CRYSTAL STRUCTURE OF BTK PROTEIN AND BINDING POCKETS THEREOF

Information

  • Patent Application
  • 20230175038
  • Publication Number
    20230175038
  • Date Filed
    December 07, 2022
    a year ago
  • Date Published
    June 08, 2023
    a year ago
Abstract
The present invention provides a crystal structure of human BTK with space group space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°; the BTK protein is complexed with N-((1R,2S)-2-Acrylamidocyclopentyl)-5-(S)-(6-isobutyl-4-methylpyridin-3-yl)-4-oxo-4,5-dihydro-3H-1-thia-3,5,8-triazaacenaphthylene-2-carboxamide.
Description
SEQUENCE LISTING

The contents of the electronic sequence listing (PRD4173USNP1 Sequence Listing.xml; Size: 5703 bytes; and Date of Creation: Dec. 5, 2022) is herein incorporated by reference in its entirety.


FIELD OF THE INVENTION

The present disclosure is directed to the crystalline composition of human Bruton's tyrosine kinase (“BTK”) complexed with a ligand and the methods for identifying a candidate inhibitor of BTK. The present invention relates to BTK binding pockets. This invention also relates the methods of using the structure coordinates to solve the structure of homologous proteins or protein complexes. In addition, this invention relates to methods of using the structure coordinates to screen for and design compounds, including inhibitory compounds, that bind to BTK, or complexes thereof. The invention also relates to crystallizable compositions and crystals comprising BTK complexes with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof


BACKGROUND OF THE INVENTION

Malignancies, in particular diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), follicular lymphoma (FL), marginal zone lymphoma (MZL), chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), Waldenström macroglobulinemia, and other conditions such as chronic graft versus host disease, continues to afflict patients. Alternative, effective treatments of cancer are still needed.


BTK is a ˜76 kDa protein belonging to the Tec family of non-receptor tyrosine kinases. Tec kinases form the second largest family of cytoplasmic tyrosine kinases in mammalian cells, which consists of four other members in addition to BTK: the eponymous kinase TEC, ITK, TXK/RLK and BMX. Tec kinases are evolutionarily conserved throughout vertebrates. They are related to, but structurally distinct from, the larger Src and Syk kinase families. Tec family proteins are abundantly expressed in hematopoietic tissues and play important roles in the growth and differentiation of blood and endothelial cells in mammals.


Based upon BTK expression from IHC studies described in the art, Btk inhibition has the potential to modulate biology associated with B cells, macrophages, mast cells, osteoclasts, and platelet microparticles. Corneth, O. B., et al. Curr. Top. Microbiol. Immunol. BTK Signaling in B Cell Differentiation and Autoimmunity. 2015 Sep. 5.


Accordingly, there has been an interest in finding inhibitors of BTK that can serve as effective therapeutic agents. New BTK ligand bound crystal structures reveal additional hydrogen bonding opportunities. Understanding the scope of the binding pocket flexibility and the limitations thereof is crucial to the design of new BTK inhibitors.


Thus, there remains a need for novel structure coordinates of ligand bound BTK protein to screen for and design new ligands, including inhibitory ligands, which may provide a therapeutic benefit to patients suffering from cancer and/or immunological diseases. The present invention addresses this need by providing compounds and pharmaceutical compositions thereof that are effective as BTK inhibitors. Applicants have also addressed this need by providing the crystal structure of BTK and BTK-inhibitor complexes. Solving these crystal structures has allowed the determination of the key structural features of BTK, particularly the shape of its binding pockets.


SUMMARY OF THE INVENTION

One aspect of the present invention is a crystalline composition comprising amino acid residues of SEQ ID NO:3, and a ligand, wherein said crystalline composition is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°. In some embodiments, the ligand is a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof.


Another aspect of the present invention are methods for identifying candidate inhibitors of BTK, the method comprising: generating a three-dimensional structure of a binding site of BTK on a computer, wherein the three dimensional structure comprises the coordinates of the unit cell and space group parameters of the crystalline composition of SEQ ID NO: 3, employing said three dimensional structure to design or select a candidate inhibitor; and contacting said candidate inhibitor with human BTK and measuring the ability of said candidate inhibitor to bind to BTK.


A further aspect of the present invention are methods for identifying and/or designing a candidate inhibitor using a BTK crystal comprising a BTK protein, wherein said method comprises: a) preparing the crystalline composition of SEQ ID NO: 3 and a ligand, wherein the ligand is a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof; b) soaking another candidate inhibitor into the crystalline composition, displacing the compound of Formula (I) (original ligand) and forming an inhibitor-crystal complex; c) determining the three-dimensional structure coordinates of the inhibitor-crystal complex prepared in step b); and d) using the structure coordinates from step c) to design or identify a candidate inhibitor; and e) contacting said candidate inhibitor with human BTK and measuring the ability of said candidate inhibitor to bind to BTK.


The invention also provides crystallizable compositions and crystal compositions comprising BTK with or without a chemical entity. The invention also provides a method for crystallizing a BTK protein or a BTK protein complex.


The invention also provides a data storage medium which comprises the structure coordinates of molecules or molecular complexes of the BTK binding pockets. In one embodiment, the data storage medium comprises the structure coordinates of the binding pocket. The invention also provides a computer comprising the data storage medium. Such storage medium when read and utilized by a computer programmed with appropriate software can display, on a computer screen or similar viewing device, a three-dimensional graphical representation of such binding pockets.


The invention also provides methods for designing, evaluating and identifying compounds which bind to the molecules or molecular complexes or their binding pockets. Such compounds are potential inhibitors of BTK or its homologues.


The invention also provides a method for determining at least a portion of the three-dimensional structure of molecules or molecular complexes which contain at least some structurally similar features to BTK. This is achieved by using at least some of the structure coordinates obtained from the BTK protein or protein complexes.


Some aspects of the invention are directed to a crystalline composition comprising SEQ ID NO:3, and a ligand, wherein said crystalline composition is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°. In some aspects, the ligand is a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof


Some aspects are directed to methods for identifying a candidate inhibitor of BTK, wherein said method comprises: generating a three-dimensional structure of a binding site of BTK on a computer, wherein the three dimensional structure coordinates possess the unit cell and space group parameters of the crystalline composition comprising SEQ ID NO:3, and a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, employing said three dimensional structure to design or select a candidate inhibitor; and contacting said candidate inhibitor with human BTK and measuring the ability of said candidate inhibitor to bind to BTK. In some aspects, the candidate inhibitor makes a hydrogen bond with Asp539. In some aspects, the candidate inhibitor makes a hydrogen bond with Lys 430. In some aspects, the candidate inhibitor makes a hydrogen bond with Met477. In some aspects, the candidate inhibitor makes hydrogen bonds with Asp539, Lys 430, and Met477.


Some aspects are directed to methods for identifying and/or designing a candidate inhibitor using a human BTK crystal comprising a human BTK protein, wherein said method comprises:

  • a) preparing the crystalline composition of comprising SEQ ID NO:3, and compound I and b) soaking another candidate inhibitor into the crystalline composition, displacing the compound of Formula (I) (original ligand) to form an inhibitor-crystal complex; c) determining the three-dimensional structure coordinates of the inhibitor-crystal complex prepared in step b); d) using the structure coordinates from step c) to design and/or identify a candidate inhibitor; and e) contacting said candidate inhibitor with human BTK and measuring the ability of said candidate inhibitor to bind to BTK.


Some aspects are directed to methods of designing a compound or complex that interacts with a binding pocket or domain selected from the group comprising (i) BTK amino acid residues Leu408, Gly409, Thr410, Gly411, Va1416, Ala428, Lys430, Asn439, Met449, Leu452, Va1458, Ile472, Thr474, Glu475, Tyr476, Met477, Gly480, Cys481, Asn 484, Arg525, Leu528, Ser538, Asp539, and Phe540, according to Table 2; and (ii) BTK amino acid residues according to Table 2; comprising the steps of:

  • (a) producing a crystal of BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK comprises SEQ ID NO: 3, wherein said crystal is characterized with space group space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) providing the structure coordinates of said binding pocket or domain of the crystal of step (a), according to Table 2, on a computer capable of generating three-dimensional structural information from said structure coordinates, wherein the root mean square deviation of the backbone atoms is not greater than about 2.5 Å;
  • (c) using the computer to dock a first chemical entity in part of the binding pocket or domain;
  • (d) docking at least a second chemical entity in another part of the binding pocket or domain;
  • (e) quantifying the association between the first or second chemical entity and part of the binding pocket or domain;
  • (f) repeating steps (c) to (e) with a t least one additional chemical entity, selecting the at least one additional chemical entity based on said quantified association of all of said first, second, and at least one additional chemical entity;
  • (g) optionally, visually inspecting the relationship of the first, second and at least one additional chemical entity to each other in relation to the binding pocket or domain on a computer screen using the three-dimensional graphical representation of the binding pocket or domain and said first, second and at least one additional chemical entity; and
  • (h) assembling the first, second and at least one additional chemical entity into a compound or complex that interacts with said binding pocket or domain by model building.


Some aspects are directed to methods for identifying a candidate inhibitor that interacts with a binding site of a BTK protein, comprising the steps of:

  • (a) producing a crystal of BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK comprises SEQ ID NO: 3, wherein the crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) obtaining the structure coordinates of amino acids of the crystal of step (a) according to Table 2;
  • (c) generating a three-dimensional model of said BTK protein using the structure coordinates of the amino acids generated in step (b), wherein the root mean square deviation from backbone atoms is not more than ±2.0 Å;
  • (d) determining a binding site of said human BTK protein from said three-dimensional model; and
  • (e) performing computer fitting analysis to identify the candidate inhibitor which interacts with said binding site.


Some aspects further comprise the step of: (f) contacting the identified candidate inhibitor with said BTK protein in order to determine the effect of the inhibitor on BTK activity.


In some aspects, the binding site of said BTK protein determined in step (d) comprises the structure coordinates, according to Table 2, of BTK amino acid residues Leu408, Gly409, Thr410, Gly411, Va1416, Ala428, Lys430, Asn439, Met449, Leu452, Va1458, Ile472, Thr474, Glu475, Tyr476, Met477, Gly480, Cys481, Asn 484, Arg525, Leu528, Ser538, Asp539, and Phe540, wherein the root mean square deviation is not more than ±2.0 Å.


Some aspects are directed to methods of using a crystal comprising a BTK binding pocket or domain in an inhibitor screening assay comprising the steps of:

  • (a) producing a crystal of BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK binding pocket comprises SEQ ID NO: 3, wherein said crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) providing the structure coordinates of said binding pocket or domain of the crystal of step (a), according to Table 2, on a computer capable of generating three-dimensional structural information from said structure coordinates;
  • (c) selecting a potential inhibitor by performing rational drug design with a three-dimensional structure determined for the crystal, wherein said selecting is performed in conjunction with computer modeling;
  • (d) contacting the potential inhibitor with the kinase; and
  • (e) detecting the ability of the potential inhibitor for inhibiting the kinase's enzymatic activity.


Some aspects are drawn to methods of designing a compound or complex that interacts with a BTK binding pocket or domain comprising the steps of:

  • (a) producing a crystal of human BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK comprises SEQ ID NO. 3, wherein said crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) providing the structure coordinates of said binding pocket or domain of the crystal of step (a), according to Table 2, on a computer capable of generating three-dimensional structural information from said structure coordinates;
  • (c) using the computer to dock a first chemical entity in part of the binding pocket or domain;
  • (d) docking at least a second chemical entity in another part of the binding pocket or domain;
  • (e) quantifying the association between the first or second chemical entity and part of the binding pocket or domain;
  • (f) repeating steps (c) to (e) with at least one additional chemical entity, selecting a first, second and at least one additional chemical entity based on said quantified association of all of said first, second and at least one additional chemical entity;
  • (g) optionally, visually inspecting the relationship of the first, second and at least one additional chemical entity to each other in relation to the binding pocket or domain on a computer screen using the three-dimensional graphical representation of the binding pocket or domain and said first, second and at least one additional chemical entity; and
  • (h) assembling the first, second and at least one additional chemical entity into a compound or complex that interacts with said binding pocket or domain by model building.


Some aspects are directed to methods for identifying a candidate inhibitor that interacts with a binding site of a BTK protein comprising the steps of:

  • (a) producing a crystal of BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK comprises SEQ ID NO: 3, wherein said crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) determining the three-dimensional structure coordinates of BTK using the crystal in step (a);
  • (c) using the structure coordinates from step (b) to generate a three-dimensional structure of the crystallized BTK protein produced in step (a);
  • (d) employing said three-dimensional structure to design or select said candidate inhibitor;
  • (e) synthesizing said candidate inhibitor; and
  • (f) contacting said candidate inhibitor with human BTK protein to determine the ability of said candidate inhibitor to bind to human BTK.


Some aspects are directed to methods for identifying a candidate inhibitor that interacts with a binding site of a human BTK protein comprising the steps of:

  • (a) producing a crystal of BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK comprises SEQ ID NO: 3, wherein said crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) determining the three-dimensional structure coordinates of BTK using the crystal in step (a);
  • (c) using the structure coordinates from step (b) to generate a three-dimensional structure of a molecular complex comprising a binding site of amino acid residues Leu408, Gly409, Thr410, Gly411, Va1416, Ala428, Lys430, Asn439, Met449, Leu452, Va1458, Ile472, Thr474, Glu475, Tyr476, Met477, Gly480, Cys481, Asn 484, Arg525, Leu528, Ser538, Asp539, and Phe540 according to Table 2, wherein the root mean square deviation of the backbone atoms is not greater than about 2.5 Å;
  • (d) employing said three-dimensional structure to design or select said candidate inhibitor;
  • (e) synthesizing said candidate inhibitor; and
  • (f) contacting said candidate inhibitor with BTK to determine the ability of said candidate inhibitor to bind to BTK.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and form a part of the specification, illustrate the embodiments of the application and together with the written description serve to explain the principles, characteristics, and features of the invention. In the drawings:



FIG. 1 depicts the chemical structure of Compound I.



FIG. 2 depicts the electron density of Compound I when in complex with BTK. Density does cover the entire compound with clear density observed for the covalent portion of the interaction including a direct attachment to Cys481. Light: 2fo-fc map at 1σ contour level (shows density for modeled atoms and unmodeled or missing atoms, Shows no density for clearly superfluous atoms. Dark Map: level. fo-fc at +/−3.5σ level (shows positive density for unmodeled or missing atoms; shows negative density for superfluous atoms.



FIG. 3 depicts the overall structure of the BTK-Compound I complex. Compound I is represented as a stick diagram and BTK protein as a cartoon diagram. The BTK-Compound I complex adopts a bilobal architecture characteristic. Compound I binds to the ATP binding site and neighboring regions of the active site in the cleft formed between the N-terminal and C-terminal lobe of BTK.



FIG. 4 depicts interactions between BTK and Compound I in the active site. A direct attachment between Compound I and BTK occurs through a bond with the sulfur atom of Cys481. Hydrogen bonds (dashed lines) are observed between Compound I and residues Asp539, Lys430, and Met477. Solvent molecules are also observed in hydrogen bonds with Compound I.



FIG. 5 depicts detailed interaction between BTK and Compound I. The following residues can be found in the vicinity of the ligand with a maximum distance of 4.0 Å; Leu408, Gly409, Thr410, Gly411, Va1416, Ala428, Lys430, Asn439, Met449, Leu452, Va1458, Ile472, Thr474, Glu475, Tyr476, Met477, Gly480, Cys481, Asn 484, Arg525, Leu528, Ser538, Asp539, and Phe540.





DETAILED DESCRIPTION OF THE INVENTION

The disclosure may be more fully appreciated by reference to the following description, including the following glossary of terms and the concluding examples. It is to be appreciated that certain features of the disclosed compositions and methods which are, for clarity, described herein in the context of separate aspects, may also be provided in combination in a single aspect. Conversely, various features of the disclosed compositions and methods that are, for brevity, described in the context of a single aspect, may also be provided separately or in any subcombination. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (for example, bodies of the appended claims) are generally intended as “open” terms (for example, the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to aspects containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (for example, “a” and/or “an” should be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should be interpreted to mean at least the recited number (for example, the bare recitation of “two recitations,” without other modifiers, means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (for example, “ a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (for example, “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B.”


In addition, where features or aspects of the disclosure are described in terms of Markush groups, those skilled in the art will recognize that the disclosure is also thereby described in terms of any individual member or subgroup of members of the Markush group.


As will be understood by one skilled in the art, for any and all purposes, such as in terms of providing a written description, all ranges disclosed herein also encompass any and all possible subranges and combinations of subranges thereof. Any listed range can be easily recognized as sufficiently describing and enabling the same range being broken down into at least equal halves, thirds, quarters, fifths, tenths, etc. As a non-limiting example, each range discussed herein can be readily broken down into a lower third, middle third and upper third, etc. As will also be understood by one skilled in the art all language such as “up to,” “at least,” and the like include the number recited and refer to ranges which can be subsequently broken down into subranges as discussed above. Finally, as will be understood by one skilled in the art, a range includes each individual member. Thus, for example, a group having 1-3 cells refers to groups having 1, 2, or 3 cells. Similarly, a group having 1-5 cells refers to groups having 1, 2, 3, 4, or 5 cells, and so forth.


Various of the above-disclosed and other features and functions, or alternatives thereof, may be combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art, each of which is also intended to be encompassed by the disclosed aspect.


The following abbreviations are used throughout the application:



















A=
Ala=
Alanine
T=
Thr=
Threonine


V=
Val=
Valine
C=
Cys=
Cysteine


L=
Leu=
Leucine
Y=
Tyr=
Tyrosine


I=
Ile=
Isoleucine
N=
Asn=
Asparagine


P=
Pro=
Proline
Q=
Gln=
Glutamine


F=
Phe=
Phenylalanine
D=
Asp=
Aspartic Acid


W=
Trp=
Tryptophan
E=
Glu=
Glutamic Acid


M=
Met=
Methionine
K=
Lys=
Lysine


G=
Gly=
Glycine
R=
Arg=
Arginine


S=
Ser=
Serine
H=
His=
Histidine









The term “about” as used herein in the context of RMSD values takes into consideration the standard error of the RMSD value, which is ±0.1 Å. When “about” is used immediately preceding a numerical value means a range of plus or minus 10% of that value, for example, “about 50” means 45 to 55, “about 25,000” means 22,500 to 27,500, etc., unless the context of the disclosure indicates otherwise, or is inconsistent with such an interpretation.


The term “associating with” as used herein refers to a condition of proximity between a chemical entity or compound, or portions thereof, and a binding pocket or binding site on a protein. The association may be non-covalent - wherein the juxtaposition is energetically favored by hydrogen bonding or van der Waals or electrostatic interactions - or it may be covalent.


The term “binding pocket” as used herein refers to a region of a molecule or molecular complex, that, as a result of its shape and charge, favorably associates with another chemical entity or compound. The term “pocket” includes, but is not limited to, cleft, channel or site. BTK or BTK-like molecules may have binding pockets which include, but are not limited to, peptide or substrate binding, and antibody binding sites. The binding pocket may also mean the ATP binding domain and neighboring regions of BTK located at amino acid residues 389-659. The binding pocket may also mean the ATP binding domain and neighboring regions of BTK represented by SEQ ID NO.3.


The term “chemical entity” as used herein refers to chemical compounds, complexes of at least two chemical compounds, and fragments of such compounds or complexes. The chemical entity may be, for example, a ligand, a substrate, a nucleotide triphosphate, a nucleotide diphosphate, phosphate, a nucleotide, an agonist, antagonist, inhibitor, antibody, drug, peptide, protein or compound.


The term “compound” or “compounds” and equivalent expressions are used herein to mean all compounds described herein, and in particular a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof where the context so permits. Similarly, reference to intermediates, whether or not they themselves are claimed, is meant to embrace their salts, and solvates, where the context so permits. The compound of Formula (III) is also known as N-((1R,2S)-2-Acrylamidocyclopentyl)-5-(S)-(6-isobutyl-4-methylpyridin-3-yl)-4-oxo-4,5-dihydro-3H-1-thia-3,5,8-triazaacenaphthylene-2-carboxamide .


The term “comprise”, or variations such as “comprises” or “comprising” as used herein will be understood to imply the inclusion of a stated integer or groups of integers but not exclusion of any other integer or groups of integers.


The term “consisting essentially of” means the method or composition includes the steps or components specifically recited, and may also include those that do not materially affect the basic and novel characteristics of the present invention.


The term “consisting of” means the method or composition includes only the steps or components specifically recited. It must be noted that, as used herein, and in the appended claims, the singular forms “a”, “an” and “the” include plural reference unless the context clearly dictates otherwise.


The term “corresponding amino acid” or “residue which corresponds to” as used herein refers to a particular amino acid or analogue thereof in a BTK protein that is identical or functionally equivalent to an amino acid in BTK according to SEQ ID NO: 3.


Methods for identifying a corresponding amino acid are known in the art and are based upon sequence, structural alignment, its functional position or a combination thereof as compared to BTK. For example, corresponding amino acids may be identified by superimposing the back bone atoms of the amino acids in BTK using well known software applications, such as QUANTA (Accelrys, San Diego, Calif. ©2001, 2002). The corresponding amino acids may also be identified using sequence alignment programs such as the “bestfit” program available from the Genetics Computer Group which uses the local homology algorithm described by Smith and Waterman in Advances in Applied Mathematics 2, 482 (1981), which is incorporated herein by reference.


The term “crystallization solution” as used herein refers to a solution which promotes crystallization comprising at least one agent including a buffer, one or more salts, a precipitating agent, one or more detergents, sugars or organic compounds, lanthanide ions, a poly-ionic compound, and/or stabilizer.


The term “domain” as used herein refers to a portion of the BTK protein that can be separated based on its biological function, for example, catalysis. The domain may comprise a binding pocket, a sequence or a structural motif.


The term “fitting operation” as used herein refers to an operation that utilizes the structure coordinates of a chemical entity, binding pocket, molecule or molecular complex, or portion thereof, to associate the chemical entity with the binding pocket, molecule or molecular complex, or portion thereof. This may be achieved by positioning, rotating or translating the chemical entity in the binding pocket to match the shape and electrostatic complementarity of the binding pocket. Covalent interactions, non-covalent interactions such as hydrogen bond, electrostatic, hydrophobic, van der Waals interactions, and non-complementary electrostatic interactions such as repulsive charge-charge, dipole-dipole and charge-dipole interactions may be optimized. Alternatively, one may minimize the deformation energy of binding of the chemical entity to the binding pocket.


The term “generating a three-dimensional structure” or “generating a three-dimensional representation” as used herein refers to converting the lists of structure coordinates into structural models or graphical representation in three-dimensional space. This can be achieved through commercially or publicly available software. The three-dimensional structure may be displayed or used to perform computer modeling or fitting operations. In addition, the structure coordinates themselves may be used to perform computer modeling and fitting operations.


The term “BTK protein” as used herein refers to the human BTK protein encoded by the BTK gene. In some aspects, the term “BTK protein” as used herein refers to the ATP binding domain and neighboring regions of BTK located at amino acid residues 389-659 of BTK. In some aspects, the term “BTK protein” as used herein refers to the BTK kinase domain protein which is represented by SEQ ID NO.3.


The term “molecular complex” or “complex” as used herein in the singular or plural refers to a molecule associated with at least one chemical entity.


The term “motif” as used herein refers to a portion of the BTK protein that defines a structural compartment or carries out a function in the protein, for example, catalysis, structural stabilization, or phosphorylation. The motif may be conserved in sequence, structure and function. The motif can be contiguous in primary sequence or three-dimensional space. Examples of a motif include but are not limited to the protease domain and binding site.


“Pharmaceutically acceptable” means approved or approvable by a regulatory agency of the Federal or a state government or the corresponding agency in countries other than the United States, or that is listed in the U.S. Pharmacopoeia or other generally recognized pharmacopoeia for use in animals, and more particularly, in humans.


The term “pharmaceutically acceptable salt” as used herein refers to a salt of a compound of the disclosure that is pharmaceutically acceptable and that possesses the desired pharmacological activity of the parent compound. In particular, such salts are non-toxic may be inorganic or organic acid addition salts and base addition salts. Specifically, such salts include: (1) acid addition salts, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like; or formed with organic acids such as acetic acid, propionic acid, hexanoic acid, cyclopentanepropionic acid, glycolic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, 3-(4-hydroxybenzoyl)benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethane-disulfonic acid, 2-hydroxyethanesulfonic acid, benzenesulfonic acid, 4-chlorobenzenesulfonic acid, 2-naphthalenesulfonic acid, 4-toluenesulfonic acid, camphorsulfonic acid, 4-methylbicyclo[2.2.2]-oct-2-ene-1-carboxylic acid, glucoheptonic acid, 3-phenylpropionic acid, trimethylacetic acid, tertiary butylacetic acid, lauryl sulfuric acid, gluconic acid, glutamic acid, hydroxynaphthoic acid, salicylic acid, stearic acid, muconic acid, and the like; or (2) salts formed when an acidic proton present in the parent compound either is replaced by a metal ion, e.g., an alkali metal ion, an alkaline earth ion, or an aluminum ion; or coordinates with an organic base such as ethanolamine, diethanolamine, triethanolamine, N-methylglucamine and the like. Salts further include, by way of example only, sodium, potassium, calcium, magnesium, ammonium, tetraalkylammonium, and the like; and when the compound contains a basic functionality, salts of non-toxic organic or inorganic acids, such as hydrochloride, hydrobromide, tartrate, mesylate, acetate, maleate, oxalate and the like.


The term “root mean square deviation” or “RMSD” as used herein means the square root of the arithmetic mean of the squares of the deviations from the mean. It is a way to express the deviation or variation from a trend or object. For purposes of this invention, the “root mean square deviation” defines the variation in the backbone of a protein from the backbone of BTK, a binding pocket, a motif, a domain, or portion thereof, as defined by the structure coordinates of BTK described herein. It would be apparent to the skilled worker that the calculation of RMSD involves a standard error.


The term “soaked” as used herein refers to a process in which the crystal is transferred to a solution containing a compound of interest.


The term “structure coordinates” as used herein refers to Cartesian coordinates derived from mathematical equations related to the patterns obtained on diffraction of a monochromatic beam of X-rays by the atoms (scattering centers) of a protein or protein complex in crystal form. The diffraction data are used to calculate an electron density map of the repeating unit of the crystal. The electron density maps are then used to establish the positions of the individual atoms of the molecule or molecular complex.


The term “three-dimensional structural information” as used herein refers to information obtained from the structure coordinates. Structural information generated can include the three-dimensional structure or graphical representation of the structure. Structural information can also be generated when subtracting distances between atoms in the structure coordinates, calculating chemical energies for a BTK molecule or molecular complex or homologs thereof, calculating or minimizing energies for an association of a BTK molecule or molecular complex or homologs thereof to a chemical entity.


The terms “treating” or “treatment” of any disease or disorder as used herein refers, in one aspect, to ameliorating the disease or disorder (i.e., arresting or reducing the development of the disease or at least one of the clinical symptoms thereof). In another aspect “treating” or “treatment” refers to ameliorating at least one physical parameter, which may not be discernible by the subject. In yet another aspect, “treating” or “treatment” refers to modulating the disease or disorder, either physically, (e.g., stabilization of a discernible symptom), physiologically, (e.g., stabilization of a physical parameter), or both. In yet another aspect, “treating” or “treatment” refers to delaying the onset of the disease or disorder.


Crystallizable Compositions and Crystals of BTK and Complexes Thereof

According to one aspect, the invention provides a crystal or crystallizable composition comprising BTK kinase domain or a BTK kinase domain complexed with a ligand. In one aspect, the ligand is a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof


The BTK kinase domain in the crystal or crystallizable composition comprises SEQ ID NO:3. In another aspect, BTK kinase domain comprises amino acid residues 389-659 of the BTK protein.


One aspect is a crystalline composition comprising SEQ ID NO:3, and a ligand, wherein said crystalline composition is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°. In some aspects the ligand is a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof


One aspect is a crystalline composition comprising BTK complexed with a ligand. The present disclosure provides a crystalline composition comprising amino acid residues 389-659 of BTK, and a ligand, wherein said crystalline composition is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°. In some aspects, the ligand is a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof


According to one aspect, the invention provides a crystal or crystallizable composition consisting essentially of the BTK kinase domain or a BTK kinase domain complexed with a ligand. In one aspect, the ligand is a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof


The BTK kinase domain in the crystal or crystallizable composition consists essentially of SEQ ID NO:3. In another aspect, BTK kinase domain consists essentially of amino acid residues 389-659of the BTK protein.


One aspect is a crystalline composition consisting essentially of SEQ ID NO:3, and a ligand, wherein said crystalline composition is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°. In some aspects a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof


One aspect is a crystalline composition consisting essentially of BTK complexed with a ligand. The present disclosure provides a crystalline composition consisting essentially of amino acid residues 389-659 of BTK, and a ligand, wherein said crystalline composition is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°. In some aspects, the ligand is a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof


According to one aspect, the invention provides a crystal or crystallizable composition consisting of BTK kinase domain a BTK kinase domain complexed with a ligand. In one aspect, the ligand is a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof


The BTK kinase domain in the crystal or crystallizable composition consists of SEQ ID NO:3. In another aspect, the BTK kinase domain consists essentially of amino acid residues 389-659 of the BTK protein.


One aspect is a crystalline composition consisting of SEQ ID NO:3, and a ligand, wherein said crystalline composition is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°. In some aspects the ligand is a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof


One aspect is a crystalline composition consisting of BTK complexed with a ligand. The present disclosure provides a crystalline composition consisting of amino acid residues 389-659 of BTK, and a ligand, wherein said crystalline composition is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°. In some aspects, the ligand is a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof


The crystal structure of BTK in complex with Compound I bound to a binding site provides important structural information for the development of novel BTK inhibitors. The invention comprises a crystalline composition comprising SEQ ID NO:3, and Compound I, wherein said crystalline composition is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°. The invention comprises a crystalline composition consisting essentially of SEQ ID NO:3, and Compound I, wherein said crystalline composition is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°. The invention comprises a crystalline composition consisting of SEQ ID NO:3, and Compound I, wherein said crystalline composition is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°.


Persons skilled in the art will recognize that modification at C terminus and N terminus is possible, as well as some amino acid residue mutations, substitutions, including glycosylations, acylations, and methylations. All such modifications are considered to be equivalents within the scope of the invention.


One aspect is a crystalline composition or crystal comprising BTK in the presence or absence of a chemical entity. Preferably, the chemical entity is a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof


It will be readily apparent to those skilled in the art that the unit cells of the crystal compositions may deviate ±1-2 Å from the above cell dimensions depending on the deviation in the unit cell calculations.


In one embodiment, the crystallizable composition comprises a crystallization solution of the BTK protein, a salt, a buffer between pH 5.0 and 7.0, 0-10 mM DTT and a polyethylene glycol. The salt includes, but is not limited to, KCl, LiSO4, NaCl and (NH4)2SO4. The polyethylene glycol includes, but is not limited to, PEG3350, PEGMME 550, PEGMME2000, PEG4000, PEG6000. If the crystals are derived from seeding techniques, the concentrations of the polyethylene glycol may be less than 35%. In another aspect, the crystallizable composition comprises a crystallization solution of equal volumes of the BTK protein (8 mg/ml in 20 mM Tris pH 8, 150 mM NaCl, 2 mM DTT and a solution of 25-35% PEG MME 5K, 0.1M MES pH 6-7, 0.1-0.2M AmSO4.


Crystals can be grown using sitting drop or hanging drop vapor diffusion techniques, such as, but not limited to techniques described herein. Crystals can be grown in the Corning® 384 Well plate (available from Fisher Scientific), Greiner crystallization low profile plates (available from Hampton Research (Aliso Viejo, Calif.)), both the 96-well CrystalQuick™ standard profile round and flat bottom plates (available from Hampton Research (Aliso Viejo, Calif.)), the 24 well VDX plates (available from Hampton Research (Aliso Viejo, Calif.)), and and NeXtal EasyXtal 15 well plates (available from Molecular Dimensions (Maumee, Ohio)). The volume of the reservoir for the 384-well plate can be 50 μL. The volume of the reservoir for the 96-well low profile plate can be 100 μL, and for the CrystalQuick™ plates it can be varied between 70-100 μL. Crystals can also be grown in 72-well terasaki plates using the microbatch method. They also can be grown in 96-well Corning® (available from Hampton Research (Aliso Viejo, Calif)) with a reservoir of 50 μL.


According to one aspect, the invention provides for a crystal with unit cell dimensions unit cell dimensions of a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90° and space group space group p 2 21 21. Preferably, the crystal comprises the BTK-Compound I complex.


It will be readily apparent to those skilled in the art that the unit cells of the crystal compositions may deviate up to ±1-2 Å in cell length from the above cell dimensions depending on the deviation in the unit cell calculations or conformational change in the protein.


The BTK protein may be produced by any well-known method, including synthetic methods, such as solid phase, liquid phase and combination solid phase/liquid phase syntheses; recombinant DNA methods, including cDNA cloning, optionally combined with site directed mutagenesis; and/or purification of the natural products. In one embodiment, the protein is overexpressed in a baculovirus system.


Methods of Obtaining Crystals of BTK or Complexes Thereof

The invention also relates to a method of obtaining a crystal of a BTK protein comprising the steps of:

  • a) producing and purifying a BTK protein;
  • b) combining a crystallizable solution with said BTK protein to produce a crystallizable composition; and
  • c) subjecting said crystallizable composition to conditions which promote crystallization and obtaining said crystals.


The invention also relates to a method of obtaining a crystal of a BTK protein complex, further comprising the step of: d) soaking said crystal in a buffer solution comprising the compound of Formula (I) I.


In some embodiments, a method of obtaining a crystal of a BTK protein complex comprises mixing a crystal of the compound of Formula (I) and a conformer. In some embodiments, the cofomer comprises saccharine, maleic acid, glycine, sulfacetamide, serine, ketoglutaric acid, orotic acid, maltol, urea, proline, nicotinic acid, L-lysine, isonicotinic acid, benzoic acid, nicotinamide, salicylic acid, isonicotinamide, 3-hydroxybenzoic acid, L-tartaric acid, 4-aminobenzoic acid, L-malic acid, succinic acid, citric acid, 2,5-dihydroxybenzoic acid, L-lactic acid, 2,4-dihydroxybenzoic acid, caffeine, sorbic acid, or L-glutamic acid. In some embodiments the mixture of a crystal of the compound of Formula (I) and a conformer are wetted using ethanol. In some embodiments, the wetted mixture of a crystal of the compound of Formula (I) and a conformer is subjected to grinding to form a ground mixture of a crystal of the compound of Formula (I) and a conformer. In some embodiments, the wetted mixture of a crystal of the compound of Formula (I) and a conformer is subjected to heating and cooling. In some embodiments, the ground mixture of a crystal of the compound of Formula (I) and a conformer is air dried to form a dried mixture of a crystal of the compound of Formula (I) and a conformer. In some embodiments, the air dried mixture of a crystal of the compound of Formula (I) and a conformer is analyzed by XPRD. Some embodiments further comprise filtering the mixture of a crystal of the compound of Formula (I) and a conformer prior to drying


The invention also relates to a method of obtaining a crystal of a BTK protein complex, comprising the steps of:

  • a) producing and purifying a BTK protein;
  • b) combining a crystallizable solution with said BTK protein thereof in the presence of the compound of Formula (I) to produce a crystallizable composition; and
  • c) subjecting said crystallizable composition to conditions which promote crystallization and obtaining said crystals.


In certain embodiments, the method of making crystals of a BTK protein, or complexes thereof, includes the use of a device for promoting crystallizations. Devices for promoting crystallization can include but are not limited to the hanging-drop, sitting-drop, dialysis or microtube batch devices. (U.S. Pat. Nos. 4,886,646, 5,096,676, 5,130,105, 5,221,410 and 5,400,741; Pay et al., Proteins: Structure, Function, and Genetics 20: 98-102 (1994), incorporated herein by reference). The hanging-drop, sitting-drop, and some adaptations of the microbatch methods (D'Arcy et al., J. Cryst. Growth 168: 175-180 (1996) and Chayen, J. Appl. Cryst. 30: 198-202 (1997)) produce crystals by vapor diffusion. The hanging drop and sitting drop containing the crystallizable composition is equilibrated in a reservoir containing a higher or lower concentration of the precipitant. As the drop approaches equilibrium with the reservoir, the saturation of protein in the solution leads to the formation of crystals.


Microseeding or seeding may be used to increase the size and quality of crystals. In this instance, micro-crystals are crushed to yield a stock seed solution. The stock seed solution is diluted in series. Using a needle, glass rod, micro-pipet, micro-loop or strand of hair, a small sample from each diluted solution is added to a set of equilibrated drops containing a protein concentration equal to or less than a concentration needed to create crystals without the presence of seeds. The aim is to end up with a single seed crystal that will act to nucleate crystal growth in the drop.


It would be readily apparent to one of skill in the art to vary the crystallization conditions disclosed above to identify other crystallization conditions that would produce crystals of a BTK protein or BTK protein complex. Such variations include, but are not limited to, adjusting pH, protein concentration and/or crystallization temperature, changing the identity or concentration of salt and/or precipitant used, using a different method of crystallization, or introducing additives such as detergents (e.g., TWEEN 20 (monolaurate), LDAO, Brij 30 (4 lauryl ether)), sugars (e.g., glucose, maltose), organic compounds (e.g., dioxane, dimethylformamide), lanthanide ions or polyionic compounds that aid in crystallization. High throughput crystallization assays may also be used to assist in finding or optimizing the crystallization condition.


Binding Pockets of BTK

As disclosed herein, applicants have provided the three-dimensional X-ray structure of BTK-Compound I complex. The atomic coordinates for the structures of the BTK Compound I complex are presented in Table 2.


To use the structure coordinates generated for the BTK-Compound I complex or one of its binding pockets, it may be necessary to convert the structure coordinates, or portions thereof, into a three-dimensional shape (i.e., a three-dimensional representation of these complexes or binding pockets). This is achieved through the use of a computer and commercially available software that is capable of generating the three-dimensional representations or structures of molecules or molecular complexes, or portions thereof, from a set of structural coordinates. These three-dimensional representations may be displayed on a computer screen.


Binding pockets, also referred to as binding sites in the present invention, are of significant utility in fields such as drug discovery. The association of natural ligands or substrates with the binding pockets of their corresponding receptors or enzymes is the basis of many biological mechanisms of action. Similarly, many drugs exert their biological effects through association with the binding pockets of receptors and enzymes. Such associations may occur with all or part of the binding pocket. An understanding of such associations will help lead to the design of drugs having more favorable associations with their target receptor or enzyme, and thus, improved biological effects. Therefore, this information is valuable in designing potential inhibitors of the binding pockets of biologically important targets. The binding pockets of this invention will be important for drug design.


The conformations of the BTK protein and other proteins at a particular amino acid site, along the polypeptide backbone, can be compared using well-known procedures for performing sequence alignments of the amino acids. Such sequence alignments allow for the equivalent sites on these proteins to be compared. Such methods for performing sequence alignment include, but are not limited to, the “bestfit” program and CLUSTAL W Alignment Tool, Higgins et al., supra.


In one embodiment, the BTK binding pocket is made up of the BTK kinase domain and comprises amino acid residues Leu408, Gly409, Thr410, Gly411, Va1416, Ala428, Lys430, Asn439, Met449, Leu452, Va1458, Ile472, Thr474, Glu475, Tyr476, Met477, Gly480, Cys481, Asn 484, Arg525, Leu528, Ser538, Asp539, and Phe540.according to the structure of the BTK-Compound I complex in Table 2.


It will be readily apparent to those of skill in the art that the numbering of amino acid residues in homologues of human BTK may be different than that set forth for human BTK. Corresponding amino acids in BTK homologues are easily identified by visual inspection of the amino acid sequences or by using commercially available homology software programs. Homologues of BTK include, for example, BTK from other species, such as non-humans primates, mouse, rat, etc.


Those of skill in the art understand that a set of structure coordinates for an enzyme or an enzyme-complex, or a portion thereof, is a relative set of points that define a shape in three dimensions. Thus, it is possible that an entirely different set of coordinates could define a similar or identical shape. Moreover, slight variations in the individual coordinates will have little effect on overall shape. In terms of binding pockets, these variations would not be expected to significantly alter the nature of ligands that could associate with those pockets.


The variations in coordinates discussed above may be generated because of mathematical manipulations of the BTK-Compound I complex structure coordinates. For example, the structure coordinates set forth in Table 2 may undergo crystallographic permutations of the structure coordinates, fractionalization of the structure coordinates, integer additions or subtractions to sets of the structure coordinates, inversion of the structure coordinates or any combination of the above.


Alternatively, modifications in the crystal structure due to mutations, additions, substitutions, and/or deletions of amino acids, or other changes in any of the components that make up the crystal may also account for variations in structure coordinates. If such variations are within a certain root mean square deviation as compared to the original coordinates, the resulting three-dimensional shape is considered encompassed by this invention. Thus, for example, a ligand that bound to the kinase domain of BTK would also be expected to bind to another binding pocket whose structure coordinates defined a shape that fell within the RMSD value.


Various computational analyses may be necessary to determine whether a molecule or binding pocket, or portion thereof, is sufficiently similar to the binding pockets above-described. Such analyses may be carried out in well-known software applications, such as ProFit (ProFit version 1.8, available from A.C.R. Martin, University College London); Swiss-Pdb Viewer (Guex and Peitsch, Electrophoresis 18: 2714-2723 (1997)); the Molecular Similarity application of QUANTA (Accelrys, San Diego, Calif. ©2001, 2002) and as described in the accompanying User's Guide, which are incorporated herein by reference.


