4 and HAUSP (FIG. 2d): vIRF4202-216 interacts with the HAUSP TRAF domain (primarily β6 and β7) with an unusually high binding affinity, while vIRF4217-236 contacts the catalytic domain of HAUSP.


To investigate the bilateral mode of interaction between vIRF4 and HAUSP and the biological relevance of this interaction, this study first tested the effect of vIRF4 on HAUSP enzymatic activity. 293T cells were transfected with Flag-HAUSP together with V5-vIRF4 (wt) or vIRF4Δ202-256 mutant incapable of binding HAUSP. Here, 293T cells were co-transfected with HAUSP and the wt or mutant forms of vIRF4, followed by IP with anti-Flag (M2) agarose beads and a Flag (M2) peptide was used to elute purified complexes. Purified HAUSP complexes were incubated with K48-linked ubiquitin chains at 37° C. for the indicated times and IB with an anti-ubiquitin antibody. 1% of the WCL was used as the input. Further, in vitro DUB assay of immuno-purified Flag-HAUSP complexes with K48- or K63-linked 3-7 ubiquitin chains showed that vIRF4 effectively suppressed HAUSP DUB activity in a binding dependent manner. To further test the effects of vIRF4 short sequences on HAUSP enzymatic activity, the vIRF4 peptides corresponding to aa202-216 (called vif1 peptide) and aa220-236 (called vif2 peptide), were mixed with 0.25 μM purified HAUSP for 5 min and then subjected to an in vitro DUB assay with K48- or K63-linked 3-7 polyubiquitin chains. An “Amp” peptide derived from the amphipathic helix sequence of herpesvirus saimiri Tip protein was included as a negative control. This assay showed that vif2 peptide markedly suppressed HAUSP DUB activity, whereas vif1 peptide's inhibition was minimal. In this experiment, purified HAUSP (0.25 μM) was pre-mixed with the vif1, vif2, or Amp (nonspecific peptide) peptide for 5 min and then subjected to an in vitro deubiquitination assay with K48-linked 3-7 polyubiquitin chains and IB with an anti-ubiquitin antibody. Also, purified MDM2 (also, E3 ligase) was incubated with E1, E2 (Ubc H5b), and ubiquitin (in vitro MDM2 ubiquitination assay). Pre-mixed HAUSP and peptide were incubated with ubiquitinated MDM2 and IB with an anti-MDM2 antibody. It was observed that vif1/2 peptides block HAUSP activity via different manner in vitro.


By contrast, neither vif1 peptide nor vif2 peptide was capable of inhibiting USP8 DUB activity, demonstrating the specificity of vif1- and vif2-mediated inhibition of HAUSP activity. Purified USP8 (0.25 μM) was pre-mixed with the vif1, vif2, or Amp (non-specific peptide) peptide for 5 min and then subjected to an in vitro deubiquitination assay with K48- or K63-linked 3-7 polyubiquitin chain and IB with an anti-ubiquitin antibody. It was shown that vif1/2 peptides can not inhibit the USP8 de-ubiquitinase enzymatic activity in vitro. Comparative kinetic analysis showed that while vif1 peptide weakly attenuated HAUSP DUB activity, vif2 peptide completely suppressed HAUSP DUB activity (FIG. 2e). These results strongly suggest that vif2 peptide corresponding to the vIRF4220-236 may directly contact the catalytic domain of HAUSP and hence inhibit its DUB activity.


This study then investigated whether vif1 and vif2 peptides can inhibit HAUSP DUB activity against ubiquitinated substrates through substrate binding competition. To this end, this study first generated ubiquitinated MDM2 using purified E1 (UBE1), E2 (UbCH5b), and E3 (MDM2) proteins, and then performed an in vitro DUB assay employing purified HAUSP alone or HAUSP preincubated with increasing amounts of each peptide (FIG. 2f). vif2 peptide efficiently blocked HAUSP enzymatic activity against ubiquitinated MDM2 and polyubiquitin chains (FIG. 2e and f). In striking contrast to its ineffectiveness against K48- or K63-linked polyubiquitin chains, vif1 peptide efficiently blocked HAUSP DUB activity when ubiquitinated MDM2 was used as a substrate (FIG. 2f). To further delineate the vIRF4 peptides' action in vivo, the vif1 and vif2 peptides were fused with the HIV-1 TAT protein transduction domain for intracellular delivery (Ref 11, 12) and tested for their potential effects on in vivo HAUSP DUB activity. At 24 h post-transfection with Flag-HAUSP, 293T cells were incubated with 100 μM of each TAT-conjugated peptide for an additional 12 h, followed by immunopurification of Flag-HAUSP, which was then used for an in vitro DUB assay. Consistent with the previous in vitro DUB assay, TAT-vif2 peptide showed the strongest inhibitory activity toward ex vivo HAUSP enzymatic activity, but TAT-vif1 peptide showed no effect under the same conditions (FIG. 2g). These suggest that vif1 interferes with HAUSP substrate binding, while vif2 inhibits HAUSP DUB activity.


