The Sequence Listing is concurrently submitted herewith with the specification as an ASCII formatted text file via EFS-Web with a file name of Sequence Listing.txt with a creation date of Apr. 21, 2021, and a size of 4.18 kilobytes. The Sequence Listing filed via EFS-Web is part of the specification and is hereby incorporated in its entirety by reference herein.
The present invention relates to crystal forms of a replication protein encoded by a plasmid isolated from a Multiple Sclerosis patient, crystal structure information obtained from them, methods of preparing such crystal forms, their use for the identification and/or design of inhibitors of said replication proteins and methods for identifying, optimizing and designing compounds which should have the ability to interact with or inhibit the replication protein.
The consumption of bovine meat and milk are considered one kind of risk factor for the development of human degenerative and malignant diseases, e.g. colon and breast cancers (1-3). Indeed, epidemiologic data suggest there is a correlation of these cancers with the consumption of bovine products from Eurasian Aurochs-derived cattle (4-7). Bovine Meat and Milk Factors (BMMFs) are circular, single stranded episomal DNAs (<3 kb) that have been detected in bovine meat and milk products. BMMFs are thought to have roles in human malignant and degenerative diseases. BMMFs encode a replication initiator protein (Rep) that is actively transcribed and translated in human cells. Thus, BMMFs might represent a possible etiological agent of such diseases (0.8-10). However, BMMFs were also isolated from patients with multiple sclerosis and studies suggested these to be a possible infectious agent of this disease (10-13).
Typically, BMMFs encode an autonomous plasmid trans-acting replication initiator protein termed “Rep”. The Rep binds at an origin of replication on the DNA (termed ori) and in most cases, comprises of a set of repetitive DNA elements (termed iterons), which are present within most BMMFs (5). Replication of various plasmids, including Circular Rep-Encoding Single-Stranded (CRESS) DNA viruses, also requires the binding of the Rep to a specific DNA sequence (14). Within prokaryotes, the Rep plays a central role in maintaining the plasmid copy number, as reported for the F plasmid in Escherichia coli (15). This regulation is also critical for the replication of plasmid-derived, bacteriophage-like, or virus-like DNA genomes (16). Reps are essential for the replication of multidrug-resistant bacteria in humans (17) and studies have suggested that Reps have a role in transmissible amyloid proteinopathy (18-20).
The X-ray crystal structures of Reps have been well documented and the structural basis for autonomous replication has been described (24-27). The Reps are composed of two winged-helix domains (termed WH1 and WH2) that are essentially a fused N- and C-terminal protein. The Reps transform between monomeric and dimeric forms, depending on the specific function and binding to DNA (28). Large structural changes involving both domains complement these oligomeric forms. The structural transformation requires certain α-helix and β-strands on the Rep to be refolded and/or shifted (26). In the dimeric form, the Rep functions as a repressor, where the WH2 binds to each operator DNA repeat and the WH1 functions to form the dimerization interface. In the monomeric form, the Rep functions as replication initiators, where the WH1 undergoes a large structural movement, i.e. dimer dissociation, thereby allowing the WH1 to bind to the iteron end, while the WH2 binds to the opposite iteron end.
Recently, an episomal circular DNA (isolate MSBI1.176, accession LK931491.1) was isolated from a brain sample of a patient with multiple sclerosis (11). The MSBI1.176 Rep exhibits a 98% amino acid identity with the Sphinx-1.76 encoded Reps (GenBank ADR65123.1 and HQ444404.1), which were isolated from culture and brain preparations of transmissible encephalopathy-related agents (21). Moreover, there were indications for detection of Sphinx.1.76 encoded Reps in neural cells (GT1-cell line) and brain samples of mouse CNS, hamster CNS, and human glioblastoma based on Sphinx-1.76-specific antibodies (22). Serology based on the MSBI1.176 Rep antigen showed positive immune responses for healthy human blood donors and indicated a possibly pre-exposure towards these agents (23). Therefore, deciphering the functions of BMMFs in human malignant and degenerative disease is becoming increasingly important.
For deciphering the functions of BMMFs in human malignant and degenerative diseases it would be very helpful to have a crystal structure of MSBI1.176 Rep protein which, however, failed until now. Such a crystal structure would be also helpful for the identification and/or design of inhibitors of said replication proteins and methods for identifying, optimizing and designing compounds which should have the ability to interact with or inhibit the replication protein.