The above programs permit comparisons between different structures, different conformations of the same structure, and different parts of the same structure. The procedure used in QUANTA (Accelrys, San Diego, Calif. ©2001, 2002) and Swiss-Pdb Viewer (Guex and Peitsch, Electrophoresis 18: 2714-2723 (1997) to compare structures is divided into four steps: 1) load the structures to be compared; 2) define the atom equivalences in these structures; 3) perform a fitting operation on the structures; and 4) analyze the results.


The procedure used in ProFit to compare structures includes the following steps: 1) load the structures to be compared; 2) specify selected residues of interest; 3) define the atom equivalences in the selected residues; 4) perform a fitting operation on the selected residues; and 5) analyze the results.


Each structure in the comparison is identified by a name. One structure is identified as the target (i.e., the fixed structure); all remaining structures are working structures (i.e., moving structures). Since atom equivalency within QUANTA (Accelrys, San Diego, Calif. ©2001, 2002) is defined by user input, for the purposes of this invention, we will define equivalent atoms as protein backbone atoms N, O, C and Cα for all corresponding amino acid residues between two structures being compared.


The corresponding amino acids may be identified by sequence alignment programs such as the “bestfit” program available from the Genetics Computer Group which uses the local homology algorithm described by Smith and Waterman in Advances in Applied Mathematics 2: 482 (1981), which is incorporated herein by reference. A suitable amino acid sequence alignment will require that the proteins being aligned share minimum percentage of identical amino acids. Generally, a first protein being aligned with a second protein should share in excess of about 35% identical amino acids (Hanks et al., Science 241: 42 (1988); Hanks and Quinn, Methods in Enzymology 200: 38 (1991)). The identification of equivalent residues can also be assisted by secondary structure alignment, for example, aligning the α-helices, β-sheets in the structure. The program Swiss-Pdb viewer (Guex and Peitsch, Electrophoresis 18: 2714-2723 (1997) utilizes a best fit algorithm that is based on secondary sequence alignment.


When a rigid fitting method is used, the working structure is translated and rotated to obtain an optimum fit with the target structure. The fitting operation uses an algorithm that computes the optimum translation and rotation to be applied to the moving structure, such that the root mean square difference of the fit over the specified pairs of equivalent atom is an absolute minimum. This number, given in angstroms, is reported by the above programs. The Swiss-Pdb Viewer program (Guex and Peitsch, Electrophoresis 18: 2714-2723 (1997) sets an RMSD cutoff for eliminating pairs of equivalent atoms that have high RMSD values. An RMSD cutoff value can be used to exclude pairs of equivalent atoms with extreme individual RMSD values. In the program ProFit, the RMSD cutoff value can be specified by the user.


For the purpose of this invention, any molecule, molecular complex, binding pocket, motif, domain thereof or portion thereof that is within a root mean square deviation for backbone atoms (N, Cα, C, O) when superimposed on the relevant backbone atoms described by structure coordinates listed in Table 2 are encompassed by this invention.


One aspect of this invention provides a crystalline molecule comprising a protein defined by structure coordinates of a set of amino acid residues that are identical to BTK amino acid residues according to Table 2, wherein the RMSD between backbone atoms of said set of amino acid residues and said BTK amino acid residues is not more than about 3.0 Å. In other embodiments, the RMSD between backbone atoms of said set of amino acid residues and said BTK amino acid residues is not greater than about 2.0 Å, not greater than about 1.5 Å, not greater than about 1.1 Å, not greater than about 1.0 Å, not greater than about 0.9 Å, not greater than about 0.8 Å, not greater than about 0.7 Å, not greater than about 0.6 Å, or not greater than about 0.5 Å. Calculations of RMSD values were done with Swiss Pdb Viewer (Guex and Peitsch, Electrophoresis 18: 2714-2723 (1997)).


In one embodiment, the present invention provides a crystalline molecule comprising all or part of a binding pocket defined by a set of amino acid residues comprising amino acid residues which are identical to human BTK amino acid residues Leu408, Gly409, Thr410, Gly411, Va1416, Ala428, Lys430, Asn439, Met449, Leu452, Va1458, Ile472, Thr474, Glu475, Tyr476, Met477, Gly480, Cys481, Asn 484, Arg525, Leu528, Ser538, Asp539, and Phe540 according to Table 2, wherein the RMSD of the backbone atoms between said BTK amino acid residues and said amino acid residues which are identical is not greater than about 2.5 Å. In other embodiments, the RMSD is not greater than about 2.4 Å, 2.2 Å, 2.0 Å, 1.8 Å, 1.6 Å, 1.4 Å, 1.2 Å, 1.0 Å, 0.8 Å, 0.5 Å, 0.3 Å, or 0.2 Å. In other embodiments, the binding pocket is defined by a set of amino acid residues comprising at least four, six, eight, ten, twelve, fifteen, twenty, twenty-five, thirty, thirty-five, forty, forty-five or fifty amino acid residues which are identical to said BTK amino acid residues.


Method of Making BTK Crystalline Compositions

The BTK protein may be produced by any well-known method, including synthetic methods, such as solid phase, liquid phase and combination solid phase/liquid phase syntheses; recombinant DNA methods, including cDNA cloning, optionally combined with site directed mutagenesis; and/or purification of the natural products. In an aspect, the protein is overexpressed in a baculovirus system or an E. coli system. In another aspect, the protein is overexpressed in a baculovirus system.


The invention also provides a method of making crystals of BTK protein in the presence or absence of a chemical entity (e.g. Compoundl). Such methods comprise the steps of: a) producing and purifying BTK protein; b) combining said BTK protein, or a homolog thereof in the presence or absence of a chemical entity with a crystallization solution to produce a crystallizable composition; and c) subjecting said crystallizable composition to, conditions which promote crystallization.


The crystallization solution may include, but is not limited to, polyethylene glycol (PEG) at between about 10% to 35% v/v, 100-300 mM ammonium sulphate and a buffer that maintains pH at between about 4.0 and 8.0. In one embodiment, the crystallization solution comprises 31% PEG MME 5K, 100 mM 2-(N-morpholino) ethanesulfonic acid (MES) at pH 6.75 and 200 mM ammonium sulphate.


According to one embodiment, the crystallizable composition comprises BTK protein in the presence or absence of a chemical entity (e.g. Compound I). In another embodiment, the crystallizable composition comprises BTK protein and a chemical entity. In one embodiment, the crystallizable composition further comprises a precipitant, polyethylene glycol (PEG) at between about 10 to 30% v/v, 100-300 mM ammonium sulphate and a buffer that maintains pH at between about 4.0 and 8.0, and optionally a reducing agent, such as dithiothreitol (DTT) at between about 1 to 20 mM. The BTK protein may be further modified to include posttranslation modificiations. The BTK protein or complex is preferably 85-100% pure prior to forming the composition. More preferably, the BTK protein or complex is 90-100% pure. Even more preferably, the BTK protein or complex is 95-100% pure.


It would be readily apparent to one of skill in the art to vary the crystallization conditions disclosed above to identify other crystallization conditions that would produce crystals of BTK protein or a homolog thereof in the presence or absence of a ligand. Such variations include, but are not limited to, adjusting pH, protein concentration and/or crystallization temperature, changing the identity or concentration of salt and/or precipitant used, using a different method for crystallization, or introducing additives such as detergents (e.g., TWEEN®20 (monolaurate), LDOA, BRIJ®30 (4 lauryl ether)), sugars (e.g., glucose, maltose), organic compounds (e.g., dioxane, dimethylformamide), lanthanide ions, or poly-ionic compounds that aid in crystallizations. High throughput crystallization assays may also be used to assist in finding or optimizing the crystallization condition.


Methods of Identifying and/or designing of Candidate Inhibitors of BTK


A further aspect of the present invention is a method for identifying and/or designing a candidate inhibitor using a human BTK crystal comprising a human BTK protein, wherein said method comprises: a) preparing the crystalline composition of BTK and Compound I and b) soaking another candidate inhibitor into the crystalline composition, displacing the compound of Formula (I) (original ligand) to form an inhibitor-crystal complex, c) determining the three-dimensional structure coordinates of the inhibitor-crystal complex prepared in step b); and d) using the structure coordinates from step c) to design and/or identifying a candidate inhibitor; and e) contacting said candidate inhibitor with human BTK and measuring the ability of said candidate inhibitor to bind to BTK.


In one aspect, a molecular complex comprising: BTK with a ligand. In one aspect, a molecular complex comprising SEQ ID NO: 3, and a ligand, wherein said molecular complex forms a crystalline composition characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°, wherein said crystalline solution is buffered at between pH 5.0-7.0 and comprises 10-15% PEG and 50 mM ammonium sulphate. In one aspect, a molecular complex comprises SEQ ID NO: 3, and a ligand, wherein the ligand is a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof


In some aspects, the molecular complex of BTK with Compound I bound to a binding site provides important structural information for the development of novel BTK inhibitors. The invention comprises a molecular complex comprising SEQ ID NO:3, and Compound I, wherein said molecular complex is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°.


Persons skilled in the art will recognize that modification at C terminus and N terminus is possible, as well as some amino acid residue mutations, substitutions, including glycosylations, acylations, and methylations. All such modifications are considered to be equivalents within the scope of the invention.


One aspect is a method for identifying a candidate inhibitor of BTK, wherein said method comprises: generating a three-dimensional structure of a binding site of BTK on a computer, wherein the three dimensional structure coordinates of possess the unit cell and space group parameters of the crystalline composition comprising SEQ ID NO:3, and a ligand, wherein the ligand is a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, and wherein said crystalline composition is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°; employing said three dimensional structure to design or select a candidate inhibitor; and contacting said candidate inhibitor with human BTK and measuring the ability of said candidate inhibitor to bind to BTK.


In another aspect, a method for identifying a candidate inhibitor of BTK, wherein said method comprises: generating a three-dimensional structure of a binding site of BTK on a computer, wherein the three dimensional structure coordinates of possess the unit cell and space group parameters of the crystalline composition comprising SEQ ID NO:3, and a ligand, wherein said crystalline composition is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°; employing said three dimensional structure to design or select a candidate inhibitor, wherein the candidate inhibitor makes a direct covalent bond with Cys481, wherein the candidate inhibitor makes a hydrogen bond with Lys430, Met477, Asp539, or any combination thereof; and contacting said candidate inhibitor with human BTK and measuring the ability of said candidate inhibitor to bind to BTK.


Methods of Computational Identification of Candidate Inhibitors of BTK

According to another aspect, this invention provides a machine-readable data storage medium, comprising a data storage material encoded with machine-readable data, wherein said data defines the above-mentioned molecules or molecular complexes. In one embodiment, the data defines the above-mentioned binding pockets by comprising the structure coordinates of said amino acid residues according to Table 2. To use the structure coordinates generated for BTK, or BTK kinase domain, it is at times necessary to convert them into a three-dimensional shape or to extract three-dimensional structural information from them. This is achieved through the use of commercially or publicly available software that is capable of generating a three-dimensional structure or a three-dimensional representation of molecules or portions thereof from a set of structure coordinates. In one embodiment, three-dimensional structure or representation may be displayed graphically.


Therefore, according to another embodiment, this invention provides a machine-readable data storage medium comprising a data storage material encoded with machine readable data. In one embodiment, a machine programmed with instructions for using said data is capable of generating a three-dimensional structure or three-dimensional representation of any of the molecules, or molecular complexes or binding pockets thereof, that are described herein.


This invention also provides a computer comprising:

  • (a) a machine-readable data storage medium, comprising a data storage material encoded with machine-readable data, wherein said data defines any one of the above molecules or molecular complexes;
  • (b) a working memory for storing instructions for processing said machine-readable data;
  • (c) a central processing unit (CPU) coupled to said working memory and to said machine-readable data storage medium for processing said machine readable data and means for generating three-dimensional structural information of said molecule or molecular complex; and
  • (d) output hardware coupled to said central processing unit for outputting three-dimensional structural information of said molecule or molecular complex, or information produced by using said three-dimensional structural information of said molecule or molecular complex.


In one aspect, the data defines the binding pocket of the molecule or molecular complex.


Three-dimensional data generation may be provided by an instruction or set of instructions such as a computer program or commands for generating a three-dimensional structure or graphical representation from structure coordinates, or by subtracting distances between atoms, calculating chemical energies for a BTK molecule or molecular complex, or calculating or minimizing energies for an association of a BTK molecule or molecular complex thereof to a chemical entity such a Compound I. The graphical representation can be generated or displayed by commercially available software programs. Examples of software programs include but are not limited to QUANTA (Accelrys, San Diego, Calif. ©2001, 2002), O(Jones et al., Acta Crystallogr. A47: 110-119 (1991)) and RIBBONS (Carson, J. Appl. Crystallogr. 24: 958-961 (1991)), which are incorporated herein by reference. Certain software programs may imbue this representation with physico-chemical attributes which are known from the chemical composition of the molecule, such as residue charge, hydrophobicity, torsional and rotational degrees of freedom for the residue or segment, etc. Examples of software programs for calculating chemical energies are described in the Rational Drug Design section.


Information of said binding pocket or information produced by using said binding pocket can be outputted through display terminals, touchscreens, facsimile machines, modems, CD-ROMs, printers, a CD or DVD recorder, ZIP™ or JAZ™ drives or disk drives. The information can be in graphical or alphanumeric form.


In one embodiment, the computer is executing an instruction such as a computer program for generating three-dimensional structure or docking. In another embodiment, the computer further comprises a commercially available software program to display the information as a graphical representation. Examples of software programs include but as not limited to, QUANTA (Accelrys, San Diego, Calif. ©2001, 2002), O (Jones et al., Acta Crystallogr. A47: 110-119 (1991)) and RIBBONS (Carson, J. Appl. Crystallogr. 24: 958-961 (1991)), all of which are incorporated herein by reference.


Thus, in accordance with the present invention, data capable of generating the three-dimensional structure or three-dimensional representation of the above molecules or molecular complexes, or binding pockets thereof, can be stored in a machine-readable storage medium, which is capable of displaying structural information or a graphical three-dimensional representation of the structure. In one embodiment, the means of generating three-dimensional information is provided by the means for generating a three-dimensional structural representation of the binding pocket or protein of a molecule or molecular complex.


Another aspect of the present invention is a method for identifying a candidate inhibitor of BTK, wherein said method comprises: generating a three-dimensional structure of a binding site of BTK on a computer, wherein the three dimensional structure coordinates of possess the unit cell and space group parameters of the crystalline composition of the present invention, employing said three dimensional structure to design or select a candidate inhibitor; and contacting said candidate inhibitor with human BTK and measuring the ability of said candidate inhibitor to bind to BTK.


The invention, as disclosed herein, will be useful for identifying BTK inhibitors and to study the role of BTK in cell signaling. In order to use the structure coordinates generated for BTK, or a BTK complex, it is often times necessary to convert the structure coordinates into a three-dimensional shape. This is achieved through the use of commercially available software that is capable of generating three-dimensional graphical representations of molecules or portions thereof from a set of structure coordinates.


Binding pockets, also referred to as binding sites in the present invention, are of significant utility in fields such as drug discovery. The association of natural ligands or substrates with the binding pockets of their corresponding receptors or enzymes is the basis of many biological mechanisms of action. Similarly, many drugs exert their biological effects through association with the binding pockets of receptors and enzymes. Such associations may occur with all or part of the binding pocket. An understanding of such associations will help lead to the design of drugs having more favorable associations with their target receptor or enzyme, and thus, improved biological effects. Therefore, this information is valuable in designing potential inhibitors of the binding pockets of biologically important targets.


In one aspect, part of the binding pocket is at least two amino acid residues, preferably, amino acid residues 389-659of BTK which correspond to the kinase domain of BTK. In another aspect, the binding pocket is represented by SEQ ID NO.3.


Another aspect is a method for identifying a candidate inhibitor of BTK, wherein said method comprises: generating a three-dimensional structure of a binding site of BTK on a computer, wherein the three dimensional structure coordinates of possess the unit cell and space group parameters of the crystalline composition comprising SEQ ID NO:3, and a ligand such as Compound I, wherein said crystalline composition is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°, employing said three dimensional structure to design or select a candidate inhibitor, wherein the candidate inhibitor makes a direct covalent bond with Cys481, and wherein the candidate inhibitor makes a hydrogen bond with Lys430, and wherein the candidate inhibitor makes a hydrogen bond with Met477, and wherein the candidate inhibitor makes a hydrogen bond with Asp539; and contacting said candidate inhibitor with human BTK and measuring the ability of said candidate inhibitor to bind to BTK.


Another aspect is a method for identifying a candidate inhibitor of BTK, wherein said method comprises: generating a three-dimensional structure of a binding site of BTK on a computer, wherein the three dimensional structure coordinates of possess the unit cell and space group parameters of the crystalline composition comprising SEQ ID NO:3, and a ligand such as Compound I, wherein said crystalline composition is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°; employing said three dimensional structure to design or select a candidate inhibitor, wherein the candidate inhibitor makes a direct covalent bond with Cys481, and wherein the candidate inhibitor makes a hydrogen bond with Lys430, and wherein the candidate inhibitor makes a hydrogen bond with Met477, and wherein the candidate inhibitor makes a hydrogen bond with Asp539; and contacting said candidate inhibitor with human BTK and measuring the ability of said candidate inhibitor to bind to BTK.


Another aspect is a method for identifying and/or designing a candidate inhibitor using a human BTK crystal comprising a human BTK protein, wherein said method comprises: a) preparing a crystalline composition comprising SEQ ID NO:3, and a ligand such as Compound I, wherein said crystalline composition is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°, wherein the ligand is a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof; b) soaking another candidate inhibitor into the crystalline composition, displacing the compound of Formula (I) (original ligand) to form an inhibitor-crystal complex; c) determining the three-dimensional structure coordinates of the inhibitor-crystal complex prepared in step b); d) using the structure coordinates from step b) to design or identify a candidate inhibitor; and e) contacting said candidate inhibitor with human BTK and measuring the ability of said candidate inhibitor to bind to BTK.


The BTK structure coordinates or the three-dimensional graphical representation generated from these coordinates may be used in conjunction with a computer for a variety of purposes, including drug discovery.


For example, the structure encoded by the data may be computationally evaluated for its ability to associate with chemical entities. Chemical entities that associate with BTK may inhibit BTK or its homologs, and are potential drug candidates. Alternatively, the structure encoded by the data may be displayed in a graphical three-dimensional representation on a computer screen. This allows visual inspection of the structure, as well as visual inspection of the structure's association with chemical entities.


According to another aspect, the invention provides a method for designing, selecting and/or optimizing a chemical entity that binds to all or part of the molecule or molecular complex comprising the steps of: (a) providing the structure coordinates of said molecule or molecular complex on a computer comprising the means for generating three-dimensional structural information of all or part of said molecule or molecular complex from said structure coordinates; (b) designing, selecting and/or optimizing said chemical entity by employing means for performing a fitting operation between said chemical entity and said three-dimensional structural information of all or part of said molecule or molecular complex; and (c) contacting said candidate inhibitor with human BTK and measuring the ability of said candidate inhibitor to bind to BTK.


In another aspect, the method comprises the steps of: (a) constructing a computer model of the binding pocket of BTK; (b) selecting a chemical entity to be evaluated by de novo ligand design, or by modifying a known agonist or inhibitor, or a portion thereof; (c) employing computational means to perform a fitting operation between computer models of said chemical entity to be evaluated and said binding pocket in order to provide an energy-minimized configuration of said chemical entity in the binding pocket; and (d) contacting said candidate inhibitor with human BTK and measuring the ability of said candidate inhibitor to bind to BTK.


Three-dimensional structural information in step (a) may be generated by instructions such as a computer program or commands that can generate a three-dimensional structure or graphical representation; subtract distances between atoms; calculate chemical energies for the BTK molecule, molecular complex or homologs thereof; or calculate or minimize energies of an association of the BTK molecule, molecular complex or homologs thereof to a chemical entity. These types of computer programs are known in the art. The graphical representation can be generated or displayed by commercially available software programs. Examples of software programs include but are not limited to 1. Coot, (Paul Emsley and Bernhard Lohkamp and William G. Scott and Kevin Cowtan, Features and Development of Coot, Acta Crystallographica Section D—Biological Crystallography, 2010, vol 66, pp 486-501), 2. PyMOL (The PyMOL Molecular Graphics System, Schrodinger, LLC), and 3. MOE (Molecular Operating Environment) Molecular Operating Environment (MOE), 2019.01; Chemical Computing Group ULC. Certain software programs may imbue this representation with physico-chemical attributes which are known from the chemical composition of the molecule, such as residue charge, hydrophobicity, torsional and rotational degrees of freedom for the residue or segment, etc.


The design of compounds that bind to or inhibit BTK binding pockets according to this invention generally involves consideration of two factors. First, the chemical entity must be capable of physically and structurally associating with parts or all of the BTK binding pocket. Non-covalent molecular interactions important in this association include hydrogen bonding, van der Waals interactions, hydrophobic interactions and electrostatic interactions.


Second, the chemical entity must be able to assume a conformation that allows it to associate with the BTK binding pocket directly. Although certain portions of the chemical entity will participate indirectly through one or more water molecules, those portions of the chemical entity may still influence the overall binding of the chemical entity to BTK. This, in turn, may have a significant impact on potency. Such conformational requirements include the overall three-dimensional structure and orientation of the chemical entity in relation to all or a portion of the binding pocket.


Using a multiple alignment program to compare each BTK structure and structures of other members of the protein family. To compare structures, first, a sequence alignment between protein sequences is performed. Second, a putative core is constructed by superimposing a series of corresponding structures in the protein family. Third, residues of high spatial variation are discarded, and the core alignment is iteratively refined. The amino acids that make up the final core structure have low structural variance and have the same local and global conformation relative to the corresponding residues in the protein family.


In one aspect, the binding pocket comprises SEQ ID NO.3. In another aspect the binding pocket comprises amino acid residues 389-659 of BTK representing the kinase domain of BTK.


Those of skill in the art understand that a set of structure coordinates for a molecule or a molecular-complex or a portion thereof, is a relative set of points that define a shape in three dimensions. Thus, it is possible that an entirely different set of coordinates could define a similar or identical shape. Moreover, slight variations in the individual coordinates will have little effect on overall shape. In terms of binding pockets, these variations would not be expected to significantly alter the nature of ligands that could associate with those pockets.


The variations in coordinates discussed above may be generated as a result of mathematical manipulations of the BTK structure coordinates. For example, the structure coordinates could be manipulated by crystallographic permutations of the structure coordinates, fractionalization of the structure coordinates, integer additions or subtractions to sets of the structure coordinates, inversion of the structure coordinates or any combination of the above.


Alternatively, modifications in the crystal structure due to mutations, additions, substitutions, and/or deletions of amino acids, or other changes in any of the components that make up the crystal could also account for variations in structure coordinates. If such variations are within a certain root mean square deviation as compared to the original coordinates, the resulting three-dimensional shape is considered encompassed by this invention. Thus, for example, a ligand that binds to the binding pocket of BTK would also be expected to bind to another binding pocket whose structure coordinates define a shape that falls within the acceptable root mean square deviation.


Various computational analyses may be necessary to determine whether a binding pocket, motif, domain or portion thereof of a molecule or molecular complex is sufficiently similar to the binding pocket, motif, domain or portion thereof of BTK such as the kinase domain of BTK. Such analyses may be carried out using well known software applications, such as ProFit (A. C. R. Martin, SciTech Software, ProFit version 1.8, University College London, www.bioinf.org.uk/software), Swiss-Pdb Viewer (Guex et al., Electrophoresis, 18, pp. 2714-2723 (1997)), the Molecular Similarity application of QUANTA (Molecular Simulations Inc., San Diego, Calif. ©1998, 2000) and as described in the accompanying User's Guide, which are incorporated herein by reference.


The above programs permit comparisons between different structures, different conformations of the same structure, and different parts of the same structure. The procedure used in QUANTA (Molecular Simulations, Inc., San Diego, Calif. 01998, 2000) and Swiss-Pdb Viewer to compare structures is divided into four steps: 1) load the structures to be compared; 2) define the atom equivalences in these structures; 3) per form a fitting operation on the structures; and 4) analyze the results.


The procedure used in ProFit to compare structures includes the following steps: 1) load the structures to be compared; 2) specify selected residues of interest; 3) define the atom equivalences in the selected residues; 4) perform a fitting operation on the selected residues; and 5) analyze the results.


Each structure in the comparison is identified by a name. One structure is identified as the target (i.e., the fixed structure); all remaining structures are working structures (i.e., moving structures). Since atom equivalency within the above programs is defined by user input, for the purpose of this invention we will define equivalent atoms as protein back bone atoms (N, Ca, C and O) for BTK amino acids and corresponding amino acids in the structures being compared.


The corresponding amino acids may be identified by sequence alignment programs such as the “bestfit” program available from the Genetics Computer Group which uses the local homology algorithm described by Smith and Waterman in Advances in Applied Mathematics 2, 482 (1981), which is incorporated herein by reference. A suitable amino acid sequence alignment will require that the proteins being aligned share minimum percentage of identical amino acids. Generally, a first protein being aligned with a second protein should share in excess of about 35% identical amino acids (Hanks et al., Science, 241, 42 (1988); Hanks and Quinn, Methods in Enzymology, 200, 38 (1991)). The identification of equivalent residues can also be assisted by secondary structure alignment, for example, aligning the a-helices, (3-sheets in the structure. The program Swiss-Pdb Viewer has its own best fit algorithm that is based on secondary sequence alignment.


When a rigid fitting method is used, the working structure is translated and rotated to obtain an optimum fit with the target structure. The fitting operation uses an algorithm that computes the optimum translation and rotation to be applied to the moving structure, such that the root mean square difference of the fit over the specified pairs of equivalent atom is an absolute minimum. This number, given in angstroms, is reported by the above programs. The Swiss-Pdb Viewer program sets an RMSD cutoff for eliminating pairs of equivalent atoms that have high RMSD values. An RMSD cutoff value can be used to exclude pairs of equivalent atoms with extreme individual RMSD values. In the program ProFit, the RMSD cutoff value can be specified by the user.


For the purpose of this invention, any molecule, molecular complex, binding pocket, motif, domain thereof or portion thereof that is within a root mean square deviation for back bone atoms (N, Cα, C, O) when superimposed on the relevant backbone atoms described by structure coordinates encompassed by this invention.


Therefore, one aspect of this invention provides a molecule or molecular complex comprising all or part of a BTK binding pocket defined by structure coordinates of a set of amino acid residues that correspond to BTK amino acid residues 389-659, wherein the root mean square deviation of the backbone atoms between said amino acids of said molecule or molecular complex and said BTK amino acids is not more than about 3.0 Å. In one embodiment, the RMSD is not greater than about 2.0 Å. In one embodiment, the RMSD is not greater than about 1.0 Å. In one embodiment, the RMSD is not greater than about 0.8 Å. In one embodiment, the RMSD is not greater than about 0.5 Å. In one embodiment, the RMSD is not greater than about 0.3 Å. In one embodiment, the RMSD is not greater than about 0.2 Å.


Therefore, one aspect of this invention provides a molecule or molecular complex comprising all or part of a BTK binding pocket defined by structure coordinates of a set of amino acid residues that correspond to SEQ ID NO.3, wherein the root mean square deviation of the backbone atoms between said amino acids of said molecule or molecular complex and said BTK amino acids is not more than about 3.0 Å. In one embodiment, the RMSD is not greater than about 2.0 Å. In one embodiment, the RMSD is not greater than about 1.0 Å. In one embodiment, the RMSD is not greater than about 0.8 Å. In one embodiment, the RMSD is not greater than about 0.5 Å. In one embodiment, the RMSD is not greater than about 0.3 Å. In one embodiment, the RMSD is not greater than about 0.2 Å.


Rational Drug Design

The BTK structure coordinates or the three-dimensional graphical representation generated from these coordinates may be used in conjunction with a computer for a variety of purposes, including drug discovery.


For example, the structure encoded by the data may be computationally evaluated for its ability to associate with chemical entities. Chemical entities that associate with BTK may inhibit BTK, and are potential drug candidates. Alternatively, the structure encoded by the data may be displayed in a graphical three-dimensional representation on a computer screen. This allows visual inspection of the structure, as well as visual inspection of the structure's association with chemical entities.


Thus, according to another embodiment, the invention provides a method for designing, selecting and/or optimizing a chemical entity that binds to all or part of the molecule or molecular complex comprising the steps of:

  • (a) providing the structure coordinates of said molecule or molecular complex on a computer comprising the means for generating three-dimensional structural information of all or part of said molecule or molecular complex from said structure coordinates; and
  • (b) designing, selecting and/or optimizing said chemical entity by employing means for performing a fitting operation between said chemical entity and said three-dimensional structural information of all or part of said molecule or molecular complex.


In one embodiment, the method is for designing, selecting and or optimizing a chemical entity that binds with the binding pocket of a molecule or molecular complex. In one embodiment, the above method further comprises the following steps before step (a):

  • (c) producing a crystal of a molecule or molecular complex comprising BTK;
  • (d) determining the three-dimensional structure coordinates of the molecule or molecular complex by X-ray diffraction of the crystal; and
  • (e) identifying all or part of said binding pocket.


Three-dimensional structural information in step (a) may be generated by instructions such as a computer program or commands that can generate a three-dimensional structure or graphical representation; subtract distances between atoms; calculate chemical energies for a BTK molecule, molecular complex or homologs thereof; or calculate or minimize energies of an association of BTK molecule, molecular complex or homologs thereof to a chemical entity. These types of computer programs are known in the art. The graphical representation can be generated or displayed by commercially available software programs. Examples of software programs include but are not limited to QUANTA [Accelrys ©2001, 2002],O [Jones et al., Acta Crystallogr, .447, pp. 110-119 (1991)] and RIBBONS [Carson, J. Appl. Crystallogr., 24, pp. 9589-961 (1991)], which are incorporated herein by reference. Certain software programs may imbue this representation with physico-chemical attributes which are known from the chemical composition of the molecule, such as residue charge, hydrophobicity, torsional and rotational degrees of freedom for the residue or segment, etc. Examples of software programs for calculating chemical energies are described below.


Thus, according to another embodiment, the invention provides a method for evaluating the potential of a chemical entity to associate with all or part of a molecule or molecular complex as described previously in the different embodiments.


This method comprises the steps of: (a) employing computational means to perform a fitting operation between the chemical entity and all or part of the molecule or molecular complex described before; (b) analyzing the results of said fitting operation to quantify the association between the chemical entity and all or part of the molecule or molecular complex; and optionally (c) outputting said quantified association to a suitable output hardware, such as a CRT display terminal, a CD or DVD recorder, ZIP™ or JAZ™ drive, a disk drive, or other machine-readable data storage device, as described previously. The method may further comprise generating a three-dimensional structure, graphical representation thereof, or both of all or part of the molecule or molecular complex prior to step (a). In one embodiment, the method is for evaluating the ability of a chemical entity to associate with all or part of the binding pocket of a molecule or molecular complex.


In another embodiment, the invention provides a method for screening a plurality of chemical entities to associate at a deformation energy of binding of less than −7 kcal/mol with said binding pocket:

  • (a) employing computational means, which utilize said structure coordinates to perform a fitting operation between one of said chemical entities from the plurality of chemical entities and said binding pocket;
  • (b) quantifying the deformation energy of binding between the chemical entity and the binding pocket;
  • (c) repeating steps (a) and (b) for each remaining chemical entity; and
  • (d) outputting a set of chemical entities that associate with the binding pocket at a deformation energy of binding of less than −7 kcal/mol to a suitable output hardware.


In another embodiment, the method comprises the steps of:

  • (a) constructing a computer model of a binding pocket of the molecule or molecular complex;
  • (b) selecting a chemical entity to be evaluated by a method selected from the group consisting of assembling said chemical entity; selecting a chemical entity from a small molecule database; de novo ligand design of said chemical entity; and modifying a known agonist or inhibitor, or a portion thereof, of an BTK protein or homolog thereof;
  • (c) employing computational means to perform a fitting operation between computer models of said chemical entity to be evaluated and said binding pocket in order to provide an energy-minimized configuration of said chemical entity in the binding pocket; and
  • (d) evaluating the results of said fitting operation to quantify the association between said chemical entity and the binding pocket model, whereby evaluating the ability of said chemical entity to associate with said binding pocket.


In another embodiment, the invention provides a method of using a computer for evaluating the ability of a chemical entity to associate with all or part of the molecule or molecular complex, wherein said computer comprises a machine-readable data storage medium comprising a data storage material encoded with said structure coordinates defining said binding pocket and means for generating a three-dimensional graphical representation of the binding pocket, and wherein said method comprises the steps of:

  • (a) positioning a first chemical entity within all or part of said binding pocket using a graphical three-dimensional representation of the structure of the chemical entity and the binding pocket;
  • (b) performing a fitting operation between said chemical entity and said binding pocket by employing computational means;
  • (c) analyzing the results of said fitting operation to quantitate the association between said chemical entity and all or part of the binding pocket; and
  • (d) outputting said quantitated association to a suitable output hardware.


The above method may further comprise the steps of:

  • (e) repeating steps (a) through (d) with a second chemical entity; and
  • (f) selecting at least one of said first or second chemical entity that associates with all or part of said binding pocket based on said quantitated association of said first or second chemical entity.


Alternatively, the structure coordinates of the BTK binding pockets may be utilized in a method for identifying an agonist or antagonist of a molecule comprising a binding pocket of BTK. This method comprises the steps of:

  • (a) using a three-dimensional structure of the molecule or molecular complex to design or select a chemical entity;
  • (b) contacting the chemical entity with the molecule and molecular complex;
  • (c) monitoring the activity of the molecule or molecular complex; and
  • (d) classifying the chemical entity as an agonist or antagonist based on the effect of the chemical entity on the activity of the molecule or molecular complex.


In one embodiment, step (a) is using a three-dimensional structure of the binding pocket of the molecule or molecular complex. In another embodiment, the three-dimensional structure is displayed as a graphical representation.


In another embodiment, the method comprises the steps of:

  • (a) constructing a computer model of a binding pocket of the molecule or molecular complex;
  • (b) selecting a chemical entity to be evaluated by a method selected from the group consisting of assembling said chemical entity; selecting a chemical entity from a small molecule database; de novo ligand design of said chemical entity; and modifying a known agonist or inhibitor, or a portion thereof, of a BTK protein or homolog thereof;
  • (c) employing computational means to perform a fitting operation between computer models of said chemical entity to be evaluated and said binding pocket in order to provide an energy-minimized configuration of said chemical entity in the binding pocket; and
  • (d) evaluating the results of said fitting operation to quantify the association between said chemical entity and the binding pocket model, whereby evaluating the ability of said chemical entity to associate with said binding pocket;
  • (e) synthesizing said chemical entity; and
  • (f) contacting said chemical entity with said molecule or molecular complex to determine the ability of said compound to activate or inhibit said molecule.


In one embodiment, the invention provides a method of designing a compound or complex that associates with all or part of the binding pocket comprising the steps of:

  • (a) providing the structure coordinates of said binding pocket or protein on a computer comprising the means for generating three-dimensional structural information from said structure coordinates; and
  • (b) using the computer to perform a fitting operation to associate a first chemical entity with all or part of the binding pocket;
  • (c) performing a fitting operation to associate at least a second chemical entity with all or part of the binding pocket;
  • (d) quantifying the association between the first and second chemical entity and all or part of the binding pocket;
  • (e) optionally repeating steps (b) to (d) with at least one additional chemical entity, selecting a first, second and at least one additional chemical entity based on said quantified association of all of said first, second and at least one additional chemical entity;
  • (f) optionally, visually inspecting the relationship of the first, second and at least one additional chemical entity to each other in relation to the binding pocket on a computer screen using the three-dimensional graphical representation of the binding pocket and said first and second chemical entity; and
  • (g) assembling the first, second and at least one additional chemical entity into a compound or complex that associates with all or part of said binding pocket by model building.


For the first time, the present invention permits the use of molecular design techniques to identify, select and design chemical entities, including inhibitory compounds, capable of binding to BTK or BTK-like binding pockets, motifs and domains.


Applicants' elucidation of binding pockets on BTK provides the necessary information for designing new chemical entities and compounds that may interact with BTK substrate or BTK-like substrates, in whole or in part.


Throughout this section, discussions about the ability of a chemical entity to bind to, associate with or inhibit BTK binding pockets refer to features of the entity alone. Assays to determine if a compound binds to BTK are well known in the art and are exemplified below.


The design of compounds that bind to or inhibit BTK binding pockets according to this invention generally involves consideration of two factors. First, the chemical entity must be capable of physically and structurally associating with parts or all of the BTK binding pockets. Non-covalent molecular interactions important in this association include hydrogen bonding, van der Waals interactions, hydrophobic interactions and electrostatic interactions.


Second, the chemical entity must be able to assume a conformation that allows it to associate with the BTK binding pockets directly. Although certain portions of the chemical entity will not directly participate in these associations, those portions of the chemical entity may still influence the overall conformation of the molecule. This, in turn, may have a significant impact on potency. Such conformational requirements include the overall three-dimensional structure and orientation of the chemical entity in relation to all or a portion of the binding pocket, or the spacing between functional groups of a chemical entity comprising several chemical entities that directly interact with the BTK or BTK-like binding pockets.


The potential inhibitory or binding effect of a chemical entity on BTK binding pockets may be analyzed prior to its actual synthesis and testing by the use of computer modeling techniques. If the theoretical structure of the given entity suggests insufficient interaction and association between it and the BTK binding pockets, testing of the entity is obviated. However, if computer modeling indicates a strong interaction, the molecule may then be synthesized and tested for its ability to bind to an BTK binding pocket. This may be achieved by testing the ability of the molecule to inhibit BTK. In this manner, synthesis of inoperative compounds may be avoided.


A potential inhibitor of an BTK binding pocket may be computationally evaluated by means of a series of steps in which chemical entities or fragments are screened and selected for their ability to associate with the BTK binding pockets.


One skilled in the art may use one of several methods to screen chemical entities or fragments for their ability to associate with a BTK binding pocket. This process may begin by visual inspection of, for example, a BTK binding pocket on the computer screen based on the BTK structure coordinates or other coordinates which define a similar shape generated from the machine-readable storage medium. Selected fragments or chemical entities may then be positioned in a variety of orientations, or docked, within that binding pocket as defined supra. Docking may be accomplished using software such as QUANTA (Molecular Simulations, Inc., San Diego, Calif. © 1998, 2000) and Sybyl (Tripos Associates, St. Louis, Mo.), followed by energy minimization and molecular dynamics with standard molecular mechanics force fields, such as CHARMM and AMBER.


Specialized computer programs may also assist in the process of selecting fragments or chemical entities. These include:

  • 1. GRID (P. J. Goodford, “A Computational Procedure for Determining Energetically Favorable Binding Sites on Biologically Important Macromolecules”, J. Med. Chem., 28, pp. 849-857 (1985)). GRID is available from Oxford University, Oxford, UK.
  • 2. MCSS (A. Miranker et al., “Functionality Maps of Binding Sites: A Multiple Copy Simultaneous Search Method.” Proteins: Structure, Function and Genetics, 11, pp. 29-34 (1991)). MCSS is available from Molecular Simulations, San Diego, Calif.
  • 3. AUTODOCK (D. S. Goodsell et al., “Automated Docking of Substrates to Proteins by Simulated Annealing”, Proteins: Structure, Function, and Genetics, 8, pp. 195-202 (1990)). AUTODOCK is available from Scripps Research Institute, La Jolla, Calif.
  • 4. DOCK (I. D. Kuntz et al., “A Geometric Approach to Macromolecule-Ligand Interactions”, J. Mol. Biol., 161, pp. 269-288 (1982)). DOCK is available from University of California, San Francisco, Calif


Once suitable chemical, entities or fragments have been selected, they can be assembled into a single compound or complex. Assembly may be preceded by visual inspection of the relationship of the fragments to each other on the three-dimensional image displayed on a computer screen in relation to the structure coordinates of BTK. This would be followed by manual model building using software such as QUANTA (Molecular Simulations, Inc., San Diego, Calif. ©1998, 2000) or Sybyl (Tripos Associates, St. Louis, Mo.).


Useful programs to aid one of skill in the art in connecting the individual chemical entities or fragments include:

  • 1. CAVEAT (P. A. Bartlett et al., “CAVEAT: A Program to Facilitate the Structure-Derived Design of Biologically Active Molecules”, in Molecular Recognition in Chemical and Biological Problems, Special Pub., Royal Chem. Soc., 78, pp. 182-196 (1989); G. Lauri and P. A. Bartlett, “CAVEAT: a Program to Facilitate the Design of Organic Molecules”, J. Comput. Aided Mol. Des., 8, pp. 51-66 (1994)). CAVEAT is available from the University of California, Berkeley, Calif.
  • 2. 3D Database systems such as ISIS (MDL Information Systems, San Leandro, Calif). This area is reviewed in Y. C. Martin, “3D Database Searching in Drug Design”, J. Med. Chem, 35, pp. 2145-2154 (1992).
  • 3. HOOK (M. B. Eisen et al., “HOOK: A Program for Finding Novel Molecular Architectures that Satisfy the Chemical and Steric Requirements of a Macromolecule Binding Site”, Proteins: Struct., Funct., Genet., 19, pp. 199- 221 (1994)). HOOK is available from Molecular Simulations, San Diego, Calif


Instead of proceeding to build an inhibitor of a BTK binding pocket in a step-wise fashion one fragment or chemical entity at a time as described above, inhibitory or other BTK binding compounds may be designed as a whole or “de novo” using either an empty binding pocket or optionally including some portion(s) of a known inhibitor(s). There are many de novo ligand design methods including:

  • 1. LUDI (H.-J. Bohm, “The Computer Program LUDI: A New Method for the De Novo Design of Enzyme Inhibitors”, J. Comp. Aid. Molec. Design, 6, pp. 61-78 (1992)). LUDI is available from Molecular Simulations Incorporated, San Diego, Calif.
  • 2. LEGEND (Y. Nishibata et al., Tetrahedron, 47, p. 8985 (1991)). LEGEND is available from Molecular Simulations Incorporated, San Diego, Calif.
  • 3. LeapFrog (available from Tripos Associates, St. Louis, Mo.).
  • 4. SPROUT (V. Gillet et al, “SPROUT: A Program for Structure Generation)”, J. Comput. Aided Mol. Design, 7, pp. 127-153 (1993)). SPROUT is available from the University of Leeds, UK.