Since HAUSP plays a pivotal role in the regulation of the p53 pathway (Ref. 2, 3), this study investigated the potential effect of each peptide on KSHV-induced primary effusion lymphoma (PEL) tumor cell lines harboring p53 (wt) (Ref. 13, 14). Cell lines with mutated, non-functional p53 were included as controls. This showed that time-dependent antiproliferative and cytotoxic activity differed depending on p53 status. Incubation of PELs with various concentrations (25, 50, or 100 μM) of the TAT-vif2 peptide not only robustly suppressed cell proliferation, but also induced profound cell death, whereas TAT-vif1 peptide showed much weaker activity than TAT-vif2 peptide (FIG. 3a). In contrast, treatment with HIV-1 TAT showed no effect on cell proliferation and cell death (FIG. 3a). Three different human cancer cell lines, SJSA-1 (MDM2 amplification), MCF7 (MDMX amplification), and LnCap (HAUSP overexpression), were treated with 100 μM of TAT, TAT-vif1, or TATvif2. Cell viability was measured for the indicated times after treatment of each peptide using a WST-1 assay. Relative cell growth was determined by calculating the OD450nm at each time point relative to t=0. Results are expressed as the mean±SD of triplicate cultures and are representative of at least 3 independent experiments. Three prostate cancer cell lines harboring different p53 status, LnCap (p53 wt/wt), DU145 (p53 m/m), and PC3 (p53−/−), were used for WST-1 assays. It was observed that vif1/2 peptides induced significant growth inhibition in HAUSP overexpression cell lines and in a p53 (wt) dependent manner.


Significantly, BJAB Burkitt lymphoma tumor cells carrying mutant p53 (Ref. 15) continued to proliferate in the presence of TAT-vif1 and only minor growth reduction and cell death in the presence of TAT-vif2 peptide (FIG. 3a). When prostate cancer cells, LnCap (p53wt/wt), PC3 (p53−/−), and DU145 (p53m/m) (Ref. 16) carrying different functional p53 genotypes were subjected to peptide treatment, the p53-dependence of TAT-vif1 and TAT-vif2 peptides was also evident: LnCap cells, but not PC3 and DU145 cells, were highly susceptible to the TAT-vif1- and TAT-vif2-mediated cell growth inhibition. Additionally, the high level of HAUSP expression in LnCap cells likely contributed to the strong susceptibility to TAT-vif1- and TAT-vif2-mediated cell growth inhibition since SJSA-1 and MCF7 tumor cells carrying high levels of MDM2 and MDMX expression, respectively, did not show as robust a susceptibility to vif1- and vif2-mediated cell growth inhibition as LnCap cells. These data collectively demonstrate that both vif1 and vif2 peptides have vigorous cell killing activities against p53 (wt)-containing tumor cells.


One of the main cellular consequences of p53 activation in proliferating cells is cell cycle arrest through transcriptional upregulation of the cyclin-dependent kinase inhibitor p21, which causes G1-S or G2-M cell cycle arrest (Ref 17). Indeed, treatment of PEL cells with the TAT-vif1 or TAT-vif2 peptide markedly increased the G1 and G2/M phase fraction and nearly completely depleted S-phase cells (FIG. 3b). Asynchronously growing PEL cells (BC-1, VG1, and BC3) and mutant p53 cells (BJAB) were treated with 100 μM of either vif1 or vif2 peptide for the indicated time periods. 10 μM Nutlin-3a was used as a positive control. Cells were pulse-labeled with BrdU and analyzed for DNA content by flow cytometry. BrdU incorporation during the S phase is indicated as percentage of stained cells. The sub-G1 populations are denoted by arrow. Data are representative of 3 independent experiments. The results show that vif1/2 peptides induce cell cycle arrest in p53 (wt) harboring cells.