Thus, it is the objective of the present invention to provide crystal structure coordinates of MSBI1.176 Rep protein, methods to obtain the crystal form of MSBI1.176 Rep protein as well as methods for designing, identifying and optimizing compounds as inhibitors of MSBI1.176 Rep protein based on the crystal structure and crystal structure coordinates.
The objective of the present invention is solved by the teachings of the independent claims. Further advantageous features, aspects and details of the invention are evident from the dependent claims, the description, the figures, and the examples of the present application.
Thus, the present invention concerns a crystal form of MSBI1.176 Rep protein as characterized in claim 1. Preferred embodiments are the subject-matter of the dependent claims.
GenBank: CDS63398.1
(encoded in replication competent episomal DNA MSBI1.176)
Embl accession DNA sequence: LK931491.1
source: multiple sclerosis-affected human brain
During the experiments resulting in the present invention, the X-ray crystal structure of the MSBI1.176 WH1 domain (residues 2-133) was solved to 1.53 Å resolution (data statistics are given in Table 1). The asymmetric unit consisted of one WH1 dimer, i.e., two protomers (termed A and B). The electron density was well resolved for most of the protein (av. B-factor=29.43 Å2). However, residues 36-39 could not be fitted into the B protomer due to lack of discernible electron density, although the electron density was distinct in the other protomer. The WH1 structure comprised of five α-helixes (α1-α5) and five β-strands (β1-β5) in each protomer (
The data collection and refinement statistics of the MSBI1.176 WH1 protein structure are summarized in Table 1:
aValues in parentheses are for the highest-resolution shell.
A database search for closely related structures and sequences revealed that MSBI1.176 WH1 had an exceptionally low amino acid identity of 28% and 17% amino acid identity with Pseudomonas syringae RepA WH1 (dRepA, PDB ID 1HKQ) and Escherichia coli RepE fused WH1-2 (RepE54, 1REP), respectively (24, 25). Similar to the dRepA, the MSBI1.176 WH1 was also folded as the replication-inert dimer, while RepE54 (WH1-2 construct) was crystallized in the monomeric initiator form. Superposition of MSBI1.176 WH1 and dRepA WH1 showed that these two domains were structurally similar (RMSD=1.20 Å), both having the typical five α-helix and five β-strands (
The inventors also observed that the MSBI1.176 WH1 region that comprised of α1-α2-α5 was similar in orientation as the dRepA, having the typical α1-α2 bend thereby making a V-shaped structure (
In general, many MSBI1.176 WH1 structural features were conserved to other known dimeric Rep structures (24-27). However, loop movements and different α-helix and β-strands have been observed among the different structures. In the case of the MSBI1.176, the β2-β3-hairpin shifted approximately 23 Å when compared to the dRepA β2-β3-hairpin (
Previous modeling analysis of the dRepA domain indicated that six basic residues on the α2, β2, β3, and adjacent loops (dRepA numbering: Lys74, Arg81, Arg91, Arg93, Lys62, and Arg78) might follow a minor groove of a DNA backbone (24). In the MSBI1.176 WH1 structure, six basic residues were also found in this region. These are considered to represent the DNA-interacting site comprising or consisting of Lys69, Lys73 (located on α2), Lys85 (β2), Arg90 (β3), Arg78, and/or Arg96 (on adjacent loops). In the DNA-interacting site preferably positively charged amino acids are accumulated to make an electrostatic interaction with the negative charges of the DNA. Although, the electron density for MSBI1.176 WH1 Lys73A/B chains, Lys85A/B chains and Arg90chain side-chains were weak, two of these residues (Arg78 and Arg96) were at equivalent dRepA positions and were suggested to interact with a DNA molecule (24). The function of the MSBI1.176 WH1 β2-β3 sheet orientation is not obvious, although the MSBI1 WH1 had a three amino acid insertion in the β2-strand that extended the sheet. Presumably, this insertion elegantly shifted MSBI1.176 WH1 Lys85 (β2) and Arg90 (β3) on the β2-β3 sheet when compared to equivalent dRepA residues Arg81 and Arg91. Seen in another way, MSBI1.176 β2-β3 sheet was rather flattered, whereas the dRepA β2-β3 hairpin was hooking in an opposite direction (