Other molecular modeling techniques may also be employed in accordance with this invention (see, e.g, N. C. Cohen et al, “Molecular Modeling Software and Methods for Medicinal Chemistry”, J. Med. Chem., 33, pp. 883-894 (1990); see also, M. A. Navia and M. A. Murcko, “The Use of Structural Information in Drug Design”, Current Opinions in Structural Biology, 2, pp. 202-210 (1992); L. M. Balbes et. al., “A Perspective of Modern Methods in Computer-Aided Drug Design”, Reviews in Computational Chemistry, Vol. 5, K. B. Lipkowitz and D. B. Boyd, Eds, VCH, New York, pp. 337- 380 (1994); see also, W. C. Guida, “Software For Structure-Based Drug Design”, Curr. Opin. Struct. Biology, 4, pp. 777- 781 (1994)).


Once a chemical entity has been designed or selected by the above methods, the efficiency with which that chemical entity may bind to a BTK binding pocket may be tested and optimized by computational evaluation. For example, an effective BTK binding pocket inhibitor must preferably demonstrate a relatively small difference in energy between its bound and free states (i.e, a small deformation energy of binding). Thus, the most efficient BTK binding pocket inhibitors should preferably be designed with a deformation energy of binding of not greater than about 10 kcal/mole, more preferably, not greater than 7 kcal/mole. BTK binding pocket inhibitors may interact with the binding pocket in more than one conformation that is similar in overall binding energy. In those cases, the deformation energy of binding is taken to be the difference between the energy of the free chemical entity and the average energy of the conformations observed when the inhibitor binds to the protein.


A chemical entity designed or selected as binding to a BTK binding pocket may be further computationally optimized so that in its bound state it would preferably lack repulsive electrostatic interaction with the target enzyme and with the surrounding water molecules. Such non-complementary electrostatic interactions include repulsive charge-charge, dipole-dipole and charge-dipole interactions.


Specific computer software is available in the art to evaluate compound deformation energy and electrostatic interactions. Examples of programs designed for such uses include: Gaussian 94, revision C (M. J. Frisch, Gaussian, Inc., Pittsburgh, Pa. ©1995); AMBER, version 4.1 (P. A. Kollman, University of California at San Francisco, 01995); QUANTA/CHARM:NI (Molecular Simulations, Inc., San Diego, Calif. 01998, 2000); Insight II/Discover (Molecular Simulations, Inc., San Diego, Calif. 01998); DelPhi (Molecular Simulations, Inc., San Diego, Calif. 01998); and AMSOL (Quantum Chemistry Program Exchange, Indiana University). These programs may be implemented, for instance, using a Silicon Graphics workstation such as an Indigo2 with “IMPACT” graphics. Other hardware systems and software packages will be known to those skilled in the art.


Another approach enabled by this invention, is the computational screening of small molecule databases for chemical entities or compounds that can bind in whole, or in part, to a BTK binding pocket. In this screening, the quality of fit of such entities to the binding pocket may be judged either by shape complementarity or by estimated interaction energy (E. C. Meng et al, J. Comp. Chem., 13, pp. 505-524 (1992)).


According to another embodiment, the invention provides compounds which associate with a BTK binding pocket produced or identified by the method set forth above.


Another particularly useful drug design technique enabled by this invention is iterative drug design. Iterative drug design is a method for optimizing associations between a protein and a compound by determining and evaluating the three-dimensional structures of successive sets of protein/compound complexes.


In iterative drug design, crystals of a series of protein or protein complexes are obtained and then the three-dimensional structures of each crystal is solved.


Such an approach provides insight into the association between the proteins and compounds of each complex. This is accomplished by selecting compounds with inhibitory activity, obtaining crystals of this new protein/compound complex, solving the three-dimensional structure of the complex, and comparing the associations between the new protein/compound complex and previously solved protein/compound complexes. By observing how changes in the compound affected the protein/compound associations, these associations may be optimized.


In some cases, iterative drug design is carried out by forming successive protein-compound complexes and then crystallizing each new complex. High throughput crystallization assays may be used to find a new crystallization condition or to optimize the original protein or complex crystallization condition for the new complex. Alternatively, a pre-formed protein crystal may be soaked in the presence of an inhibitor, thereby forming a protein/compound complex and obviating the need to crystallize each individual protein/compound complex.


The invention provides a data storage medium which comprises the structure coordinates of molecules or molecular complexes of the BTK binding pockets. In one aspect, the data storage medium comprises the structure coordinates of the binding pocket. The invention also provides a computer comprising the data storage medium. Such storage medium when read and utilized by a computer programmed with appropriate software can display, on a computer screen or similar viewing device, a three-dimensional graphical representation of such binding pockets.


The invention also provides methods for designing, evaluating and identifying compounds which bind to the molecules or molecular complexes or their binding pockets. Such compounds are potential inhibitors of BTK or its homologues.


The invention also provides a method for determining at least a portion of the three-dimensional structure of molecules or molecular complexes which contain at least some structurally similar features to BTK. This is achieved by using at least some of the structure coordinates obtained from the BTK protein or protein complexes.


Some aspects of the invention are directed to a crystalline composition comprising SEQ ID NO:3, and a ligand, wherein said crystalline composition is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°. In some aspects, the ligand is a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof


Some aspects are directed to methods for identifying a candidate inhibitor of BTK, wherein said method comprises: generating a three-dimensional structure of a binding site of BTK on a computer, wherein the three dimensional structure coordinates possess the unit cell and space group parameters of the crystalline composition comprising SEQ ID NO:3, and Compound I, employing said three dimensional structure to design or select a candidate inhibitor; and contacting said candidate inhibitor with human BTK and measuring the ability of said candidate inhibitor to bind to BTK. In some aspects, the candidate inhibitor makes a direct covalent bond with Cys481. In some aspects, the candidate inhibitor makes a hydrogen bond with Lys430. In some aspects, the candidate inhibitor makes a hydrogen bond with Met477. In some aspects, the candidate inhibitor makes a hydrogen bond with Asp539.


Some aspects are directed to methods for identifying and/or designing a candidate inhibitor using a human BTK crystal comprising a human BTK protein, wherein said method comprises:

  • a) preparing the crystalline composition of comprising SEQ ID NO:3, and Compound I; b) soaking another candidate inhibitor into the crystalline composition displacing the original ligand to form a inhibitor-crystal complex; c) determining the three-dimensional structure coordinates of the inhibitor-crystal complex prepared in step b); d)using the structure coordinates from step c) to design and/or identifying a candidate inhibitor; and e) contacting said candidate inhibitor with human BTK and measuring the ability of said candidate inhibitor to bind to BTK.


Some aspects are directed to methods of designing a compound or complex that interacts with a binding pocket or domain selected from the group comprising (i) BTK amino acid residues Leu408, Gly409, Thr410, Gly411, Va1416, Ala428, Lys430, Asn439, Met449, Leu452, Va1458, Ile472, Thr474, Glu475, Tyr476, Met477, Gly480, Cys481, Asn 484, Arg525, Leu528, Ser538, Asp539, and Phe540 according to Table 2; and (ii) BTK amino acid residues according to Table 2; comprising the steps of:


(a) producing a crystal of BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTI. comprises SIE) ID NO: 3, wherein said crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) providing the structure coordinates of said binding pocket or domain of the crystal of step (a), according to Table 2, on a computer capable of generating three-dimensional structural information from said structure coordinates, wherein the root mean square deviation of the backbone atoms is not greater than about 2.5 Å;
  • (c) using the computer to dock a first chemical entity in part of the binding pocket or domain;
  • (d) docking at least a second chemical entity in another part of the binding pocket or domain;
  • (e) quantifying the association between the first or second chemical entity and part of the binding pocket or domain;
  • (f) repeating steps (c) to (e) with at least one additional chemical entity, selecting a first, second and at least one additional chemical entity based on said quantified association of all of said first, second and at least one additional chemical entity;
  • (g) optionally, visually inspecting the relationship of the first, second and at least one additional chemical entity to each other in relation to the binding pocket or domain on a computer screen using the three-dimensional graphical representation of the binding pocket or domain and said first, second and at least one additional chemical entity; and
  • (h) assembling the first, second and at least one additional chemical entity into a compound or complex that interacts with said binding pocket or domain by model building.


Some aspects are directed to methods for identifying a candidate inhibitor that interacts with a binding site of a BTK protein, comprising the steps of:

  • (a) producing a crystal of BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK comprises SEQ ID NO: 3, wherein the crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) obtaining the structure coordinates of amino acids of the crystal of step (a) according to Table 2;
  • (c) generating a three-dimensional model of said BTK protein using the structure coordinates of the amino acids generated in step (b), wherein the root mean square deviation from backbone atoms is not more than ±2.0 Å;
  • (d) determining a binding site of said human BTK protein from said three-dimensional model; and
  • (e) performing computer fitting analysis to identify the candidate inhibitor which interacts with said binding site.


Some aspects further comprise the step of:

  • (f) contacting the identified candidate inhibitor with said BTK protein in order to determine the effect of the inhibitor on BTK activity.


In some aspects, the binding site of said BTK protein determined in step (d) comprises the structure coordinates, according to Table 2, of BTK amino acid residues Leu408, Gly409, Thr410, Gly411, Va1416, Ala428, Lys430, Asn439, Met449, Leu452, Va1458, Ile472, Thr474, Glu475, Tyr476, Met477, Gly480, Cys481, Asn 484, Arg525, Leu528, Ser538, Asp539, and Phe540, wherein the root mean square deviation is not more than ±2.0 Å.


Some aspects are directed to methods of using a crystal comprising a BTK binding pocket or domain in an inhibitor screening assay comprising the steps of:

  • (a) producing a crystal of BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK comprises SEQ ID NO: 3, wherein said crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) providing the structure coordinates of said binding pocket or domain of the crystal of step (a), according to Table 2, on a computer capable of generating three-dimensional structural information from said structure coordinates;
  • (c) selecting a potential inhibitor by performing rational drug design with a three-dimensional structure determined for the crystal, wherein said selecting is performed in conjunction with computer modeling;
  • (d) contacting the potential inhibitor with the kinase; and
  • (e) detecting the ability of the potential inhibitor for inhibiting the kinase's enzymatic activity.


Some aspects are drawn to methods of designing a compound or complex that interacts with a BTK binding pocket or domain comprising the steps of:

  • (a) producing a crystal of human BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK comprises SEQ ID NO. 3, wherein said crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) providing the structure coordinates of said binding pocket or domain of the crystal of step (a), according to Table 2, on a computer capable of generating three-dimensional structural information from said structure coordinates;
  • (c) using the computer to dock a first chemical entity in part of the binding pocket or domain;
  • (d) docking at least a second chemical entity in another part of the binding pocket or domain;
  • (e) quantifying the association between the first or second chemical entity and part of the binding pocket or domain;
  • (f) repeating steps (c) to (e) with at least one additional chemical entity, selecting a first, second and at least one additional chemical entity based on said quantified association of all of said first, second and at least one additional chemical entity;
  • (g) optionally, visually inspecting the relationship of the first, second and at least one additional chemical entity to each other in relation to the binding pocket or domain on a computer screen using the three-dimensional graphical representation of the binding pocket or domain and said first, second and at least one additional chemical entity; and
  • (h) assembling the first, second and at least one additional chemical entity into a compound or complex that interacts with said binding pocket or domain by model building.


Some aspects are directed to methods for identifying a candidate inhibitor that interacts with a binding site of a BTK protein comprising the steps of:

  • (a) producing a crystal of BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK comprises SEQ ID NO: 3, wherein said crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) determining the three-dimensional structure coordinates of BTK using the crystal in step (a);
  • (c) using the structure coordinates from step (b) to generate a three-dimensional structure of the crystallized BTK protein produced in step (a);
  • (d) employing said three-dimensional structure to design or select said candidate inhibitor;
  • (e) synthesizing said candidate inhibitor; and
  • (f) contacting said candidate inhibitor with human BTK protein to determine the ability of said candidate inhibitor to bind to human BTK.


Some aspects are directed to methods for identifying a candidate inhibitor that interacts with a binding site of a human BTK protein comprising the steps of:

  • (a) producing a crystal of BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK comprises SEQ ID NO: 3, wherein said crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) determining the three-dimensional structure coordinates of BTK using the crystal in step (a);
  • (c) using the structure coordinates from step (b) to generate a three-dimensional structure of a molecular complex comprising a binding site of amino acid residues Leu408, Gly409, Thr410, Gly411, Va1416, Ala428, Lys430, Asn439, Met449, Leu452, Va1458, Ile472, Thr474, Glu475, Tyr476, Met477, Gly480, Cys481, Asn 484, Arg525, Leu528, Ser538, Asp539, and Phe540 according to Table 2, wherein the root mean square deviation of the backbone atoms is not greater than about 2.5 Å;
  • (d) employing said three-dimensional structure to design or select said candidate inhibitor;
  • (e) synthesizing said candidate inhibitor; and
  • (f) contacting said candidate inhibitor with BTK to determine the ability of said candidate inhibitor to bind to BTK.


Some aspects of the invention are directed to a crystalline composition consisting essentially of SEQ ID NO:3, and a ligand, wherein said crystalline composition is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°. In some aspects, the ligand is a compound of Formula




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof


Some aspects are directed to methods for identifying a candidate inhibitor of BTK, wherein said method comprises: generating a three-dimensional structure of a binding site of BTK on a computer, wherein the three dimensional structure coordinates possess the unit cell and space group parameters of the crystalline composition comprising SEQ ID NO:3, and Compound I, employing said three dimensional structure to design or select a candidate inhibitor; and contacting said candidate inhibitor with human BTK and measuring the ability of said candidate inhibitor to bind to BTK. In some aspects, the candidate inhibitor makes a direct covalent bond with Cys481. In some aspects, the candidate inhibitor makes a hydrogen bond with Lys430. In some aspects, the candidate inhibitor makes a hydrogen bond with Met477. In some aspects, the candidate inhibitor makes a hydrogen bond with Asp539.


Some aspects are directed to methods for identifying and/or designing a candidate inhibitor using a human BTK crystal comprising a human BTK protein, wherein said method comprises:

  • a) preparing the crystalline composition of consisting essentially of SEQ ID NO:3, and the compound of Formula (I) and b) soaking another candidate inhibitor into the crystalline composition, displacing the compound of Formula (I) (original ligand) forming an inhibitor-crystal complex; c) determining the three-dimensional structure coordinates of the inhibitor-crystal complex prepared in step b); d) using the structure coordinates from step c) to design or select a candidate inhibitor; and e) contacting said candidate inhibitor with human BTK and measuring the ability of said candidate inhibitor to bind to BTK.


Some aspects are directed to methods of designing a compound or complex that interacts with a binding pocket or domain selected from the group consisting essentially of (i) BTK amino acid residues Leu408, Gly409, Thr410, Gly411, Va1416, Ala428, Lys430, Asn439, Met449, Leu452, Va1458, Ile472, Thr474, Glu475, Tyr476, Met477, Gly480, Cys481, Asn 484, Arg525, Leu528, Ser538, Asp539, and Phe540 according to Table 2; and (ii) BTK amino acid residues according to Table 2; comprising the steps of:

  • (a) producing a crystal of BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK consists essentially of SEQ ID NO: 3, wherein said crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) providing the structure coordinates of said binding pocket or domain of the crystal of step (a), according to Table 2, on a computer capable of generating three-dimensional structural information from said structure coordinates, wherein the root mean square deviation of the backbone atoms is not greater than about 2.5 Å;
  • (c) using the computer to dock a first chemical entity in part of the binding pocket or domain;
  • (d) docking at least a second chemical entity in another part of the binding pocket or domain;
  • (e) quantifying the association between the first or second chemical entity and part of the binding pocket or domain;
  • (f) repeating steps (c) to (e) with at least one additional chemical entity, selecting a first, second and at least one additional chemical entity based on said quantified association of all of said first, second and at least one additional chemical entity;
  • (g) optionally, visually inspecting the relationship of the first, second and at least one additional entity to each other in relation to the binding pocket or domain on a computer screen using the three-dimensional graphical representation of the binding pocket or domain and said first, second and at least one additional entity; and
  • (h) assembling the first, second and at least one additional entity into a compound or complex that interacts with said binding pocket or domain by model building.


Some aspects are directed to methods for identifying a candidate inhibitor that interacts with a binding site of a BTK protein, comprising the steps of:

  • (a) producing a crystal of BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK consists essentially of SEQ ID NO: 3, wherein the crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) obtaining the structure coordinates of amino acids of the crystal of step (a) according to Table 2;
  • (c) generating a three-dimensional model of said BTK protein using the structure coordinates of the amino acids generated in step (b), wherein the root mean square deviation from backbone atoms is not more than ±2.0 Å;
  • (d) determining a binding site of said BTK protein from said three-dimensional model; and
  • (e) performing computer fitting analysis to identify the candidate inhibitor which interacts with said binding site.


Some aspects further comprise the step of:

  • (f) contacting the identified candidate inhibitor with said BTK protein in order to determine the effect of the inhibitor on BTK activity.


In some aspects, the binding site of said BTK protein determined in step (d) consists essentially of the structure coordinates, according to Table 2, of BTK amino acid residues Leu408, Gly409, Thr410, Gly411, Va1416, Ala428, Lys430, Asn439, Met449, Leu452, Va1458, Ile472, Thr474, Glu475, Tyr476, Met477, Gly480, Cys481, Asn 484, Arg525, Leu528, Ser538, Asp539, and Phe540, wherein the root mean square deviation is not more than ±2.0 Å.


Some aspects are directed to methods of using a crystal consisting essentially of a BTK binding pocket or domain in an inhibitor screening assay comprising the steps of:

  • (a) producing a crystal of BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK consists essentially of SEQ ID NO: 3, wherein said crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) providing the structure coordinates of said binding pocket or domain of the crystal of step (a), according to Table 2, on a computer capable of generating three-dimensional structural information from said structure coordinates;
  • (c) selecting a potential inhibitor by performing rational drug design with a three-dimensional structure determined for the crystal, wherein said selecting is performed in conjunction with computer modeling;
  • (d) contacting the potential inhibitor with the kinase; and
  • (e) detecting the ability of the potential inhibitor for inhibiting the kinase's enzymatic activity.


Some aspects are drawn to methods of designing a compound or complex that interacts with a BTK binding pocket or domain comprising the steps of:

  • (a) producing a crystal of human BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK consists essentially of SE( )ID NO: 3, wherein said crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) providing the structure coordinates of said binding pocket or domain of the crystal of step (a), according to Table 2, on a computer capable of generating three-dimensional structural information from said structure coordinates;
  • (c) using the computer to dock a first chemical entity in part of the binding pocket or domain;
  • (d) docking at least a second chemical entity in another part of the binding pocket or domain;
  • (e) quantifying the association between the first or second chemical entity and part of the binding pocket or domain;
  • (f) repeating steps (c) to (e) with at least one additional chemical entity, selecting a first, second and at least one additional chemical entity based on said quantified association of all of said first, second and at least one additional chemical entity;
  • (g) optionally, visually inspecting the relationship of the first, second and at least one additional chemical entity to each other in relation to the binding pocket or domain on a computer screen using the three-dimensional graphical representation of the binding pocket or domain and said first, second and at least one additional chemical entity; and
  • (h) assembling the first, second and at least one additional chemical entity into a compound or complex that interacts with said binding pocket or domain by model building.


Some aspects are directed to methods for identifying a candidate inhibitor that interacts with a binding site of a BTK protein comprising the steps of:

  • (a) producing a crystal of BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK consisting essentially of SEQ ID NO: 3, wherein said crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) determining the three-dimensional structure coordinates of BTK using the crystal in step (a);
  • (c) using the structure coordinates from step (b) to generate a three-dimensional structure of the crystallized BTK protein produced in step (a);
  • (d) employing said three-dimensional structure to design or select said candidate inhibitor;
  • (e) synthesizing said candidate inhibitor; and
  • (f) contacting said candidate inhibitor with human BTK protein to determine the ability of said candidate inhibitor to bind to human BTK.


Some aspects are directed to methods for identifying a candidate inhibitor that interacts with a binding site of a human BTK protein comprising the steps of:

  • (a) producing a crystal of BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK consisting essentially of SEQ ID NO: 3, wherein said crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) determining the three-dimensional structure coordinates of BTK using the crystal in step (a);
  • (c) using the structure coordinates from step (b) to generate a three-dimensional structure of a molecular complex consisting essentially of a binding site of amino acid residues Leu408, Gly409, Thr410, Gly411, Va1416, Ala428, Lys430, Asn439, Met449, Leu452, Va1458, Ile472, Thr474, Glu475, Tyr476, Met477, Gly480, Cys481, Asn 484, Arg525, Leu528, Ser538, Asp539, and Phe540 according to Table 2, wherein the root mean square deviation of the backbone atoms is not greater than about 2.5 Å;
  • (d) employing said three-dimensional structure to design or select said candidate inhibitor;
  • (e) synthesizing said candidate inhibitor; and
  • (f) contacting said candidate inhibitor with BTK to determine the ability of said candidate inhibitor to bind to BTK.


Some aspects of the invention are directed to a crystalline composition consisting essentially of SEQ ID NO:3, and a ligand, wherein said crystalline composition is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°. In some aspects, the ligand is a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof.


Some aspects are directed to methods for identifying a candidate inhibitor of BTK, wherein said method comprises: generating a three-dimensional structure of a binding site of BTK on a computer, wherein the three dimensional structure coordinates possess the unit cell and space group parameters of the crystalline composition consisting of SEQ ID NO:3, and Compound I, employing said three dimensional structure to design or select a candidate inhibitor; and contacting said candidate inhibitor with human BTK and measuring the ability of said candidate inhibitor to bind to BTK. In some aspects, the candidate inhibitor makes a direct covalent bond with Cys481. In some aspects, the candidate inhibitor makes a hydrogen bond with Lys430. In some aspects, the candidate inhibitor makes a hydrogen bond with Met477. In some aspects, the candidate inhibitor makes a hydrogen bond with Asp539.


Some aspects are directed to methods for identifying and or designing a candidate inhibitor using a human BTK crystal comprising a human BTK protein, wherein said method comprises:

  • a) preparing the crystalline composition of consisting of SEQ ID NO:3, and compound of Formula (I) and b) soaking another candidate inhibitor into the crystalline composition, displacing the compound of Formula (I) (original ligand) to form a inhibitor-crystal complex; c) determining the three-dimensional structure coordinates of the inhibitor-crystal complex prepared in step b); d) using the structure coordinates from step c) to design or select a candidate inhibitor; and e) contacting said candidate inhibitor with human BTK and measuring the ability of said candidate inhibitor to bind to BTK.


Some aspects are directed to methods of designing a compound or complex that interacts with a binding pocket or domain selected from the group consisting of (i) BTK amino acid residues Leu408, Gly409, Thr410, Gly411, Va1416, Ala428, Lys430, Asn439, Met449, Leu452, Va1458, Ile472, Thr474, Glu475, Tyr476, Met477, Gly480, Cys481, Asn 484, Arg525, Leu528, Ser538, Asp539, and Phe540 according to Table 2; and (ii) BTK amino acid residues according to Table 2; comprising the steps of:

  • (a) producing a crystal of BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK consisting of SEQ ID NO: I wherein said crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) providing the structure coordinates of said binding pocket or domain of the crystal of step (a), according to Table 2, on a computer capable of generating three-dimensional structural information from said structure coordinates, wherein the root mean square deviation of the backbone atoms is not greater than about 2.5 Å;
  • (c) using the computer to dock a first chemical entity in part of the binding pocket or domain;
  • (d) docking at least a second chemical entity in another part of the binding pocket or domain;
  • (e) quantifying the association between the first or second chemical entity and part of the binding pocket or domain;
  • (f) repeating steps (c) to (e) with at least one additional chemical entity, selecting a first, second and at least one additional chemical entity based on said quantified association of all of said first, second and at least one additional chemical entity;
  • (g) optionally, visually inspecting the relationship of the first, second and at least one additional chemical entity to each other in relation to the binding pocket or domain on a computer screen using the three-dimensional graphical representation of the binding pocket or domain and said first, second and at least one additional chemical entity; and
  • (h) assembling the first, second and at least one additional chemical entity into a compound or complex that interacts with said binding pocket or domain by model building.


Some aspects are directed to methods for identifying a candidate inhibitor that interacts with a binding site of a BTK protein, comprising the steps of:

  • (a) producing a crystal of BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK consisting of SEQ ID NO: 3, wherein the crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) obtaining the structure coordinates of amino acids of the crystal of step (a) according to Table 2;
  • (c) generating a three-dimensional model of said BTK protein using the structure coordinates of the amino acids generated in step (b), wherein the root mean square deviation from backbone atoms is not more than ±2.0 Å;
  • (d) determining a binding site of said human BTK protein from said three-dimensional model; and
  • (e) performing computer fitting analysis to identify the candidate inhibitor which interacts with said binding site.


Some aspects further comprise the step of:

  • (f) contacting the identified candidate inhibitor with said BTK protein in order to determine the effect of the inhibitor on BTK activity.


In some aspects, the binding site of said BTK protein determined in step (d) consists essentially of the structure coordinates, according to Table 2, of BTK amino acid residues Leu408, Gly409, Thr410, Gly411, Va1416, Ala428, Lys430, Asn439, Met449, Leu452, Va1458, Ile472, Thr474, Glu475, Tyr476, Met477, Gly480, Cys481, Asn 484, Arg525, Leu528, Ser538, Asp539, and Phe540, wherein the root mean square deviation is not more than ±2.0 Å.


Some aspects are directed to methods of using a crystal consisting a BTK binding pocket or domain in an inhibitor screening assay comprising the steps of:

  • (a) producing a crystal of BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK consists of SEQ ID NO: 3, wherein said crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) providing the structure coordinates of said binding pocket or domain of the crystal of step (a), according to Table 2, on a computer capable of generating three-dimensional structural information from said structure coordinates;
  • (c) selecting a potential inhibitor by performing rational drug design with a three-dimensional structure determined for the crystal, wherein said selecting is performed in conjunction with computer modeling;
  • (d) contacting the potential inhibitor with the kinase; and
  • (e) detecting the ability of the potential inhibitor for inhibiting the kinase's enzymatic activity.


Some aspects are drawn to methods of designing a compound or complex that interacts with a BTK binding pocket or domain comprising the steps of:

  • (a) producing a crystal of human BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK consists of SEQ ID NO: 3, wherein said crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) providing the structure coordinates of said binding pocket or domain of the crystal of step (a), according to Table 2, on a computer capable of generating three-dimensional structural information from said structure coordinates;
  • (c) using the computer to dock a first chemical entity in part of the binding pocket or domain;
  • (d) docking at least a second chemical entity in another part of the binding pocket or domain;
  • (e) quantifying the association between the first or second chemical entity and part of the binding pocket or domain;
  • (f) repeating steps (c) to (e) with at least one additional chemical entity, selecting a first, second and at least one additional chemical entity based on said quantified association of all of said first, second and at least one additional chemical entity;
  • (g) optionally, visually inspecting the relationship of the first, second and at least one additional chemical entity to each other in relation to the binding pocket or domain on a computer screen using the three-dimensional graphical representation of the binding pocket or domain and said first, second and at least one additional chemical entity; and
  • (h) assembling the first, second and at least one additional chemical entity into a compound or complex that interacts with said binding pocket or domain by model building.


Some aspects are directed to methods for identifying a candidate inhibitor that interacts with a binding site of a BTK protein comprising the steps of:

  • (a) producing a crystal of BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK consisting of SEQ ID NO: 3, wherein said crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) determining the three-dimensional structure coordinates of BTK using the crystal in step (a);
  • (c) using the structure coordinates from step (b) to generate a three-dimensional structure of the crystallized BTK protein produced in step (a);
  • (d) employing said three-dimensional structure to design or select said candidate inhibitor;
  • (e) synthesizing said candidate inhibitor; and
  • (f) contacting said candidate inhibitor with human BTK protein to determine the ability of said candidate inhibitor to bind to human BTK.


Some aspects are directed to methods for identifying a candidate inhibitor that interacts with a binding site of a human BTK protein comprising the steps of:

  • (a) producing a crystal of BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK consisting of SEQ ID NO: 3, wherein said crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) determining the three-dimensional structure coordinates of BTK using the crystal in step (a);
  • (c) using the structure coordinates from step (b) to generate a three-dimensional structure of a molecular complex consisting essentially of a binding site of amino acid residues Leu408, Gly409, Thr410, Gly411, Va1416, Ala428, Lys430, Asn439, Met449, Leu452, Va1458, Ile472, Thr474, Glu475, Tyr476, Met477, Gly480, Cys481, Asn 484, Arg525, Leu528, Ser538, Asp539, and Phe540 according to Table 2, wherein the root mean square deviation of the backbone atoms is not greater than about 2.5 Å;
  • (d) employing said three-dimensional structure to design or select said candidate inhibitor;
  • (e) synthesizing said candidate inhibitor; and
  • (f) contacting said candidate inhibitor with BTK to determine the ability of said candidate inhibitor to bind to BTK.


Methods for Determining a Candidate Inhibitors' Ability to Bind BTK

Aspects of the present disclosure also include the use of BTK binding assays to determine the ability of a candidate inhibitor to bind to BTK. In some aspects, a BTK binding assay is used to determine the level of BTK occupancy by a candidate inhibitor including but not limited to the compounds of the present disclosure. Also described herein are methods and kits for use in combination with the methods described herein to identify candidate inhibitors. In some aspects, the methods provided involve protein occupancy assays for one or more candidate inhibitors of BTK. Accordingly, described herein are protein occupancy assays for BTK inhibitors. Described herein in certain aspects is a protein occupancy assay that is an ELISA probe assay. In some aspects, the ELISA probe assay is plate based electrochemilummescent assay to determine the relative amount of a BTK that has not been bound by a candidate inhibitor. For example, in some aspects, the candidate inhibitor binds to the active site of the BTK and forms a disulfide bond with a cysteine residue. In some aspects, the assays involves binding an activity probe to free BTK that have not been bound by the candidate inhibitor. In some aspects, the activity probe comprises a BTK inhibitor attached to a detectable label (e.g., biotin) via a linker (e.g., a long chain linker). Labeling of samples with the probe allows for the detection of BTK not occupied by drug. In some aspects, the probe conjugated with the BTK is captured by a streptavidin coated plate. In some aspects, excess un-conjugated probe competes with probe labeled BTK for binding to streptavidin. Also described herein are methods for determining the efficacy of inhibitors of the BTK. Some aspects are methods for determining the efficacy of a protein modulator (e.g., inhibitor drug) on a target (e.g., target protein kinase). In some aspects, methods are provided for determining the efficacy of a candidate inhibitor on a target kinase (e.g., BTK). In some aspects, the method comprises: (a) contacting a sample comprising a BTK with a probe to form a probe-bound target kinase; (b) detecting the amount of the probe-bound target kinase in the sample; and (c) determining the efficacy of the candidate inhibitor based on the amount of probe-bound target kinase. In some aspects, the method further comprises contacting the sample with the candidate inhibitor prior to step (a) (e.g., combining the sample with the probe). In some aspects, detecting the amount of the probe-bound target kinase comprises administering a candidate inhibitor, reagent or buffer to detect the probe-bound kinase. In some aspects, the candidate inhibitor, reagent or buffer comprises horseradish peroxidase (HRP), detection antibody buffer, read buffer, wash buffer. In some aspects, detecting the presence or absence of the probe-bound target kinase comprises quantifying the amount of probe-bound target kinase. In some aspects, the quantifying step comprises fluorescence, immunofluorescence, chemiluminescence, or electrochemiluminescence. In some aspects, determining the efficacy of the candidate inhibitor comprises determining occupancy of the target kinase by the candidate inhibitor. In some aspects, the amount of probe-bound target kinase inversely correlates with the efficacy of the candidate inhibitor. For example, if a candidate inhibitor-treated sample (e.g., a sample that is contacted with the candidate inhibitor prior to contact with the probe such as a blood sample or tumor tissue) is contacted with the probe, then as the amount of probe-bound target kinases (e.g., unoccupied target kinases) detected increases, the efficacy of the candidate inhibitor decreases. In another example, if a drug-treated sample is contacted with the probe, then as the amount of probe-bound target kinase (e.g., unoccupied target kinases) detected decreases, the efficacy of the candidate inhibitor increases. In some aspects, the amount of probe-bound target kinases directly correlates with the efficacy of the candidate inhibitor. For example, if an untreated sample (e.g., a sample that is not contacted with the drug prior to contact with the probe) is contacted with the probe, then as the amount of probe-bound target kinase detected increases, the efficacy of the candidate inhibitor also increases. In another example, if an untreated sample (e.g., a sample that is not contacted with the candidate inhibitor prior to contact with the probe) is contacted with the probe, then as the amount of probe-bound target kinase detected decreases, the efficacy of the candidate inhibitor decreases. In some aspects, a candidate inhibitor is determined to be effective when the candidate inhibitor binds at least about 50% of the target kinases. Alternatively, a candidate inhibitor is determined to be effective when the drug binds at least about 60% of the target kinases. In some aspects, a candidate inhibitor is determined to be effective when the candidate inhibitor binds at least about 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, or 99% of the targets. In some aspects, the assay is performed on a sample obtained from a subject (e,g, a mammal) that has been administered a candidate inhibitor. In some aspects, the sample is obtained about 1 hour, 2 hours, 4 hours, 6 hours, 8 hours, 10 hours, 12 hours, 14 hours, 16 hours, 18 hours, 20 hours, 22 hours, 24 hours, 30 hours, 36 hours, 42 hours, 48 hours, 3 days, 4, days, 5 days, 6 days, 1 week, 2 weeks or longer after administration of the candidate inhibitor. In some aspects, the probe comprises an agent and a label. In some instances, the agent is fused to the label. In other instances, the agent is attached to the label. In another instance, the agent is attached to the label by a linker. In some aspects, the agent and the candidate inhibitor are essentially the same. In some aspects, the probe comprises a label. In some aspects, the probe comprises a label and a linker. In some aspects, the agent and the candidate inhibitor are at least about 20% identical, at least about 30% identical, at least about 40% identical, at least about 50% identical, at least about 60% identical, at least about 70% identical, at least about 80% identical, at least about 90% identical, or at least about 95% identical. In other aspects, the agent and the candidate inhibitor are different. In some aspects, the agent and the candidate inhibitor are at least about 5% different, at least about 10% different, at least about 20% different, at least about 30% different, at least about 40% different, at least about 50% different, at least about 60%) different, at least about 70% different, at least about 80% different, at least about 90% different, or at least about 95% different.


Disclosed herein are protein occupancy assay kits comprising a linker, a label, an agent, or any combination thereof. In one aspect is a protein occupancy assay kit comprising a linker and a label, wherein the linker is capable of attaching the label to an agent and the agent is a protein modulator. In another aspect is a protein occupancy assay kit comprising an agent, a linker, and a label, wherein the linker is capable of attaching to the agent and the label, thereby attaching the agent to the label. In some aspects is a protein occupancy assay kit comprising a probe, wherein the probe comprises an agent attached to a label. In some aspects is a protein occupancy assay kit comprising a probe, wherein the probe comprises an agent attached to a linker. In some aspects is a protein occupancy assay kit comprising an agent and a solid support, wherein the agent is attached to the solid support. In another aspect is a protein occupancy assay kit comprising a label and a solid support, wherein the label is attached to the solid support. In another aspect is a protein occupancy assay kit comprising a probe and a solid support, wherein the probe comprises an agent, a linker, a label, or any combination thereof. In some aspects is a protein occupancy assay kit comprising a target (e.g., protein) and a solid support, wherein the target is attached to the solid support. In some aspects, any of the kits disclosed herein further comprise a label. In some aspects, any of the kits disclosed herein further comprise a linker. In some aspects, any of the kits disclosed herein further comprise an agent. In some aspects, any of the kits disclosed herein further comprise a plurality of linkers, wherein the linkers are capable of attaching to another linker, an agent, a label, or any combination thereof. In some aspects, any of the kits disclosed herein further comprise a probe. In some aspects the probe comprises an agent, a linker, a label, or any combination thereof. In some aspects, any of the kits disclosed herein further comprise a target (e.g., protein). Exemplary aspects of agents, linkers, labels, probes, solid supports, and targets are disclosed herein. Further disclosed herein are exemplary methods for attaching probes or targets to solid supports.


In some aspects, the methods, kits, and compositions disclosed herein comprise a probe. In some aspects, the probe comprises an agent and a label. In some aspects, the agent and label are attached. In other aspects, the probe comprises an agent and a linker. In some aspects, the agent and linker are attached. In another aspect, the probe comprises an agent, a linker, and a label. In some aspects, the agent, linker and/or label are attached to each other. In some aspects, the probe comprises a label. In another aspect, the probe comprises a label and a linker. In some aspects, the label and the linker are attached. In some aspects, attachment is by chemical methods, enzymatic methods, or crosslinking methods. In some aspects, the probe is attached to a solid support. Exemplary aspects of agents, linkers, labels, and solid supports are disclosed herein.


Any of the assays and systems disclosed herein can be useful in researching and validating a candidate inhibitor. Provided herein are methods for validating a candidate inhibitor comprising (a) contacting a sample comprising a target with a probe to form a probe-bound target; (b) detecting the presence or absence of the probe-bound target; and (c) determining occupancy of the target by a candidate inhibitor based on the presence or absence of the probe-bound target, thereby validating the candidate inhibitor.


Further provided herein are methods for determining occupancy of a target comprising: a) combining a sample comprising a target with a probe; b) detecting the presence or absence of a probe-bound target; and c) determining occupancy of the target by a candidate inhibitor based on the presence or absence of the probe-bound target.


In some aspects, the method further comprises capturing the target prior to step (a) contacting the sample with the probe. In some aspects, the target is captured by an antibody. In some aspects, the antibody is an anti-target antibody. In some aspects, the antibody is attached to a solid support. In some aspects, the solid support is a microplate. In some aspects, the microplate is a MSD microplate.


In yet other aspects, the method further comprises contacting the probe-bound target with a primary detection agent. In some aspects, the primary detection agent comprises an antibody, a bead, a dye, or a fluorophore. In some aspects, the primary detection agent comprises an antibody. In some aspects, the antibody is an anti-BTK antibody. In some aspects, the method further comprises contacting the detection agent with a secondary detection agent. In some aspects, the secondary detection agent comprises an antibody, a bead, a dye, or a fluorophore. In some aspects, the primary detection agent is labeled. In some aspects, the secondary detection agent is labeled. In some aspects, the label is an electrochemiluminescent tag. In some aspects, the electrochemiluminescent tag comprises Tris(bipyridine)ruthenium(II) dicfiloride. In some aspects, the electrochemiluminescent tag is Ruthenium (II) tris-bipyridine, N-hydroxysuccinimide. In some aspects, the label is a SULFO TAG.


In some aspects, detecting the presence or absence of the probe-bound target comprises contacting the sample with a solid support. In some aspects, the solid support comprises a bead. In some aspects, the bead is a streptavidin bead. In some aspects, the bead is a magnetic bead. In some aspects, the bead is a labeled bead. In some aspects, the bead is a labeled streptavidin bead. In some aspects, the bead is a labeled with an electrochemiluminescent tag. In some aspects, the electrochemiluminescent tag comprises Tris(bipyridine)ruthenium(II) dicfiloride. In some aspects, the electrochemiluminescent tag is Ruthenium (II) tris-bipyridine, N- hydroxysuccinimide. In some aspects, the bead is a SULFO TAG bead. In some aspects, the bead is a SULFO TAG streptavidin bead.


In some aspects, the bead interacts with the probe. In some aspects, the probe comprises a label. In some aspects, the label comprises biotin. In some aspects, the bead interacts with biotin. In some aspects, the bead forms a conjugate with the probe-bound target. In some aspects, the bead is conjugated to the probe.


In some aspects, detecting the presence or absence of the probe-bound target comprises detecting the probe-bound target or a portion thereof. In some aspects, detecting the presence or absence of the probe-bound target comprises detecting the bead or a portion thereof. In some aspects, detecting the presence or absence of the probe-bound target comprises detecting the labeled bead. In some aspects, detecting the presence or absence of the probe-bound target comprises detecting an electrochemiluminescent tag. In some aspects, the electrochemiluminescent tag comprises Tris(bipyridine)ruthenium(II) dichloride. In some aspects, the electrochemiluminescent tag is Ruthenium (II) tris- bipyridine, N-hydroxysuccinimide. In some aspects, detecting the presence or absence of the probe-bound target comprises detecting a SULFO TAG. In some aspects, the detecting step comprises luminescence. In some aspects, the detecting step comprises electrochemiluminescence.


In some aspects, the method further comprises purification of the probe-bound target. In some aspects, the probe-bound target is an unoccupied target. In some aspects, the probe-bound target is a drug-occupied target. In another aspect, purification of the probe-bound target comprises magnetic separation of probe-bound targets from non-probe-bound targets.