Interestingly, this study also observed significant sub-G1 accumulation, reflecting cell death, in TAT-vif2 treated cells compared to TAT or TAT-vif1 treated cells (FIG. 3b) Annexin V and propidium iodide (PI) staining assay showed that TAT-vif1 or TAT-vif2 peptide treatment effectively induced apoptotic cell death in PEL cells carrying p53 (wt) compared with TAT treatment where TAT-vif2 peptide more rapidly and dramatically induced apoptotic cell death compared with TAT-vif1 (FIG. 3c). Apoptosis in BC-1, VG1, BC3, and BJAB cells was assessed at the indicated time after treatment with 100 μM each peptide or 10 μM Nutlin-3a by Annexin V-FITC/PI binding and subjected to flow cytometry analysis; lower right quadrants represent early apoptotic cells (Annexin V-positive, PI-negative) demonstrating cytoplasmic membrane intergrity; upper right quadrants represent non-viable, late apoptotic cells (Annexin V- and PI-positive). Numbers indicate the percentage of cells in each phase. Shown is one representative experiment of three. It was shown that vif1/2 peptides cause cell death by apoptosis.


Treatment of Nutlin-3a, which blocks the interaction between MDM2 and p53 and thus induces extensive apoptosis, also led to considerable cell death, comparable to either peptide treatment. As the inhibition of HAUSP enzymatic activity results in the stabilization and activation of p53, this study examined the effect of each peptide on the intracellular levels of p53 and its transcriptional targets p21 and MDM2. Incubation of exponentially growing PELs cells with either peptide for 6 h led to increased levels of p53, p21, and MDM2 (FIG. 3d). Cells with wt and mutant p53 were incubated for the indicated times in the presence of each peptide. WCL were subjected to SDS-PAGE followed by Western blotting and analyzed for p53, MDM2, p21, and HAUSP expression. Tubulin immunoblot is shown as a loading control. vif1/2 peptides, as the data shows, activated p53 and its target genes.


In contrast, BJAB cells exposed to the same conditions showed no detectable changes in p53, MDM2, and p21. Neither vif1 nor vif2 peptide treatment altered HAUSP levels (FIG. 3d). These results demonstrate that TAT-vif1 and TAT-vif2 peptides activate the p53 pathway primarily in cancer cells with functional p53 (wt).


To evaluate the in vivo anti-tumor activity of vif1 and vif2 peptides, this study utilized NOD/SCID xenografted mice intraperitoneally injected with BCBL-1 cells expressing the luciferase gene as a traceable bioluminescence reporter and evaluated these mice for the development of PEL, as shown in references 18-20. After being injected with the tumor cells, all of the mice developed PEL, with evident distention and ascites in the peritoneal cavity as well as markedly increased luminescence (data not shown). Mice with advanced PEL were challenged with 1 mg (equivalent to ˜100 μM) TAT, TAT-vif1, or TAT-vif2 peptide on days 3, 5, 7, and twice weekly for subsequent weeks by intraperitoneal injection. Treatment with TAT-vif1 or TAT-vif2 peptide led to little or no traceable luminescence, showing marked tumor regression (FIG. 3e). In particular, TAT-vif2 peptide caused efficient and powerful tumor regression. By contrast, tumors continuously advanced in mice that received TAT peptide injection (FIG. 3e). After PEL establishment, mice were challenged with intraperitoneal injections of 1 mg of the TAT, TAT-vif1, or TAT-vif2 peptide. Tumors were monitored via bioluminescence imaging. Tumor regression was observed to be induced by the vif1/2 peptides.


BCBL-1 cells were treated with different doses of vif1 (25 or 50 μM), vif2 (12.5 or 25 μM) or together with each combination of peptides for the indicated time periods. The percentage of dead cells was determined by trypan blue staining Data are mean±s. e.m.; n=200-300 cells from three independent experiments; *p<0.05; **p<0.01. Synergistic effect of the addition of vif2 peptide to vif1 peptide was observed.


None of the mice showed significant weight-loss, nor any gross abnormalities upon necropsy at the end of the treatment. In addition, the combination of 25 μM of the TAT-vif1 and TAT-vif2 peptide were highly effective in inducing p53-dependent growth suppression as well as cell death, concordant with the 100 μM peptide treatment results (FIG. 3f). Furthermore, when NOD/SCID mice with advanced PEL were challenged with the combination of TAT-vif1 and TAT-vif2 peptide each at a dose of 0.25 mg, this too led to marked tumor regression (FIG. 3g).