Elucidation of the MSBI1.176 WH1 structure represents a crucial step forward in better understanding how structural features might change among Rep proteins among this diverse group of BMMF DNAs. The finding that this MSBI1.176 WH1 protein isolated from a patient with multiple sclerosis was closely similar to a prokaryote Rep structure has important consequences. Altogether, this new structural information supports the development and design of new drug targets that can inhibit the oligomeric nature of Reps. According to the present invention a Rep WH1 domain encoded on a BMMF (MSBI1.176) isolated from a multiple sclerosis human brain sample was determined to 1.53 Å resolution using X-ray crystallography. The overall structure of the MSBI1.176 WH1 was remarkably similar to other Rep structures, despite having a low (28%) amino acid identity. The MSBI1.176 WH1 contained elements common to other Reps, including five α-helix, five β-strands, and a hydrophobic pocket. Interestingly, the MSBI1.176 WH1 β2-43 hairpin shifted approximately 23 Å when compared to other Reps. This region is known to interact with DNA and an amino acid insertion in the MSBI1.176 WH1 hairpin shifted positively charged DNA-binding residues further along the β2-β3 sheet. The data of the present invention also show that water molecules additionally stabilize α-helix and β-strands in the protein. Altogether, these new findings support that the MSBI1.176 Rep might have comparable roles and functions as other known Reps from different origins.
Further, the present invention enables to establish methods for identifying inhibitors MSBI1.176 as well as methods for preparing crystal forms of MSBI1.176 Rep protein and their crystal structure information. The data enable rational drug design based on the use of such structural data.
The present invention provides also the possibility to identify and/or design inhibitors of MSBI 1.176 Rep protein and relates to the crystal form of, the crystal structure information obtained from the crystal form, methods of preparing such a crystal form, its use for the identification and/or design of inhibitors of MSBI 1.176 Rep protein activity and the diagnostic and/or pharmaceutical use of those inhibitors of MSBI 1.176 Rep protein identified by these methods.
The terms “crystal form” or “crystal structure” (which are used interchangeably) refer to a crystal form of the MSBI1.176 Rep protein with or without detergents and/or nucleic acids (in particular DNA) bound to the MSBI1.176 Rep protein.
The term “unit cell” as used herein refers to the smallest repeating unit that can generate a crystal with only translation operations. The unit cell is the smallest unit of volume that contains all of the structural and symmetry information of a crystal and that by translation can reproduce a pattern in all of space. Structural information is thereby the pattern (atoms) plus all surrounding space and symmetry information means mirrors, glides, axes, and inversion centers. The translation refers to motion along a cell edge the length of the cell edge. An asymmetric unit is the smallest unit that can be rotated and translated to generate one unit cell using only the symmetry operators allowed by the crystallographic symmetry. The asymmetric unit may be one molecule or one subunit of a multimeric protein, but it can also be more than one. Hence the asymmetric unit is the smallest unit of volume that contains all of the structural information and that by application of the symmetry operations can reproduce the unit cell. The shape of the unit cell is constrained by the collection of symmetry elements which make-up the group. For space groups, seven lattice types are possible: triclinic, monoclinic, orthorhombic, tetragonal, hexagonal, rhombic and cubic. In crystallography, space groups are also called the crystallographic or Fedorov groups. The edges of the unit cell define a set of unit vector axes a, b, and c, with the unit cell dimensions as their respective length a, b, and c. These vectors need not be at right angles, and the angles between the axes are denoted α as between the bc-axes, β between the ac-axes, and γ between the ab-axes. The different shapes arise depending on restrictions placed on the lengths of the three edges (a, b, and c) and the values of the three angles (α, β, and γ).
In another preferred embodiment of the present invention the crystal form of MSBI 1.176 Rep protein contains or further contains a hydrophobic pocket, wherein the hydrophobic pocket contains the amino acids Leu11, Leu18 and Ile25.
A potential inhibitor of MSBI 1.176 Rep protein could bind to the DNA-interacting site in order to decrease the activity of the Rep protein. Thus, a method for designing, identifying and/or optimizing compounds which might have the ability to bind to MSBI1.176 Rep protein could be based on the crystal structure coordinates.