In some aspects, the sample is a pre -treated sample, wherein the pre-treated sample is contacted with a drug prior to contact with the probe. In some aspects, the sample is a non-treated sample, wherein the sample is not contacted with a candidate inhibitor prior to contact with the label.


In some aspects, the probe comprises an agent. In some aspects, the probe comprises an agent and a linker. In some aspects, the probe comprises a label. In some aspects, the probe comprises a label and a linker. In some aspects, the agent is a known BTK inhibitor. In some aspects, the agent is a compound of Formula (I). In some aspects, the BTK inhibitor is a reversible BTK inhibitor. In some aspects, the agent is a, the BTK inhibitor is an irreversible BTK inhibitor. In some aspects, the agent is a, the BTK inhibitor is a selective, covalent BTK inhibitor. In some aspects, the agent is a, the BTK inhibitor forms a covalent bond with a cysteine residue of a Bruton's tyrosine kinase (BTK). In some aspects, the cysteine residue is cysteine 481. In some aspects, the agent is a, the BTK inhibitor is a compound of Formula (I).


In some aspects, validating the drug comprises determining the efficacy of the candidate inhibitor on a target. In some aspects, determining occupancy of the target by the drug comprises quantifying the presence or absence of probe-bound targets. In some aspects, the candidate inhibitor is effective when the occupancy of the target is at least about 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, or 99%.


Further disclosed herein is a method for determining efficacy of a test agent comprising: (a) combining a sample comprising a target with a probe; (b) detecting the presence or absence of a probe-bound target; and (c) determining efficacy of a test agent based on the presence or absence of the probe-bound target. Further disclosed herein is a method for identifying drug responders comprising: (a) combining a sample comprising a target with a probe; (b) detecting the presence or absence of a probe-bound target; and (c) identifying drug responders based on the presence or absence of the probe-bound target. Further disclosed herein is a method for identifying BTK inhibitors comprising: (a) combining a sample comprising a target with a probe; (b) detecting the presence or absence of a probe-bound target; and (c) identifying kinase modulators based on the presence or absence of the probe-bound target. Disclosed herein is a method for determining drug resistance comprising: (a) combining a sample comprising a target with a probe; (b) detecting the presence or absence of a probe-bound target; and (c) determining drug resistance based on the presence or absence of the probe-bound target.


In some aspects, the methods, assays, and systems disclosed herein comprise contacting sample comprising a target with a probe. Suitable samples for use in any of the methods, assays, and systems disclosed herein comprise, but are not limited to, a whole blood sample, peripheral blood sample, lymph sample, tissue sample, tumor biopsy sample, bone marrow sample, or other bodily fluid sample. In some aspects, the sample is a sample containing one or more cell types, or a lysate thereof, derived from a whole blood sample, peripheral blood sample, lymph sample, tissue sample, tumor biopsy sample, bone marrow sample, or other bodily fluid sample. Examples of bodily fluids include, but are not limited to, smears, sputum, biopsies, secretions, cerebrospinal fluid, bile, blood, lymph fluid, saliva, and urine. In some aspects, cells of the sample are isolated from other components of the sample prior to use in the methods provided. In some aspects, particular cell types of the sample are isolated from other cell types of the sample prior to use in the methods provided. For example, in some aspects, peripheral blood mononuclear cells (PBMCs, e.g., lymphocytes, monocytes and macrophages) of a blood sample are isolated from other cell types of the blood sample prior to use in the methods provided. For example, in some aspects, lymphocytes (e.g., B cells, T cells or NK cells) of the sample are isolated from other cell types of the sample prior to use in the methods provided. For example, in some aspects, B cells of the sample are isolated from other cell types of the sample prior to use in the methods provided. In some aspects, cells of the sample are lysed prior to use in the methods provided. For example, in some aspects, cancer cells are isolated from normal cells of the sample prior to use in the methods provided.


Any of the samples disclosed herein comprises complex populations of cells, which can be assayed as a population, or separated into sub-populations. Such cellular and acellular samples can be separated by centrifugation, elutriation, density gradient separation, apheresis, affinity selection, panning, FACS, filtration, centrifugation with Hypaque, etc. By using antibodies specific for markers identified with particular cell types, a relatively homogeneous population of cells can be obtained. Alternatively, a heterogeneous cell population can be used.


Once a sample is obtained, it can be used directly, frozen, or maintained in appropriate culture medium for short periods of time. Methods to isolate one or more cells for use according to the methods of this invention are performed according to standard techniques and protocols well-established in the art. In some aspects, the sample is obtained from a subject. Such subject can be a human or a domesticated animal such as a cow, chicken, pig, horse, rabbit, dog, cat, or goat. In some aspects, the cells used in the present invention are taken from a patient. Samples derived from an animal, e.g., human, can include, for example whole blood, sweat, tears, saliva, ear flow, sputum, lymph, bone marrow suspension, lymph, urine, saliva, semen, vaginal flow, cerebrospinal fluid, brain fluid, ascites, milk, secretions of the respiratory, intestinal or genitourinary tracts fluid, a lavage of a tissue or organ (e.g., lung) or tissue which has been removed from organs, such as breast, lung, intestine, skin, cervix, prostate, pancreas, heart, liver and stomach.


To obtain a blood sample, any technique known in the art can be used, e.g., a syringe or other vacuum suction device. A sample can be optionally pre -treated or processed prior to enrichment. Examples of pre-treatment steps include the addition of a reagent such as a stabilizer, a preservative, a fixant, a lysing reagent, a diluent, a drug, an anti-apoptotic reagent, an anti-coagulation reagent, an anti-thrombotic reagent, magnetic property regulating reagent, a buffering reagent, an osmolality regulating reagent, a pH regulating reagent, and/or a cross-linking reagent. For example, when a blood sample is obtained, a preservative such an anticoagulation agent and/or a stabilizer can be added to the sample prior to enrichment.


A sample, such as a blood sample, can be analyzed under any of the methods, assays and systems disclosed herein within 1 week, 6 days, 5 days, 4 days, 3 days, 2 days, 1 day, 12 hrs, 6 hrs, 3 hrs, 2 hrs, or 1 hr from the time the sample is obtained.


In some aspects, a sample can be combined with an enzyme or compound that selectively lyses one or more cells or components in the sample. For example, in a blood sample, platelets and/or enucleated red blood cells are selectively lysed to generate a sample enriched in nucleated cells. The cells of interest can subsequently be separated from the sample using methods known in the art.


When obtaining a sample from a subject (e.g., blood sample), the amount can vary depending upon subject size and the condition being screened. In some aspects, up to 50, 40, 30, 20, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 mL of a sample is obtained. In some aspects, 1-50, 2-40, 3-30, or 4-20 mL of sample is obtained. In some aspects, more than 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 mL of a sample is obtained.


Aspects of the present disclosure include methods of monitoring the efficacy of a candidate inhibitor. In some aspects, a BTK occupancy of greater than about 75% is indicative that the candidate inhibitor is therapeutically effective. In some aspects, a BTK occupancy of greater than about 80% is indicative that the candidate inhibitor is therapeutically effective. In some aspects, a BTK occupancy of greater than about 90% is indicative that the candidate inhibitor is therapeutically effective. In some aspects, a BTK occupancy of greater than about 95% is indicative that the candidate inhibitor is therapeutically effective. In some aspects, a BTK occupancy of greater than about 99% is indicative that the candidate inhibitor is therapeutically effective. In some aspects, a BTK occupancy of greater than about 100% is indicative that the candidate inhibitor is therapeutically effective.


Aspects of the present disclosure include the use of a BTK lanthascreen binding assay to determine the BTK occupancy by a BTK inhibitor. In some aspects, a BTK lanthascreen binding assay monitors compound binding to unphosphorylated-BTK kinase domain (UP-BTK), by competing with a fluorescent labeled tracer. In some aspects, UP-BTK, consisting of the kinase domain of non-phosphorylated BTK protein (389-659aa), is produced in a Baculovirus/insect cell expression system. In some aspects, into a 384-well plate, 2 ng of GST-tagged human BTK (389-659aa) is incubated with a BTK inhibitor compound, 50 nM of Tracer 236 and 2 nM anti-GST antibody for 60 minutes using an optimized Lanthascreen™ assay. In some aspects, after 60 minutes, plates are read at 340 nM and 615/665 nM in a multifunctional plate reader such as an Infinite F500 (Tecan). In some aspects, data is analyzed using X1fit™ version 5.3 from ID Business Solutions (Guildford), Microsoft Excel add-in.


In some aspects, binding of a candidate inhibitor to BTK in the assay described herein may be indicative of the candidate inhibitors' function when used to treat a disease or condition in a patient in need thereof. In some aspects, a BTK occupancy of greater than about 75% is indicative that the candidate inhibitor is therapeutically effective. In some aspects, binding of a candidate inhibitor to BTK in the assay described herein may be predictive of a compounds ability to inhibit BTK and thereby treat a disease or condition. In some aspects, a BTK occupancy of greater than about 75% is indicative that the candidate inhibitor is effectively inhibiting BTK. In yet other aspects binding of a candidate inhibitor to BTK in the assay described herein may be predictive of the in vivo activity of a particular candidate inhibitor based on having similar BTK occupancy in the assay. In some aspects, a BTK occupancy of greater than about 75% is indicative that the candidate inhibitor is therapeutically effective in vivo.


EXAMPLES

The following examples are for exemplary purposes only and are in no way meant to limit the invention.


Example 1: Cloning and Generation of Recombinant Baculovirus

All cloning steps were performed using standard molecular biology protocols using molecular biology kits obtained from Qiagen; restriction enzymes were obtained from New England Biolabs, PfuUltra™ DNA polymerase was obtained from Stratagene. pFastBacl, the Bac-to-Bac-system and all insect cell media/components were obtained from Invitrogen.


The gene for the kinase domain of human BTK was amplified from a first-strand cDNA (MegaMan™ Human Transcriptome Library, Stratagene). The coding region for amino acids 389-659 of human BTK was fused to a DNA-sequence coding for GST followed by a TEV-protease cleavage site and cloned into vector pFastBacl using BamHI and XhoI restriction sites. After DNA sequencing to confirm integrity of the complete insert, the plasmid was used to generate recombinant bacmid-DNA using the Bac-to-Bac system. DNA and protein sequences are represented as SEQ ID NO: 1 (BTK DNA), SEQ ID NO: 2 (GST-portion of BTK protein), and SEQ ID NO: 3 (BTK kinase domain protein).


The bacmid-DNA was transfected into Sf9 cells to generate recombinant baculovirus (P1-virus) according to standard protocols. P2-viral stocks were amplified by infecting 15mL of 519 cells (0.5×106 cells/mL in a 75 cm2 dish) in Grace's medium supplemented with 10% FCS and 0.1% Pluronic with 500 μL of P1-virus and incubation at 26° C. for 1 week.


For generation of high titer virus stock (HTVS), 500 mL of SD cells (2×106 cells/mL in a glass spinner flask) in Grace's medium supplemented with 10% FCS and 0.1% Pluronic were infected with 4 mL of viral P2-stock and incubated at 26° C. for 6 days.


Example 2: Expression of Recombinant Human BTK Kinase Domain

For expression of recombinant the human BTK kinase domain by a titerless infection protocol, 5 L of Sf9 (2×106 cells/mL in a 10 L cultibag, Sartorius Stedim) in Grace's medium supplemented with 10% FCS and 0.1% Pluronic were infected with 140 mL of HTVS (generated as described above) and grown for 64 hours on a BioWave 50 SPS (Wave Biotech) with aeration (0.1 L/min, 21 rocking motions per minute at a 10° angle) at 26° C. After expression, cells were harvested by centrifugation and stored frozen (−80° C.) until purification.


Example 3: Purification of Recombinant Human BTK Kinase Domain

Buffers were prepared and the pH values adjusted at room temperature. For preparation of the PBS buffer, a 10× stock solution was diluted. All chromatography buffers were prepared and the pH adjusted at room temperature. Chromatography buffers were filtered (0.22 ∥m), degassed and cooled to 4° C. prior to use. Reducing agents were added immediately before use.

  • 10×PBS
  • 1.4 M NaCl
  • 100 mM Na2HPO4
  • 18 mM NaH2PO4
  • 27 mM KCl


Buffer A



  • 1×PBS

  • 5 mM B-ME

  • Final pH (HCl)=7.3 (at RT)



Buffer B



  • 20 mM Tris, pH=8.0

  • 150 mM NaCl

  • 10 mM reduced Glutathione (GSH)

  • 2 mM DTT

  • Final pH (HCl)=8.0 (at RT)



Buffer C



  • 20 mM Tris/HCl, pH=8.0

  • 150 mM NaCl

  • 2 mM DTT



If not stated otherwise, all purification steps were performed at 4° C. on chromatography stations and columns obtained from GE Health Care (AKTA system). Between purification steps, the protein was kept on ice or in a cold room/fridge at 4° C. Recombinant TEV protease was prepared in house as a His-tagged protein (expressed in E. coli as soluble protein). All buffers were prepared and the pH adjusted at room temperature and then cooled to 4° C. Chromatography buffers were filtered (0.22 pm) and degassed prior to use. Reducing agents were added immediately before use. Before the protein was pooled, samples were analyzed on pre-cast SDS-gels (10%) obtained from Invitrogen. The isolated human BTK kinase domain tends to precipitate during purification which results in relatively low yield of purified protein.


Frozen cell pellets from a 5 L expression culture were thawed in 200 mL of buffer A (1×PBS, 5 mM β-ME) supplemented with four “Complete, EDTAfree Protease Inhibitor Cocktail Tablets” (Roche Applied Science) and disrupted using an Ultrathurax (Heidolph). Insoluble matter was pelleted by centrifugation at 51,000 g for 30 minutes. The initial capture step was performed in batch mode in that the cleared lysate was mixed with 10 mL GSH-Sepharose beads (GE Health Care) equilibrated in buffer A and incubated at 4° C. for 2 hours. The mixture was centrifuged for 10 minutes at 700 g to pellet the GSH-beads and the supernatant was discarded. Beads were washed twice with 40 mL buffer A and centrifuged as above. The washed beads were mixed with 5 mL buffer A and filled in an empty chromatography column (XK 16/20, GE Health Care). The column was packed by gravity flow, connected to an AKTA prime system and washed with buffer A at a flow rate of 2 mL/min. After UV-absorption at 280 nm reached a stable baseline, the buffer was changed to buffer B (20 mM Tris, pH=8.0, 150 mM NaCl, 10 mM reduced Glutathione (GSH), 2 mM DTT) and protein bound to the column was eluted at a flow rate of 2 mL/min.


Fractions containing GST-tagged human BTK kinase domain were pooled after SDS-Gel analysis and the protein concentration was determined to be 2.1 mg/mL by a standard Bradford assay.


The pooled protein was digested over night with 1.5 mg recombinant His-tagged TEV-protease, thereby dialyzing against 2 L of buffer A. Protein precipitated during dialysis was pelleted by centrifugation for 10 minutes at 4000 g and the supernatant of the centrifugation step was applied on the column used for the first affinity-step equilibrated in buffer A at a flow rate of 2 mL/min. The flow-through of the column was collected and after washing with buffer A, bound protein was eluted with 100% buffer B. This step was immediately repeated using the collected flow-through of the first run.


The pooled flow-through of the second run was concentrated to a volume of approximately 18 mL using a Millipore Amicon ultrafiltration device with a 10 kDa cutoff according to the manufacturer's instructions. The concentrated sample was buffer exchanged by size exclusion chromatography on a Superdex75 26/60 column equilibrated in buffer B 20 mM Tris/HCl, pH=8.0, 150 mM NaCl, 2 mM DTT) in two separate runs at a flow rate of 2 mL/min. In order to remove trace amounts of His-tagged TEV-protease, a 1 mL HisTrap-column was directly connected to the outlet of the Superdex-column. This procedure resulted in efficient removal of contaminating proteins, however, peak-broadening by the HisTrap-column had to be accepted.


Human BTK kinase domain eluted in a peak centered around a retention volume of approximately 190 mL. Pure protein was pooled after SDS-Gel analysis and concentrated as above to a final concentration of approximately 8-13 mg/mL as determined by a standard Bradford assay. The procedure described here yields roughly 2.5 mg of protein suitable for crystallization from a 5 L expression culture.


Example 4: Crystallization of Recombinant Human BTK Kinase Domain

Human BTK kinase domain residues 389-659 in 20 mM Tris pH 8.0, 150 mM NaCl and 2 mM dithiothreitol was mixed with 2-fold excess of Compound I, incubated overnight at 4° C. and concentrated to 8 mg/ml. Crystals of BTK:Compound I complex were grown by hanging drop vapour diffusion method using NeXtal EasyXtal 15 well plates at 4° C. Crystals were obtained overnight with a 1:1 protein complex to well solution drop (25-33% PEG MME 5K, 100 mM MES pH 6.35-6.75, 200 mM Ammonium Sulfate) and a 0.2 ratio of microseed was added to the drop. The microseed stock was generated using BTK complexed with 5 mM Adenosine crystals that were grown in similar conditions; these crystals were harvested into a stabilization solution and vortexed to create the seed stock.


Example 5: Structure Determination and Refinement

Crystals harvested were transferred briefly into a cryoprotectant solution composed of 80% well solution 20% Ethylene Glycol and flash frozen in liquid nitrogen. A dataset was collected using the IMCA17-ID beamline at Advanced Photon Source (Argonne National Laboratory). Data was processed with HKL2000 (Otwinowski and Minor, 1997). COOT was employed for model building. The phase information necessary to determine and analyze the structure was obtained by molecular replacement with a previously solved structure. Ligand restraints were generated in PHENIX. elbow and structure refined in PHENIX. refine (Liebschner et al., 2019). Coot (Emsley et al., 2010), MOE (Chemical Computing Group), and Pymol (Schrodinger) were used to analyze the structure. Crystals diffracted to 1.9 Å. Data collection and refinement statistics are presented in Table 1. Coordinates for the BTK-inhibitor complex are presented in Table 2. Unambiguous electron density was observed for the compound including a direct attachment to Cys 481 (FIG. 2).


The structure of Human BTK in complex with Compound I adopts a bilobal architecture characteristic of other members of the eukaryotic protein kinase family. Situated in the cleft formed between the N-terminal and the C-terminal lobe the ligand is bound to the ATP binding site and neighboring regions of the active site (FIG. 3). There is one monomer in the asymmetric unit and the model comprises residues Gly389 to Glu568.


The amino acid residues forming the ligand binding site and the ligand were well defined in the electron density map. The interpreted X-ray diffraction data show a clear binding mode as well as orientation and conformation of the ligand bound to its binding site.


Results: A covalent bond between acrylamide moiety of Compound I and BTK Sulfur atom of Cys 481 was observed. Hydrogen bonds were observed between Compound I and residues Asp539, Lys430, and Met477. Solvent molecules were also observed in hydrogen bonds with Compound I (FIG. 4).


The following residues can be found in the vicinity of Compound I with a maximum distance of 4.0 Å; Leu408, Gly409, Thr410, Gly411, Va1416, Ala428, Lys430, Asn439, Met449, Leu452, Va1458, Ile472, Thr474, Glu475, Tyr476, Met477, Gly480, Cys481, Asn 484, Arg525, Leu528, Ser538, Asp539, and Phe540 (FIG. 5).


REFERENCES

PHENIX: Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. D. Liebschner, P. V. Afonine, M. L. Baker, G. Bunkóczi, V. B. Chen, T. I. Croll, B. Hintze, L.-W. Hung, S. Jain, A. J. McCoy, N. W. Moriarty, R. D. Oeffner, B. K. Poon, M. G. Prisant, R. J. Read, J. S. Richardson, D. C. Richardson, M. D. Sammito, O. V. Sobolev, D. H. Stockwell, T. C. Terwilliger, A. G. Urzhumtsev, L. L. Videau, C. J. Williams, and P. D. Adams; Acta Cryst. (2019). D75, 861-877


COOT: Paul Emsley and Bernhard Lohkamp and William G. Scott and Kevin Cowtan, Features and Development of Coot, Acta Crystallographica Section D—Biological Crystallography,2010,Vol 66,486-501


HKL-2000: Z. Otwinowski and W. Minor, “Processing of X-ray Diffraction Data Collected in Oscillation Mode”, Methods in Enzymology, Volume 276: Macromolecular Crystallography, part A, p.30′7-326, 1997,C.W. Carter, Jr. & R. M. Sweet, Eds., Academic Press (New York).


IMCA-CAT Statement of Acknowledgment: Use of the IMCA-CAT beamline 17-ID (or 17-BM) at the Advanced Photon Source was supported by the companies of the Industrial Macromolecular Crystallography Association through a contract with Hauptman-Woodward Medical Research Institute.


This research used resources at the Industrial Macromolecular Crystallography Association Collaborative Access Team (IMCA-CAT) beamline 17-ID, supported by the companies of the Industrial Macromolecular Crystallography Association through a contract with Hauptman-Woodward Medical Research Institute.


Advanced Photon Source (APS) Statement of Acknowledgment: This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-ACO2-06CH11357.









TABLE 1





Data collection and refinement statistics
















Wavelength
1









Resolution range
38.15-1.904
(1.972-1.904)








Space group
P 2 21 21


Unit cell
38.155 72.394 103.946 90 90 90


Total reflections
98751









Unique reflections
23063
(2142)


Multiplicity
4.3
(4.1)


Completeness (%)
99.04
(94.78)


Mean I/sigma(I)
186.3/12.3
(37.9/10.7)








Wilson B-factor
14.67









R-merge
0.124
(0.543)


R-meas
0.141
(0.618)


R-pim
0.065
(0.290)


Reflections used in refinement
23063
(2142)


Reflections used for R-free
2000
(186)


R-work
0.1542
(0.1854)


R-free
0.1991
(0.2778)








Number of non-hydrogen atoms
2603


macromolecules
2295


ligands
47


solvent
261


Protein residues
271


RMS(bonds)
0.007


RMS (angles)
0.84


Ramachandran favored (%)
99.25


Ramachandran allowed (%)
0.75


Ramachandran outliers (%)
0


Rotamer outliers (%)
0


Clashscore
5.05


Average B-factor
18.77


macromolecules
17.73


ligands
20.07


solvent
27.72


Number of TLS groups
6









Table 2 lists the atomic structure coordinates in Protein Data Bank (PDB)-like format and header for human BTK in complex with Compound I, as derived by X-ray diffraction from crystals of the complex as obtained by ligand cocrystallization.


The following abbreviations are used in Table 2: Residue “LIG” represents Compound I. Structure figures were generated using PyMOL (The PyMOL Molecular Graphics System, Version 2.4.0 Schrodinger, LLC).