Combining vif1 and vif2 peptide leads to synergistic effect on cell cycle arrest, further data shows. BCBL-1 cells were treated with 100 μM of either vif1 or vif2 peptide for the indicated time periods. 10 μM Nutlin-3a was used as a positive control. BCBL-1 cells were treated with 25 μM vif1 peptide alone, vif2 peptide alone, or vif1 and vif2 peptide together for the indicated time periods. Cells were pulse-labeled with BrdU and analyzed for DNA content by flow cytometry. BrdU incorporation during the S phase is indicated as percentage of stained cells. The sub-G1 populations are denoted by arrow. Data are representative of 3 independent experiments.


It was also observed that combining vif1 and vif2 peptide leads to synergistic effect on apoptosis. In this respect, BCBL-1 cells were treated with 100 μM of either vif1 or vif2 peptide for the indicated time periods and then subjected to Annexin V and PI staining, followed by FACS analysis. 10 μM Nutlin-3a was used as a positive control. BCBL-1 cells were treated with 25 μM vif1 peptide alone, vif2 peptide alone, or vif1 and vif2 peptide together for the indicated time periods and then subjected to Annexin V and PI staining, followed by FACS analysis.


Also observed was the synergistic effect of vif1 and vif2 peptides on the activation of p53 and its target genes. BCBL-1 cell were incubated for the indicated times with 25 μM vif1 peptide alone, vif2 peptide alone, or vif1 and vif2 peptide together. WCL were subjected to SDS-PAGE followed by Western blotting and analyzed for p53, MDM2, p21, and HAUSP expression. Tubulin immunoblot is shown as a loading control. Still further observed was the synergistic effect of vif1 and vif2 peptides on tumor regression. After PEL establishment, mice were challenged with intraperitoneal injections of 0.25 mg of TAT-vif1 and TAT-vif2 peptide together. Tumors were monitored via bioluminescence imaging.


These results collectively indicate that TAT-vif1 and TAT-vif2 peptides robustly suppress HAUSP DUB enzymatic activity, ultimately leading to p53-mediated anti-cancer activity.


Recent accumulated observations suggest that the re-introduction of functional p53 can robustly induce tumor regression (Ref 21, 22), and p53 is also essential for effective chemo- or radio-therapy (Ref. 23). Thus, any small molecule or peptide that can activate p53 would be a valuable cancer therapeutic reagent. Along the same lines, it is unquestionable that inhibitors of HAUSP are therapeutically beneficial against p53 (wt) tumors as a very recent paper reported that HAUSP knockout embryos showed p53 stabilization and cell growth arrest (Ref 24). Due to the high binding affinity between HAUSP and MDM2, coupled with the observation that MDM2 is highly destabilized in the absence of HAUSP, blocking HAUSP activity should have a net effect of robust p53 stabilization. This study shows that vIRF4-derived short vif1 and vif2 peptides posses two provocative and effective strategies, thereby acting as specific and robust HAUSP antagonists: the vif1 peptide binds to the TRAF domain of HAUSP with a higher affinity than any other reported substrate, blocking its binding to other substrates, whereas the vif2 peptide appears to loosely bind the TRAF domain and the active site of the catalytic domain of HAUSP, suppressing its DUB enzymatic activity. Consequently, the vIRF4-derived short vif1/2 peptides comprehensively suppress HAUSP activity, effectively restoring p53-dependent apoptosis in wild-type p53-carrying cancer cells and suppressing tumor growth in mouse xenograft models. Of especial importance, this study herein reports that vif1/2 peptides represent potential novel chemotherapeutic molecules for anti-cancer therapies.


It is to be understood that while the disclosure has been described in conjunction with the above embodiments, that the foregoing description and examples are intended to illustrate and not limit the scope of the disclosure. Other aspects, advantages and modifications within the scope of the disclosure will be apparent to those skilled in the art to which the disclosure pertains.


The inventions illustratively described herein may suitably be practiced in the absence of any element or elements, limitation or limitations, not specifically disclosed herein. Thus, for example, the terms “comprising”, “including,” containing”, etc. shall be read expansively and without limitation. Additionally, the terms and expressions employed herein have been used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed.


Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modification, improvement and variation of the inventions embodied therein herein disclosed may be resorted to by those skilled in the art, and that such modifications, improvements and variations are considered to be within the scope of this invention. The materials, methods, and examples provided here are representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the invention.


The invention has been described broadly and generically herein. Each of the narrower species and subgeneric groupings falling within the generic disclosure also form part of the invention. This includes the generic description of the invention with a proviso or negative limitation removing any subject matter from the genus, regardless of whether or not the excised material is specifically recited herein.