A potential inhibitor of MSBI1.176 Rep protein could bind to a Rep oligomerization interface modulating structure-based function and protein activity/localization/stability/modification.
A potential inhibitor of MSBI1.176 Rep protein could bind to yet unknown protein interaction surfaces modulating structure-based function and protein activity/localization/stability/modification.
A potential inhibitor of MSBI1.176 Rep protein could bind to structurally-related prokaryotic Rep (e.g. from Acinetobacter baumannii species) to decrease the activity of such Rep proteins from different origin based on sterical hindrance of DNA-binding, oligomerization and/or addition protein interaction interfaces.
The crystal forms of MSBI1.176 Rep protein as disclosed herein can be obtained by the following crystallization method. Thus the present invention relates to a method for crystallizing MSBI1.176 Rep protein comprising the steps:
The at least one inorganic salt is used in an amount of between 0.01 mM and 2 M, preferably 0.1 mM and 1 M, more preferably between 0.1 M and 0.5 M, more preferably about 0.2 M. In case more than one inorganic salt is used, the afore-mentioned concentration refers to the concentration of all inorganic salts together and not to the concentration of each single salt used in the mixture of inorganic salts.
Preferably, inorganic salts are selected from the group comprising or consisting of ammonium chloride, ammonium sulfate, ammonium acetate, ammonium fluoride, ammonium bromide, ammonium iodide, ammonium nitride, calcium chloride, calcium acetate, magnesium acetate, magnesium formate, magnesium nitrate, potassium acetate, potassium bromide, potassium fluoride, potassium chloride, potassium iodide, potassium nitrate, sodium acetate, sodium hydroxide, sodium bromide, sodium fluoride, sodium iodide, sodium nitrate, sodium sulfate, sodium chloride, zinc chloride, zinc sulfate, zinc acetate. A preferred inorganic salt is magnesium acetate.
In theory, the at least one precipitating agent competes with the protein solutes for water, thus leading to supersaturation of the proteins. Crystals can normally only grow from supersaturated states, and thus they can grow from precipitates. Salts, polymers, and organic solvents are suitable precipitating agents which are used in an amount between 5% by weight and 50% by weight, preferably between 10% by weight and 40% by weight, and more preferably between 15% by weight and 35%, and most preferably between 20% by weight and 30% by weight of the precipitating agent or the mixture of precipitating agents in regard to the total weight of the buffered precipitant solution.
The precipitating agent used in the buffered precipitant solution of step (b) may preferably be selected from the group consisting of or comprising: 2-methyl-2,4 pentanediol, glycerol, polyethylene glycol (PEG), pentaerythritol propoxylate, pentaerythritol ethoxylate, sodium polyacrylate, hexandiol, isopropanol, ethanol, tert-butanol, dioxane, ethylene imine polymer, ethylene glycol, propanediol, polyacrylic acid, polyvinylpyrrolidone, 2-ethoxyethanol, or mixtures thereof. Most preferred as the precipitant is PEG, preferably having molecular weights ranging from PEG 200 to PEG 20,000, more preferably having molecular weights range from PEG 1,000 to PEG 18,000, yet more preferably having molecular weights range from PEG 3,000 to PEG 15,000. PEG is a very preferred precipitating agent which is preferably used in an amount of 20-30% by weight of the buffered precipitant solution.
In a most preferred embodiment the crystallization buffer contains 0.2 M magnesium acetate and 20% PEG3350.
In a preferred embodiment the hanging-drop or the sitting-drop methods are used for crystallization. “The hanging drop vapor diffusion” technique is the most popular method for the crystallization of macromolecules. The principle of vapor diffusion is straightforward. A drop composed of a mixture of sample and crystallization reagent is placed in vapor equilibration with a liquid reservoir of reagent. Typically the drop contains a lower reagent concentration than the reservoir. To achieve equilibrium, water vapor leaves the drop and eventually ends up in the reservoir. As water leaves the drop, the sample undergoes an increase in direction to super-saturation. Both the sample and reagent increase in concentration as water leaves the drop for the reservoir. Equilibration is reached when the reagent concentration in the drop is approximately the same as that in the reservoir.