TABLE 2





Coordinates of BTK-Compound 1 Complex


























CRYST1
38.155
72.394
103.946
90.00
90.00
90.00
P 2 21 21



















SCALE1
0.026209
0.000000
0.000000
0.00000






SCALE2
0.000000
0.013813
0.000000
0.00000


SCALE3
0.000000
0.000000
0.009620
0.00000




















ATOM
1
N
GLY
A
389
−4.371
−28.126
−12.897
1.00
32.45


N


ANISOU
1
N
GLY
A
389
3958
4837
3534
731
766
70

N


ATOM
2
CA
GLY
A
389
−3.699
−28.223
−14.178
1.00
27.84


C


ANISOU
2
CA
GLY
A
389
3387
4326
2864
804
915
38

C


ATOM
3
C
GLY
A
389
−2.264
−27.734
−14.110
1.00
28.41


C


ANISOU
3
C
GLY
A
389
3237
4567
2992
836
1013
141

C


ATOM
4
O
GLY
A
389
−1.742
−27.451
−13.019
1.00
30.59


O


ANISOU
4
O
GLY
A
389
3339
4905
3379
815
937
215

O


ATOM
5
N
LEU
A
390
−1.623
−27.647
−15.273
1.00
25.19


N


ANISOU
5
N
LEU
A
390
2827
4239
2505
891
1183
138

N


ATOM
6
CA
LEU
A
390
−0.246
−27.170
−15.343
1.00
29.02


C


ANISOU
6
CA
LEU
A
390
3087
4856
3085
888
1284
227

C


ATOM
7
CB
LEU
A
390
0.195
−27.078
−16.808
1.00
29.57


C


ANISOU
7
CB
LEU
A
390
3241
4932
3061
901
1441
207

C


ATOM
8
CG
LEU
A
390
1.560
−26.468
−17.141
1.00
29.18


C


ANISOU
8
CG
LEU
A
390
2983
4990
3114
864
1579
292

C


ATOM
9
CD1
LEU
A
390
2.714
−27.361
−16.686
1.00
30.83


C


ANISOU
9
CD1
LEU
A
390
3000
5249
3466
1006
1623
291

C


ATOM
10
CD2
LEU
A
390
1.659
−26.166
−18.634
1.00
30.82


C


ANISOU
10
CD2
LEU
A
390
3336
5196
3180
858
1730
286

C


ATOM
11
C
LEU
A
390
−0.123
−25.813
−14.654
1.00
26.06


C


ANISOU
11
C
LEU
A
390
2542
4570
2788
711
1213
320

C


ATOM
12
O
LEU
A
390
−0.936
−24.915
−14.881
1.00
24.74


O


ANISOU
12
O
LEU
A
390
2490
4359
2551
569
1158
331

O


ATOM
13
N
GLY
A
391
0.882
−25.674
−13.786
1.00
25.72


N


ANISOU
13
N
GLY
A
391
2239
4628
2907
711
1178
370

N


ATOM
14
CA
GLY
A
391
1.134
−24.422
−13.107
1.00
25.04


C


ANISOU
14
CA
GLY
A
391
1975
4609
2928
526
1089
421

C


ATOM
15
C
GLY
A
391
0.505
−24.273
−11.729
1.00
32.70


C


ANISOU
15
C
GLY
A
391
2960
5534
3930
466
847
394

C


ATOM
16
O
GLY
A
391
0.841
−23.313
−11.020
1.00
31.96


O


ANISOU
16
O
GLY
A
391
2708
5499
3937
326
747
405

O


ATOM
17
N
TYR
A
392
−0.382
−25.178
−11.318
1.00
25.89


N


ANISOU
17
N
TYR
A
392
2283
4563
2991
564
761
354

N


ATOM
18
CA
TYR
A
392
−1.048
−25.086
−10.018
1.00
26.55


C


ANISOU
18
CA
TYR
A
392
2408
4598
3081
528
567
345

C


ATOM
19
CB
TYR
A
392
−2.559
−24.865
−10.184
1.00
18.80


C


ANISOU
19
CB
TYR
A
392
1673
3463
2009
437
517
309

C


ATOM
20
CG
TYR
A
392
−2.868
−23.562
−10.893
1.00
23.52


C


ANISOU
20
CG
TYR
A
392
2300
4055
2580
262
544
319

C


ATOM
21
CD1
TYR
A
392
−3.006
−22.374
−10.180
1.00
23.23


C


ANISOU
21
CD1
TYR
A
392
2207
4025
2595
109
438
330

C


ATOM
22
CE1
TYR
A
392
−3.259
−21.173
−10.826
1.00
23.49


C


ANISOU
22
CE1
TYR
A
392
2279
4025
2621
−37
483
357

C


ATOM
23
CZ
TYR
A
392
−3.372
−21.152
−12.206
1.00
29.57


C


ANISOU
23
CZ
TYR
A
392
3151
4780
3304
−16
630
386

C


ATOM
24
OH
TYR
A
392
−3.621
−19.961
−12.850
1.00
31.64


O


ANISOU
24
OH
TYR
A
392
3473
5003
3546
−133
688
443

O


ATOM
25
CE2
TYR
A
392
−3.235
−22.319
−12.943
1.00
25.53


C


ANISOU
25
CE2
TYR
A
392
2701
4287
2714
138
724
359

C


ATOM
26
CD2
TYR
A
392
−2.984
−23.513
−12.282
1.00
24.17


C


ANISOU
26
CD2
TYR
A
392
2483
4124
2579
269
683
319

C


ATOM
27
C
TYR
A
392
−0.754
−26.344
−9.207
1.00
27.85


C


ANISOU
27
C
TYR
A
392
2554
4765
3264
734
527
359

C


ATOM
28
O
TYR
A
392
−1.061
−27.457
−9.645
1.00
28.78


O


ANISOU
28
O
TYR
A
392
2810
4779
3347
869
616
341

O


ATOM
29
N
GLY
A
393
−0.136
−26.167
−8.041
1.00
30.11


N


ANISOU
29
N
GLY
A
393
2673
5166
3602
768
392
386

N


ATOM
30
CA
GLY
A
393
0.029
−27.264
−7.109
1.00
27.34


C


ANISOU
30
CA
GLY
A
393
2335
4814
3240
982
333
427

C


ATOM
31
C
GLY
A
393
−1.293
−27.668
−6.476
1.00
21.22


C


ANISOU
31
C
GLY
A
393
1810
3866
2385
987
282
435

C


ATOM
32
O
GLY
A
393
−2.332
−27.038
−6.664
1.00
19.53


O


ANISOU
32
O
GLY
A
393
1730
3555
2135
822
263
396

O


ATOM
33
N
SER
A
394
−1.254
−28.766
−5.711
1.00
25.76


N


ANISOU
33
N
SER
A
394
2445
4396
2945
1194
274
498

N


ATOM
34
CA
SER
A
394
−2.488
−29.313
−5.151
1.00
24.66


C


ANISOU
34
CA
SER
A
394
2542
4067
2760
1210
280
525

C


ATOM
35
CB
SER
A
394
−2.212
−30.653
−4.468
1.00
28.76


C


ANISOU
35
CB
SER
A
394
3123
4521
3283
1474
326
625

C


ATOM
36
OG
SER
A
394
−1.351
−30.493
−3.359
1.00
29.72


O


ANISOU
36
OG
SER
A
394
3103
4836
3353
1613
186
697

O


ATOM
37
C
SER
A
394
−3.150
−28.361
−4.163
1.00
24.13


C


ANISOU
37
C
SER
A
394
2510
4031
2625
1087
138
526

C


ATOM
38
O
SER
A
394
−4.357
−28.473
−3.920
1.00
28.46


O


ANISOU
38
O
SER
A
394
3239
4423
3151
1028
164
529

O


ATOM
39
N
TRP
A
395
−2.391
−27.434
−3.590
1.00
22.81


N


ANISOU
39
N
TRP
A
395
2169
4060
2438
1044
−5
510

N


ATOM
40
CA
TRP
A
395
−2.921
−26.466
−2.642
1.00
19.85


C


ANISOU
40
CA
TRP
A
395
1830
3721
1990
935
−145
483

C


ATOM
41
CB
TRP
A
395
−1.857
−26.155
−1.576
1.00
22.31


C


ANISOU
41
CB
TRP
A
395
1965
4256
2255
1033
−325
482

C


ATOM
42
CG
TRP
A
395
−0.681
−25.413
−2.156
1.00
29.12


C


ANISOU
42
CG
TRP
A
395
2552
5282
3231
929
−371
409

C


ATOM
43
CD1
TRP
A
395
−0.492
−24.059
−2.163
1.00
22.82


C


ANISOU
43
CD1
TRP
A
395
1636
4550
2483
710
−463
310

C


ATOM
44
NE1
TRP
A
395
0.688
−23.750
−2.794
1.00
25.84


N


ANISOU
44
NE1
TRP
A
395
1751
5061
3006
657
−443
278

N


ATOM
45
CE2
TRP
A
395
1.285
−24.910
−3.219
1.00
29.87


C


ANISOU
45
CE2
TRP
A
395
2203
5603
3544
859
−339
353

C


ATOM
46
CD2
TRP
A
395
0.449
−25.979
−2.839
1.00
24.71


C


ANISOU
46
CD2
TRP
A
395
1798
4818
2773
1034
−296
433

C


ATOM
47
CE3
TRP
A
395
0.834
−27.285
−3.161
1.00
27.62


C


ANISOU
47
CE3
TRP
A
395
2181
5156
3159
1261
−178
513

C


ATOM
48
CZ3
TRP
A
395
2.034
−27.480
−3.833
1.00
30.79


C


ANISOU
48
CZ3
TRP
A
395
2383
5640
3674
1292
−109
499

C


ATOM
49
CH2
TRP
A
395
2.847
−26.397
−4.198
1.00
32.90


C


ANISOU
49
CH2
TRP
A
395
2412
6031
4056
1106
−144
422

C


ATOM
50
CZ2
TRP
A
395
2.489
−25.106
−3.905
1.00
33.02


C


ANISOU
50
CZ2
TRP
A
395
2393
6076
4075
882
−254
350

C


ATOM
51
C
TRP
A
395
−3.353
−25.174
−3.313
1.00
21.64


C


ANISOU
51
C
TRP
A
395
2043
3923
2255
680
−152
396

C


ATOM
52
O
TRP
A
395
−3.790
−24.251
−2.614
1.00
19.86


O


ANISOU
52
O
TRP
A
395
1849
3713
1985
577
−257
356

O


ATOM
53
N
GLU
A
396
−3.246
−25.092
−4.640
1.00
18.05


N


ANISOU
53
N
GLU
A
396
1561
3428
1871
597
−34
372

N


ATOM
54
CA
GLU
A
396
−3.425
−23.848
−5.379
1.00
23.81


C


ANISOU
54
CA
GLU
A
396
2262
4149
2635
385
−23
319

C


ATOM
55
CB
GLU
A
396
−2.202
−23.541
−6.245
1.00
27.13


C


ANISOU
55
CB
GLU
A
396
2481
4684
3143
349
49
315

C


ATOM
56
CG
GLU
A
396
−1.038
−23.005
−5.442
1.00
30.43


C


ANISOU
56
CG
GLU
A
396
2653
5279
3631
334
−74
291

C


ATOM
57
CD
GLU
A
396
0.143
−22.658
−6.308
1.00
37.54


C


ANISOU
57
CD
GLU
A
396
3320
6284
4658
277
27
292

C


ATOM
58
OE1
GLU
A
396
0.543
−23.502
−7.143
1.00
32.56


O


ANISOU
58
OE1
GLU
A
396
2673
5661
4037
398
176
334

O


ATOM
59
OE2
GLU
A
396
0.659
−21.533
−6.153
1.00
38.01


O


ANISOU
59
OE2
GLU
A
396
3219
6406
4819
107
−29
246

O


ATOM
60
C
GLU
A
396
−4.665
−23.909
−6.256
1.00
22.03


C


ANISOU
60
C
GLU
A
396
2231
3758
2382
317
67
307

C


ATOM
61
O
GLU
A
396
−4.819
−24.831
−7.064
1.00
21.43


O


ANISOU
61
O
GLU
A
396
2225
3614
2302
396
174
308

O


ATOM
62
N
ILE
A
397
−5.524
−22.909
−6.117
1.00
16.44


N


ANISOU
62
N
ILE
A
397
1600
2990
1658
177
15
280

N


ATOM
63
CA
ILE
A
397
−6.723
−22.793
−6.937
1.00
13.45


C


ANISOU
63
CA
ILE
A
397
1373
2481
1254
112
67
262

C


ATOM
64
CB
ILE
A
397
−7.933
−22.377
−6.075
1.00
18.66


C


ANISOU
64
CB
ILE
A
397
2142
3053
1893
65
−5
250

C


ATOM
65
CG1
ILE
A
397
−8.477
−23.610
−5.329
1.00
18.40


C


ANISOU
65
CG1
ILE
A
397
2191
2948
1852
190
15
275

C


ATOM
66
CD1
ILE
A
397
−9.572
−23.332
−4.390
1.00
32.00


C


ANISOU
66
CD1
ILE
A
397
4005
4596
3557
168
−18
281

C


ATOM
67
CG2
ILE
A
397
−8.995
−21.678
−6.918
1.00
15.22


C


ANISOU
67
CG2
ILE
A
397
1800
2530
1452
−36
9
226

C


ATOM
68
C
ILE
A
397
−6.455
−21.796
−8.053
1.00
13.64


C


ANISOU
68
C
ILE
A
397
1366
2530
1288
−4
118
260

C


ATOM
69
O
ILE
A
397
−5.795
−20.769
−7.847
1.00
17.36


O


ANISOU
69
O
ILE
A
397
1729
3061
1806
−102
92
267

O


ATOM
70
N
ASP
A
398
−6.948
−22.107
−9.245
1.00
13.46


N


ANISOU
70
N
ASP
A
398
1442
2455
1218
12
196
250

N


ATOM
71
CA
ASP
A
398
−6.868
−21.172
−10.361
1.00
13.84


C


ANISOU
71
CA
ASP
A
398
1510
2516
1234
−69
261
274

C


ATOM
72
CB
ASP
A
398
−7.035
−21.914
−11.690
1.00
17.18


C


ANISOU
72
CB
ASP
A
398
2028
2933
1565
16
353
250

C


ATOM
73
CG
ASP
A
398
−6.839
−21.011
−12.907
1.00
24.12


C


ANISOU
73
CG
ASP
A
398
2948
3844
2370
−28
446
302

C


ATOM
74
OD1
ASP
A
398
−6.788
−19.763
−12.774
1.00
16.57


O


ANISOU
74
OD1
ASP
A
398
1968
2876
1453
−138
443
364

O


ATOM
75
OD2
ASP
A
398
−6.747
−21.569
−14.015
1.00
26.52


O


ANISOU
75
OD2
ASP
A
398
3330
4178
2570
60
534
282

O


ATOM
76
C
ASP
A
398
−7.944
−20.108
−10.180
1.00
12.93


C


ANISOU
76
C
ASP
A
398
1486
2318
1110
−167
188
277

C


ATOM
77
O
ASP
A
398
−9.137
−20.429
−10.228
1.00
14.15


O


ANISOU
77
O
ASP
A
398
1751
2397
1228
−142
138
240

O


ATOM
78
N
PRO
A
399
−7.581
−18.845
−9.941
1.00
16.51


N


ANISOU
78
N
PRO
A
399
1885
2773
1616
−280
181
311

N


ATOM
79
CA
PRO
A
399
−8.623
−17.834
−9.722
1.00
12.64


C


ANISOU
79
CA
PRO
A
399
1493
2185
1125
−351
121
313

C


ATOM
80
CB
PRO
A
399
−7.822
−16.545
−9.492
1.00
15.43


C


ANISOU
80
CB
PRO
A
399
1761
2529
1571
−481
145
342

C


ATOM
81
CG
PRO
A
399
−6.539
−16.791
−10.206
1.00
20.92


C


ANISOU
81
CG
PRO
A
399
2337
3317
2296
−483
263
383

C


ATOM
82
CD
PRO
A
399
−6.240
−18.239
−9.930
1.00
19.35


C


ANISOU
82
CD
PRO
A
399
2086
3205
2062
−355
241
342

C


ATOM
83
C
PRO
A
399
−9.570
−17.700
−10.900
1.00
17.15


C


ANISOU
83
C
PRO
A
399
2203
2710
1604
−315
147
338

C


ATOM
84
O
PRO
A
399
−10.713
−17.273
−10.712
1.00
16.72


O


ANISOU
84
O
PRO
A
399
2231
2581
1540
−319
78
326

O


ATOM
85
N
LYS
A
400
−9.140
−18.070
−12.104
1.00
13.37


N


ANISOU
85
N
LYS
A
400
1750
2286
1045
−260
241
366

N


ATOM
86
CA
LYS
A
400
−10.030
−17.994
−13.257
1.00
15.08


C


ANISOU
86
CA
LYS
A
400
2110
2488
1133
−198
239
376

C


ATOM
87
CB
LYS
A
400
−9.255
−18.271
−14.551
1.00
15.76


C


ANISOU
87
CB
LYS
A
400
2229
2655
1103
−131
373
416

C


ATOM
88
CG
LYS
A
400
−8.191
−17.227
−14.845
1.00
16.95


C


ANISOU
88
CG
LYS
A
400
2324
2819
1298
−207
522
540

C


ATOM
89
CD
LYS
A
400
−7.400
−17.537
−16.093
1.00
23.88


C


ANISOU
89
CD
LYS
A
400
3234
3784
2056
−126
694
594

C


ATOM
90
CE
LYS
A
400
−6.179
−16.625
−16.146
1.00
34.38


C


ANISOU
90
CE
LYS
A
400
4443
5116
3503
−230
871
715

C


ATOM
91
NZ
LYS
A
400
−5.783
−16.275
−17.523
1.00
43.76


N


ANISOU
91
NZ
LYS
A
400
5741
6292
4595
−181
1021
778

N


ATOM
92
C
LYS
A
400
−11.207
−18.945
−13.120
1.00
17.36


C


ANISOU
92
C
LYS
A
400
2452
2746
1397
−135
127
272

C


ATOM
93
O
LYS
A
400
−12.196
−18.797
−13.847
1.00
13.70


O


ANISOU
93
O
LYS
A
400
2084
2272
850
−92
66
252

O


ATOM
94
N
ASP
A
401
−11.125
−19.909
−12.203
1.00
12.09


N


ANISOU
94
N
ASP
A
401
1719
2063
810
−124
100
211

N


ATOM
95
CA
ASP
A
401
−12.231
−20.819
−11.952
1.00
13.17


C


ANISOU
95
CA
ASP
A
401
1890
2139
976
−90
25
120

C


ATOM
96
CB
ASP
A
401
−11.715
−22.133
−11.339
1.00
13.99


C


ANISOU
96
CB
ASP
A
401
1946
2227
1143
−42
65
81

C


ATOM
97
CG
ASP
A
401
−11.015
−23.028
−12.358
1.00
21.28


C


ANISOU
97
CG
ASP
A
401
2894
3193
1998
39
142
37

C


ATOM
98
OD1
ASP
A
401
−11.162
−22.787
−13.574
1.00
16.48


O


ANISOU
98
OD1
ASP
A
401
2360
2628
1275
63
149
12

O


ATOM
99
OD2
ASP
A
401
−10.329
−23.983
−11.938
1.00
19.56


O


ANISOU
99
OD2
ASP
A
401
2634
2967
1831
99
198
28

O


ATOM
100
C
ASP
A
401
−13.283
−20.223
−11.023
1.00
12.56


C


ANISOU
100
C
ASP
A
401
1809
1990
975
−139
−53
124

C


ATOM
101
O
ASP
A
401
−14.244
−20.921
−10.693
1.00
12.86


O


ANISOU
101
O
ASP
A
401
1848
1967
1071
−127
−94
60

O


ATOM
102
N
LEU
A
402
−13.114
−18.982
−10.562
1.00
10.98


N


ANISOU
102
N
LEU
A
402
1598
1782
791
−197
−57
192

N


ATOM
103
CA
LEU
A
402
−14.025
−18.381
−9.591
1.00
9.88


C


ANISOU
103
CA
LEU
A
402
1463
1573
718
−228
−110
190

C


ATOM
104
CB
LEU
A
402
−13.235
−17.599
−8.536
1.00
9.82


C


ANISOU
104
CB
LEU
A
402
1416
1564
750
−287
−98
221

C


ATOM
105
CG
LEU
A
402
−12.249
−18.441
−7.750
1.00
9.85


C


ANISOU
105
CG
LEU
A
402
1347
1626
768
−268
−81
207

C


ATOM
106
CD1
LEU
A
402
−11.376
−17.527
−6.882
1.00
10.30


C


ANISOU
106
CD1
LEU
A
402
1349
1709
854
−334
−104
210

C


ATOM
107
CD2
LEU
A
402
−13.003
−19.450
−6.888
1.00
9.86


C


ANISOU
107
CD2
LEU
A
402
1366
1588
794
−206
−90
180

C


ATOM
108
C
LEU
A
402
−15.030
−17.450
−10.271
1.00
12.37


C


ANISOU
108
C
LEU
A
402
1839
1855
1007
−219
−157
209

C


ATOM
109
O
LEU
A
402
−14.683
−16.704
−11.187
1.00
10.89


O


ANISOU
109
O
LEU
A
402
1701
1688
749
−215
−133
270

O


ATOM
110
N
THR
A
403
−16.278
−17.500
−9.816
1.00
12.87


N


ANISOU
110
N
THR
A
403
1895
1866
1131
−201
−211
171

N


ATOM
111
CA
THR
A
403
−17.317
−16.552
−10.208
1.00
11.44


C


ANISOU
111
CA
THR
A
403
1746
1652
947
−170
−267
193

C


ATOM
112
CB
THR
A
403
−18.523
−17.273
−10.829
1.00
20.40


C


ANISOU
112
CB
THR
A
403
2847
2806
2098
−116
−352
114

C


ATOM
113
OG1
THR
A
403
−18.121
−17.981
−12.009
1.00
19.53


O


ANISOU
113
OG1
THR
A
403
2767
2770
1882
−84
−376
73

O


ATOM
114
CG2
THR
A
403
−19.655
−16.285
−11.178
1.00
14.14


C


ANISOU
114
CG2
THR
A
403
2062
1999
1311
−55
−429
141

C


ATOM
115
C
THR
A
403
−17.739
−15.819
−8.943
1.00
10.17


C


ANISOU
115
C
THR
A
403
1577
1414
873
−193
−251
205

C


ATOM
116
O
THR
A
403
−18.223
−16.449
−7.999
1.00
13.14


O


ANISOU
116
O
THR
A
403
1907
1767
1320
−193
−237
162

O


ATOM
117
N
PHE
A
404
−17.536
−14.512
−8.903
1.00
11.70


N


ANISOU
117
N
PHE
A
404
1827
1557
1062
−209
−234
264

N


ATOM
118
CA
PHE
A
404
−17.874
−13.728
−7.717
1.00
11.49


C


ANISOU
118
CA
PHE
A
404
1815
1447
1103
−224
−216
253

C


ATOM
119
CB
PHE
A
404
−16.950
−12.513
−7.592
1.00
14.83


C


ANISOU
119
CB
PHE
A
404
2297
1806
1531
−293
−176
291

C


ATOM
120
CG
PHE
A
404
−15.515
−12.876
−7.314
1.00
18.87


C


ANISOU
120
CG
PHE
A
404
2763
2375
2031
−378
−151
272

C


ATOM
121
CD2
PHE
A
404
−14.605
−13.008
−8.344
1.00
25.13


C


ANISOU
121
CD2
PHE
A
404
3541
3220
2786
−408
−113
326

C


ATOM
122
CE2
PHE
A
404
−13.287
−13.352
−8.090
1.00
27.49


C


ANISOU
122
CE2
PHE
A
404
3763
3584
3098
−476
−86
308

C


ATOM
123
CZ
PHE
A
404
−12.875
−13.580
−6.792
1.00
30.67


C


ANISOU
123
CZ
PHE
A
404
4110
4011
3530
−506
−127
232

C


ATOM
124
CE1
PHE
A
404
−13.778
−13.456
−5.756
1.00
26.97


C


ANISOU
124
CE1
PHE
A
404
3687
3494
3065
−467
−168
180

C


ATOM
125
CD1
PHE
A
404
−15.087
−13.106
−6.021
1.00
23.07


C


ANISOU
125
CD1
PHE
A
404
3262
2925
2579
−409
−165
202

C


ATOM
126
C
PHE
A
404
−19.330
−13.288
−7.809
1.00
20.16


C


ANISOU
126
C
PHE
A
404
2912
2498
2249
−143
−250
255

C


ATOM
127
O
PHE
A
404
−19.747
−12.724
−8.822
1.00
17.77


O


ANISOU
127
O
PHE
A
404
2644
2192
1915
−84
−289
307

O


ATOM
128
N
LEU
A
405
−20.097
−13.540
−6.748
1.00
14.31


N


ANISOU
128
N
LEU
A
405
2129
1727
1579
−122
−228
209

N


ATOM
129
CA
LEU
A
405
−21.532
−13.302
−6.769
1.00
14.05


C


ANISOU
129
CA
LEU
A
405
2048
1666
1624
−39
−248
202

C


ATOM
130
CB
LEU
A
405
−22.283
−14.629
−6.547
1.00
10.88


C


ANISOU
130
CB
LEU
A
405
1528
1306
1300
−38
−243
145

C


ATOM
131
CG
LEU
A
405
−22.241
−15.649
−7.702
1.00
21.29


C


ANISOU
131
CG
LEU
A
405
2790
2699
2599
−53
−321
108

C


ATOM
132
CD1
LEU
A
405
−22.918
−16.955
−7.326
1.00
21.09


C


ANISOU
132
CD1
LEU
A
405
2650
2667
2695
−80
−291
39

C


ATOM
133
CD2
LEU
A
405
−22.870
−15.090
−8.961
1.00
18.23


C


ANISOU
133
CD2
LEU
A
405
2393
2356
2177
22
−438
117

C


ATOM
134
C
LEU
A
405
−22.004
−12.269
−5.752
1.00
17.39


C


ANISOU
134
C
LEU
A
405
2517
1994
2096
−1
−189
202

C


ATOM
135
O
LEU
A
405
−22.918
−11.509
−6.054
1.00
18.31


O


ANISOU
135
O
LEU
A
405
2629
2067
2262
84
−207
228

O


ATOM
136
N
LYS
A
406
−21.423
−12.213
−4.552
1.00
12.32


N


ANISOU
136
N
LYS
A
406
1926
1324
1431
−43
−125
166

N


ATOM
137
CA
LYS
A
406
−21.906
−11.283
−3.536
1.00
14.08


C


ANISOU
137
CA
LYS
A
406
2211
1457
1681
6
−64
138

C


ATOM
138
CB
LYS
A
406
−23.061
−11.895
−2.734
1.00
18.34


C


ANISOU
138
CB
LYS
A
406
2675
2008
2284
79
13
119

C


ATOM
139
CG
LYS
A
406
−23.658
−10.968
−1.693
1.00
24.26


C


ANISOU
139
CG
LYS
A
406
3494
2673
3050
159
100
86

C


ATOM
140
CD
LYS
A
406
−24.962
−11.524
−1.111
1.00
33.29


C


ANISOU
140
CD
LYS
A
406
4534
3829
4286
243
207
92

C


ATOM
141
CE
LYS
A
406
−24.760
−12.877
−0.437
1.00
39.62


C


ANISOU
141
CE
LYS
A
406
5300
4695
5060
207
281
98

C


ATOM
142
NZ
LYS
A
406
−26.007
−13.388
0.225
1.00
48.43


N


ANISOU
142
NZ
LYS
A
406
6314
5799
6287
277
433
117

N


ATOM
143
C
LYS
A
406
−20.777
−10.898
−2.584
1.00
15.69


C


ANISOU
143
C
LYS
A
406
2510
1639
1811
−61
−49
82

C


ATOM
144
O
LYS
A
406
−20.002
−11.753
−2.154
1.00
15.52


O


ANISOU
144
O
LYS
A
406
2471
1700
1726
−106
−57
62

O


ATOM
145
N
GLU
A
407
−20.713
−9.619
−2.225
1.00
13.73


N


ANISOU
145
N
GLU
A
407
2361
1278
1577
−57
−33
47

N


ATOM
146
CA
GLU
A
407
−19.765
−9.164
−1.210
1.00
15.97


C


ANISOU
146
CA
GLU
A
407
2729
1539
1801
−121
−40
−51

C


ATOM
147
CB
GLU
A
407
−19.401
−7.692
−1.403
1.00
19.95


C


ANISOU
147
CB
GLU
A
407
3331
1884
2366
−173
−42
−85

C


ATOM
148
CG
GLU
A
407
−18.398
−7.175
−0.373
1.00
26.13


C


ANISOU
148
CG
GLU
A
407
4183
2638
3108
−262
−76
−229

C


ATOM
149
CD
GLU
A
407
−17.629
−5.938
−0.855
1.00
44.99


C


ANISOU
149
CD
GLU
A
407
6625
4865
5602
−385
−83
−256

C


ATOM
150
OE1
GLU
A
407
−17.412
−5.794
−2.084
1.00
42.31


O


ANISOU
150
OE1
GLU
A
407
6254
4492
5330
−428
−64
−133

O


ATOM
151
OE2
GLU
A
407
−17.240
−5.110
0.002
1.00
50.02


O


ANISOU
151
OE2
GLU
A
407
7347
5404
6254
−439
−99
−405

O


ATOM
152
C
GLU
A
407
−20.369
−9.384
0.171
1.00
17.76


C


ANISOU
152
C
GLU
A
407
2999
1782
1965
−31
23
−119

C


ATOM
153
O
GLU
A
407
−21.462
−8.890
0.459
1.00
17.74


O


ANISOU
153
O
GLU
A
407
3026
1704
2009
69
98
−121

O


ATOM
154
N
LEU
A
408
−19.665
−10.124
1.025
1.00
13.96


N


ANISOU
154
N
LEU
A
408
2525
1406
1371
−45
3
−164

N


ATOM
155
CA
LEU
A
408
−20.178
−10.397
2.361
1.00
14.58


C


ANISOU
155
CA
LEU
A
408
2673
1516
1350
62
81
−208

C


ATOM
156
CB
LEU
A
408
−19.684
−11.757
2.847
1.00
14.10


C


ANISOU
156
CB
LEU
A
408
2578
1595
1184
83
81
−166

C


ATOM
157
CG
LEU
A
408
−20.045
−12.857
1.852
1.00
13.10


C


ANISOU
157
CG
LEU
A
408
2320
1498
1159
63
107
−50

C


ATOM
158
CD1
LEU
A
408
−19.528
−14.195
2.335
1.00
15.19


C


ANISOU
158
CD1
LEU
A
408
2569
1863
1338
94
126
−0

C


ATOM
159
CD2
LEU
A
408
−21.562
−12.896
1.620
1.00
12.95


C


ANISOU
159
CD2
LEU
A
408
2244
1412
1264
129
218
1

C


ATOM
160
C
LEU
A
408
−19.802
−9.332
3.380
1.00
22.39


C


ANISOU
160
C
LEU
A
408
3805
2451
2250
72
56
−356

C


ATOM
161
O
LEU
A
408
−20.494
−9.195
4.393
1.00
21.65


O


ANISOU
161
O
LEU
A
408
3804
2347
2076
190
148
−401

O


ATOM
162
N
GLY
A
409
−18.744
−8.580
3.145
1.00
17.85


N


ANISOU
162
N
GLY
A
409
3250
1836
1696
−49
−53
−443

N


ATOM
163
CA
GLY
A
409
−18.303
−7.571
4.078
1.00
18.51


C


ANISOU
163
CA
GLY
A
409
3461
1856
1716
−66
−101
−623

C


ATOM
164
C
GLY
A
409
−16.796
−7.581
4.172
1.00
19.02


C


ANISOU
164
C
GLY
A
409
3478
2001
1749
−202
−255
−719

C


ATOM
165
O
GLY
A
409
−16.111
−8.293
3.442
1.00
17.88


O


ANISOU
165
O
GLY
A
409
3204
1948
1643
−275
−302
−629

O


ATOM
166
N
THR
A
410
−16.281
−6.783
5.101
1.00
24.11


N


ANISOU
166
N
THR
A
410
4220
2615
2327
−231
−336
−920

N


ATOM
167
CA
THR
A
410
−14.848
−6.612
5.297
1.00
29.32


C


ANISOU
167
CA
THR
A
410
4810
3346
2983
−372
−505
−1058

C


ATOM
168
CB
THR
A
410
−14.435
−5.153
5.080
1.00
35.35


C


ANISOU
168
CB
THR
A
410
5602
3903
3928
−531
−532
−1206

C


ATOM
169
OG1
THR
A
410
−14.654
−4.785
3.712
1.00
33.56


O


ANISOU
169
OG1
THR
A
410
5329
3516
3904
−619
−434
−1050

O


ATOM
170
CG2
THR
A
410
−12.973
−4.953
5.430
1.00
38.61


C


ANISOU
170
CG2
THR
A
410
5855
4426
4390
−661
−685
−1357

C


ATOM
171
C
THR
A
410
−14.473
−7.055
6.702
1.00
29.71


C


ANISOU
171
C
THR
A
410
4883
3593
2812
−261
−590
−1172

C


ATOM
172
O
THR
A
410
−15.059
−6.582
7.682
1.00
27.16


O


ANISOU
172
O
THR
A
410
4680
3251
2390
−158
−541
−1266

O


ATOM
173
N
GLY
A
411
−13.513
−7.970
6.792
1.00
33.07


N


ANISOU
173
N
GLY
A
411
5173
4220
3171
−271
−691
−1136

N


ATOM
174
CA
GLY
A
411
−12.925
−8.377
8.047
1.00
38.17


C


ANISOU
174
CA
GLY
A
411
5807
5068
3629
−194
−772
−1201

C


ATOM
175
C
GLY
A
411
−11.546
−7.786
8.244
1.00
44.23


C


ANISOU
175
C
GLY
A
411
6463
5888
4456
−366
−935
−1355

C


ATOM
176
O
GLY
A
411
−11.180
−6.769
7.641
1.00
45.77


O


ANISOU
176
O
GLY
A
411
6608
5935
4845
−549
−953
−1460

O


ATOM
177
N
GLN
A
412
−10.759
−8.441
9.101
1.00
51.02


N


ANISOU
177
N
GLN
A
412
7288
6937
5161
−304
−1050
−1349

N


ATOM
178
CA
GLN
A
412
−9.447
−7.895
9.436
1.00
56.93


C


ANISOU
178
CA
GLN
A
412
7945
7731
5955
−446
−1233
−1492

C


ATOM
179
CB
GLN
A
412
−8.950
−8.469
10.764
1.00
64.38


C


ANISOU
179
CB
GLN
A
412
8918
8875
6670
−298
−1353
−1520

C


ATOM
180
CG
GLN
A
412
−8.009
−9.659
10.638
1.00
65.80


C


ANISOU
180
CG
GLN
A
412
8944
9229
6829
−229
−1446
−1388

C


ATOM
181
CD
GLN
A
412
−7.214
−9.897
11.914
1.00
71.15


C


ANISOU
181
CD
GLN
A
412
9621
10088
7323
−123
−1616
−1472

C


ATOM
182
OE1
GLN
A
412
−7.456
−10.862
12.642
1.00
78.01


O


ANISOU
182
OE1
GLN
A
412
10564
11078
7997
90
−1588
−1360

O


ATOM
183
NE2
GLN
A
412
−6.261
−9.011
12.190
1.00
65.68


N


ANISOU
183
NE2
GLN
A
412
8847
9408
6702
−270
−1793
−1668

N


ATOM
184
C
GLN
A
412
−8.438
−8.155
8.328
1.00
55.35


C


ANISOU
184
C
GLN
A
412
7540
7536
5953
−586
−1300
−1419

C


ATOM
185
O
GLN
A
412
−7.614
−7.287
8.019
1.00
62.31


O


ANISOU
185
O
GLN
A
412
8331
8332
7014
−774
−1387
−1528

O


ATOM
186
N
PHE
A
413
−8.485
−9.341
7.723
1.00
43.88


N


ANISOU
186
N
PHE
A
413
6012
6169
4489
−492
−1250
−1233

N


ATOM
187
CA
PHE
A
413
−7.672
−9.628
6.553
1.00
44.77


C


ANISOU
187
CA
PHE
A
413
5933
6277
4799
−598
−1278
−1154

C


ATOM
188
CB
PHE
A
413
−7.589
−11.137
6.318
1.00
48.52


C


ANISOU
188
CB
PHE
A
413
6345
6899
5192
−438
−1245
−973

C


ATOM
189
CG
PHE
A
413
−6.763
−11.868
7.338
1.00
51.48


C


ANISOU
189
CG
PHE
A
413
6672
7462
5425
−309
−1365
−971

C


ATOM
190
CD1
PHE
A
413
−5.378
−11.766
7.325
1.00
54.09


C


ANISOU
190
CD1
PHE
A
413
6806
7885
5859
−386
−1515
−1039

C


ATOM
191
CE1
PHE
A
413
−4.615
−12.438
8.253
1.00
55.64


C


ANISOU
191
CE1
PHE
A
413
6955
8263
5924
−250
−1639
−1041

C


ATOM
192
CZ
PHE
A
413
−5.232
−13.228
9.204
1.00
53.60


C


ANISOU
192
CZ
PHE
A
413
6859
8078
5429
−33
−1597
−962

C


ATOM
193
CE2
PHE
A
413
−6.615
−13.341
9.224
1.00
48.01


C


ANISOU
193
CE2
PHE
A
413
6342
7266
4634
34
−1424
−883

C


ATOM
194
CD2
PHE
A
413
−7.369
−12.669
8.295
1.00
44.91


C


ANISOU
194
CD2
PHE
A
413
5981
6710
4372
−103
−1316
−893

C


ATOM
195
C
PHE
A
413
−8.197
−8.964
5.290
1.00
36.95


C


ANISOU
195
C
PHE
A
413
4944
5080
4017
−728
−1169
−1130

C


ATOM
196
O
PHE
A
413
−7.521
−9.021
4.257
1.00
41.22


O


ANISOU
196
O
PHE
A
413
5306
5600
4757
−823
−1159
−1081

O


ATOM
197
N
GLY
A
414
−9.380
−8.354
5.335
1.00
29.48


N


ANISOU
197
N
GLY
A
414
4162
3997
3042
−718
−1050
−1164

N


ATOM
198
CA
GLY
A
414
−9.929
−7.751
4.140
1.00
29.38


C


ANISOU
198
CA
GLY
A
414
4131
3785
3245
−793
−930
−1131

C


ATOM
199
C
GLY
A
414
−11.301
−8.261
3.746
1.00
28.28


C


ANISOU
199
C
GLY
A
414
4143
3587
3016
−684
−779
−957

C


ATOM
200
O
GLY
A
414
−12.074
−8.755
4.579
1.00
23.99


O


ANISOU
200
O
GLY
A
414
3721
3106
2289
−512
−757
−947

O


ATOM
201
N
VAL
A
415
−11.600
−8.153
2.467
1.00
20.00


N


ANISOU
201
N
VAL
A
415
3056
2423
2120
−747
−654
−802

N


ATOM
202
CA
VAL
A
415
−12.939
−8.396
1.957
1.00
18.63


C


ANISOU
202
CA
VAL
A
415
2977
2168
1934
−635
−513
−649

C


ATOM
203
CB
VAL
A
415
−13.107
−7.704
0.589
1.00
20.48


C


ANISOU
203
CB
VAL
A
415
3197
2237
2348
−731
−414
−540

C


ATOM
204
CG1
VAL
A
415
−14.463
−8.043
−0.013
1.00
28.18


C


ANISOU
204
CG1
VAL
A
415
4233
3166
3306
−602
−307
−390

C


ATOM
205
CG2
VAL
A
415
−12.952
−6.217
0.744
1.00
22.00


C


ANISOU
205
CG2
VAL
A
415
3467
2224
2669
−847
−409
−661

C


ATOM
206
C
VAL
A
415
−13.199
−9.893
1.853
1.00
17.19


C


ANISOU
206
C
VAL
A
415
2744
2145
1644
−507
−485
−513

C


ATOM
207
O
VAL
A
415
−12.300
−10.676
1.524
1.00
20.78


O


ANISOU
207
O
VAL
A
415
3073
2728
2096
−532
−532
−469

O


ATOM
208
N
VAL
A
416
−14.440
−10.292
2.112
1.00
15.73


N


ANISOU
208
N
VAL
A
416
2647
1936
1393
−373
−395
−445

N


ATOM
209
CA
VAL
A
416
−14.880
−11.670
1.950
1.00
15.05


C


ANISOU
209
CA
VAL
A
416
2521
1945
1251
−268
−336
−314

C


ATOM
210
CB
VAL
A
416
−15.296
−12.303
3.292
1.00
14.96


C


ANISOU
210
CB
VAL
A
416
2599
2015
1070
−118
−312
−330

C


ATOM
211
CG1
VAL
A
416
−15.771
−13.743
3.070
1.00
16.80


C


ANISOU
211
CG1
VAL
A
416
2790
2301
1291
−28
−220
−183

C


ATOM
212
CG2
VAL
A
416
−14.138
−12.269
4.248
1.00
16.47


C


ANISOU
212
CG2
VAL
A
416
2796
2337
1127
−110
−452
−447

C


ATOM
213
C
VAL
A
416
−16.036
−11.681
0.963
1.00
15.82


C


ANISOU
213
C
VAL
A
416
2616
1940
1454
−250
−231
−206

C


ATOM
214
O
VAL
A
416
−16.965
−10.871
1.075
1.00
14.01


O


ANISOU
214
O
VAL
A
416
2461
1596
1264
−218
−177
−225

O


ATOM
215
N
LYS
A
417
−15.977
−12.588
−0.006
1.00
12.07


N


ANISOU
215
N
LYS
A
417
2053
1512
1022
−258
−213
−105

N


ATOM
216
CA
LYS
A
417
−17.016
−12.683
−1.017
1.00
17.36


C


ANISOU
216
CA
LYS
A
417
2701
2117
1778
−237
−153
−23

C


ATOM
217
CB
LYS
A
417
−16.488
−12.281
−2.396
1.00
11.70


C


ANISOU
217
CB
LYS
A
417
1943
1377
1125
−321
−179
23

C


ATOM
218
CG
LYS
A
417
−15.866
−10.892
−2.400
1.00
17.54


C


ANISOU
218
CG
LYS
A
417
2729
2024
1910
−412
−198
−25

C


ATOM
219
CD
LYS
A
417
−16.240
−10.109
−3.640
1.00
17.62


C


ANISOU
219
CD
LYS
A
417
2769
1933
1994
−427
−162
58

C


ATOM
220
CE
LYS
A
417
−15.429
−8.840
−3.736
1.00
26.18


C


ANISOU
220
CE
LYS
A
417
3894
2899
3153
−541
−150
31

C


ATOM
221
NZ
LYS
A
417
−15.778
−8.073
−4.957
1.00
32.66


N


ANISOU
221
NZ
LYS
A
417
4772
3610
4030
−530
−90
148

N


ATOM
222
C
LYS
A
417
−17.565
−14.099
−1.055
1.00
14.71


C


ANISOU
222
C
LYS
A
417
2315
1838
1437
−168
−103
39

C


ATOM
223
O
LYS
A
417
−16.911
−15.059
−0.622
1.00
13.53


O


ANISOU
223
O
LYS
A
417
2145
1772
1225
−146
−108
50

O


ATOM
224
N
TYR
A
418
−18.799
−14.196
−1.554
1.00
12.42


N


ANISOU
224
N
TYR
A
418
1998
1493
1227
−130
−55
75

N


ATOM
225
CA
TYR
A
418
−19.440
−15.457
−1.891
1.00
9.92


C


ANISOU
225
CA
TYR
A
418
1607
1196
965
−101
−10
116

C


ATOM
226
CB
TYR
A
418
−20.901
−15.474
−1.435
1.00
10.43


C


ANISOU
226
CB
TYR
A
418
1646
1202
1113
−37
78
123

C


ATOM
227
CG
TYR
A
418
−21.759
−16.491
−2.161
1.00
13.47


C


ANISOU
227
CG
TYR
A
418
1916
1580
1623
−43
99
139

C


ATOM
228
CD1
TYR
A
418
−21.592
−17.849
−1.950
1.00
10.36


C


ANISOU
228
CD1
TYR
A
418
1492
1192
1253
−52
159
159

C


ATOM
229
CE1
TYR
A
418
−22.359
−18.776
−2.615
1.00
14.09


C


ANISOU
229
CE1
TYR
A
418
1855
1632
1866
−81
175
143

C


ATOM
230
CZ
TYR
A
418
−23.319
−18.351
−3.515
1.00
19.98


C


ANISOU
230
CZ
TYR
A
418
2504
2375
2715
−91
103
100

C


ATOM
231
OH
TYR
A
418
−24.095
−19.268
−4.186
1.00
14.22


O


ANISOU
231
OH
TYR
A
418
1645
1623
2135
−130
88
49

O


ATOM
232
CE2
TYR
A
418
−23.511
−17.010
−3.741
1.00
19.16


C


ANISOU
232
CE2
TYR
A
418
2428
2282
2567
−54
38
102

C


ATOM
233
CD2
TYR
A
418
−22.735
−16.085
−3.071
1.00
12.57


C


ANISOU
233
CD2
TYR
A
418
1719
1446
1610
−36
50
124

C


ATOM
234
C
TYR
A
418
−19.372
−15.660
−3.404
1.00
12.33


C


ANISOU
234
C
TYR
A
418
1853
1517
1315
−143
−72
132

C


ATOM
235
O
TYR
A
418
−19.584
−14.720
−4.173
1.00
13.54


O


ANISOU
235
O
TYR
A
418
2020
1641
1484
−152
−116
139

O


ATOM
236
N
GLY
A
419
−19.084
−16.881
−3.827
1.00
9.79


N


ANISOU
236
N
GLY
A
419
1484
1236
1002
−152
−68
138

N


ATOM
237
CA
GLY
A
419
−18.993
−17.140
−5.249
1.00
9.90


C


ANISOU
237
CA
GLY
A
419
1462
1277
1023
−176
−127
133

C


ATOM
238
C
GLY
A
419
−19.124
−18.612
−5.551
1.00
9.39


C


ANISOU
238
C
GLY
A
419
1346
1217
1005
−173
−104
109

C


ATOM
239
O
GLY
A
419
−19.487
−19.407
−4.684
1.00
9.29


O


ANISOU
239
O
GLY
A
419
1317
1163
1050
−155
−26
115