In addition, where features or aspects of the invention are described in terms of Markush groups, those skilled in the art will recognize that the invention is also thereby described in terms of any individual member or subgroup of members of the Markush group.


All publications, patent applications, patents, and other references mentioned herein are expressly incorporated by reference in their entirety, to the same extent as if each were incorporated by reference individually. In case of conflict, the present specification, including definitions, will control.


REFERENCES



  • 1. Hu, M. et al. Structural basis of competitive recognition of p53 and MDM2 by HAUSP/USP7: implications for the regulation of the p53-MDM2 pathway. PLoS Biol 4, e27 (2006).

  • 2. Cummins, J. M. et al. Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature 428, 1 p following 486 (2004).

  • 3. Cummins, J. M. & Vogelstein, B. HAUSP is required for p53 destabilization. Cell Cycle 3, 689-692 (2004).

  • 4. Li, M. et al. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416, 648-653 (2002).

  • 5. Everett, R. D. et al. A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein. EMBO J 16, 1519-1530 (1997).

  • 6. Uetz, P. et al. Herpesviral protein networks and their interaction with the human proteome. Science 311, 239-242 (2006).

  • 7. Sarkari, F. et al. Further insight into substrate recognition by USP7: structural and biochemical analysis of the HdmX and Hdm2 interactions with USP7. J Mol Biol 402, 825-837.

  • 8. Saridakis, V. et al. Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization. Mol Cell 18, 25-36 (2005).

  • 9. Sheng, Y. et al. Molecular recognition of p53 and MDM2 by USP7/HAUSP. Nat Struct Mol Biol 13, 285-291 (2006).

  • 10. Dong, A. et al. In situ proteolysis for protein crystallization and structure determination. Nat Methods 4, 1019-1021 (2007).

  • 11. Wadia, J. S., Stan, R. V. & Dowdy, S. F. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 10, 310-315 (2004).

  • 12. Gump, J. M. & Dowdy, S. F. TAT transduction: the molecular mechanism and therapeutic prospects. Trends Mol Med 13, 443-448 (2007).

  • 13. Katano, H., Sato, Y. & Sata, T. Expression of p53 and human herpesvirus-8 (HHV-8)-encoded latency-associated nuclear antigen with inhibition of apoptosis in HHV-8-associated malignancies. Cancer 92, 3076-3084 (2001).

  • 14. Petre, C. E., Sin, S. H. & Dittmer, D. P. Functional p53 signaling in Kaposi's sarcoma-associated herpesvirus lymphomas: implications for therapy. J Virol 81, 1912-1922 (2007).

  • 15. Bhatia, K. et al. Hemi- or homozygosity: a requirement for some but not other p53 mutant proteins to accumulate and exert a pathogenetic effect. FASEB J 7, 951-956 (1993).

  • 16. Zhang, R., Wang, H. & Agrawal, S, Novel antisense anti-MDM2 mixed-backbone oligonucleotides: proof of principle, in vitro and in vivo activities, and mechanisms. Curr Cancer Drug Targets 5, 43-49 (2005).

  • 17. Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497-1501 (1998).

  • 18. Keller, S. A. et al. NF-kappaB is essential for the progression of KSHV- and EBV-infected lymphomas in vivo. Blood 107, 3295-3302 (2006).

  • 19. Wu, W., Rochford, R., Toomey, L., Harrington, W., Jr. & Feuer, G Inhibition of HHV-8/KSHV infected primary effusion lymphomas in NOD/SCID mice by azidothymidine and interferon-alpha. Leuk Res 29, 545-555 (2005).

  • 20. Lee, J. S. et al. FLIP-mediated autophagy regulation in cell death control. Nat Cell Biol 11, 1355-1362 (2009).

  • 21. Ringshausen, I., O'Shea, C. C., Finch, A. J., Swigart, L. B. & Evan, G. I. Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo. Cancer Cell 10, 501-514 (2006).

  • 22. Martins, C. P., Brown-Swigart, L. & Evan, G. I. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127, 1323-1334 (2006).

  • 23. El-Deiry, W. S. The role of p53 in chemosensitivity and radiosensitivity. Oncogene 22, 7486-7495 (2003).

  • 24. Kon, N. et al. Inactivation of HAUSP in vivo modulates p53 function. Oncogene 29, 1270-1279.