Further important aspects of the invention are related to the use of the crystal forms of MSBI1.176 Rep protein for an in-silico prediction model for the identification, optimization and/or design of inhibitors of MSBI1.176 Rep protein. Knowing the exact positions of the atoms of the amino acids in the DNA-interacting site provides the possibility to design suitable inhibitors, identify suitable inhibitors e.g. from a compound library or optimize a known suitable inhibitor by increasing the inhibitory potential. Design, identification and optimization of suitable inhibitors can be performed with standard computer-based methods and software programs well known in the art. A variety of commercially available software programs are available for conducting the analysis and comparison of data in the computer-based system. One skilled in the art will readily recognize which of the available algorithms or implementing software packages for conducting computer analyses can be utilized or adapted for use in the computer-based system. A target structural motif or target motif refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration or electron density map which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. A variety of structural formats for the input and output means can be used to input and output the information in the computer-based systems of the present invention. A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify structural motifs or interpret electron density maps derived in part from the atomic coordinate/x-ray diffraction data. One skilled in the art can readily recognize any one of the publicly available computer modeling programs that can be used. Suitable software that can be used to view, analyze, design, and/or model a protein comprise Alchemy™, LabVision™, Sybyl™, Molcadd™, Leapfrog™, Matchmaker20™, Genefold™ and Sitel™ (available from Tripos Inc., St. Louis, Mo.); Quanta™, MacroModel™ and GRASP™, Univision™, Chem 3D™ and Protein Expert™.
Thus in a further aspect the present invention is related to methods for designing, identifying and optimizing inhibitors of MSBI1.176 Rep protein by applying the crystal form and the related structure coordinates of the crystal form or at least of one of the DNA-interacting sites in order to design, identify or optimize inhibitors by means of computer based methods or software programs.
The atomic coordinate/x-ray diffraction data may be used to create a physical model which can then be used to design molecular models of compounds that should have the ability or property to inhibit and/or interact with the determined DNA-interacting sites or other structural or functional domains or subdomains such as the hydrophobic pocket and/or the pocket neighboring the DNA-interacting site. Alternatively, the atomic coordinate/x-ray diffraction data of the complex may be represented as atomic model output data on computer readable media which can be used in a computer modeling system to calculate different molecules expected to inhibit and/or interact with the determined sites, or other structural or functional domains or subdomains. For example, computer analysis of the data allows one to calculate the three-dimensional interaction of the MSBI1.176 Rep protein and the compound to confirm that the compound binds to, or changes the conformation of, particular domain(s) or subdomain(s). Compounds identified from the analysis of the physical or computer model can then be synthesized and tested for biological activity with an appropriate assay.
In case an inhibitor is identified from a compound library or in case a known inhibitor is optimized by theoretical chemical modifications, testing of the actual compound is desired in order to verify the inhibitory effect and to continue the optimization process. Thus, preferably the above method for identifying and/or optimizing a compound further comprising the steps of
(a) obtaining the identified or optimized compound; and
(b) contacting the identified or optimized compound with MSBI1.176 Rep protein in order to determine the inhibitory effect on MSBI1.176 Rep protein.
It is not necessary to use all the structure coordinates as listed in Table 1. Thus only the structure coordinates of the hydrophobic pocket and/or the DNA-interacting site could be used.
In this application, a Rep WH1 domain encoded on a BMMF (MSBI1.176) isolated from a multiple sclerosis human brain sample was determined to 1.53 Å resolution using X-ray crystallography. The overall structure of the MSBI1.176 WH1 was remarkably similar to other Rep structures, despite having a low (28%) amino acid identity. The MSBI1.176 WH1 contained elements common to other Reps, including five α-helix, five β-strands, and a hydrophobic pocket. These new findings suggest that the MSBI1.176 Rep might have comparable roles and functions as other known Reps from different origins. Reps are important for replication of plasmids or autarkic episomal nucleic acids in different hosts. Hence, it has been considered that such proteins and Rep-encoding DNAs might be linked with diseases. Thus, careful structural and functional characterization of Reps is needed. The Rep described in this study is encoded by human bioactive bovine meat and milk factor MSBI1.176, which was isolated from a patient with multiple sclerosis. Specific serum antibodies were found in a set of healthy human blood bank donors pointing at a general human exposure towards such agents. The discovery that this MSBI1.176-encoded Rep WH1 protein was closely similar to a prokaryote Rep structure might have important consequences and point towards a possible disease-correlated adaptation of these agents towards humans. This new structural information might aid in the development and design of therapeutic/preventive drugs that can inhibit these Reps of diverse origin.