O


ATOM
240
N
LYS
A
420
−18.821
−18.966
−6.807
1.00
11.92


N


ANISOU
240
N
LYS
A
420
1656
1577
1297
−184
−159
82

N


ATOM
241
CA
LYS
A
420
−18.843
−20.340
−7.286
1.00
12.65


C


ANISOU
241
CA
LYS
A
420
1715
1658
1432
−186
−146
29

C


ATOM
242
CB
LYS
A
420
−19.850
−20.550
−8.445
1.00
14.10


C


ANISOU
242
CB
LYS
A
420
1850
1845
1661
−188
−233
−56

C


ATOM
243
CG
LYS
A
420
−21.314
−20.262
−8.095
1.00
19.61


C


ANISOU
243
CG
LYS
A
420
2463
2498
2492
−190
−251
−81

C


ATOM
244
CD
LYS
A
420
−21.933
−21.361
−7.257
1.00
16.55


C


ANISOU
244
CD
LYS
A
420
2004
2014
2271
−223
−148
−106

C


ATOM
245
CE
LYS
A
420
−23.444
−21.227
−7.261
1.00
21.35


C


ANISOU
245
CE
LYS
A
420
2477
2591
3044
−236
−173
−159

C


ATOM
246
NZ
LYS
A
420
−24.085
−22.266
−6.414
1.00
19.46


N


ANISOU
246
NZ
LYS
A
420
2157
2236
3000
−284
−32
−167

N


ATOM
247
C
LYS
A
420
−17.460
−20.725
−7.784
1.00
12.28


C


ANISOU
247
C
LYS
A
420
1705
1670
1289
−178
−136
40

C


ATOM
248
O
LYS
A
420
−16.716
−19.891
−8.302
1.00
14.96


O


ANISOU
248
O
LYS
A
420
2073
2072
1538
−185
−161
75

O


ATOM
249
N
TRP
A
421
−17.130
−22.002
−7.634
1.00
13.79


N


ANISOU
249
N
TRP
A
421
1890
1829
1519
−160
−80
18

N


ATOM
250
CA
TRP
A
421
−15.924
−22.587
−8.208
1.00
13.50


C


ANISOU
250
CA
TRP
A
421
1872
1843
1414
−129
−58
15

C


ATOM
251
CB
TRP
A
421
−15.139
−23.370
−7.144
1.00
11.26


C


ANISOU
251
CB
TRP
A
421
1589
1542
1148
−79
21
70

C


ATOM
252
CG
TRP
A
421
−13.882
−24.017
−7.639
1.00
12.28


C


ANISOU
252
CG
TRP
A
421
1716
1724
1228
−23
54
73

C


ATOM
253
CD1
TRP
A
421
−12.662
−23.424
−7.808
1.00
12.25


C


ANISOU
253
CD1
TRP
A
421
1676
1832
1144
−14
46
114

C


ATOM
254
NE1
TRP
A
421
−11.751
−24.345
−8.269
1.00
15.20


N


ANISOU
254
NE1
TRP
A
421
2038
2230
1507
59
103
105

N


ATOM
255
CE2
TRP
A
421
−12.376
−25.556
−8.406
1.00
18.72


C


ANISOU
255
CE2
TRP
A
421
2533
2559
2022
96
147
51

C


ATOM
256
CD2
TRP
A
421
−13.717
−25.388
−8.008
1.00
16.73


C


ANISOU
256
CD2
TRP
A
421
2300
2216
1839
33
118
29

C


ATOM
257
CE3
TRP
A
421
−14.578
−26.489
−8.061
1.00
18.67


C


ANISOU
257
CE3
TRP
A
421
2573
2317
2203
30
163
−36

C


ATOM
258
CZ3
TRP
A
421
−14.075
−27.705
−8.496
1.00
17.92


C


ANISOU
258
CZ3
TRP
A
421
2512
2154
2144
94
232
−82

C


ATOM
259
CH2
TRP
A
421
−12.739
−27.839
−8.882
1.00
19.02


C


ANISOU
259
CH2
TRP
A
421
2648
2386
2192
180
260
−56

C


ATOM
260
CZ2
TRP
A
421
−11.876
−26.780
−8.845
1.00
18.90


C


ANISOU
260
CZ2
TRP
A
421
2580
2533
2070
180
220
13

C


ATOM
261
C
TRP
A
421
−16.359
−23.480
−9.363
1.00
14.46


C


ANISOU
261
C
TRP
A
421
2003
1934
1557
−124
−81
−93

C


ATOM
262
O
TRP
A
421
−17.257
−24.316
−9.196
1.00
11.78


O


ANISOU
262
O
TRP
A
421
1639
1495
1343
−144
−67
−158

O


ATOM
263
N
ARG
A
422
−15.753
−23.268
−10.537
1.00
14.53


N


ANISOU
263
N
ARG
A
422
1558
3154
807
−257
33
−118

N


ATOM
264
CA
ARG
A
422
−16.102
−23.985
−11.767
1.00
15.69


C


ANISOU
264
CA
ARG
A
422
1659
3415
886
−265
35
−214

C


ATOM
265
CB
ARG
A
422
−15.471
−25.379
−11.803
1.00
22.46


C


ANISOU
265
CB
ARG
A
422
2550
4235
1750
−234
71
−395

C


ATOM
266
CG
ARG
A
422
−13.953
−25.335
−11.742
1.00
16.19


C


ANISOU
266
CG
ARG
A
422
1738
3462
952
−186
111
−388

C


ATOM
267
CD
ARG
A
422
−13.287
−26.635
−12.171
1.00
23.88


C


ANISOU
267
CD
ARG
A
422
2719
4436
1916
−138
145
−555

C


ATOM
268
NE
ARG
A
422
−11.838
−26.450
−12.225
1.00
21.49


N


ANISOU
268
NE
ARG
A
422
2374
4192
1598
−89
181
−527

N


ATOM
269
CZ
ARG
A
422
−10.957
−27.409
−12.488
1.00
29.39


C


ANISOU
269
Cz
ARG
A
422
3372
5199
2595
−25
216
−647

C


ATOM
270
NH1
ARG
A
422
−11.373
−28.645
−12.700
1.00
36.31


N


ANISOU
270
NH1
ARG
A
422
4301
6002
3492
−4
220
−804

N


ATOM
271
NH2
ARG
A
422
−9.653
−27.129
−12.528
1.00
26.68


N


ANISOU
271
NH2
ARG
A
422
2972
4930
2234
17
245
−605

N


ATOM
272
C
ARG
A
422
−17.610
−24.057
−11.954
1.00
22.34


C


ANISOU
272
C
ARG
A
422
2496
4269
1722
−301
−3
−223

C


ATOM
273
O
ARG
A
422
−18.165
−25.093
−12.315
1.00
16.42


O


ANISOU
273
O
ARG
A
422
1753
3525
959
−320
−3
−359

O


ATOM
274
N
GLY
A
423
−18.280
−22.937
−11.679
1.00
15.43


N


ANISOU
274
N
GLY
A
423
1607
3389
866
−311
−35
−75

N


ATOM
275
CA
GLY
A
423
−19.676
−22.756
−12.017
1.00
15.80


C


ANISOU
275
CA
GLY
A
423
1620
3487
896
−334
−72
−49

C


ATOM
276
C
GLY
A
423
−20.677
−23.450
−11.117
1.00
21.86


C


ANISOU
276
C
GLY
A
423
2439
4153
1714
−357
−90
−136

C


ATOM
277
O
GLY
A
423
−21.856
−23.065
−11.119
1.00
22.67


O


ANISOU
277
O
GLY
A
423
2510
4287
1816
−370
−123
−82

O


ATOM
278
N
GLN
A
424
−20.261
−24.450
−10.348
1.00
14.69


N


ANISOU
278
N
GLN
A
424
1604
3125
854
−361
−68
−263

N


ATOM
279
CA
GLN
A
424
−21.197
−25.329
−9.663
1.00
18.78


C


ANISOU
279
CA
GLN
A
424
2165
3549
1422
−401
−80
−364

C


ATOM
280
CB
GLN
A
424
−20.979
−26.784
−10.105
1.00
25.01


C


ANISOU
280
CB
GLN
A
424
2982
4304
2216
−421
−54
−540

C


ATOM
281
CG
GLN
A
424
−22.080
−27.363
−10.947
1.00
35.38


C


ANISOU
281
CG
GLN
A
424
4250
5702
3492
−477
−72
−609

C


ATOM
282
CD
GLN
A
424
−21.669
−28.655
−11.617
1.00
40.94


C


ANISOU
282
CD
GLN
A
424
4978
6387
4190
−486
−47
−772

C


ATOM
283
OE1
GLN
A
424
−20.591
−28.748
−12.210
1.00
39.53


O


ANISOU
283
OE1
GLN
A
424
4792
6253
3974
−440
−21
−800

O


ATOM
284
NE2
GLN
A
424
−22.528
−29.665
−11.524
1.00
45.16


N


ANISOU
284
NE2
GLN
A
424
5539
6856
4764
−547
−55
−877

N


ATOM
285
C
GLN
A
424
−21.121
−25.287
−8.148
1.00
20.96


C


ANISOU
285
C
GLN
A
424
2513
3619
1830
−378
−72
−333

C


ATOM
286
O
GLN
A
424
−22.146
−25.506
−7.503
1.00
21.66


O


ANISOU
286
O
GLN
A
424
2614
3644
1970
−407
−88
−341

O


ATOM
287
N
TYR
A
425
−19.957
−25.023
−7.559
1.00
12.66


N


ANISOU
287
N
TYR
A
425
1500
2470
839
−327
−45
−294

N


ATOM
288
CA
TYR
A
425
−19.732
−25.272
−6.140
1.00
15.03


C


ANISOU
288
CA
TYR
A
425
1871
2577
1263
−302
−32
−294

C


ATOM
289
CB
TYR
A
425
−18.448
−26.089
−5.956
1.00
14.69


C


ANISOU
289
CB
TYR
A
425
1870
2464
1246
−265
5
−374

C


ATOM
290
CG
TYR
A
425
−18.547
−27.461
−6.581
1.00
21.30


C


ANISOU
290
CG
TYR
A
425
2728
3314
2051
−289
22
−533

C


ATOM
291
CD1
TYR
A
425
−19.176
−28.494
−5.907
1.00
29.53


C


ANISOU
291
CD1
TYR
A
425
3831
4222
3167
−318
24
−611

C


ATOM
292
CE1
TYR
A
425
−19.280
−29.748
−6.456
1.00
27.21


C


ANISOU
292
CE1
TYR
A
425
3567
3911
2862
−347
37
−764

C


ATOM
293
CZ
TYR
A
425
−18.766
−29.994
−7.704
1.00
29.81


C


ANISOU
293
CZ
TYR
A
425
3860
4374
3091
−338
49
−856

C


ATOM
294
OH
TYR
A
425
−18.898
−31.257
−8.223
1.00
33.76


O


ANISOU
294
OH
TYR
A
425
4393
4817
3618
−349
58
−981

O


ATOM
295
CE2
TYR
A
425
−18.140
−28.988
−8.416
1.00
25.97


C


ANISOU
295
CE2
TYR
A
425
3303
4052
2512
−306
50
−777

C


ATOM
296
CD2
TYR
A
425
−18.030
−27.723
−7.846
1.00
27.51


C


ANISOU
296
CD2
TYR
A
425
3473
4246
2732
−286
35
−608

C


ATOM
297
C
TYR
A
425
−19.642
−23.962
−5.364
1.00
15.66


C


ANISOU
297
C
TYR
A
425
1948
2601
1400
−268
−46
−153

C


ATOM
298
O
TYR
A
425
−18.810
−23.108
−5.691
1.00
14.19


O


ANISOU
298
O
TYR
A
425
1739
2457
1196
−246
−43
−75

O


ATOM
299
N
ASP
A
426
−20.482
−23.816
−4.327
1.00
11.87


N


ANISOU
299
N
ASP
A
426
1493
2026
991
−268
−58
−127

N


ATOM
300
CA
ASP
A
426
−20.431
−22.627
−3.482
1.00
10.88


C


ANISOU
300
CA
ASP
A
426
1375
1830
928
−230
−70
−21

C


ATOM
301
CB
ASP
A
426
−21.513
−22.678
−2.395
1.00
10.27


C


ANISOU
301
CB
ASP
A
426
1316
1677
908
−228
−78
−19

C


ATOM
302
CG
ASP
A
426
−22.909
−22.530
−2.957
1.00
20.41


C


ANISOU
302
CG
ASP
A
426
2543
3064
2146
−253
−103
−3

C


ATOM
303
OD1
ASP
A
426
−23.061
−21.975
−4.070
1.00
20.02


O


ANISOU
303
OD1
ASP
A
426
2442
3138
2028
−255
−122
44

O


ATOM
304
OD2
ASP
A
426
−23.847
−22.965
−2.274
1.00
23.77


O


ANISOU
304
OD2
ASP
A
426
2970
3462
2598
−271
−103
−30

O


ATOM
305
C
ASP
A
426
−19.079
−22.520
−2.795
1.00
13.34


C


ANISOU
305
C
ASP
A
426
1725
2052
1291
−198
−50
−15

C


ATOM
306
O
ASP
A
426
−18.576
−23.495
−2.245
1.00
12.83


O


ANISOU
306
O
ASP
A
426
1701
1918
1256
−190
−29
−87

O


ATOM
307
N
VAL
A
427
−18.515
−21.319
−2.770
1.00
9.27


N


ANISOU
307
N
VAL
A
427
1197
1533
793
−181
−60
77

N


ATOM
308
CA
VAL
A
427
−17.287
−21.095
−2.019
1.00
12.25


C


ANISOU
308
CA
VAL
A
427
1599
1835
1221
−162
−48
86

C


ATOM
309
CB
VAL
A
427
−16.016
−21.189
−2.898
1.00
12.20


C


ANISOU
309
CB
VAL
A
427
1559
1914
1162
−169
−29
86

C


ATOM
310
CG1
VAL
A
427
−15.811
−22.599
−3.419
1.00
13.51


C


ANISOU
310
CG1
VAL
A
427
1727
2127
1278
−163
−3
−25

C


ATOM
311
CG2
VAL
A
427
−16.084
−20.193
−4.046
1.00
12.39


C


ANISOU
311
CG2
VAL
A
427
1530
2046
1130
−194
−41
182

C


ATOM
312
C
VAL
A
427
−17.342
−19.728
−1.365
1.00
12.98


C


ANISOU
312
C
VAL
A
427
1699
1858
1374
−151
−70
172

C


ATOM
313
O
VAL
A
427
−18.049
−18.825
−1.824
1.00
10.04


O


ANISOU
313
O
VAL
A
427
1305
1510
998
−152
−90
245

O


ATOM
314
N
ALA
A
428
−16.586
−19.586
−0.281
1.00
8.91


N


ANISOU
314
N
ALA
A
428
1213
1256
915
−138
−67
159

N


ATOM
315
CA
ALA
A
428
−16.247
−18.285
0.273
1.00
10.89


C


ANISOU
315
CA
ALA
A
428
1473
1439
1226
−139
−86
220

C


ATOM
316
CB
ALA
A
428
−16.308
−18.296
1.803
1.00
7.95


C


ANISOU
316
CB
ALA
A
428
1142
969
911
−113
−91
174

C


ATOM
317
C
ALA
A
428
−14.839
−17.929
−0.184
1.00
9.62


C


ANISOU
317
C
ALA
A
428
1284
1315
1055
−170
−80
254

C


ATOM
318
O
ALA
A
428
−13.976
−18.806
−0.283
1.00
13.68


O


ANISOU
318
O
ALA
A
428
1783
1878
1535
−168
−58
206

O


ATOM
319
N
ILE
A
429
−14.607
−16.641
−0.428
1.00
10.11


N


ANISOU
319
N
ILE
A
429
1338
1352
1152
−199
−97
341

N


ATOM
320
CA
ILE
A
429
−13.317
−16.134
−0.903
1.00
10.66


C


ANISOU
320
CA
ILE
A
429
1370
1464
1215
−248
−92
394

C


ATOM
321
CB
ILE
A
429
−13.391
−15.665
−2.357
1.00
12.09


C


ANISOU
321
CB
ILE
A
429
1507
1746
1341
−278
−88
494

C


ATOM
322
CG1
ILE
A
429
−13.953
−16.768
−3.252
1.00
17.13


C


ANISOU
322
CG1
ILE
A
429
2120
2508
1882
−253
−69
448

C


ATOM
323
CD1
ILE
A
429
−15.161
−16.343
−4.012
1.00
25.29


C


ANISOU
323
CD1
ILE
A
429
3143
3579
2887
−244
−87
514

C


ATOM
324
CG2
ILE
A
429
−12.007
−15.191
−2.827
1.00
15.92


C


ANISOU
324
CG2
ILE
A
429
1943
2292
1813
−340
−76
557

C


ATOM
325
C
ILE
A
429
−12.883
−14.977
−0.006
1.00
11.28


C


ANISOU
325
C
ILE
A
429
1475
1425
1385
−277
−116
422

C


ATOM
326
O
ILE
A
429
−13.523
−13.919
−0.002
1.00
14.92


O


ANISOU
326
O
ILE
A
429
1963
1803
1904
−280
−137
482

O


ATOM
327
N
LYS
A
430
−11.783
−15.156
0.725
1.00
13.35


N


ANISOU
327
N
LYS
A
430
1728
1683
1661
−297
−114
376

N


ATOM
328
CA
LYS
A
430
−11.212
−14.093
1.554
1.00
14.48


C


ANISOU
328
CA
LYS
A
430
1888
1731
1884
−343
−140
384

C


ATOM
329
CB
LYS
A
430
−10.768
−14.629
2.918
1.00
16.97


C


ANISOU
329
CB
LYS
A
430
2216
2025
2208
−319
−147
284

C


ATOM
330
CG
LYS
A
430
−10.071
−13.597
3.803
1.00
19.57


C


ANISOU
330
CG
LYS
A
430
2554
2278
2606
−377
−177
268

C


ATOM
331
CD
LYS
A
430
−10.481
−13.700
5.276
1.00
20.11


C


ANISOU
331
CD
LYS
A
430
2665
2281
2695
−333
−195
172

C


ATOM
332
CE
LYS
A
430
−10.008
−14.999
5.926
1.00
20.95


C


ANISOU
332
CE
LYS
A
430
2746
2476
2737
−285
−182
112

C


ATOM
333
NZ
LYS
A
430
−10.605
−15.174
7.293
1.00
21.77


N


ANISOU
333
NZ
LYS
A
430
2891
2537
2845
−236
−195
36

N


ATOM
334
C
LYS
A
430
−10.040
−13.475
0.798
1.00
13.88


C


ANISOU
334
C
LYS
A
430
1757
1714
1804
−427
−136
465

C


ATOM
335
O
LYS
A
430
−9.058
−14.160
0.509
1.00
15.39


O


ANISOU
335
O
LYS
A
430
1889
2022
1935
−439
−115
450

O


ATOM
336
N
AMET
A
431
−10.135
−12.187
0.488
0.75
15.44


N


ANISOU
336
N
AMET
A
431
1970
1828
2068
−483
−154
554

N


ATOM
337
CA
AMET
A
431
−9.068
−11.474
−0.211
0.75
13.88


C


ANISOU
337
CA
AMET
A
431
1721
1676
1877
−583
−151
652

C


ATOM
338
CB
AMET
A
431
−9.659
−10.473
−1.202
0.75
15.04


C


ANISOU
338
CB
AMET
A
431
1881
1777
2055
−610
−157
793

C


ATOM
339
CG
AMET
A
431
−10.541
−11.132
−2.245
0.75
19.99


C


ANISOU
339
CG
AMET
A
431
2490
2515
2589
−544
−137
830

C


ATOM
340
SD
AMET
A
431
−11.526
−9.956
−3.192
0.75
28.33


S


ANISOU
340
SD
AMET
A
431
3571
3509
3685
−544
−154
998

S


ATOM
341
CE
AMET
A
431
−10.858
−10.164
−4.843
0.75
31.51


C


ANISOU
341
CE
AMET
A
431
3876
4136
3961
−585
−122
1100

C


ATOM
342
C
AMET
A
431
−8.172
−10.788
0.816
0.75
17.84


C


ANISOU
342
C
AMET
A
431
2228
2095
2457
−656
−177
611

C


ATOM
343
O
AMET
A
431
−8.562
−9.787
1.426
0.75
18.38


O


ANISOU
343
O
AMET
A
431
2358
2000
2625
−678
−207
607

O


ATOM
344
N
BMET
A
431
−10.195
−12.211
0.411
0.25
14.70


N


ANISOU
344
N
BMET
A
431
1876
1739
1970
−480
−153
558

N


ATOM
345
CA
BMET
A
431
−9.098
−11.429
−0.140
0.25
15.01


C


ANISOU
345
CA
BMET
A
431
1868
1808
2026
−582
−153
649

C


ATOM
346
CB
BMET
A
431
−9.618
−10.243
−0.953
0.25
16.53


C


ANISOU
346
CB
BMET
A
431
2083
1925
2273
−620
−164
787

C


ATOM
347
CG
BMET
A
431
−9.914
−10.554
−2.401
0.25
20.61


C


ANISOU
347
CG
BMET
A
431
2551
2584
2694
−608
−139
888

C


ATOM
348
SD
BMET
A
431
−11.338
−11.637
−2.572
0.25
23.03


S


ANISOU
348
SD
BMET
A
431
2880
2941
2928
−486
−131
816

S


ATOM
349
CE
BMET
A
431
−12.620
−10.605
−1.864
0.25
23.54


C


ANISOU
349
CE
BMET
A
431
3030
2801
3112
−437
−168
831

C


ATOM
350
C
BMET
A
431
−8.230
−10.940
1.006
0.25
16.76


C


ANISOU
350
C
BMET
A
431
2096
1955
2316
−642
−178
587

C


ATOM
351
O
BMET
A
431
−8.707
−10.245
1.908
0.25
18.53


O


ANISOU
351
O
BMET
A
431
2386
2028
2627
−637
−207
542

O


ATOM
352
N
ILE
A
432
−6.951
−11.317
0.977
1.00
15.78


N


ANISOU
352
N
ILE
A
432
1896
1952
2147
−693
−166
577

N


ATOM
353
CA
ILE
A
432
−6.000
−10.879
1.988
1.00
17.75


C


ANISOU
353
CA
ILE
A
432
2129
2169
2445
−763
−193
521

C


ATOM
354
CB
ILE
A
432
−4.870
−11.906
2.146
1.00
16.73


C


ANISOU
354
CB
ILE
A
432
1911
2216
2230
−750
−175
471

C


ATOM
355
CG1
ILE
A
432
−5.441
−13.285
2.489
1.00
15.72


C


ANISOU
355
CG1
ILE
A
432
1804
2132
2038
−616
−157
386

C


ATOM
356
CD1
ILE
A
432
−6.350
−13.273
3.687
1.00
18.23


C


ANISOU
356
CD1
ILE
A
432
2206
2320
2401
−560
−184
302

C


ATOM
357
CG2
ILE
A
432
−3.865
−11.449
3.173
1.00
14.88


C


ANISOU
357
CG2
ILE
A
432
1643
1977
2033
−828
−209
417

C


ATOM
358
C
ILE
A
432
−5.446
−9.512
1.588
1.00
21.32


C


ANISOU
358
C
ILE
A
432
2571
2551
2977
−900
−210
622

C


ATOM
359
O
ILE
A
432
−4.683
−9.401
0.624
1.00
26.70


O


ANISOU
359
O
ILE
A
432
3178
3349
3620
−972
−187
722

O


ATOM
360
N
LYS
A
433
−5.805
−8.473
2.339
1.00
25.08


N


ANISOU
360
N
LYS
A
433
3123
2840
3566
−938
−247
593

N


ATOM
361
CA
LYS
A
433
−5.310
−7.141
2.014
1.00
33.77


C


ANISOU
361
CA
LYS
A
433
4230
3851
4749
−1040
−255
663

C


ATOM
362
CB
LYS
A
433
−5.933
−6.080
2.922
1.00
41.11


C


ANISOU
362
CB
LYS
A
433
5261
4563
5796
−1026
−282
585

C


ATOM
363
CG
LYS
A
433
−5.749
−6.334
4.394
1.00
40.86


C


ANISOU
363
CG
LYS
A
433
5244
4502
5777
−1027
−317
427

C


ATOM
364
CD
LYS
A
433
−5.455
−5.044
5.145
1.00
47.52


C


ANISOU
364
CD
LYS
A
433
6135
5199
6723
−1088
−334
351

C


ATOM
365
CE
LYS
A
433
−6.592
−4.046
5.032
1.00
46.11


C


ANISOU
365
CE
LYS
A
433
6058
4828
6633
−1023
−324
365

C


ATOM
366
NZ
LYS
A
433
−6.278
−2.803
5.791
1.00
49.72


N


ANISOU
366
NZ
LYS
A
433
6565
5137
7188
−1089
−333
277

N


ATOM
367
C
LYS
A
433
−3.797
−7.105
2.134
1.00
29.90


C


ANISOU
367
C
LYS
A
433
3647
3481
4233
−1147
−255
653

C


ATOM
368
O
LYS
A
433
−3.214
−7.699
3.050
1.00
21.53


O


ANISOU
368
O
LYS
A
433
2545
2492
3144
−1162
−274
555

O


ATOM
369
N
GLU
A
434
−3.166
−6.402
1.202
1.00
27.08


N


ANISOU
369
N
GLU
A
434
3251
3157
3881
−1217
−234
758

N


ATOM
370
CA
GLU
A
434
−1.716
−6.407
1.120
1.00
30.32


C


ANISOU
370
CA
GLU
A
434
3557
3710
4251
−1313
−227
767

C


ATOM
371
CB
GLU
A
434
−1.242
−5.718
−0.159
1.00
36.52


C


ANISOU
371
CB
GLU
A
434
4305
4544
5027
−1373
−199
908

C


ATOM
372
CG
GLU
A
434
−1.417
−4.218
−0.161
1.00
40.45


C


ANISOU
372
CG
GLU
A
434
4880
4838
5652
−1440
−210
949

C


ATOM
373
CD
GLU
A
434
−2.417
−3.761
−1.204
0.00
37.12


C


ANISOU
373
CD
GLU
A
434
4516
4344
5244
−1384
−194
1069

C


ATOM
374
OE1
GLU
A
434
−3.561
−4.260
−1.189
0.00
34.41


O


ANISOU
374
OE1
GLU
A
434
4225
3965
4884
−1273
−196
1051

O


ATOM
375
OE2
GLU
A
434
−2.054
−2.914
−2.047
0.00
37.35


O


ANISOU
375
OE2
GLU
A
434
4532
4362
5296
−1450
−180
1185

O


ATOM
376
C
GLU
A
434
−1.114
−5.726
2.337
1.00
26.81


C


ANISOU
376
C
GLU
A
434
3126
3173
3887
−1392
−264
659

C


ATOM
377
O
GLU
A
434
−1.681
−4.783
2.897
1.00
29.14


O


ANISOU
377
O
GLU
A
434
3515
3267
4289
−1401
−283
612

O


ATOM
378
N
GLY
A
435
0.041
−6.232
2.759
1.00
22.92


N


ANISOU
378
N
GLY
A
435
2532
2842
3335
−1439
−270
609

N


ATOM
379
CA
GLY
A
435
0.694
−5.725
3.945
1.00
22.74


C


ANISOU
379
CA
GLY
A
435
2501
2774
3365
−1512
−308
494

C


ATOM
380
C
GLY
A
435
0.147
−6.247
5.255
1.00
26.22


C


ANISOU
380
C
GLY
A
435
2985
3174
3804
−1445
−346
351

C


ATOM
381
O
GLY
A
435
0.705
−5.910
6.307
1.00
25.39


O


ANISOU
381
O
GLY
A
435
2863
3060
3723
−1497
−382
241

O


ATOM
382
N
SER
A
436
−0.915
−7.059
5.232
1.00
23.16


N


ANISOU
382
N
SER
A
436
2648
2770
3381
−1334
−341
346

N


ATOM
383
CA
SER
A
436
−1.541
−7.530
6.462
1.00
26.78


C


ANISOU
383
CA
SER
A
436
3158
3184
3833
−1267
−378
216

C


ATOM
384
CB
SER
A
436
−3.063
−7.648
6.293
1.00
20.95


C


ANISOU
384
CB
SER
A
436
2531
2305
3125
−1162
−370
228

C


ATOM
385
OG
SER
A
436
−3.443
−8.729
5.445
1.00
26.28


O


ANISOU
385
OG
SER
A
436
3181
3095
3710
−1052
−323
294

O


ATOM
386
C
SER
A
436
−1.000
−8.868
6.951
1.00
31.39


C


ANISOU
386
C
SER
A
436
3655
3975
4296
−1198
−378
164

C


ATOM
387
O
SER
A
436
−0.974
−9.100
8.166
1.00
24.49


O


ANISOU
387
O
SER
A
436
2789
3115
3400
−1161
−411
45

O


ATOM
388
N
MET
A
437
−0.555
−9.749
6.051
1.00
17.72


N


ANISOU
388
N
MET
A
437
1842
2409
2481
−1152
−335
242

N


ATOM
389
CA
MET
A
437
−0.228
−11.123
6.414
1.00
25.42


C


ANISOU
389
CA
MET
A
437
2758
3552
3349
−1027
−319
194

C


ATOM
390
CB
MET
A
437
−1.235
−12.084
5.753
1.00
21.69


C


ANISOU
390
CB
MET
A
437
2342
3067
2835
−882
−273
222

C


ATOM
391
CG
MET
A
437
−0.843
−13.554
5.724
1.00
37.01


C


ANISOU
391
CG
MET
A
437
4220
5166
4675
−756
−243
202

C


ATOM
392
SD
MET
A
437
−2.139
−14.614
5.006
1.00
46.06


S


ANISOU
392
SD
MET
A
437
5447
6264
5789
−610
−196
213

S


ATOM
393
CE
MET
A
437
−3.370
−14.587
6.311
1.00
46.04


C


ANISOU
393
CE
MET
A
437
5562
6102
5830
−549
−227
130

C


ATOM
394
C
MET
A
437
1.205
−11.482
6.023
1.00
30.15


C


ANISOU
394
C
MET
A
437
3207
4368
3880
−1076
−306
234

C


ATOM
395
O
MET
A
437
1.761
−10.939
5.064
1.00
18.58


O


ANISOU
395
O
MET
A
437
1682
2951
2426
−1181
−288
328

O


ATOM
396
N
SER
A
438
1.812
−12.386
6.793
1.00
17.50


N


ANISOU
396
N
SER
A
438
1538
2907
2204
−996
−317
170

N


ATOM
397
CA
SER
A
438
3.107
−12.981
6.436
1.00
19.84


C


ANISOU
397
CA
SER
A
438
1683
3434
2420
−993
−298
203

C


ATOM
398
CB
SER
A
438
3.776
−13.559
7.678
1.00
20.51


C


ANISOU
398
CB
SER
A
438
1703
3639
2450
−937
−336
123

C


ATOM
399
OG
SER
A
438
5.121
−13.935
7.455
1.00
19.42


O


ANISOU
399
OG
SER
A
438
1412
3722
2243
−940
−325
151

O


ATOM
400
C
SER
A
438
2.848
−14.055
5.374
1.00
20.16


C


ANISOU
400
C
SER
A
438
1717
3543
2400
−861
−234
252

C


ATOM
401
O
SER
A
438
2.573
−15.214
5.684
1.00
16.97


O


ANISOU
401
O
SER
A
438
1334
3166
1949
−706
−218
209

O


ATOM
402
N
GLU
A
439
2.938
−13.673
4.090
1.00
21.33


N


ANISOU
402
N
GLU
A
439
1836
3722
2547
−925
−196
343

N


ATOM
403
CA
GLU
A
439
2.280
−14.477
3.055
1.00
22.10


C


ANISOU
403
CA
GLU
A
439
1969
3828
2599
−813
−141
372

C


ATOM
404
CB
GLU
A
439
2.075
−13.641
1.791
1.00
26.95


C


ANISOU
404
CB
GLU
A
439
2583
4426
3230
−917
−114
481

C


ATOM
405
CG
GLU
A
439
1.066
−12.514
1.967
1.00
28.48


C


ANISOU
405
CG
GLU
A
439
2899
4392
3528
−998
−147
509

C


ATOM
406
CD
GLU
A
439
0.818
−11.707
0.686
1.00
36.99


C


ANISOU
406
CD
GLU
A
439
3980
5453
4623
−1089
−122
641

C


ATOM
407
OE1
GLU
A
439
1.388
−12.055
−0.373
1.00
43.12


O


ANISOU
407
OE1
GLU
A
439
4675
6396
5314
−1074
−78
700

O


ATOM
408
OE2
GLU
A
439
0.048
−10.722
0.748
1.00
31.73


O


ANISOU
408
OE2
GLU
A
439
3412
4596
4050
−1146
−148
678

O


ATOM
409
C
GLU
A
439
3.048
−15.762
2.744
1.00
17.18


C


ANISOU
409
C
GLU
A
439
1246
3401
1879
−686
−100
349

C


ATOM
410
O
GLU
A
439
2.439
−16.831
2.623
1.00
19.20


O


ANISOU
410
O
GLU
A
439
1558
3630
2106
−540
−74
306

O


ATOM
411
N
ASP
A
440
4.373
−15.687
2.616
1.00
18.39


N


ANISOU
411
N
ASP
A
440
1251
3750
1987
−736
−95
375

N


ATOM
412
CA
ASP
A
440
5.151
−16.900
2.357
1.00
24.90


C


ANISOU
412
CA
ASP
A
440
1974
4765
2723
−596
−55
347

C


ATOM
413
CB
ASP
A
440
6.628
−16.564
2.175
1.00
20.28


C


ANISOU
413
CB
ASP
A
440
1269
4350
2087
−653
−51
379

C


ATOM
414
CG
ASP
A
440
6.913
−15.908
0.845
1.00
31.95


C


ANISOU
414
CG
ASP
A
440
2728
5876
3535
−742
−15
462

C


ATOM
415
OD1
ASP
A
440
6.085
−16.082
−0.077
1.00
32.37


O


ANISOU
415
OD1
ASP
A
440
2830
5890
3577
−714
20
489

O


ATOM
416
OD2
ASP
A
440
7.957
−15.224
0.726
1.00
36.84


O


ANISOU
416
OD2
ASP
A
440
3282
6578
4138
−838
−24
503

O


ATOM
417
C
ASP
A
440
4.983
−17.929
3.473
1.00
26.56


C


ANISOU
417
C
ASP
A
440
2227
4934
2929
−442
−77
264

C


ATOM
418
O
ASP
A
440
4.818
−19.124
3.203
1.00
19.14


O


ANISOU
418
O
ASP
A
440
1305
4015
1952
−281
−39
229

O


ATOM
419
N
GLU
A
441
5.044
−17.497
4.735
1.00
17.99


N


ANISOU
419
N
GLU
A
441
1159
3793
1882
−489
−137
232

N


ATOM
420
CA
GLU
A
441
4.786
−18.436
5.826
1.00
17.39


C


ANISOU
420
CA
GLU
A
441
1132
3678
1797
−346
−158
173

C


ATOM
421
CB
GLU
A
441
5.035
−17.768
7.172
1.00
18.42


C


ANISOU
421
CB
GLU
A
441
1252
3800
1949
−427
−228
139

C


ATOM
422
CG
GLU
A
441
6.468
−17.394
7.445
1.00
22.58


C


ANISOU
422
CG
GLU
A
441
1616
4531
2434
−503
−254
150

C


ATOM
423
CD
GLU
A
441
6.572
−16.653
8.765
1.00
28.03


C


ANISOU
423
CD
GLU
A
441
2329
5175
3144
−589
−321
98

C


ATOM
424
OE1
GLU
A
441
7.237
−15.597
8.822
1.00
27.61


O


ANISOU
424
OE1
GLU
A
441
2247
5129
3113
−737
−339
99

O


ATOM
425
OE2
GLU
A
441
5.957
−17.128
9.743
1.00
28.12


O


ANISOU
425
OE2
GLU
A
441
2395
5141
3149
−507
−354
53

O


ATOM
426
C
GLU
A
441
3.362
−18.976
5.781
1.00
16.02


C


ANISOU
426
C
GLU
A
441
1118
3310
1658
−259
−140
148

C


ATOM
427
O
GLU
A
441
3.129
−20.161
6.054
1.00
16.09


O


ANISOU
427
O
GLU
A
441
1163
3303
1649
−106
−123
119

O


ATOM
428
N
PHE
A
442
2.379
−18.118
5.501
1.00
15.41


N


ANISOU
428
N
PHE
A
442
1140
3078
1638
−354
−147
161

N


ATOM
429
CA
PHE
A
442
1.015
−18.629
5.464
1.00
20.21


C


ANISOU
429
CA
PHE
A
442
1883
3523
2272
−275
−132
137

C


ATOM
430
CB
PHE
A
442
0.002
−17.509
5.236
1.00
21.50


C


ANISOU
430
CB
PHE
A
442
2137
3531
2499
−383
−147
158

C


ATOM
431
CG
PHE
A
442
−1.330
−18.021
4.773
1.00
24.90


C


ANISOU
431
CG
PHE
A
442
2676
3841
2942
−312
−120
150

C


ATOM
432
CD1
PHE
A
442
−2.168
−18.703
5.651
1.00
26.06


C


ANISOU
432
CD1
PHE
A
442
2907
3894
3102
−225
−129
102

C


ATOM
433
CE1
PHE
A
442
−3.392
−19.200
5.222
1.00
23.69


C


ANISOU
433
CE1
PHE
A
442
2695
3495
2811
−173
−105
94

C


ATOM
434
CZ
PHE
A
442
−3.786
−19.024
3.888
1.00
23.59


C


ANISOU
434
CZ
PHE
A
442
2687
3487
2790
−201
−76
129

C


ATOM
435
CE2
PHE
A
442
−2.950
−18.351
3.003
1.00
24.84


C


ANISOU
435
CE2
PHE
A
442
2764
3747
2928
−279
−65
183

C


ATOM
436
CD2
PHE
A
442
−1.725
−17.863
3.449
1.00
25.64


C


ANISOU
436
CD2
PHE
A
442
2777
3938
3026
−337
−85
196

C


ATOM
437
C
PHE
A
442
0.864
−19.691
4.383
1.00
21.94


C


ANISOU
437
C
PHE
A
442
2102
3782
2451
−168
−74
138

C


ATOM
438
O
PHE
A
442
0.228
−20.729
4.602
1.00
16.88


O


ANISOU
438
O
PHE
A
442
1534
3069
1811
−51
−58
101

O


ATOM
439
N
ILE
A
443
1.451
−19.449
3.212
1.00
14.72


N


ANISOU
439
N
ILE
A
443
1108
2986
1500
−213
−39
178

N


ATOM
440
CA
ILE
A
443
1.280
−20.362
2.085
1.00
16.27


C


ANISOU
440
CA
ILE
A
443
1303
3231
1647
−120
17
163

C


ATOM
441
CB
ILE
A
443
1.901
−19.745
0.824
1.00
22.66


C


ANISOU
441
CB
ILE
A
443
2014
4188
2406
−206
50
223

C


ATOM
442
CG1
ILE
A
443
1.028
−18.582
0.351
1.00
19.69


C


ANISOU
442
CG1
ILE
A
443
1704
3705
2071
−337
35
288

C


ATOM
443
CD1
ILE
A
443
1.650
−17.773
−0.781
1.00
22.37


C


ANISOU
443
CD1
ILE
A
443
1947
4184
2368
−449
61
379

C


ATOM
444
CG2
ILE
A
443
2.090
−20.810
−0.259
1.00
28.28


C


ANISOU
444
CG2
ILE
A
443
2688
5015
3043
−93
111
184

C


ATOM
445
C
ILE
A
443
1.883
−21.721
2.396
1.00
15.49


C


ANISOU
445
C
ILE
A
443
1168
3204
1515
41
38
108

C


ATOM
446
O
ILE
A
443
1.310
−22.764
2.063
1.00
18.33


O


ANISOU
446
O
ILE
A
443
1593
3501
1871
151
69
59

O


ATOM
447
N
GLU
A
444
3.045
−21.734
3.041
1.00
15.86


N


ANISOU
447
N
GLU
A
444
1108
3378
1541
57
20
116

N


ATOM
448
CA
GLU
A
444
3.622
−23.005
3.447
1.00
16.32


C


ANISOU
448
CA
GLU
A
444
1132
3494
1576
227
35
77

C


ATOM
449
CB
GLU
A
444
5.011
−22.769
4.045
1.00
19.70


C


ANISOU
449
CB
GLU
A
444
1410
4108
1968
220
11
102

C


ATOM
450
CG
GLU
A
444
5.806
−24.039
4.281
1.00
28.87


C


ANISOU
450
CG
GLU
A
444
2505
5369
3096
411
32
77

C


ATOM
451
CD
GLU
A
444
6.038
−24.833
3.001
1.00
33.62


C


ANISOU
451
CD
GLU
A
444
3074
6043
3659
517
102
40

C


ATOM
452
OE1
GLU
A
444
6.161
−24.210
1.915
1.00
28.52


O


ANISOU
452
OE1
GLU
A
444
2376
5486
2974
421
133
54

O


ATOM
453
OE2
GLU
A
444
6.090
−26.082
3.091
1.00
34.80


O


ANISOU
453
OE2
GLU
A
444
3252
6155
3814
696
128
−3

O


ATOM
454
C
GLU
A
444
2.702
−23.725
4.427
1.00
18.19


C


ANISOU
454
C
GLU
A
444
1497
3551
1861
312
14
49

C


ATOM
455
O
GLU
A
444
2.496
−24.940
4.319
1.00
18.05


O


ANISOU
455
O
GLU
A
444
1526
3482
1849
453
44
12

O


ATOM
456
N
GLU
A
445
2.103
−22.983
5.365
1.00
14.77


N


ANISOU
456
N
GLU
A
445
1127
3018
1468
223
−35
64

N


ATOM
457
CA
GLU
A
445
1.175
−23.597
6.309
1.00
14.79


C


ANISOU
457
CA
GLU
A
445
1244
2868
1507
291
−52
47

C


ATOM
458
CB
GLU
A
445
0.866
−22.643
7.469
1.00
18.67


C


ANISOU
458
CB
GLU
A
445
1761
3315
2019
194
−109
57

C


ATOM
459
CG
GLU
A
445
−0.045
−23.239
8.555
1.00
17.39


C


ANISOU
459
CG
GLU
A
445
1701
3030
1878
260
−126
49

C


ATOM
460
CD
GLU
A
445
0.662
−24.292
9.404
1.00
24.08


C


ANISOU
460
CD
GLU
A
445
2506
3948
2695
396
−134
67

C


ATOM
461
OE1
GLU
A
445
1.867
−24.537
9.176
1.00
26.24


O


ANISOU
461
OE1
GLU
A
445
2666
4370
2933
446
−129
78

O


ATOM
462
OE2
GLU
A
445
0.013
−24.876
10.299
1.00
30.89


O


ANISOU
462
OE2
GLU
A
445
3443
4727
3568
455
−144
80

O


ATOM
463
C
GLU
A
445
−0.116
−24.021
5.624
1.00
16.82


C


ANISOU
463
C
GLU
A
445
1621
2974
1796
305
−20
23

C


ATOM
464
O
GLU
A
445
−0.724
−25.017
6.029
1.00
18.59


O


ANISOU
464
O
GLU
A
445
1925
3093
2043
398
−11
6

O


ATOM
465
N
ALA
A
446
−0.551
−23.291
4.589
1.00
12.91


N


ANISOU
465
N
ALA
A
446
1136
2470
1301
209
−4
28

N


ATOM
466
CA
ALA
A
446
−1.747
−23.710
3.868
1.00
12.28


C


ANISOU
466
CA
ALA
A
446
1153
2276
1237
222
23
2

C


ATOM
467
CB
ALA
A
446
−2.070
−22.719
2.741
1.00
13.01


C


ANISOU
467
CB
ALA
A
446
1231
2396
1314
110
32
29

C


ATOM
468
C
ALA
A
446
−1.597
−25.127
3.325
1.00
12.74


C


ANISOU
468
C
ALA
A
446
1221
2340
1280
353
67
−50

C


ATOM
469
O
ALA
A
446
−2.584
−25.863
3.235
1.00
20.13


O


ANISOU
469
O
ALA
A
446
2253
3152
2244
391
81
−85

O


ATOM
470
N
LYS
A
447
−0.371
−25.535
2.976
1.00
13.74


N


ANISOU
470
N
LYS
A
447
1247
2608
1365
425
91
−60

N


ATOM
471
CA
LYS
A
447
−0.153
−26.889
2.471
1.00
22.10


C


ANISOU
471
CA
LYS
A
447
2317
3665
2417
567
135
−123

C


ATOM
472
CB
LYS
A
447
1.293
−27.054
1.999
1.00
19.71


C


ANISOU
472
CB
LYS
A
447
1875
3558
2056
636
162
−129

C


ATOM
473
CG
LYS
A
447
1.700
−26.121
0.879
1.00
19.03


C


ANISOU
473
CG
LYS
A
447
1696
3631
1905
532
182
−111

C


ATOM
474
CD
LYS
A
447
3.186
−26.293
0.580
1.00
23.56


C


ANISOU
474
CD
LYS
A
447
2114
4421
2417
601
209
−110

C


ATOM
475
CE
LYS
A
447
3.626
−25.446
−0.595
1.00
24.10


C


ANISOU
475
CE
LYS
A
447
2080
4666
2410
498
237
−81

C


ATOM
476
NZ
LYS
A
447
5.048
−25.757
−0.991
1.00
29.09


N


ANISOU
476
NZ
LYS
A
447
2558
5522
2973
576
271
−90

N


ATOM
477
C
LYS
A
447
−0.479
−27.936
3.526
1.00
22.77


C


ANISOU
477
C
LYS
A
447
2484
3611
2558
673
124
−129

C


ATOM
478
O
LYS
A
447
−0.984
−29.016
3.203
1.00
25.57


O


ANISOU
478
O
LYS
A
447
2916
3857
2943
754
153
−184

O


ATOM
479
N
VAL
A
448
−0.172
−27.642
4.789
1.00
22.23


N


ANISOU
479
N
VAL
A
448
2396
3547
2501
671
82
−73

N


ATOM
480
CA
VAL
A
448
−0.518
−28.545
5.883
1.00
24.99


C


ANISOU
480
CA
VAL
A
448
2821
3778
2896
762
68
−53