Claims
  • 1. A purified, isolated or recombinant vIRF4 peptide fragment, wherein the fragment comprises an amino acid sequence of the group: vIRF4 as 153-256; vIRF4 as 608-758; vIRF4 as 202-208; vIRF4 as 211-216; vIRF4 as 202-216 (vif1); vIRF4 as 209-216; vIRF4 as 153-216; vIRF4 as 217-236; or vIRF4 as 220-236 (vif2), or a biological equivalent of each thereof.
  • 2. A purified, isolated or recombinant vIRF4 peptide comprising two non-contiguous vIRF4 peptide fragments of claim 1.
  • 3. The peptide of claim 1, further comprising a cell penetrating domain.
  • 4. A purified, isolated or recombinant retro-inverso peptide of claim 1.
  • 5. The peptide of claim 3, wherein the cell penetrating domain comprises a HIV TAT peptide.
  • 6. A purified, isolated or recombinant polynucleotide encoding the peptide of claim 1.
  • 7. A composition comprising the purified, isolated or recombinant peptide of claim 1.
  • 8. The composition of claim 7, wherein the carrier is a pharmaceutically acceptable carrier.
  • 9. An antibody that specifically binds a peptide of claim 1.
  • 10. A composition comprising the antibody of claim 9, and a carrier.
  • 11. The composition of claim 10, wherein the carrier is a pharmaceutically acceptable carrier.
  • 12. A method of increasing or inducing apoptosis in a cell, comprising contacting the cell with an effective amount of a vIRF4 peptide fragment of claim 1, thereby increasing or inducing apoptosis in the cell.
  • 13. A method of increasing p53 activity in a cell with functional p53, comprising contacting the cell with an effective amount of a vIRF4 peptide fragment of claim 1, thereby increasing p53 activity in the cell.
  • 14. A method of increasing MDM2 activity in a cell, comprising contacting the cell with an effective amount of a vIRF4 peptide fragment of claim 1, thereby increasing MDM2 activity in the cell.
  • 15. A method of decreasing HAUSP activity in a cell, comprising contacting the cell with an effective amount of a vIRF4 peptide fragment of claim 1, thereby decreasing HAUSP activity in the cell.
  • 16. A method of inhibiting enzyme substrate interaction between p53 and MDM2 in a cell, comprising contacting the cell with an effective amount of a vIRF4 peptide fragment of claim 1, thereby inhibiting enzyme substrate interaction between p53 and MDM2 in the cell.
  • 17. A method of competitively blocking substrate binding of the TRAF domain of HAUSP in a cell, comprising contacting the cell with an effective amount of a vIRF4 peptide fragment of claim 1, thereby competitively blocking substrate binding of the TRAF domain of HAUSP in the cell.
  • 18. A method for suppressing deubiquitination activity of HAUSP in a cell comprising contacting the cell with an effective amount of a vIRF4 peptide fragment of claim 1, thereby suppressing deubiquitination activity of HAUSP in a cell.
  • 19. A method of inhibiting the growth of a cancer cell, comprising contacting the cell with an effective amount of a vIRF4 peptide fragment of claim 1, thereby inhibiting the growth of the cancer cell.
  • 20. A method for tuning p53-mediated anti-tumor activity in a cell with functional p53, comprising contacting the cell with an effective amount of a vIRF4 peptide fragment of claim 1, thereby tuning p53-mediated anti-tumor activity in a cell.
  • 21. The method of claim 12, wherein the contacting is in vitro or in vivo.
  • 22. An isolated host cell comprising the purified or isolated vIRF4 peptide fragment of claim 1.
  • 23. A method for expressing a polynucleotide encoding a vIRF4 peptide fragment comprising growing a host cell comprising a polynucleotide encoding the peptide fragment of claim 1, under conditions that favor expression of the polynucleotide.
  • 24. The method of claim 23, further comprising isolating the expressed vIRF4 peptide fragment from the host cell.
  • 25. The antibody of claim 9, wherein the antibody is a monoclonal antibody or a derivative or fragment thereof.
  • 26. A composition comprising the antibody of claim 9 and a carrier.
  • 27. The composition of claim 26, wherein the carrier is a pharmaceutically acceptable carrier.
  • 28. A method for treating cancer in a subject in need of such treatment, comprising administering an effective amount of one or more of the vIRF4 peptide fragment of claim 1, thereby treating cancer in the subject.
  • 29. (canceled)
  • 30. A screen for a possible therapeutic agent, comprising contacting the agent with the catalytic domain of HAUSP (206-560) and comparing the physical interaction of the therapeutic agent to the HAUSP catalytic domain to the interaction of an isolated or purified vIRF4 peptide fragment to the HAUSP catalytic domain, wherein an interaction that is substantially similar or greater than the interaction of vIRF4 peptide interaction identifies the agent as a possible therapeutic agent.