The following abbreviations are used for the common and modified amino acids referred to herein.
Ala Alanine
Arg Arginine
Asn Asparagine
Asp Aspartic acid (Aspartate)
Cys Cysteine
Gln Glutamine
Glu Glutamic acid (Glutamate)
Gly Glycine
His Histidine
Ile Isoleucine
Leu Leucine
Lys Lysine
Met Methionine
Phe Phenylalanine
Pro Proline
Ser Serine
Thr Threonine
Trp Tryptophan
Tyr Tyrosine
Val Valine
The MSBI1.176 WH1 protomers are colored cyan for chain A and orange for chain B. One protomer comprises five α-helices (α1-α5) and five β-strands (β1-β5). The dimeric interface involves two strands (β4-β3).
MSBI1.176 WH1 and RepA WH1 have 28% amino-acid identity. Superposition with RepA (gray) showed that these two WH1 dimers are highly similar, with an r.m.s.d. of 1.20 Å. Structural differences in extended loops were observed, noticeably the loops connecting α2 and β1 as well as β2 and β3.
(A) The five β-sheets (β1-β5-β4-β3-β2) showing the main-chain interactions in MSBI1.176 WH1 (cyan and orange) and RepAWH1 (gray). The β-strands were held by numerous main-chain hydrogen bonds (dashed lines), similar to RepA, including the dimeric interface (β4-β3).
(B) The region containing α1-α2-α5 was similar in orientation to that in RepA. This region produced a V-shaped structure and α5 is the linker region to the WH2 domain. The hydrophobic pocket also contained three leucine residues, i.e. Leu11, Leu18 and Ile25, which were similarly positioned in RepA (data not shown).
The MSBI1.176 WH1 β2-3 hairpin shifted approximately 23 Å when compared with the equivalent RepA hairpin. The MSBI1.176 WH1 β2-3 hairpin was held by direct main-chain interactions (
The amino acid sequence alignment of MSBI1.176 (LK931491.1), amino acids 1-142 of SEQ ID NO: 1, and RepA (PDB ID 1HKQ), SEQ ID NO: 2 was generated using ClustalW (Genetyx). Secondary structural elements are shown and confirmed using the crystal structure. Identical and homologous residues are highlighted in filled background or boxes, respectively. Presumably, a DNA molecule would interact along the dimeric interface and with possibly six basic residues in this region, i.e., Lys69 (α4), Lys73 (α4), Arg78, Lys85 (β2), Arg90 (β3), and Arg96. The basic amino acid residues of RepA that were suggested to participate in DNA interaction are marked with upside-down triangles (┌) and the equivalent for MSBI1.176 WH1 were marked with triangles (▴).
The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the following examples represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. Modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description.
Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as examples of embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention.
The MSBI1.176 DNA (LK931491.1) was isolated from a brain sample of a patient with multiple sclerosis (11). The MSBI1 WH1 domain (residues 1-135) was expressed in E. coli and purified as previously described for human norovirus protruding domains (29). Briefly, the codon optimized WH1 was cloned in a modified expression vector pMal-c2X (Geneart) and transformed into BL21 cells for protein expression. Transformed cells were grown in LB medium supplemented with 100 μg/ml ampicillin for 4 hours at 37° C. Expression was induced with IPTG (0.75 mM) at an OD600 of 0.7 for 18 h at 22° C. Cells were harvested by centrifugation at 6000 rpm for 15 min and disrupted by sonication on ice. His-tagged fusion-MBSI1 protein was initially purified from a Ni column (Qiagen), dialyzed in a gel filtration buffer (GFB: 25 mM Tris-HCl and 300 mM NaCl) with 10 mM imidazole and digested with HRV-3C protease (Novagen) overnight at 4° C. The cleaved MSBI1 WH1 was then applied on the Ni column again to separate and collect the cleaved protein, and dialyzed in GFB overnight at 4° C. The MSBI1 WH1 protein was further purified by size exclusion chromatography, concentrated to 5 mg/ml and stored in GFB at 4° C. Crystals of MSBI1 WH1 were grown using hanging-drop vapor diffusion method at 18° C. for ˜6-10 days in a 1:1 mixture of protein sample and mother liquor (0.2 M magnesium acetate and 20% PEG3350). Prior to data collection, MSBI1 WH1 crystals were transferred to a cryoprotectant containing the mother liquor with 40% PEG3350, followed by flash freezing in liquid nitrogen.