C


ATOM
481
CB
VAL
A
448
0.287
−28.187
7.147
1.00
24.88


C


ANISOU
481
CB
VAL
A
448
2734
3860
2860
777
22
9

C


ATOM
482
CG1
VAL
A
448
−0.120
−29.103
8.306
1.00
32.78


C


ANISOU
482
CG1
VAL
A
448
3810
4749
3895
869
8
50

C


ATOM
483
CG2
VAL
A
448
1.779
−28.272
6.877
1.00
24.87


C


ANISOU
483
CG2
VAL
A
448
2590
4047
2811
850
30
12

C


ATOM
484
C
VAL
A
448
−2.011
−28.499
6.158
1.00
19.07


C


ANISOU
484
C
VAL
A
448
2197
2859
2190
690
59
−54

C


ATOM
485
O
VAL
A
448
−2.647
−29.534
6.384
1.00
19.15


O


ANISOU
485
O
VAL
A
448
2297
2733
2245
756
74
−63

O


ATOM
486
N
MET
A
449
−2.592
−27.301
6.160
1.00
12.39


N


ANISOU
486
N
MET
A
449
1357
2017
1335
556
34
−41

N


ATOM
487
CA
MET
A
449
−4.014
−27.173
6.442
1.00
15.04


C


ANISOU
487
CA
MET
A
449
1796
2215
1705
493
26
−40

C


ATOM
488
CB
MET
A
449
−4.384
−25.695
6.541
1.00
15.17


C


ANISOU
488
CB
MET
A
449
1797
2256
1712
364
−5
−22

C


ATOM
489
CG
MET
A
449
−3.575
−24.964
7.605
1.00
18.17


C


ANISOU
489
CG
MET
A
449
2112
2719
2071
341
−47
10

C


ATOM
490
SD
MET
A
449
−3.764
−23.187
7.481
1.00
21.82


S


ANISOU
490
SD
MET
A
449
2552
3199
2537
189
−80
16

S


ATOM
491
CE
MET
A
449
−5.497
−23.009
7.865
1.00
20.19


C


ANISOU
491
CE
MET
A
449
2462
2841
2369
157
−84
7

C


ATOM
492
C
MET
A
449
−4.893
−27.883
5.415
1.00
17.58


C


ANISOU
492
C
MET
A
449
2188
2445
2048
499
63
−92

C


ATOM
493
O
MET
A
449
−6.020
−28.259
5.748
1.00
19.05


O


ANISOU
493
O
MET
A
449
2460
2510
2270
480
62
−93

O


ATOM
494
N
AMET
A
450
−4.404
−28.077
4.185
0.86
19.38


N


ANISOU
494
N
AMET
A
450
2374
2743
2248
519
95
−140

N


ATOM
495
CA
AMET
A
450
−5.189
−28.800
3.185
0.86
18.93


C


ANISOU
495
CA
AMET
A
450
2378
2615
2200
524
127
−209

C


ATOM
496
CB
AMET
A
450
−4.420
−28.895
1.865
0.86
19.01


C


ANISOU
496
CB
AMET
A
450
2318
2751
2155
553
163
−266

C


ATOM
497
CG
AMET
A
450
−4.259
−27.566
1.145
0.86
18.56


C


ANISOU
497
CG
AMET
A
450
2186
2826
2039
447
155
−230

C


ATOM
498
SD
AMET
A
450
−5.836
−26.994
0.468
0.86
17.62


S


ANISOU
498
SD
AMET
A
450
2134
2644
1917
331
144
−232

S


ATOM
499
CE
AMET
A
450
−6.289
−28.389
−0.554
0.86
19.03


C


ANISOU
499
CE
AMET
A
450
2362
2786
2083
393
186
−353

C


ATOM
500
C
AMET
A
450
−5.557
−30.196
3.664
0.86
19.14


C


ANISOU
500
C
AMET
A
450
2490
2496
2287
612
142
−235

C


ATOM
501
O
AMET
A
450
−6.568
−30.752
3.227
0.86
22.49


O


ANISOU
501
O
AMET
A
450
2991
2817
2738
583
156
−284

O


ATOM
502
N
BMET
A
450
−4.411
−28.089
4.188
0.14
18.90


N


ANISOU
502
N
BMET
A
450
2314
2681
2187
520
95
−140

N


ATOM
503
CA
BMET
A
450
−5.233
−28.786
3.202
0.14
18.82


C


ANISOU
503
CA
BMET
A
450
2366
2597
2187
521
127
−208

C


ATOM
504
CB
BMET
A
450
−4.660
−28.595
1.798
0.14
19.25


C


ANISOU
504
CB
BMET
A
450
2352
2783
2181
517
157
−257

C


ATOM
505
CG
BMET
A
450
−4.878
−27.201
1.239
0.14
18.46


C


ANISOU
505
CG
BMET
A
450
2205
2771
2038
394
141
−213

C


ATOM
506
SD
BMET
A
450
−5.310
−27.221
−0.511
0.14
17.27


S


ANISOU
506
SD
BMET
A
450
2040
2701
1821
356
174
−273

S


ATOM
507
CE
BMET
A
450
−6.802
−28.211
−0.489
0.14
17.57


C


ANISOU
507
CE
BMET
A
450
2201
2569
1907
358
176
−342

C


ATOM
508
C
BMET
A
450
−5.389
−30.272
3.497
0.14
19.71


C


ANISOU
508
C
BMET
A
450
2552
2582
2353
625
148
−246

C


ATOM
509
O
BMET
A
450
−6.082
−30.966
2.745
0.14
20.09


O


ANISOU
509
O
BMET
A
450
2661
2554
2418
621
172
−317

O


ATOM
510
N
ASN
A
451
−4.757
−30.775
4.554
1.00
18.33


N


ANISOU
510
N
ASN
A
451
2375
2385
2206
714
138
−198

N


ATOM
511
CA
ASN
A
451
−4.974
−32.125
5.046
1.00
21.02


C


ANISOU
511
CA
ASN
A
451
2797
2577
2614
808
153
−201

C


ATOM
512
CB
ASN
A
451
−3.645
−32.766
5.434
1.00
21.37


C


ANISOU
512
CB
ASN
A
451
2786
2671
2662
959
161
−179

C


ATOM
513
CG
ASN
A
451
−2.649
−32.763
4.299
1.00
40.60


C


ANISOU
513
CG
ASN
A
451
5136
5239
5051
1017
192
−253

C


ATOM
514
OD1
ASN
A
451
−3.008
−32.978
3.144
1.00
42.04


O


ANISOU
514
OD1
ASN
A
451
5341
5409
5225
995
223
−345

O


ATOM
515
ND2
ASN
A
451
−1.386
−32.511
4.623
1.00
49.26


N


ANISOU
515
ND2
ASN
A
451
6124
6483
6109
1089
184
−213

N


ATOM
516
C
ASN
A
451
−5.901
−32.166
6.256
1.00
23.25


C


ANISOU
516
C
ASN
A
451
3149
2752
2934
763
128
−126

C


ATOM
517
O
ASN
A
451
−6.210
−33.257
6.743
1.00
23.52


O


ANISOU
517
O
ASN
A
451
3258
2649
3029
822
139
−107

O


ATOM
518
N
LEU
A
452
−6.313
−31.016
6.769
1.00
16.73


N


ANISOU
518
N
LEU
A
452
2299
1985
2074
665
96
−82

N


ATOM
519
CA
LEU
A
452
−7.264
−30.972
7.875
1.00
15.65


C


ANISOU
519
CA
LEU
A
452
2218
1771
1956
620
76
−21

C


ATOM
520
CB
LEU
A
452
−7.110
−29.678
8.662
1.00
18.18


C


ANISOU
520
CB
LEU
A
452
2482
2198
2228
561
37
22

C


ATOM
521
CG
LEU
A
452
−5.788
−29.466
9.387
1.00
17.42


C


ANISOU
521
CG
LEU
A
452
2305
2218
2095
627
13
62

C


ATOM
522
CD1
LEU
A
452
−5.790
−28.077
10.006
1.00
19.48


C


ANISOU
522
CD1
LEU
A
452
2519
2570
2313
539
−27
75

C


ATOM
523
CD2
LEU
A
452
−5.593
−30.534
10.452
1.00
16.46


C


ANISOU
523
CD2
LEU
A
452
2212
2049
1991
728
12
131

C


ATOM
524
C
LEU
A
452
−8.671
−31.065
7.312
1.00
18.87


C


ANISOU
524
C
LEU
A
452
2696
2085
2390
530
89
−61

C


ATOM
525
O
LEU
A
452
−9.063
−30.230
6.497
1.00
21.35


O


ANISOU
525
O
LEU
A
452
2986
2450
2674
451
86
−101

O


ATOM
526
N
SER
A
453
−9.432
−32.071
7.733
1.00
15.83


N


ANISOU
526
N
SER
A
453
2390
1566
2057
537
103
−41

N


ATOM
527
CA
SER
A
453
−10.766
−32.251
7.175
1.00
14.14


C


ANISOU
527
CA
SER
A
453
2232
1273
1867
444
114
−83

C


ATOM
528
CB
SER
A
453
−10.728
−33.109
5.913
1.00
13.36


C


ANISOU
528
CB
SER
A
453
2165
1114
1798
462
143
−184

C


ATOM
529
OG
SER
A
453
−12.029
−33.198
5.367
1.00
24.11


O


ANISOU
529
OG
SER
A
453
3566
2426
3170
358
147
−228

O


ATOM
530
C
SER
A
453
−11.666
−32.879
8.225
1.00
15.73


C


ANISOU
530
C
SER
A
453
2495
1371
2109
420
116
−13

C


ATOM
531
O
SER
A
453
−11.399
−33.978
8.715
1.00
13.54


O


ANISOU
531
O
SER
A
453
2267
993
1884
487
130
27

O


ATOM
532
N
HIS
A
454
−12.727
−32.170
8.566
1.00
10.99


N


ANISOU
532
N
HIS
A
454
1891
801
1485
329
103
9

N


ATOM
533
CA
HIS
A
454
−13.663
−32.652
9.564
1.00
13.72


C


ANISOU
533
CA
HIS
A
454
2280
1081
1853
292
108
81

C


ATOM
534
CB
HIS
A
454
−13.166
−32.345
10.978
1.00
11.24


C


ANISOU
534
CB
HIS
A
454
1939
831
1502
344
90
176

C


ATOM
535
CG
HIS
A
454
−14.000
−32.970
12.041
1.00
11.76


C


ANISOU
535
CG
HIS
A
454
2044
843
1581
318
101
266

C


ATOM
536
ND1
HIS
A
454
−15.123
−32.364
12.547
1.00
11.28


N


ANISOU
536
ND1
HIS
A
454
1968
835
1484
238
99
286

N


ATOM
537
CE1
HIS
A
454
−15.667
−33.145
13.461
1.00
13.30


C


ANISOU
537
CE1
HIS
A
454
2257
1043
1753
225
115
380

C


ATOM
538
NE2
HIS
A
454
−14.934
−34.240
13.566
1.00
13.02


N


ANISOU
538
NE2
HIS
A
454
2267
909
1771
296
125
428

N


ATOM
539
CD2
HIS
A
454
−13.891
−34.159
12.676
1.00
12.86


C


ANISOU
539
CD2
HIS
A
454
2236
884
1768
361
117
351

C


ATOM
540
C
HIS
A
454
−15.008
−31.989
9.316
1.00
12.25


C


ANISOU
540
C
HIS
A
454
2083
925
1645
183
104
58

C


ATOM
541
O
HIS
A
454
−15.070
−30.822
8.924
1.00
11.06


O


ANISOU
541
O
HIS
A
454
1883
870
1449
156
86
26

O


ATOM
542
N
GLU
A
455
−16.083
−32.746
9.574
1.00
11.08


N


ANISOU
542
N
GLU
A
455
1980
696
1533
121
120
84

N


ATOM
543
CA
GLU
A
455
−17.435
−32.256
9.311
1.00
13.47


C


ANISOU
543
CA
GLU
A
455
2264
1038
1817
20
118
64

C


ATOM
544
CB
GLU
A
455
−18.467
−33.289
9.784
1.00
22.21


C


ANISOU
544
CB
GLU
A
455
3416
2055
2969
−50
140
111

C


ATOM
545
CG
GLU
A
455
−18.118
−34.731
9.418
1.00
40.45


C


ANISOU
545
CG
GLU
A
455
5802
4204
5363
−38
160
94

C


ATOM
546
CD
GLU
A
455
−17.121
−35.386
10.391
1.00
49.05


C


ANISOU
546
CD
GLU
A
455
6927
5227
6482
64
167
186

C


ATOM
547
OE1
GLU
A
455
−17.548
−35.788
11.503
1.00
62.42


O


ANISOU
547
OE1
GLU
A
455
8638
6897
8183
46
177
297

O


ATOM
548
OE2
GLU
A
455
−15.916
−35.504
10.048
1.00
25.36


O


ANISOU
548
OE2
GLU
A
455
3930
2214
3491
164
164
154

O


ATOM
549
C
GLU
A
455
−17.717
−30.914
9.979
1.00
12.09


C


ANISOU
549
C
GLU
A
455
2030
986
1577
16
99
94

C


ATOM
550
O
GLU
A
455
−18.554
−30.150
9.491
1.00
9.64


O


ANISOU
550
O
GLU
A
455
1686
735
1243
−37
91
60

O


ATOM
551
N
LYS
A
456
−17.056
−30.613
11.105
1.00
10.34


N


ANISOU
551
N
LYS
A
456
1795
807
1327
77
90
153

N


ATOM
552
CA
LYS
A
456
−17.349
−29.405
11.872
1.00
9.20


C


ANISOU
552
CA
LYS
A
456
1603
769
1125
75
72
167

C


ATOM
553
CB
LYS
A
456
−17.610
−29.761
13.343
1.00
9.72


C


ANISOU
553
CB
LYS
A
456
1672
861
1161
89
81
253

C


ATOM
554
CG
LYS
A
456
−18.759
−30.780
13.517
1.00
10.40


C


ANISOU
554
CG
LYS
A
456
1788
886
1276
23
111
304

C


ATOM
555
CD
LYS
A
456
−20.085
−30.273
12.897
1.00
11.57


C


ANISOU
555
CD
LYS
A
456
1908
1069
1419
−58
116
256

C


ATOM
556
CE
LYS
A
456
−21.168
−31.374
12.923
1.00
14.70


C


ANISOU
556
CE
LYS
A
456
2329
1406
1852
−144
145
299

C


ATOM
557
NZ
LYS
A
456
−21.646
−31.689
14.311
1.00
19.69


N


ANISOU
557
NZ
LYS
A
456
2950
2084
2448
−154
165
403

N


ATOM
558
C
LYS
A
456
−16.240
−28.363
11.755
1.00
8.70


C


ANISOU
558
C
LYS
A
456
1502
769
1033
122
45
133

C


ATOM
559
O
LYS
A
456
−16.198
−27.405
12.531
1.00
10.63


O


ANISOU
559
O
LYS
A
456
1715
1088
1236
132
26
136

O


ATOM
560
N
LEU
A
457
−15.359
−28.530
10.785
1.00
8.67


N


ANISOU
560
N
LEU
A
457
1500
743
1052
145
42
94

N


ATOM
561
CA
LEU
A
457
−14.255
−27.623
10.514
1.00
10.10


C


ANISOU
561
CA
LEU
A
457
1639
988
1212
174
20
67

C


ATOM
562
CB
LEU
A
457
−12.940
−28.383
10.594
1.00
10.61


C


ANISOU
562
CB
LEU
A
457
1702
1046
1285
249
22
83

C


ATOM
563
CG
LEU
A
457
−11.645
−27.603
10.494
1.00
12.42


C


ANISOU
563
CG
LEU
A
457
1873
1360
1487
278
−1
67

C


ATOM
564
CD1
LEU
A
457
−11.497
−26.805
11.770
1.00
12.70


C


ANISOU
564
CD1
LEU
A
457
1878
1465
1480
277
−30
93

C


ATOM
565
CD2
LEU
A
457
−10.533
−28.616
10.352
1.00
16.63


C


ANISOU
565
CD2
LEU
A
457
2402
1883
2035
362
11
79

C


ATOM
566
C
LEU
A
457
−14.425
−27.052
9.117
1.00
8.39


C


ANISOU
566
C
LEU
A
457
1406
780
1001
133
19
13

C


ATOM
567
O
LEU
A
457
−14.564
−27.817
8.157
1.00
11.33


O


ANISOU
567
O
LEU
A
457
1799
1111
1394
124
37
−18

O


ATOM
568
N
VAL
A
458
−14.408
−25.722
8.987
1.00
7.56


N


ANISOU
568
N
VAL
A
458
1266
728
878
108
−3
2

N


ATOM
569
CA
VAL
A
458
−14.543
−25.135
7.656
1.00
7.36


C


ANISOU
569
CA
VAL
A
458
1221
722
852
72
−5
−26

C


ATOM
570
CB
VAL
A
458
−14.535
−23.600
7.716
1.00
9.90


C


ANISOU
570
CB
VAL
A
458
1514
1079
1169
48
−31
−19

C


ATOM
571
CG1
VAL
A
458
−14.529
−23.016
6.281
1.00
7.98


C


ANISOU
571
CG1
VAL
A
458
1247
863
922
14
−33
−23

C


ATOM
572
CG2
VAL
A
458
−15.750
−23.065
8.507
1.00
7.17


C


ANISOU
572
CG2
VAL
A
458
1179
719
824
36
−37
−14

C


ATOM
573
C
VAL
A
458
−13.423
−25.660
6.761
1.00
14.79


C


ANISOU
573
C
VAL
A
458
2147
1681
1790
99
6
−48

C


ATOM
574
O
VAL
A
458
−12.233
−25.563
7.097
1.00
13.59


O


ANISOU
574
O
VAL
A
458
1968
1564
1630
136
−1
−39

O


ATOM
575
N
GLN
A
459
−13.802
−26.215
5.610
1.00
12.44


N


ANISOU
575
N
GLN
A
459
1859
1377
1491
80
24
−84

N


ATOM
576
CA
GLN
A
459
−12.854
−26.902
4.737
1.00
12.53


C


ANISOU
576
CA
GLN
A
459
1860
1410
1493
116
43
−123

C


ATOM
577
CB
GLN
A
459
−13.585
−27.872
3.807
1.00
14.21


C


ANISOU
577
CB
GLN
A
459
2104
1585
1709
96
64
−182

C


ATOM
578
CG
GLN
A
459
−12.656
−28.668
2.889
1.00
15.33


C


ANISOU
578
CG
GLN
A
459
2238
1747
1840
145
89
−246

C


ATOM
579
CD
GLN
A
459
−11.782
−29.627
3.663
1.00
24.94


C


ANISOU
579
CD
GLN
A
459
3481
2898
3096
231
103
−241

C


ATOM
580
OE1
GLN
A
459
−12.279
−30.445
4.461
1.00
22.00


O


ANISOU
580
OE1
GLN
A
459
3167
2419
2772
241
107
−224

O


ATOM
581
NE2
GLN
A
459
−10.464
−29.529
3.451
1.00
24.27


N


ANISOU
581
NE2
GLN
A
459
3348
2886
2990
296
110
−246

N


ATOM
582
C
GLN
A
459
−12.087
−25.900
3.896
1.00
9.80


C


ANISOU
582
C
GLN
A
459
1453
1159
1111
100
35
−117

C


ATOM
583
O
GLN
A
459
−12.689
−25.067
3.221
1.00
12.36


O


ANISOU
583
O
GLN
A
459
1761
1520
1417
47
25
−105

O


ATOM
584
N
LEU
A
460
−10.759
−25.963
3.956
1.00
8.63


N


ANISOU
584
N
LEU
A
460
1267
1060
952
146
40
−115

N


ATOM
585
CA
LEU
A
460
−9.927
−25.173
3.063
1.00
13.84


C


ANISOU
585
CA
LEU
A
460
1860
1824
1574
124
40
−105

C


ATOM
586
CB
LEU
A
460
−8.511
−25.017
3.626
1.00
14.05


C


ANISOU
586
CB
LEU
A
460
1833
1910
1596
163
34
−84

C


ATOM
587
CG
LEU
A
460
−7.489
−24.355
2.695
1.00
11.22


C


ANISOU
587
CG
LEU
A
460
1392
1676
1195
138
42
−70

C


ATOM
588
CD1
LEU
A
460
−7.887
−22.915
2.416
1.00
13.69


C


ANISOU
588
CD1
LEU
A
460
1691
2001
1509
43
18
−16

C


ATOM
589
CD2
LEU
A
460
−6.094
−24.429
3.299
1.00
12.52


C


ANISOU
589
CD2
LEU
A
460
1493
1913
1352
183
38
−58

C


ATOM
590
C
LEU
A
460
−9.900
−25.882
1.720
1.00
17.30


C


ANISOU
590
C
LEU
A
460
2289
2309
1977
138
71
−162

C


ATOM
591
O
LEU
A
460
−9.612
−27.081
1.658
1.00
15.32


O


ANISOU
591
O
LEU
A
460
2061
2026
1735
202
95
−218

O


ATOM
592
N
TYR
A
461
−10.259
−25.163
0.658
1.00
9.38


N


ANISOU
592
N
TYR
A
461
1256
1376
931
80
69
−150

N


ATOM
593
CA
TYR
A
461
−10.163
−25.713
−0.686
1.00
10.03


C


ANISOU
593
CA
TYR
A
461
1315
1540
956
88
97
−208

C


ATOM
594
CB
TYR
A
461
−11.313
−25.192
−1.541
1.00
13.61


C


ANISOU
594
CB
TYR
A
461
1770
2029
1374
20
85
−195

C


ATOM
595
CG
TYR
A
461
−12.695
−25.708
−1.196
1.00
16.93


C


ANISOU
595
CG
TYR
A
461
2253
2353
1828
−1
74
−226

C


ATOM
596
CD1
TYR
A
461
−12.881
−26.969
−0.637
1.00
18.96


C


ANISOU
596
CD1
TYR
A
461
2568
2508
2130
35
88
−293

C


ATOM
597
CE1
TYR
A
461
−14.158
−27.438
−0.337
1.00
19.08


C


ANISOU
597
CE1
TYR
A
461
2631
2443
2174
−2
79
−313

C


ATOM
598
CZ
TYR
A
461
−15.261
−26.649
−0.624
1.00
17.16


C


ANISOU
598
CZ
TYR
A
461
2370
2240
1909
−64
56
−275

C


ATOM
599
OH
TYR
A
461
−16.528
−27.104
−0.354
1.00
17.54


O


ANISOU
599
OH
TYR
A
461
2450
2236
1980
−105
49
−294

O


ATOM
600
CE2
TYR
A
461
−15.103
−25.399
−1.183
1.00
16.11


C


ANISOU
600
CE2
TYR
A
461
2183
2202
1734
−83
41
−208

C


ATOM
601
CD2
TYR
A
461
−13.820
−24.935
−1.464
1.00
19.07


C


ANISOU
601
CD2
TYR
A
461
2519
2639
2086
−58
50
−181

C


ATOM
602
C
TYR
A
461
−8.837
−25.367
−1.354
1.00
12.78


C


ANISOU
602
C
TYR
A
461
1580
2025
1251
104
115
−195

C


ATOM
603
O
TYR
A
461
−8.356
−26.136
−2.199
1.00
13.97


O


ANISOU
603
O
TYR
A
461
1706
2249
1354
149
148
−266

O


ATOM
604
N
GLY
A
462
−8.243
−24.236
−1.005
1.00
12.32


N


ANISOU
604
N
GLY
A
462
1476
2006
1198
64
97
−112

N


ATOM
605
CA
GLY
A
462
−6.960
−23.856
−1.563
1.00
15.90


C


ANISOU
605
CA
GLY
A
462
1839
2599
1602
63
114
−85

C


ATOM
606
C
GLY
A
462
−6.752
−22.360
−1.481
1.00
15.42


C


ANISOU
606
C
GLY
A
462
1740
2567
1552
−28
87
19

C


ATOM
607
O
GLY
A
462
−7.560
−21.622
−0.916
1.00
14.68


O


ANISOU
607
O
GLY
A
462
1695
2373
1509
−74
55
61

O


ATOM
608
N
AVAL
A
463
−5.627
−21.929
−2.048
0.64
13.48


N


ANISOU
608
N
AVAL
A
463
1404
2459
1260
−52
104
58

N


ATOM
609
CA
AVAL
A
463
−5.238
−20.527
−2.056
0.64
12.23


C


ANISOU
609
CA
AVAL
A
463
1201
2328
1116
−151
82
162

C


ATOM
610
CB
AVAL
A
463
−4.014
−20.256
−1.145
0.64
12.62


C


ANISOU
610
CB
AVAL
A
463
1196
2405
1195
−161
69
175

C


ATOM
611
CG1
AVAL
A
463
−4.368
−20.494
0.327
0.64
14.84


C


ANISOU
611
CG1
AVAL
A
463
1546
2545
1547
−124
36
134

C


ATOM
612
CG2
AVAL
A
463
−2.847
−21.133
−1.557
0.64
14.24


C


ANISOU
612
CG2
AVAL
A
463
1312
2762
1334
−90
109
131

C


ATOM
613
C
AVAL
A
463
−4.937
−20.113
−3.491
0.64
14.34


C


ANISOU
613
C
AVAL
A
463
1395
2752
1300
−199
110
220

C


ATOM
614
O
AVAL
A
463
−4.591
−20.939
−4.340
0.64
16.97


O


ANISOU
614
O
AVAL
A
463
1683
3211
1553
−145
150
164

O


ATOM
615
N
BVAL
A
463
−5.645
−21.924
−2.082
0.36
13.44


N


ANISOU
615
N
BVAL
A
463
1398
2455
1253
−53
104
58

N


ATOM
616
CA
BVAL
A
463
−5.227
−20.530
−2.049
0.36
12.67


C


ANISOU
616
CA
BVAL
A
463
1257
2385
1173
−151
82
162

C


ATOM
617
CB
BVAL
A
463
−4.063
−20.305
−1.058
0.36
13.39


C


ANISOU
617
CB
BVAL
A
463
1300
2491
1297
−156
68
170

C


ATOM
618
CG1
BVAL
A
463
−3.598
−18.867
−1.113
0.36
12.71


C


ANISOU
618
CG1
BVAL
A
463
1168
2427
1235
−277
46
269

C


ATOM
619
CG2
BVAL
A
463
−4.482
−20.685
0.359
0.36
14.00


C


ANISOU
619
CG2
BVAL
A
463
1451
2429
1441
−109
38
123

C


ATOM
620
C
BVAL
A
463
−4.819
−20.092
−3.450
0.36
14.69


C


ANISOU
620
C
BVAL
A
463
1433
2803
1346
−200
111
222

C


ATOM
621
O
BVAL
A
463
−4.274
−20.877
−4.233
0.36
15.32


O


ANISOU
621
O
BVAL
A
463
1456
3019
1345
−147
151
171

O


ATOM
622
N
CYS
A
464
−5.066
−18.820
−3.758
1.00
13.13


N


ANISOU
622
N
CYS
A
464
1230
2593
1168
−298
90
333

N


ATOM
623
CA
CYS
A
464
−4.673
−18.232
−5.041
1.00
14.16


C


ANISOU
623
CA
CYS
A
464
1281
2880
1220
−361
114
425

C


ATOM
624
CB
CYS
A
464
−5.827
−17.484
−5.706
1.00
14.16


C


ANISOU
624
CB
CYS
A
464
1324
2838
1219
−407
96
511

C


ATOM
625
SG
CYS
A
464
−7.334
−18.451
−5.952
1.00
19.66


S


ANISOU
625
SG
CYS
A
464
2099
3484
1889
−326
93
414

S


ATOM
626
C
CYS
A
464
−3.513
−17.288
−4.755
1.00
17.21


C


ANISOU
626
C
CYS
A
464
1595
3309
1636
−451
108
512

C


ATOM
627
O
CYS
A
464
−3.712
−16.221
−4.165
1.00
18.52


O


ANISOU
627
O
CYS
A
464
1800
3347
1891
−529
70
581

O


ATOM
628
N
THR
A
465
−2.309
−17.676
−5.176
1.00
19.76


N


ANISOU
628
N
THR
A
465
1811
3813
1886
−442
145
501

N


ATOM
629
CA
THR
A
465
−1.087
−17.017
−4.738
1.00
26.72


C


ANISOU
629
CA
THR
A
465
2608
4752
2792
−521
138
558

C


ATOM
630
CB
THR
A
465
−0.164
−18.021
−4.030
1.00
33.26


C


ANISOU
630
CB
THR
A
465
3386
5646
3607
−427
151
452

C


ATOM
631
OG1
THR
A
465
0.152
−19.080
−4.941
1.00
41.46


O


ANISOU
631
OG1
THR
A
465
4366
6849
4538
−328
205
387

O


ATOM
632
CG2
THR
A
465
−0.861
−18.609
−2.823
1.00
36.55


C


ANISOU
632
CG2
THR
A
465
3912
5876
4100
−346
117
359

C


ATOM
633
C
THR
A
465
−0.295
−16.349
−5.851
1.00
24.81


C


ANISOU
633
C
THR
A
465
2262
4685
2481
−607
163
668

C


ATOM
634
O
THR
A
465
0.725
−15.711
−5.558
1.00
23.43


O


ANISOU
634
O
THR
A
465
2031
4537
2334
−680
144
712

O


ATOM
635
N
LYS
A
466
−0.709
−16.469
−7.110
1.00
21.59


N


ANISOU
635
N
LYS
A
466
1854
4354
1993
−580
177
688

N


ATOM
636
CA
LYS
A
466
0.142
−15.878
−8.137
1.00
35.47


C


ANISOU
636
CA
LYS
A
466
3533
6247
3695
−633
175
770

C


ATOM
637
CB
LYS
A
466
−0.204
−16.483
−9.504
1.00
33.22


C


ANISOU
637
CB
LYS
A
466
3224
6100
3297
−566
197
740

C


ATOM
638
CG
LYS
A
466
0.002
−17.990
−9.607
0.00
26.19


C


ANISOU
638
CG
LYS
A
466
2309
5309
2334
−434
237
581

C


ATOM
639
CD
LYS
A
466
1.474
−18.349
−9.756
0.00
23.22


C


ANISOU
639
CD
LYS
A
466
1826
5095
1903
−404
256
550

C


ATOM
640
CE
LYS
A
466
1.654
−19.829
−10.066
0.00
21.78


C


ANISOU
640
CE
LYS
A
466
1625
4999
1653
−257
293
390

C


ATOM
641
NZ
LYS
A
466
1.103
−20.697
−8.988
0.00
20.20


N


ANISOU
641
NZ
LYS
A
466
1501
4658
1514
−171
304
281

N


ATOM
642
C
LYS
A
466
0.030
−14.358
−8.185
1.00
37.14


C


ANISOU
642
C
LYS
A
466
3775
6348
3987
−761
135
915

C


ATOM
643
O
LYS
A
466
0.705
−13.726
−9.001
1.00
38.52


O


ANISOU
643
O
LYS
A
466
3889
6621
4126
−819
132
1002

O


ATOM
644
N
GLN
A
467
−0.756
−13.760
−7.294
1.00
42.45


N


ANISOU
644
N
GLN
A
467
4539
6815
4773
−802
104
938

N


ATOM
645
CA
GLN
A
467
−1.354
−12.453
−7.506
1.00
45.41


C


ANISOU
645
CA
GLN
A
467
4977
7046
5230
−880
68
1058

C


ATOM
646
CB
GLN
A
467
−2.771
−12.607
−8.049
1.00
54.95


C


ANISOU
646
CB
GLN
A
467
6253
8204
6422
−820
64
1069

C


ATOM
647
CG
GLN
A
467
−3.604
−13.522
−7.141
1.00
57.92


C


ANISOU
647
CG
GLN
A
467
6693
8498
6815
−747
71
959

C


ATOM
648
CD
GLN
A
467
−5.062
−13.586
−7.529
1.00
61.54


C


ANISOU
648
CD
GLN
A
467
7224
8892
7267
−696
59
970

C


ATOM
649
OE1
GLN
A
467
−5.414
−14.102
−8.589
1.00
70.09


O


ANISOU
649
OE1
GLN
A
467
8277
10105
8250
−647
75
956

O


ATOM
650
NE2
GLN
A
467
−5.922
−13.058
−6.670
1.00
57.51


N


ANISOU
650
NE2
GLN
A
467
6805
8184
6862
−706
27
986

N


ATOM
651
C
GLN
A
467
−1.422
−11.678
−6.199
1.00
40.64


C


ANISOU
651
C
GLN
A
467
4441
6233
4767
−948
31
1059

C


ATOM
652
O
GLN
A
467
−1.280
−12.231
−5.108
1.00
43.96


O


ANISOU
652
O
GLN
A
467
4868
6616
5218
−928
29
966

O


ATOM
653
N
ARG
A
468
−1.687
−10.387
−6.318
1.00
32.97


N


ANISOU
653
N
ARG
A
468
3521
5122
3885
−1021
1
1157

N


ATOM
654
CA
ARG
A
468
−1.982
−9.571
−5.159
1.00
34.28


C


ANISOU
654
CA
ARG
A
468
3771
5060
4192
−1071
−38
1142

C


ATOM
655
CB
ARG
A
468
−0.909
−8.503
−4.952
1.00
40.57


C


ANISOU
655
CB
ARG
A
468
4541
5819
5056
−1190
−54
1190

C


ATOM
656
CG
ARG
A
468
0.490
−9.056
−4.732
0.00
38.24


C


ANISOU
656
CG
ARG
A
468
4136
5701
4694
−1222
−38
1141

C


ATOM
657
CD
ARG
A
468
1.504
−7.930
−4.606
0.00
37.48


C


ANISOU
657
CD
ARG
A
468
4010
5570
4661
−1351
−54
1196

C


ATOM
658
NE
ARG
A
468
2.852
−8.428
−4.344
0.00
36.58


N


ANISOU
658
NE
ARG
A
468
3783
5633
4481
−1378
−43
1149

N


ATOM
659
CZ
ARG
A
468
3.925
−7.652
−4.228
0.00
37.43


C


ANISOU
659
CZ
ARG
A
468
3840
5762
4620
−1493
−53
1184

C


ATOM
660
NH1
ARG
A
468
3.811
−6.337
−4.354
0.00
38.50


N


ANISOU
660
NH1
ARG
A
468
4031
5739
4859
−1595
−71
1265

N


ATOM
661
NH2
ARG
A
468
5.112
−8.191
−3.989
0.00
37.65


N


ANISOU
661
NH2
ARG
A
468
3759
5971
4578
−1502
−43
1138

N


ATOM
662
C
ARG
A
468
−3.341
−8.938
−5.383
1.00
32.89


C


ANISOU
662
C
ARG
A
468
3695
4721
4081
−1038
−58
1196

C


ATOM
663
O
ARG
A
468
−3.568
−8.312
−6.415
1.00
37.38


O


ANISOU
663
O
ARG
A
468
4257
5310
4634
−1047
−56
1303

O


ATOM
664
N
PRO
A
469
−4.260
−9.102
−4.424
1.00
21.29


N


ANISOU
664
N
PRO
A
469
2310
3098
2680
−991
−79
1125

N


ATOM
665
CA
PRO
A
469
−4.113
−9.840
−3.165
1.00
21.56


C


ANISOU
665
CA
PRO
A
469
2354
3104
2733
−978
−87
1004

C


ATOM
666
CB
PRO
A
469
−5.209
−9.236
−2.286
1.00
21.21


C


ANISOU
666
CB
PRO
A
469
2426
2825
2806
−954
−125
973

C


ATOM
667
CG
PRO
A
469
−6.244
−8.793
−3.256
1.00
20.11


C


ANISOU
667
CG
PRO
A
469
2327
2650
2662
−902
−122
1063

C


ATOM
668
CD
PRO
A
469
−5.537
−8.367
−4.491
1.00
19.64


C


ANISOU
668
CD
PRO
A
469
2197
2718
2547
−951
−102
1170

C


ATOM
669
C
PRO
A
469
−4.322
−11.342
−3.312
1.00
22.54


C


ANISOU
669
C
PRO
A
469
2439
3378
2745
−890
−52
934

C


ATOM
670
O
PRO
A
469
−5.033
−11.774
−4.210
1.00
25.58


O


ANISOU
670
O
PRO
A
469
2827
3834
3057
−829
−31
962

O


ATOM
671
N
ILE
A
470
−3.721
−12.137
−2.430
1.00
17.44


N


ANISOU
671
N
ILE
A
470
1771
2771
2085
−847
−53
809

N


ATOM
672
CA
ILE
A
470
−3.957
−13.571
−2.477
1.00
19.52


C


ANISOU
672
CA
ILE
A
470
2028
3126
2262
−719
−26
702

C


ATOM
673
CB
ILE
A
470
−2.886
−14.337
−1.682
1.00
19.46


C


ANISOU
673
CB
ILE
A
470
1962
3201
2233
−687
−22
606

C


ATOM
674
CG1
ILE
A
470
−2.952
−13.962
−0.214
1.00
21.72


C


ANISOU
674
CG1
ILE
A
470
2306
3336
2611
−701
−68
542

C


ATOM
675
CD1
ILE
A
470
−1.805
−14.519
0.586
1.00
30.56


C


ANISOU
675
CD1
ILE
A
470
3353
4552
3706
−684
−73
472

C


ATOM
676
CG2
ILE
A
470
−1.485
−14.003
−2.219
1.00
17.71


C


ANISOU
676
CG2
ILE
A
470
1613
3150
1966
−777
−0
675

C


ATOM
677
C
ILE
A
470
−5.355
−13.866
−1.949
1.00
16.76


C


ANISOU
677
C
ILE
A
470
1788
2627
1954
−634
−46
637

C


ATOM
678
O
ILE
A
470
−5.921
−13.091
−1.166
1.00
17.51


O


ANISOU
678
O
ILE
A
470
1956
2554
2144
−655
−83
636

O


ATOM
679
N
PHE
A
471
−5.915
−15.000
−2.381
1.00
14.18


N


ANISOU
679
N
PHE
A
471
1469
2365
1552
−538
−21
575

N


ATOM
680
CA
PHE
A
471
−7.242
−15.462
−1.987
1.00
12.70


C


ANISOU
680
CA
PHE
A
471
1368
2070
1387
−462
−34
513

C


ATOM
681
CB
PHE
A
471
−8.142
−15.785
−3.204
1.00
13.48


C


ANISOU
681
CB
PHE
A
471
1467
2241
1413
−432
−16
543

C


ATOM
682
CG
PHE
A
471
−8.380
−14.643
−4.147
1.00
13.83


C


ANISOU
682
CG
PHE
A
471
1494
2306
1456
−500
−23
687

C


ATOM
683
CD1
PHE
A
471
−8.141
−13.331
−3.779
1.00
15.80


C


ANISOU
683
CD1
PHE
A
471
1759
2444
1798
−576
−49
778

C


ATOM
684
CE1
PHE
A
471
−8.377
−12.292
−4.673
1.00
20.22


C


ANISOU
684
CE1
PHE
A
471
2310
3008
2366
−634
−55
930

C


ATOM
685
CZ
PHE
A
471
−8.860
−12.566
−5.949
1.00
24.83


C


ANISOU
685
CZ
PHE
A
471
2855
3735
2845
−613
−36
993

C


ATOM
686
CE2
PHE
A
471
−9.105
−13.871
−6.323
1.00
16.91


C


ANISOU
686
CE2
PHE
A
471
1830
2858
1738
−541
−11
884

C


ATOM
687
CD2
PHE
A
471
−8.877
−14.898
−5.423
1.00
15.64


C


ANISOU
687
CD2
PHE
A
471
1691
2665
1589
−486
−4
731

C


ATOM
688
C
PHE
A
471
−7.115
−16.734
−1.160
1.00
17.05


C


ANISOU
688
C
PHE
A
471
1935
2621
1924
−376
−25
388

C


ATOM
689
O
PHE
A
471
−6.250
−17.573
−1.427
1.00
14.94


O


ANISOU
689
O
PHE
A
471
1609
2470
1595
−343
3
347

O


ATOM
690
N
ILE
A
472
−7.964
−16.866
−0.146
1.00
16.10


N


ANISOU
690
N
ILE
A
472
1890
2370
1858
−336
−48
334

N


ATOM
691
CA
ILE
A
472
−8.181
−18.123
0.564
1.00
11.13


C


ANISOU
691
CA
ILE
A
472
1290
1721
1216
−252
−39
237

C


ATOM
692
CB
ILE
A
472
−8.087
−17.953
2.092
1.00
13.50


C


ANISOU
692
CB
ILE
A
472
1625
1928
1575
−242
−68
196

C


ATOM
693
CG1
ILE
A
472
−6.786
−17.266
2.499
1.00
11.37


C


ANISOU
693
CG1
ILE
A
472
1298
1700
1322
−302
−84
217

C


ATOM
694
CD1
ILE
A
472
−6.682
−17.053
4.047
1.00
13.20


C


ANISOU
694
CD1
ILE
A
472
1558
1861
1597
−297
−119
165

C


ATOM
695
CG2
ILE
A
472
−8.225
−19.307
2.776
1.00
11.73


C


ANISOU
695
CG2
ILE
A
472
1427
1696
1334
−156
−55
121

C


ATOM
696
C
ILE
A
472
−9.573
−18.591
0.173
1.00
11.68


C


ANISOU
696
C
ILE
A
472
1413
1751
1274
−216
−34
216

C


ATOM
697
O
ILE
A
472
−10.539
−17.842
0.347
1.00
13.32


O


ANISOU
697
O
ILE
A
472
1661
1877
1523
−233
−56
250

O


ATOM
698
N
ILE
A
473
−9.680
−19.812
−0.362
1.00
11.07


N


ANISOU
698
N
ILE
A
473
1331
1733
1142
−165
−5
157

N


ATOM
699
CA
ILE
A
473
−10.934
−20.371
−0.867
1.00
9.34


C


ANISOU
699
CA
ILE
A
473
1149
1500
900
−146
−0
127

C


ATOM
700
CB
ILE
A
473
−10.768
−20.943
−2.291
1.00
10.68


C


ANISOU
700
CB
ILE
A
473
1274
1803
982
−143
29
107

C


ATOM
701
CG1
ILE
A
473
−9.987
−19.981
−3.186
1.00
12.86


C


ANISOU
701
CG1
ILE
A
473
1479
2191
1215
−195
34
197

C


ATOM
702
CD1
ILE
A
473
−10.675
−18.645
−3.375
1.00
13.74


C


ANISOU
702
CD1
ILE
A
473
1600
2263
1357
−250
5
307

C


ATOM
703
CG2
ILE
A
473
−12.124
−21.232
−2.920
1.00
9.90


C


ANISOU
703
CG2
ILE
A
473
1200
1709
852
−148
23
88

C


ATOM
704
C
ILE
A
473
−11.395
−21.463
0.096
1.00
8.82


C


ANISOU
704
C
ILE
A
473
1138
1349
864
−93
3
48

C


ATOM
705
O
ILE
A
473
−10.628
−22.382
0.407
1.00
9.34


O


ANISOU
705
O
ILE
A
473
1200
1424
925
−47
21
−2

O


ATOM
706
N
THR
A
474
−12.647
−21.377
0.564
1.00
10.23


N


ANISOU
706
N
THR
A
474
1363
1450
1073
−96
−13
47

N


ATOM
707
CA
THR
A
474
−13.173
−22.383
1.484
1.00
12.74


C


ANISOU
707
CA
THR
A
474
1730
1692
1418
−60
−7
−9

C


ATOM
708
CB
THR
A
474
−13.136
−21.913
2.950
1.00
13.06


C


ANISOU
708
CB
THR
A
474
1796
1658
1510
−48
−27
7

C


ATOM
709
OG1
THR
A
474
−14.170
−20.937
3.168
1.00
13.99


O


ANISOU
709
OG1
THR
A
474
1926
1738
1650
−71
−48
40

O


ATOM
710
CG2
THR
A
474
−11.783
−21.308
3.295
1.00
11.10


C


ANISOU
710
CG2
THR
A
474
1512
1438
1268
−53
−37
29

C


ATOM
711
C
THR
A
474
−14.616
−22.749
1.140
1.00
16.76


C


ANISOU
711
C
THR
A
474
2263
2186
1919
−75
−8
−28

C


ATOM
712
O
THR
A
474
−15.294
−22.083
0.354
1.00
11.21


O


ANISOU
712
O
THR
A
474
1538
1528
1191
−105
−20
7

O


ATOM
713
N
GLU
A
475
−15.095
−23.815
1.778
1.00
11.78


N


ANISOU
713
N
GLU
A
475
1674
1494
1309
−57
2
−76

N


ATOM
714
CA
GLU
A
475
−16.529
−24.073
1.801
1.00
14.85


C


ANISOU
714
CA
GLU
A
475
2080
1862
1700
−84
−2
−86

C


ATOM
715
CB
GLU
A
475
−16.830
−25.311
2.659
1.00
20.29


C


ANISOU
715
CB
GLU
A
475
2817
2472
2422
−73
14
−125

C


ATOM
716
CG
GLU
A
475
−17.258
−25.050
4.103
1.00
18.46


C


ANISOU
716
CG
GLU
A
475
2604
2185
2224
−61
6
−87

C


ATOM
717
CD
GLU
A
475
−17.503
−26.337
4.899
1.00
17.44


C


ANISOU
717
CD
GLU
A
475
2520
1984
2123
−55
25
−103

C


ATOM
718
OE1
GLU
A
475
−16.522
−26.950
5.375
1.00
16.98


O


ANISOU
718
OE1
GLU
A
475
2483
1887
2081
−11
36
−103

O


ATOM
719
OE2
GLU
A
475
−18.673
−26.755
5.038
1.00
19.67


O


ANISOU
719
OE2
GLU
A
475
2811
2252
2411
−96
30
−105

O


ATOM
720
C
GLU
A
475
−17.276
−22.837
2.317
1.00
11.54


C


ANISOU
720
C
GLU
A
475
1651
1434
1301
−91
−26
−28

C


ATOM
721
O
GLU
A
475
−16.757
−22.050
3.115
1.00
8.70


O


ANISOU
721
O
GLU
A
475
1294
1041
969
−73
−37
1

O


ATOM
722
N
TYR
A
476
−18.511
−22.673
1.856
1.00
11.09


N


ANISOU
722
N
TYR
A
476
1578
1409
1226
−115
−35
−20

N


ATOM
723
CA
TYR
A
476
−19.304
−21.473
2.109
1.00
13.06


C


ANISOU
723
CA
TYR
A
476
1811
1660
1492
−106