  • 31. A computer-implemented method for identifying an agent that binds herpes virus-associated ubiquitin-specific protease (HAUSP), comprising positioning a three-dimensional structure of a candidate agent against a three-dimensional structure of a HAUSP fragment, wherein the three-dimensional structure of the HAUSP fragment is based on X, Y and Z atomic structure coordinates determined from a crystalline form of the HAUSP fragment, wherein interaction of the agent with the HAUSP fragment at two or more HAUSP amino acids selected from R104, R152, R153, S155, D164, W165 or G166 as represented in SEQ ID NO: 4, or the equivalent of each, identifies that the agent binds HAUSP.
  • 32. The method of claim 31, wherein interaction of the agent with the HAUSP fragment at three or more HAUSP amino acids selected from R104, R152, R153, S155, D164, W165 or G166 or the equivalent of each, identifies that the agent binds HAUSP.
  • 33. The method of claim 31, wherein interaction of the agent with the HAUSP fragment at five or more HAUSP amino acids selected from R104, R152, R153, S155, D164, W165 or G166 or the equivalent of each identifies that the agent binds HAUSP.
  • 34. The method of claim 31, wherein the X, Y and Z atomic structure coordinates are determined from a crystalline form of a vIRF4-HAUSP TRAF domain complex.
  • 35. The method of claim 34, wherein the X, Y and Z atomic structure coordinates comprise the coordinates for HAUSP as set forth in Table 3.
  • 36. The method of claim 31, wherein the X, Y and Z atomic structure coordinates are determined from a crystalline form of a free HAUSP TRAF domain.
  • 37. The method of claim 36, wherein the X, Y and Z atomic structure coordinates comprise the coordinates as set forth in Protein Data Bank (PDB) Accession No.: 2F1W.
  • 38. The method of claim 31, wherein the three-dimensional structure of the HAUSP fragment is further based on X, Y and Z atomic structure coordinates of a HAUSP catalytic domain and wherein interaction of the candidate agent with the HAUSP fragment at two or more HAUSP amino acids selected from R104, R152, R153, S155, D164, W165 or G166 or the equivalent of each and at two or more HAUSP amino acids selected from C223, D481 or H464, as represented in SEQ ID NO: 4, or equivalent of each, identifies that the agent binds HAUSP.
  • 39. The method of claim 38, wherein interaction of the agent with the HAUSP fragment at three or more HAUSP amino acids selected from R104, R152, R153, S155, D164, W165 or G166 or the equivalent of each and at all HAUSP amino acids selected from C223, D481 or H464 or the equivalent of each identifies that the agent binds HAUSP.
  • 40. The method of claim 38, wherein interaction of the agent with the HAUSP fragment at three or more HAUSP amino acids selected from R104, R152, R153, S155, D164, W165 or G166 or the equivalent of each, at all HAUSP amino acids selected from C223, D481 or H464 or the equivalent of each and at one or more HAUSP amino acids selected from N218, N226, D295, D482 or H456 or the equivalent of each identifies that the agent binds HAUSP.
  • 41. The method of claim 38, wherein the X, Y and Z atomic structure coordinates of the HAUSP catalytic domain are set forth in Protein Data Bank (PDB) Accession No.: 2F1Z.
  • 42. The method of claim 31, further comprising analyzing the ability of the candidate agent to bind to HAUSP in an in vitro or in vivo assay.
  • 43. The method of claim 31, wherein the agent is a small molecule.
  • 44. The method of claim 31, wherein the agent is a polypeptide, an antibody, an antibody fragment, or combinations or mixtures thereof.
  • 45. The method of claim 31, wherein the agent inhibits the activity of HAUSP, inhibits cell growth, promotes cell cycle arrest, promotes apoptosis or promotes cell death.
  • 46. An agent that binds HAUSP identified by the method claim 31.
  • 47. A computer-implemented method for identifying an agent that interacts with herpes virus-associated ubiquitin-specific protease (HAUSP), comprising positioning a three-dimensional structure of a candidate agent against a three-dimensional structure of a HAUSP fragment, wherein the three-dimensional structure of the HAUSP fragment is based on X, Y and Z atomic structure coordinates determined from a crystalline form of the HAUSP fragment, wherein interaction of the agent with the HAUSP fragment at two or more HAUSP amino acids selected from R104, R152, R153, S155, D164, W165 or G166 identifies that the candidate agent interacts with HAUSP.