X-ray diffraction data of the MSBI1 WH1 domain were collected on the European Synchrotron Radiation Facility (ESRF) on beamlines ID23-1 and ID30B. For the single-wavelength anomalous diffraction using native sulfurs (S-SAD) experiments, diffraction data from seven crystals were collected at λ=1.850 Å on beamline ID23-1 equipped with Dectris pixel array detector PILATUS-6M. The X-ray beam size at the sample position was 50 μm and the size of crystals was approximately 70×7×200 μm3. To decrease the radiation damage effects, the helical data collection strategy was applied. One native data set was collected at ID23-1 at λ=0.972 Å for initial phase extension and a second native data set was collected at ID30B at λ=0.979 Å for structure refinement. Optimal experimental parameters for data collection were designed using the BEST (30) incorporated into the MxCube software (31) at ESRF. The single native date set was processed with XDS while multiple data sets for S-SAD were processed with XDS and then merged using XSCALE (32).
Several data sets were collected using S-SAD for further processing (33). S-SAD phasing protocol was carried out using the SHELXC/D/E pipeline as implemented in HKL2MAP (34). One thousand trials were carried out for substructure determination in SHELXC. Using a resolution of 2.3 Å and an anomalous signal truncated to 3.1 Å, SHELXD correctly identified all 24 sulfur sites. Four hundred and fifteen residues were built automatically by SHELXE, which resulted in an interpretable map for further processing. Finally ARP-wARP was then used for automated model building based on the first S-SAD native data set collected (35). The structure was refined using the second high resolution native data set in multiple rounds of manual model building in COOT (36) and PHENIX (37). The structure was validated using Molprobity and Procheck. Interactions were analyzed using Accelrys Discovery Studio (Version 4.1), with hydrogen bond distances between 2.4-3.5 Å. Figures and protein contact potentials were generated using PyMOL. Atomic coordinates and structure factors have been deposited in the Protein Data Bank (PDB) with the accession code of 6H24.
Previous modeling analysis of the RepA domain indicated that six basic residues on the α2, β2, β3, and adjacent loops (RepA numbering: Lys74, Arg81, Arg91, Arg93, Lys62, and Arg78) might follow a minor groove of a DNA backbone (24). In the MSBI1.176 WH1 structure, six basic residues were also found in this region, i.e., Lys69, Lys73 (both located on α4), Lys85 (β2), Arg90 (β3), Arg78 and Arg96 (both on adjacent loops). Although, the electron density for MSBI1.176 WH1 Lys73A/B chains, Lys85A/B chains and Arg90A chain side-chains were weak, two of these residues (Arg78 and Arg96) were at equivalent RepA positions and were suggested to interact with a DNA molecule (24). The function of the MSBI1.176 WH1 β2-β3 sheet orientation is not obvious, although the MSBI1.176 WH1 had a three amino acid insertion in the β2-strand that extended the sheet. Presumably, this insertion elegantly shifted MSBI1.176 WH1 Lys85 (β2) and Arg90 (β3) on the β2-β3 sheet when compared to equivalent RepA residues Arg81 and Arg91. Seen in another way, MSBI1.176 β2-β3 sheet was rather flattered, whereas the RepA β2-β3 hairpin was hooking in an opposite direction.
Number | Date | Country | Kind |
---|---|---|---|
18206532.6 | Nov 2018 | EP | regional |
This application is a continuation of PCT/EP2019/081364, filed Nov. 14, 2019; which claims priority to EP Application No. 18206532.6, filed Nov. 15, 2018. The contents of the above applications are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2019/081364 | Nov 2019 | US |
Child | 17242116 | US |