  • 48. A computer-implemented method for identifying an agent suitable for inhibiting the activity of herpes virus-associated ubiquitin-specific protease (HAUSP), inhibiting cell growth, promoting cell cycle arrest, promoting apoptosis or promoting cell death, comprising positioning a three-dimensional structure of a candidate agent against a three-dimensional structure of a HAUSP fragment, wherein the three-dimensional structure of the HAUSP fragment is based on X, Y and Z atomic structure coordinates determined from a crystalline form of the HAUSP fragment, wherein interaction of the agent with the HAUSP fragment at two or more HAUSP amino acids selected from R104, R152, R153, S155, D164, W165 or G166 as represented in SEQ ID NO: 4 or equivalent of each identifies the candidate agent as suitable for inhibiting the activity of HAUSP, inhibiting cell growth, promoting cell cycle arrest, promoting apoptosis or promoting cell death.
  • 49. An agent suitable for inhibiting the activity of HAUSP, inhibiting cell growth, promoting cell cycle arrest, promoting apoptosis or promoting cell death, identified by the method of claim 48.
  • 50. A method for identifying an agent that binds herpes virus-associated ubiquitin-specific protease (HAUSP) or is suitable for inhibiting the activity of HAUSP, inhibiting cell growth, promoting cell cycle arrest, promoting apoptosis or promoting cell death, in a custom computing apparatus, the custom computing apparatus comprising at least one processor and a memory, the method comprising: receiving, in the memory, X, Y and Z atomic structure coordinates determined from a crystalline form of the HAUSP;accessing, by the at least one processor the X, Y and Z atomic structure coordinates;positioning, by the at least one processor, a three-dimensional structure of a candidate agent against a three-dimensional structure of a HAUSP fragment based on the X, Y and Z atomic structure coordinates, wherein interaction of the agent with the HAUSP fragment at two or more HAUSP amino acids selected from R104, R152, R153, S155, D164, W165 or G166 as represented in SEQ ID NO: 4 or equivalent of each identifies that the agent binds HAUSP, or is suitable for inhibiting the activity of HAUSP, inhibiting cell growth, promoting cell cycle arrest, promoting apoptosis or promoting cell death.
  • 51. A custom computing apparatus comprising: at least one processor;a memory coupled to the at least one processor;a storage medium in communication with the memory and the at least one processor, the storage medium containing a set of processor executable instructions that, when executed by the processor configure the custom computing apparatus to identify an agent that binds herpes virus-associated ubiquitin-specific protease (HAUSP) or is suitable for inhibiting the activity of HAUSP, inhibiting cell growth, promoting cell cycle arrest, promoting apoptosis or promoting cell death, wherein the configuration comprises:positioning a three-dimensional structure of a candidate agent against a three-dimensional structure of a HAUSP fragment based on the X, Y and Z atomic structure coordinates, wherein interaction of the agent with the HAUSP fragment at two or more HAUSP amino acids selected from R104, R152, R153, S155, D164, W165 or G166 as represented in SEQ ID NO: 4 or equivalent of each identifies that the agent binds HAUSP, or is suitable for inhibiting the activity of HAUSP, inhibiting cell growth, promoting cell cycle arrest, promoting apoptosis or promoting cell death.
  • 52. A non-transitory computer medium comprising a set of processor executable instructions that, when executed by a processor, identify an agent that binds herpes virus-associated ubiquitin-specific protease (HAUSP), or is suitable for inhibiting the activity of HAUSP, inhibiting cell growth, promoting cell cycle arrest, promoting apoptosis or promoting cell death by positioning a three-dimensional structure of a candidate agent against a three-dimensional structure of a HAUSP fragment based on the X, Y and Z atomic structure coordinates, wherein interaction of the agent with the HAUSP fragment at two or more HAUSP amino acids selected from R104, R152, R153, S155, D164, W165 or G166 as represented in SEQ ID NO: 4 or equivalent of each identifies that the agent binds HAUSP, or is as suitable for inhibiting the activity of HAUSP, inhibiting cell growth, promoting cell cycle arrest, promoting apoptosis or promoting cell death.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application Ser. No. 61/445,452, filed Feb. 22, 2011, and U.S. Provisional Application Ser. No. 61/454,839, filed Mar. 21, 2011, the contents of both which are incorporated by reference in their entireties.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US12/26198 2/22/2012 WO 00 8/22/2013
Provisional Applications (2)
Number Date Country
61445452 Feb 2011 US
61454839 Mar 2011 US