−56
34

C


ATOM
724
CB
TYR
A
476
−20.112
−21.111
0.854
1.00
8.64


C


ANISOU
724
CB
TYR
A
476
1206
1188
887
−126
−70
63

C


ATOM
725
CG
TYR
A
476
−21.029
−19.922
1.054
1.00
10.78


C


ANISOU
725
CG
TYR
A
476
1457
1458
1181
−98
−92
125

C


ATOM
726
CD1
TYR
A
476
−20.537
−18.718
1.551
1.00
15.22


C


ANISOU
726
CD1
TYR
A
476
2036
1954
1794
−68
−104
171

C


ATOM
727
CE1
TYR
A
476
−21.378
−17.632
1.738
1.00
14.93


C


ANISOU
727
CE1
TYR
A
476
1987
1896
1788
−28
−122
219

C


ATOM
728
CZ
TYR
A
476
−22.713
−17.744
1.432
1.00
15.72


C


ANISOU
728
CZ
TYR
A
476
2048
2065
1861
−13
−128
229

C


ATOM
729
OH
TYR
A
476
−23.551
−16.672
1.602
1.00
21.80


O


ANISOU
729
OH
TYR
A
476
2801
2819
2664
45
−145
278

O


ATOM
730
CE2
TYR
A
476
−23.226
−18.921
0.938
1.00
15.56


C


ANISOU
730
CE2
TYR
A
476
2002
2129
1783
−56
−119
188

C


ATOM
731
CD2
TYR
A
476
−22.380
−20.002
0.748
1.00
14.26


C


ANISOU
731
CD2
TYR
A
476
1861
1962
1595
−101
−101
131

C


ATOM
732
C
TYR
A
476
−20.249
−21.688
3.287
1.00
12.57


C


ANISOU
732
C
TYR
A
476
1763
1557
1455
−94
−53
22

C


ATOM
733
O
TYR
A
476
−20.915
−22.721
3.368
1.00
10.74


O


ANISOU
733
O
TYR
A
476
1536
1332
1212
−119
−40
−12

O


ATOM
734
N
MET
A
477
−20.321
−20.711
4.192
1.00
7.25


N


ANISOU
734
N
MET
A
477
1096
845
814
−60
−64
45

N


ATOM
735
CA
MET
A
477
−21.156
−20.818
5.393
1.00
7.21


C


ANISOU
735
CA
MET
A
477
1097
822
820
−40
−56
32

C


ATOM
736
CB
MET
A
477
−20.301
−20.700
6.664
1.00
13.57


C


ANISOU
736
CB
MET
A
477
1933
1578
1645
−14
−54
15

C


ATOM
737
CG
MET
A
477
−19.190
−21.744
6.732
1.00
13.10


C


ANISOU
737
CG
MET
A
477
1897
1501
1579
−26
−42
−0

C


ATOM
738
SD
MET
A
477
−19.795
−23.413
7.091
1.00
11.77


S


ANISOU
738
SD
MET
A
477
1748
1324
1399
−48
−14
−13

S


ATOM
739
CE
MET
A
477
−20.350
−23.167
8.761
1.00
12.11


C


ANISOU
739
CE
MET
A
477
1792
1372
1437
−21
−8
0

C


ATOM
740
C
MET
A
477
−22.230
−19.734
5.318
1.00
9.19


C


ANISOU
740
C
MET
A
477
1316
1096
1079
−9
−71
60

C


ATOM
741
O
MET
A
477
−21.983
−18.570
5.658
1.00
8.84


O


ANISOU
741
O
MET
A
477
1280
1009
1069
29
−85
73

O


ATOM
742
N
ALA
A
478
−23.426
−20.118
4.869
1.00
9.06


N


ANISOU
742
N
ALA
A
478
1261
1146
1035
−25
−68
65

N


ATOM
743
CA
ALA
A
478
−24.398
−19.136
4.398
1.00
11.49


C


ANISOU
743
CA
ALA
A
478
1525
1499
1343
12
−86
105

C


ATOM
744
CB
ALA
A
478
−25.569
−19.841
3.715
1.00
11.52


C


ANISOU
744
CB
ALA
A
478
1472
1606
1299
−26
−86
106

C


ATOM
745
C
ALA
A
478
−24.949
−18.234
5.493
1.00
11.55


C


ANISOU
745
C
ALA
A
478
1530
1479
1382
81
−85
101

C


ATOM
746
O
ALA
A
478
−25.433
−17.140
5.183
1.00
11.86


O


ANISOU
746
O
ALA
A
478
1548
1517
1443
137
−102
137

O


ATOM
747
N
ASN
A
479
−24.935
−18.661
6.752
1.00
9.87


N


ANISOU
747
N
ASN
A
479
1334
1250
1167
87
−65
60

N


ATOM
748
CA
ASN
A
479
−25.523
−17.848
7.806
1.00
9.12


C


ANISOU
748
CA
ASN
A
479
1229
1151
1086
157
−59
39

C


ATOM
749
CB
ASN
A
479
−26.343
−18.737
8.739
1.00
10.62


C


ANISOU
749
CB
ASN
A
479
1389
1413
1232
143
−30
19

C


ATOM
750
CG
ASN
A
479
−27.747
−18.982
8.180
1.00
16.39


C


ANISOU
750
CG
ASN
A
479
2044
2248
1933
134
−25
45

C


ATOM
751
OD1
ASN
A
479
−28.356
−18.070
7.640
1.00
26.49


O


ANISOU
751
OD1
ASN
A
479
3287
3553
3225
191
−42
67

O


ATOM
752
ND2
ASN
A
479
−28.236
−20.209
8.273
1.00
12.47


N


ANISOU
752
ND2
ASN
A
479
1525
1812
1403
59
−5
48

N


ATOM
753
C
ASN
A
479
−24.494
−17.009
8.561
1.00
9.84


C


ANISOU
753
C
ASN
A
479
1372
1150
1216
190
−69
6

C


ATOM
754
O
ASN
A
479
−24.851
−16.345
9.541
1.00
11.81


O


ANISOU
754
O
ASN
A
479
1621
1391
1475
250
−64
−35

O


ATOM
755
N
GLY
A
480
−23.257
−16.955
8.078
1.00
8.93


N


ANISOU
755
N
GLY
A
480
1294
977
1123
153
−84
16

N


ATOM
756
CA
GLY
A
480
−22.306
−15.975
8.582
1.00
11.03


C


ANISOU
756
CA
GLY
A
480
1599
1158
1434
170
−101
−11

C


ATOM
757
C
GLY
A
480
−21.697
−16.388
9.909
1.00
8.29


C


ANISOU
757
C
GLY
A
480
1272
814
1062
167
−92
−69

C


ATOM
758
O
GLY
A
480
−21.731
−17.543
10.301
1.00
9.94


O


ANISOU
758
O
GLY
A
480
1474
1077
1225
144
−72
−68

O


ATOM
759
N
CYS
A
481
−21.148
−15.413
10.619
1.00
8.69


N


ANISOU
759
N
CYS
A
481
1348
807
1146
188
−109
−118

N


ATOM
760
CA
CYS
A
481
−20.407
−15.733
11.826
1.00
13.10


C


ANISOU
760
CA
CYS
A
481
1919
1388
1670
181
−109
−173

C


ATOM
761
CB
CYS
A
481
−19.439
−14.611
12.180
1.00
13.16


C


ANISOU
761
CB
CYS
A
481
1956
1320
1724
171
−139
−225

C


ATOM
762
SG
CYS
A
481
−20.231
−13.078
12.605
1.00
11.53


S


ANISOU
762
SG
CYS
A
481
1769
1035
1578
238
−150
−292

S


ATOM
763
C
CYS
A
481
−21.344
−15.997
13.001
1.00
11.20


C


ANISOU
763
C
CYS
A
481
1660
1221
1376
229
−85
−214

C


ATOM
764
O
CYS
A
481
−22.410
−15.383
13.131
1.00
9.45


O


ANISOU
764
O
CYS
A
481
1421
1006
1164
284
−77
−236

O


ATOM
765
N
LEU
A
482
−20.939
−16.938
13.849
1.00
7.01


N


ANISOU
765
N
LEU
A
482
1067
661
936
−86
42
263

N


ATOM
766
CA
LEU
A
482
−21.761
−17.325
14.990
1.00
6.50


C


ANISOU
766
CA
LEU
A
482
1019
582
867
−90
10
176

C


ATOM
767
CB
LEU
A
482
−21.023
−18.370
15.821
1.00
7.41


C


ANISOU
767
CB
LEU
A
482
1151
708
957
−121
−6
100

C


ATOM
768
CG
LEU
A
482
−21.752
−18.894
17.048
1.00
13.04


C


ANISOU
768
CG
LEU
A
482
1873
1432
1651
−119
−24
43

C


ATOM
769
CD1
LEU
A
482
−23.083
−19.567
16.660
1.00
7.57


C


ANISOU
769
CD1
LEU
A
482
1175
786
915
−111
−32
55

C


ATOM
770
CD2
LEU
A
482
−20.805
−19.848
17.835
1.00
10.48


C


ANISOU
770
CD2
LEU
A
482
1554
1123
1303
−132
−31
8

C


ATOM
771
C
LEU
A
482
−22.123
−16.127
15.866
1.00
7.67


C


ANISOU
771
C
LEU
A
482
1157
639
1117
−78
15
154

C


ATOM
772
O
LEU
A
482
−23.243
−16.038
16.391
1.00
7.84


O


ANISOU
772
O
LEU
A
482
1178
672
1130
−53
2
125

O


ATOM
773
N
LEU
A
483
−21.182
−15.218
16.069
1.00
7.40


N


ANISOU
773
N
LEU
A
483
1105
513
1194
−98
36
150

N


ATOM
774
CA
LEU
A
483
−21.415
−14.096
16.972
1.00
12.81


C


ANISOU
774
CA
LEU
A
483
1767
1096
2004
−89
37
82

C


ATOM
775
CB
LEU
A
483
−20.172
−13.202
16.984
1.00
13.44


C


ANISOU
775
CB
LEU
A
483
1807
1061
2238
−130
62
70

C


ATOM
776
CG
LEU
A
483
−20.293
−11.974
17.865
1.00
14.42


C


ANISOU
776
CG
LEU
A
483
1890
1078
2509
−124
60
−38

C


ATOM
777
CD1
LEU
A
483
−20.485
−12.457
19.310
1.00
16.00


C


ANISOU
777
CD1
LEU
A
483
2091
1343
2643
−118
10
−217

C


ATOM
778
CD2
LEU
A
483
−19.062
−11.095
17.742
1.00
14.10


C


ANISOU
778
CD2
LEU
A
483
1793
978
2585
−164
82
−45

C


ATOM
779
C
LEU
A
483
−22.658
−13.297
16.574
1.00
10.70


C


ANISOU
779
C
LEU
A
483
1490
790
1785
−34
51
148

C


ATOM
780
O
LEU
A
483
−23.553
−13.052
17.399
1.00
9.59


O


ANISOU
780
O
LEU
A
483
1344
645
1654
−3
36
70

O


ATOM
781
N
ASN
A
484
−22.725
−12.852
15.312
1.00
9.19


N


ANISOU
781
N
ASN
A
484
1287
585
1619
−8
85
301

N


ATOM
782
C
ASN
A
484
−25.136
−12.921
14.859
1.00
12.34


C


ANISOU
782
C
ASN
A
484
1676
1099
1911
97
58
363

C


ATOM
783
O
ASN
A
484
−26.244
−12.422
15.099
1.00
12.11


O


ANISOU
783
O
ASN
A
484
1627
1059
1914
152
53
360

O


ATOM
784
CA
ASN
A
484
−23.878
−12.070
14.883
1.00
9.96


C


ANISOU
784
CA
ASN
A
484
1365
656
1762
63
98
387

C


ATOM
785
CB
ASN
A
484
−23.628
−11.469
13.495
1.00
10.97


C


ANISOU
785
CB
ASN
A
484
1467
793
1910
97
143
576

C


ATOM
786
CG
ASN
A
484
−22.550
−10.415
13.507
1.00
20.33


C


ANISOU
786
CG
ASN
A
484
2616
1869
3240
58
184
575

C


ATOM
787
OD1
ASN
A
484
−22.189
−9.895
14.559
1.00
22.92


O


ANISOU
787
OD1
ASN
A
484
2933
2087
3690
22
177
444

O


ATOM
788
ND2
ASN
A
484
−22.042
−10.077
12.333
1.00
25.94


N


ANISOU
788
ND2
ASN
A
484
3294
2626
3936
72
227
717

N


ATOM
789
N
TYR
A
485
−24.984
−14.203
14.563
1.00
10.92


N


ANISOU
789
N
TYR
A
485
1517
1045
1588
65
33
338

N


ATOM
790
CA
TYR
A
485
−26.124
−15.113
14.552
1.00
8.05


C


ANISOU
790
CA
TYR
A
485
1146
799
1113
77
−3
298

C


ATOM
791
CB
TYR
A
485
−25.626
−16.454
14.030
1.00
8.40


C


ANISOU
791
CB
TYR
A
485
1203
938
1050
34
−21
269

C


ATOM
792
CG
TYR
A
485
−26.626
−17.566
13.799
1.00
10.14


C


ANISOU
792
CG
TYR
A
485
1401
1268
1185
27
−56
215

C


ATOM
793
CD1
TYR
A
485
−27.462
−17.547
12.690
1.00
14.20


C


ANISOU
793
CD1
TYR
A
485
1868
1899
1629
74
−79
254

C


ATOM
794
CE1
TYR
A
485
−28.340
−18.591
12.439
1.00
20.48


C


ANISOU
794
CE1
TYR
A
485
2620
2792
2368
56
−117
174

C


ATOM
795
CZ
TYR
A
485
−28.342
−19.680
13.288
1.00
18.50


C


ANISOU
795
CZ
TYR
A
485
2382
2493
2154
−13
−117
83

C


ATOM
796
OH
TYR
A
485
−29.179
−20.730
13.054
1.00
24.67


O


ANISOU
796
OH
TYR
A
485
3109
3338
2928
−45
−145
1

O


ATOM
797
CE2
TYR
A
485
−27.479
−19.739
14.368
1.00
22.53


C


ANISOU
797
CE2
TYR
A
485
2945
2896
2718
−47
−87
78

C


ATOM
798
CD2
TYR
A
485
−26.620
−18.690
14.609
1.00
12.51


C


ANISOU
798
CD2
TYR
A
485
1713
1559
1481
−26
−64
130

C


ATOM
799
C
TYR
A
485
−26.741
−15.239
15.940
1.00
11.80


C


ANISOU
799
C
TYR
A
485
1623
1251
1610
68
−13
190

C


ATOM
800
O
TYR
A
485
−27.971
−15.224
16.097
1.00
11.02


O


ANISOU
800
O
TYR
A
485
1494
1200
1492
103
−23
181

O


ATOM
801
N
LEU
A
486
−25.897
−15.368
16.963
1.00
7.37


N


ANISOU
801
N
LEU
A
486
1083
643
1075
29
−9
110

N


ATOM
802
CA
LEU
A
486
−26.384
−15.447
18.334
1.00
7.34


C


ANISOU
802
CA
LEU
A
486
1070
656
1063
37
−13
14

C


ATOM
803
CB
LEU
A
486
−25.213
−15.695
19.285
1.00
7.13


C


ANISOU
803
CB
LEU
A
486
1059
621
1032
3
−17
−63

C


ATOM
804
CG
LEU
A
486
−24.495
−17.042
19.274
1.00
11.14


C


ANISOU
804
CG
LEU
A
486
1589
1185
1457
−39
−25
−46

C


ATOM
805
CD1
LEU
A
486
−23.141
−16.854
19.956
1.00
6.57


C


ANISOU
805
CD1
LEU
A
486
1011
587
899
−56
−33
−109

C


ATOM
806
CD2
LEU
A
486
−25.339
−18.100
19.995
1.00
7.68


C


ANISOU
806
CD2
LEU
A
486
1142
833
943
−36
−20
−46

C


ATOM
807
C
LEU
A
486
−27.113
−14.183
18.753
1.00
12.45


C


ANISOU
807
C
LEU
A
486
1686
1243
1801
95
−2
−19

C


ATOM
808
O
LEU
A
486
−28.062
−14.247
19.543
1.00
10.79


O


ANISOU
808
O
LEU
A
486
1451
1090
1558
126
−1
−74

O


ATOM
809
N
ARG
A
487
−26.683
−13.030
18.246
1.00
9.33


N


ANISOU
809
N
ARG
A
487
1283
727
1534
114
14
17

N


ATOM
810
CA
ARG
A
487
−27.268
−11.760
18.643
1.00
9.97


C


ANISOU
810
CA
ARG
A
487
1330
710
1750
174
29
−25

C


ATOM
811
CB
ARG
A
487
−26.286
−10.632
18.351
1.00
10.90


C


ANISOU
811
CB
ARG
A
487
1435
651
2055
162
55
−9

C


ATOM
812
CG
ARG
A
487
−25.040
−10.699
19.249
1.00
10.83


C


ANISOU
812
CG
ARG
A
487
1425
612
2077
99
42
−152

C


ATOM
813
CD
ARG
A
487
−23.990
−9.661
18.827
1.00
14.44


C


ANISOU
813
CD
ARG
A
487
1854
934
2699
62
70
−120

C


ATOM
814
NE
ARG
A
487
−22.904
−9.608
19.801
1.00
13.59


N


ANISOU
814
NE
ARG
A
487
1720
844
2600
9
46
−278

N


ATOM
815
CZ
ARG
A
487
−21.808
−8.869
19.672
1.00
19.96


C


ANISOU
815
Cz
ARG
A
487
2483
1585
3516
−37
61
−283

C


ATOM
816
NH1
ARG
A
487
−21.634
−8.118
18.589
1.00
18.13


N


ANISOU
816
NH1
ARG
A
487
2233
1261
3393
−40
108
−132

N


ATOM
817
NH2
ARG
A
487
−20.878
−8.893
20.628
1.00
19.97


N


ANISOU
817
NH2
ARG
A
487
2447
1628
3514
−73
30
−435

N


ATOM
818
C
ARG
A
487
−28.609
−11.459
17.977
1.00
12.23


C


ANISOU
818
C
ARG
A
487
1588
1026
2033
247
34
68

C


ATOM
819
O
ARG
A
487
−29.278
−10.515
18.403
1.00
11.60


O


ANISOU
819
O
ARG
A
487
1472
875
2059
311
46
24

O


ATOM
820
N
GLU
A
488
−29.007
−12.206
16.949
1.00
12.66


N


ANISOU
820
N
GLU
A
488
1645
1189
1975
245
20
178

N


ATOM
821
CA
GLU
A
488
−30.317
−12.008
16.322
1.00
13.09


C


ANISOU
821
CA
GLU
A
488
1656
1314
2005
320
11
255

C


ATOM
822
CB
GLU
A
488
−30.325
−12.572
14.905
1.00
16.34


C


ANISOU
822
CB
GLU
A
488
2061
1838
2309
323
−8
378

C


ATOM
823
CG
GLU
A
488
−29.420
−11.801
13.946
1.00
21.49


C


ANISOU
823
CG
GLU
A
488
2722
2415
3027
346
24
520

C


ATOM
824
CD
GLU
A
488
−29.194
−12.507
12.598
1.00
46.30


C


ANISOU
824
CD
GLU
A
488
5855
5717
6020
349
7
617

C


ATOM
825
OE1
GLU
A
488
−28.940
−13.739
12.565
1.00
40.62


O


ANISOU
825
OE1
GLU
A
488
5154
5096
5184
283
−23
529

O


ATOM
826
OE2
GLU
A
488
−29.262
−11.812
11.558
1.00
60.61


O


ANISOU
826
OE2
GLU
A
488
7635
7561
7834
427
27
784

O


ATOM
827
C
GLU
A
488
−31.364
−12.682
17.199
1.00
10.22


C


ANISOU
827
C
GLU
A
488
1265
1056
1564
318
−4
156

C


ATOM
828
O
GLU
A
488
−31.519
−13.906
17.178
1.00
10.90


O


ANISOU
828
O
GLU
A
488
1352
1252
1538
262
−22
137

O


ATOM
829
N
MET
A
489
−32.102
−11.884
17.967
1.00
10.98


N


ANISOU
829
N
MET
A
489
1324
1113
1734
382
12
94

N


ATOM
830
CA
MET
A
489
−33.042
−12.465
18.920
1.00
11.51


C


ANISOU
830
CA
MET
A
489
1354
1294
1727
383
14
6

C


ATOM
831
CB
MET
A
489
−33.564
−11.371
19.851
1.00
15.02


C


ANISOU
831
CB
MET
A
489
1759
1682
2268
465
37
−91

C


ATOM
832
CG
MET
A
489
−32.477
−10.740
20.740
1.00
24.54


C


ANISOU
832
CG
MET
A
489
2994
2775
3556
452
49
−216

C


ATOM
833
SD
MET
A
489
−31.675
−11.935
21.862
1.00
22.85


S


ANISOU
833
SD
MET
A
489
2810
2685
3188
369
45
−308

S


ATOM
834
CE
MET
A
489
−33.039
−12.256
22.990
1.00
29.76


C


ANISOU
834
CE
MET
A
489
3615
3735
3959
426
72
−379

C


ATOM
835
C
MET
A
489
−34.206
−13.190
18.236
1.00
15.63


C


ANISOU
835
C
MET
A
489
1821
1954
2165
390
−7
68

C


ATOM
836
O
MET
A
489
−34.854
−14.035
18.866
1.00
12.51


O


ANISOU
836
O
MET
A
489
1389
1660
1702
356
0
21

O


ATOM
837
N
ARG
A
490
−34.492
−12.877
16.974
1.00
14.83


N


ANISOU
837
N
ARG
A
490
1698
1870
2068
434
−31
174

N


ATOM
838
CA
ARG
A
490
−35.618
−13.508
16.296
1.00
15.51


C


ANISOU
838
CA
ARG
A
490
1710
2110
2073
446
−64
204

C


ATOM
839
CB
ARG
A
490
−35.721
−12.975
14.869
1.00
12.39


C


ANISOU
839
CB
ARG
A
490
1289
1755
1662
521
−93
332

C


ATOM
840
CG
ARG
A
490
−34.476
−13.234
14.019
1.00
11.94


C


ANISOU
840
CG
ARG
A
490
1295
1679
1565
478
−99
394

C


ATOM
841
CD
ARG
A
490
−34.612
−12.650
12.589
1.00
16.04


C


ANISOU
841
CD
ARG
A
490
1773
2280
2040
575
−117
551

C


ATOM
842
NE
ARG
A
490
−33.338
−12.676
11.857
1.00
13.98


N


ANISOU
842
NE
ARG
A
490
1566
1995
1750
549
−101
630

N


ATOM
843
CZ
ARG
A
490
−32.885
−13.721
11.177
1.00
13.09


C


ANISOU
843
CZ
ARG
A
490
1458
2008
1508
493
−131
593

C


ATOM
844
NH1
ARG
A
490
−33.603
−14.833
11.117
1.00
16.68


N


ANISOU
844
NH1
ARG
A
490
1865
2599
1873
448
−182
474

N


ATOM
845
NH2
ARG
A
490
−31.705
−13.665
10.554
1.00
15.28


N


ANISOU
845
NH2
ARG
A
490
1777
2269
1761
479
−107
667

N


ATOM
846
C
ARG
A
490
−35.499
−15.032
16.302
1.00
16.72


C


ANISOU
846
C
ARG
A
490
1864
2350
2140
336
−80
152

C


ATOM
847
O
ARG
A
490
−36.513
−15.732
16.215
1.00
13.16


O


ANISOU
847
O
ARG
A
490
1336
2012
1654
316
−97
123

O


ATOM
848
N
HIS
A
491
−34.276
−15.568
16.415
1.00
10.55


N


ANISOU
848
N
HIS
A
491
1158
1506
1344
263
−73
137

N


ATOM
849
CA
HIS
A
491
−34.109
−17.018
16.328
1.00
9.95


C


ANISOU
849
CA
HIS
A
491
1080
1483
1218
167
−84
96

C


ATOM
850
CB
HIS
A
491
−32.633
−17.416
16.297
1.00
14.17


C


ANISOU
850
CB
HIS
A
491
1698
1941
1744
113
−77
95

C


ATOM
851
CG
HIS
A
491
−31.910
−16.983
15.059
1.00
13.29


C


ANISOU
851
CG
HIS
A
491
1612
1828
1608
141
−98
155

C


ATOM
852
ND1
HIS
A
491
−32.246
−17.441
13.802
1.00
16.49


N


ANISOU
852
ND1
HIS
A
491
1972
2351
1943
151
−139
166

N


ATOM
853
CE1
HIS
A
491
−31.445
−16.893
12.906
1.00
14.92


C


ANISOU
853
CE1
HIS
A
491
1800
2155
1714
190
−138
244

C


ATOM
854
NE2
HIS
A
491
−30.595
−16.103
13.540
1.00
20.00


N


ANISOU
854
NE2
HIS
A
491
2503
2661
2436
191
−98
281

N


ATOM
855
CD2
HIS
A
491
−30.866
−16.142
14.887
1.00
15.64


C


ANISOU
855
CD2
HIS
A
491
1962
2038
1942
164
−80
210

C


ATOM
856
C
HIS
A
491
−34.773
−17.734
17.487
1.00
9.39


C


ANISOU
856
C
HIS
A
491
970
1439
1158
123
−51
47

C


ATOM
857
O
HIS
A
491
−35.121
−18.910
17.358
1.00
11.97


O


ANISOU
857
O
HIS
A
491
1254
1810
1484
52
−55
24

O


ATOM
858
N
ARG
A
492
−34.927
−17.067
18.628
1.00
9.54


N


ANISOU
858
N
ARG
A
492
993
1436
1196
165
−12
29

N


ATOM
859
CA
ARG
A
492
−35.644
−17.644
19.770
1.00
9.85


C


ANISOU
859
CA
ARG
A
492
979
1539
1224
144
33
7

C


ATOM
860
CB
ARG
A
492
−37.151
−17.669
19.505
1.00
12.88


C


ANISOU
860
CB
ARG
A
492
1253
2020
1622
166
30
8

C


ATOM
861
CG
ARG
A
492
−37.782
−16.292
19.417
1.00
16.71


C


ANISOU
861
CG
ARG
A
492
1707
2513
2128
281
22
1

C


ATOM
862
CD
ARG
A
492
−39.187
−16.422
18.884
1.00
17.14


C


ANISOU
862
CD
ARG
A
492
1643
2680
2190
303
2
8

C


ATOM
863
NE
ARG
A
492
−40.022
−15.251
19.118
1.00
16.64


N


ANISOU
863
NE
ARG
A
492
1525
2641
2156
422
12
1

N


ATOM
864
CZ
ARG
A
492
−39.975
−14.154
18.376
1.00
18.22


C


ANISOU
864
Cz
ARG
A
492
1740
2792
2393
520
−20
41

C


ATOM
865
NH1
ARG
A
492
−39.084
−14.063
17.390
1.00
16.46


N


ANISOU
865
NH1
ARG
A
492
1584
2508
2161
509
−58
99

N


ATOM
866
NH2
ARG
A
492
−40.795
−13.144
18.631
1.00
20.69


N


ANISOU
866
NH2
ARG
A
492
1992
3113
2756
635
−7
34

N


ATOM
867
C
ARG
A
492
−35.136
−19.046
20.092
1.00
10.92


C


ANISOU
867
C
ARG
A
492
1131
1669
1351
49
55
25

C


ATOM
868
O
ARG
A
492
−35.901
−20.012
20.162
1.00
11.10


O


ANISOU
868
O
ARG
A
492
1082
1736
1399
−7
76
40

O


ATOM
869
N
PHE
A
493
−33.821
−19.148
20.274
1.00
10.70


N


ANISOU
869
N
PHE
A
493
1187
1572
1306
31
53
27

N


ATOM
870
CA
PHE
A
493
−33.163
−20.440
20.435
1.00
10.55


C


ANISOU
870
CA
PHE
A
493
1190
1525
1294
−43
69
56

C


ATOM
871
CB
PHE
A
493
−31.639
−20.260
20.596
1.00
8.51


C


ANISOU
871
CB
PHE
A
493
1019
1203
1010
−39
58
50

C


ATOM
872
CG
PHE
A
493
−30.930
−19.770
19.344
1.00
12.43


C


ANISOU
872
CG
PHE
A
493
1562
1643
1520
−36
10
35

C


ATOM
873
CD1
PHE
A
493
−30.833
−20.572
18.208
1.00
8.64


C


ANISOU
873
CD1
PHE
A
493
1076
1156
1053
−81
−17
33

C


ATOM
874
CE1
PHE
A
493
−30.167
−20.127
17.070
1.00
14.32


C


ANISOU
874
CE1
PHE
A
493
1826
1862
1755
−65
−50
34

C


ATOM
875
CZ
PHE
A
493
−29.570
−18.874
17.058
1.00
13.65


C


ANISOU
875
CZ
PHE
A
493
1778
1736
1671
−16
−49
58

C


ATOM
876
CE2
PHE
A
493
−29.642
−18.074
18.179
1.00
14.49


C


ANISOU
876
CE2
PHE
A
493
1891
1813
1801
17
−27
41

C


ATOM
877
CD2
PHE
A
493
−30.325
−18.526
19.323
1.00
9.00


C


ANISOU
877
CD2
PHE
A
493
1165
1165
1091
13
−1
19

C


ATOM
878
C
PHE
A
493
−33.691
−21.179
21.657
1.00
11.72


C


ANISOU
878
C
PHE
A
493
1286
1729
1436
−60
136
104

C


ATOM
879
O
PHE
A
493
−33.938
−20.579
22.710
1.00
11.88


O


ANISOU
879
O
PHE
A
493
1290
1823
1400
−0
170
101

O


ATOM
880
N
GLN
A
494
−33.845
−22.495
21.515
1.00
9.40


N


ANISOU
880
N
GLN
A
494
958
1405
1210
−136
160
150

N


ATOM
881
CA
GLN
A
494
−33.957
−23.378
22.668
1.00
13.01


C


ANISOU
881
CA
GLN
A
494
1377
1888
1676
−155
238
246

C


ATOM
882
CB
GLN
A
494
−34.618
−24.701
22.294
1.00
14.26


C


ANISOU
882
CB
GLN
A
494
1456
1985
1975
−250
270
287

C


ATOM
883
CG
GLN
A
494
−35.951
−24.623
21.581
1.00
16.71


C


ANISOU
883
CG
GLN
A
494
1668
2330
2352
−285
249
226

C


ATOM
884
CD
GLN
A
494
−36.498
−26.023
21.364
1.00
21.00


C


ANISOU
884
CD
GLN
A
494
2116
2793
3070
−393
288
251

C


ATOM
885
OE1
GLN
A
494
−36.828
−26.722
22.322
1.00
28.08


O


ANISOU
885
OE1
GLN
A
494
2955
3684
4031
−421
381
373

O


ATOM
886
NE2
GLN
A
494
−36.527
−26.461
20.112
1.00
28.53


N


ANISOU
886
NE2
GLN
A
494
3047
3684
4108
−450
220
135

N


ATOM
887
C
GLN
A
494
−32.568
−23.682
23.214
1.00
11.96


C


ANISOU
887
C
GLN
A
494
1323
1724
1498
−138
245
288

C


ATOM
888
O
GLN
A
494
−31.577
−23.664
22.480
1.00
10.33


O


ANISOU
888
O
GLN
A
494
1184
1439
1302
−150
194
243

O


ATOM
889
N
THR
A
495
−32.490
−23.982
24.508
1.00
12.39


N


ANISOU
889
N
THR
A
495
1355
1863
1492
−101
310
383

N


ATOM
890
CA
THR
A
495
−31.172
−24.309
25.053
1.00
14.26


C


ANISOU
890
CA
THR
A
495
1650
2096
1673
−72
311
430

C


ATOM
891
CB
THR
A
495
−31.226
−24.450
26.577
1.00
11.75


C


ANISOU
891
CB
THR
A
495
1287
1938
1237
−0
381
537

C


ATOM
892
OG1
THR
A
495
−32.195
−25.442
26.951
1.00
13.18


O


ANISOU
892
OG1
THR
A
495
1383
2130
1495
−37
472
686

O


ATOM
893
CG2
THR
A
495
−31.578
−23.102
27.205
1.00
12.19


C


ANISOU
893
CG2
THR
A
495
1329
2143
1159
82
365
427

C


ATOM
894
C
THR
A
495
−30.605
−25.576
24.426
1.00
16.13


C


ANISOU
894
C
THR
A
495
1903
2188
2038
−140
315
487

C


ATOM
895
O
THR
A
495
−29.382
−25.758
24.397
1.00
10.85


O


ANISOU
895
O
THR
A
495
1293
1481
1347
−122
288
488

O


ATOM
896
N
GLN
A
496
−31.471
−26.478
23.958
1.00
12.88


N


ANISOU
896
N
GLN
A
496
1427
1694
1772
−216
349
523

N


ATOM
897
CA
GLN
A
496
−31.001
−27.658
23.233
1.00
17.91


C


ANISOU
897
CA
GLN
A
496
2068
2170
2567
−283
347
531

C


ATOM
898
CB
GLN
A
496
−32.194
−28.548
22.855
1.00
18.03


C


ANISOU
898
CB
GLN
A
496
1979
2103
2767
−375
388
543

C


ATOM
899
CG
GLN
A
496
−32.955
−29.166
24.041
1.00
46.56


C


ANISOU
899
CG
GLN
A
496
5527
5760
6403
−362
477
689

C


ATOM
900
CD
GLN
A
496
−33.628
−28.146
24.972
1.00
47.22


C


ANISOU
900
CD
GLN
A
496
5576
6038
6330
−300
517
744

C


ATOM
901
OE1
GLN
A
496
−33.580
−28.289
26.200
1.00
57.96


O


ANISOU
901
OE1
GLN
A
496
6932
7494
7596
−229
566
855

O


ATOM
902
NE2
GLN
A
496
−34.256
−27.126
24.396
1.00
25.60


N


ANISOU
902
NE2
GLN
A
496
2821
3366
3540
−300
470
624

N


ATOM
903
C
GLN
A
496
−30.215
−27.261
21.986
1.00
15.79


C


ANISOU
903
C
GLN
A
496
1869
1843
2286
−292
256
383

C


ATOM
904
O
GLN
A
496
−29.215
−27.906
21.635
1.00
10.88


O


ANISOU
904
O
GLN
A
496
1287
1130
1717
−300
243
378

O


ATOM
905
N
GLN
A
497
−30.646
−26.194
21.307
1.00
9.26


N


ANISOU
905
N
GLN
A
497
1051
1076
1390
−280
198
276

N


ATOM
906
CA
GLN
A
497
−29.907
−25.715
20.142
1.00
8.41


C


ANISOU
906
CA
GLN
A
497
1001
943
1251
−274
125
170

C


ATOM
907
CB
GLN
A
497
−30.746
−24.701
19.362
1.00
8.21


C


ANISOU
907
CB
GLN
A
497
952
987
1179
−259
79
95

C


ATOM
908
CG
GLN
A
497
−31.994
−25.235
18.723
1.00
16.40


C


ANISOU
908
CG
GLN
A
497
1897
2035
2300
−312
71
46

C


ATOM
909
CD
GLN
A
497
−32.834
−24.102
18.165
1.00
20.14


C


ANISOU
909
CD
GLN
A
497
2342
2607
2704
−267
28
2

C


ATOM
910
OE1
GLN
A
497
−33.682
−23.551
18.859
1.00
20.15


O


ANISOU
910
OE1
GLN
A
497
2304
2667
2685
−238
55
37

O


ATOM
911
NE2
GLN
A
497
−32.569
−23.716
16.919
1.00
18.99


N


ANISOU
911
NE2
GLN
A
497
2209
2491
2513
−247
−35
−63

N


ATOM
912
C
GLN
A
497
−28.576
−25.080
20.546
1.00
8.64


C


ANISOU
912
C
GLN
A
497
1110
988
1184
−218
110
182

C


ATOM
913
O
GLN
A
497
−27.583
−25.199
19.828
1.00
8.98


O


ANISOU
913
O
GLN
A
497
1196
984
1231
−222
78
141

O


ATOM
914
N
LEU
A
498
−28.560
−24.340
21.653
1.00
7.69


N


ANISOU
914
N
LEU
A
498
997
949
975
−164
130
218

N


ATOM
915
CA
LEU
A
498
−27.313
−23.745
22.114
1.00
7.27


C


ANISOU
915
CA
LEU
A
498
997
921
845
−117
109
203

C


ATOM
916
CB
LEU
A
498
−27.585
−22.856
23.334
1.00
10.16


C


ANISOU
916
CB
LEU
A
498
1345
1403
1114
−54
124
196

C


ATOM
917
CG
LEU
A
498
−28.555
−21.697
23.065
1.00
9.86


C


ANISOU
917
CG
LEU
A
498
1287
1388
1072
−36
109
124

C


ATOM
918
CD1
LEU
A
498
−28.743
−20.825
24.307
1.00
11.69


C


ANISOU
918
CD1
LEU
A
498
1492
1734
1215
36
123
80

C


ATOM
919
CD2
LEU
A
498
−28.073
−20.865
21.868
1.00
10.39


C


ANISOU
919
CD2
LEU
A
498
1396
1373
1180
−46
58
58

C


ATOM
920
C
LEU
A
498
−26.287
−24.827
22.441
1.00
7.47


C


ANISOU
920
C
LEU
A
498
1038
908
893
−118
126
270

C


ATOM
921
O
LEU
A
498
−25.112
−24.701
22.085
1.00
9.27


O


ANISOU
921
O
LEU
A
498
1306
1107
1109
−109
93
234

O


ATOM
922
N
LEU
A
499
−26.713
−25.902
23.115
1.00
8.33


N


ANISOU
922
N
LEU
A
499
1106
1011
1048
−124
185
382

N


ATOM
923
CA
LEU
A
499
−25.771
−26.966
23.455
1.00
11.18


C


ANISOU
923
CA
LEU
A
499
1474
1323
1451
−109
209
473

C


ATOM
924
CB
LEU
A
499
−26.428
−27.959
24.424
1.00
10.11


C


ANISOU
924
CB
LEU
A
499
1277
1197
1365
−101
295
642

C


ATOM
925
CG
LEU
A
499
−25.501
−28.981
25.094
1.00
11.38


C


ANISOU
925
CG
LEU
A
499
1435
1340
1550
−50
321
757

C


ATOM
926
CD1
LEU
A
499
−24.383
−28.267
25.864
1.00
11.54


C


ANISOU
926
CD1
LEU
A
499
1482
1512
1391
39
287
762

C


ATOM
927
CD2
LEU
A
499
−26.274
−29.905
26.005
1.00
16.65


C


ANISOU
927
CD2
LEU
A
499
2034
2022
2271
−34
386
880

C


ATOM
928
C
LEU
A
499
−25.258
−27.672
22.198
1.00
13.75


C


ANISOU
928
C
LEU
A
499
1820
1504
1899
−159
183
409

C


ATOM
929
O
LEU
A
499
−24.083
−28.068
22.126
1.00
9.24


O


ANISOU
929
O
LEU
A
499
1276
896
1336
−134
171
417

O


ATOM
930
N
GLU
A
500
−26.114
−27.813
21.187
1.00
8.82


N


ANISOU
930
N
GLU
A
500
1173
819
1361
−222
170
328

N


ATOM
931
CA
GLU
A
500
−25.671
−28.408
19.930
1.00
8.41


C


ANISOU
931
CA
GLU
A
500
1128
669
1399
−259
138
228

C


ATOM
932
CB
GLU
A
500
−26.870
−28.580
18.999
1.00
16.67


C


ANISOU
932
CB
GLU
A
500
2118
1693
2521
−322
121
133

C


ATOM
933
CG
GLU
A
500
−26.509
−29.186
17.658
1.00
24.95


C


ANISOU
933
CG
GLU
A
500
3155
2681
3642
−350
82
−7

C


ATOM
934
CD
GLU
A
500
−26.395
−30.704
17.708
1.00
32.95


C


ANISOU
934
CD
GLU
A
500
4131
3560
4831
−375
116
−6

C


ATOM
935
OE1
GLU
A
500
−26.695
−31.286
18.771
1.00
37.39


O


ANISOU
935
OE1
GLU
A
500
4672
4084
5449
−369
172
125

O


ATOM
936
OE2
GLU
A
500
−26.016
−31.312
16.678
1.00
38.00


O


ANISOU
936
OE2
GLU
A
500
4758
4170
5512
−377
83
−135

O


ATOM
937
C
GLU
A
500
−24.586
−27.571
19.259
1.00
8.43


C


ANISOU
937
C
GLU
A
500
1187
717
1300
−228
84
150

C


ATOM
938
O
GLU
A
500
−23.673
−28.117
18.618
1.00
7.51


O


ANISOU
938
O
GLU
A
500
1085
546
1223
−225
71
104

O


ATOM
939
N
MET
A
501
−24.688
−26.238
19.348
1.00
8.39


N


ANISOU
939
N
MET
A
501
1204
802
1181
−204
58
131

N


ATOM
940
CA
MET
A
501
−23.614
−25.384
18.842
1.00
7.95


C


ANISOU
940
CA
MET
A
501
1190
774
1056
−180
23
86

C


ATOM
941
CB
MET
A
501
−23.994
−23.901
18.948
1.00
6.97


C


ANISOU
941
CB
MET
A
501
1074
711
862
−161
6
69

C


ATOM
942
CG
MET
A
501
−25.217
−23.446
18.156
1.00
8.96


C


ANISOU
942
CG
MET
A
501
1301
986
1117
−173
−7
41

C


ATOM
943
SD
MET
A
501
−25.652
−21.778
18.743
1.00
13.95


S


ANISOU
943
SD
MET
A
501
1937
1659
1706
−131
−11
43

S


ATOM
944
CE
MET
A
501
−27.320
−21.608
18.098
1.00
16.72


C


ANISOU
944
CE
MET
A
501
2238
2049
2067
−132
−19
36

C


ATOM
945
C
MET
A
501
−22.304
−25.623
19.595
1.00
9.90


C


ANISOU
945
C
MET
A
501
1456
1021
1283
−145
29
126

C


ATOM
946
O
MET
A
501
−21.224
−25.650
18.985
1.00
9.28


O


ANISOU
946
O
MET
A
501
1393
928
1204
−138
13
91

O


ATOM
947
N
CYS
A
502
−22.371
−25.756
20.919
1.00
6.75


N


ANISOU
947
N
CYS
A
502
1046
667
853
−112
53
202

N


ATOM
948
CA
CYS
A
502
−21.170
−26.087
21.688
1.00
7.58


C


ANISOU
948
CA
CYS
A
502
1152
804
925
−63
53
248

C


ATOM
949
CB
CYS
A
502
−21.481
−26.143
23.186
1.00
9.26


C


ANISOU
949
CB
CYS
A
502
1335
1120
1062
−10
80
340

C


ATOM
950
SG
CYS
A
502
−22.030
−24.593
23.885
1.00
12.29


S


ANISOU
950
SG
CYS
A
502
1708
1632
1330
12
57
261

S


ATOM
951
C
CYS
A
502
−20.582
−27.423
21.254
1.00
8.16


C


ANISOU
951
C
CYS
A
502
1222
780
1099
−63
71
285

C


ATOM
952
O
CYS
A
502
−19.358
−27.566
21.145
1.00
8.31


O


ANISOU
952
O
CYS
A
502
1246
800
1109
−33
54
272

O


ATOM
953
N
LYS
A
503
−21.439
−28.418
21.034
1.00
8.10


N


ANISOU
953
N
LYS
A
503
1193
679
1205
−95
109
322

N


ATOM
954
CA
LYS
A
503
−20.965
−29.738
20.635
1.00
10.44


C


ANISOU
954
CA
LYS
A
503
1476
849
1642
−95
132
339

C


ATOM
955
CB
LYS
A
503
−22.118
−30.734
20.642
1.00
9.78


C


ANISOU
955
CB
LYS
A
503
1348
657
1712
−142
180
379

C


ATOM
956
CG
LYS
A
503
−21.633
−32.142
20.366
1.00
14.59


C


ANISOU
956
CG
LYS
A
503
1930
1155
2457
−128
195
368

C


ATOM
957
CD
LYS
A
503
−22.694
−33.162
20.726
1.00
22.92


C


ANISOU
957
CD
LYS
A
503
2926
2145
3638
−157
241
420

C


ATOM
958
CE
LYS
A
503
−23.684
−33.356
19.601
1.00
22.18


C


ANISOU
958
CE
LYS
A
503
2799
1999
3631
−234
220
268

C


ATOM
959
NZ
LYS
A
503
−23.077
−34.046
18.420
1.00
23.01


N


ANISOU
959
NZ
LYS
A
503
2895
2028
3821
−237
191
118

N


ATOM
960
C
LYS
A
503
−20.326
−29.697
19.258
1.00
11.16


C


ANISOU
960
C
LYS
A
503
1583
906
1753
−114
94
195

C


ATOM
961
O
LYS
A
503
−19.271
−30.315
19.036
1.00
12.94


O


ANISOU
961
O
LYS
A
503
1808
1085
2025
−80
95
186

O


ATOM
962
N
ASP
A
504
−20.961
−28.982
18.323
1.00
9.03


N


ANISOU
962
N
ASP
A
504
1317
675
1439
−157
64
92

N


ATOM
963
CA
ASP
A
504
−20.373
−28.739
17.005
1.00
11.61


C


ANISOU
963
CA
ASP
A
504
1650
1026
1734
−160
32
−26

C


ATOM
964
CB
ASP
A
504
−21.176
−27.678
16.234
1.00
11.11


C


ANISOU
964
CB
ASP
A
504
1587
1049
1584
−185
3
−81

C


ATOM
965
CG
ASP
A
504
−22.492
−28.203
15.660
1.00
13.00


C


ANISOU
965
CG
ASP
A
504
1784
1268
1889
−228
−4
−150

C


ATOM
966
OD1
ASP
A
504
−22.651
−29.436
15.494
1.00
13.90


O


ANISOU
966
OD1
ASP
A
504
1862
1285
2136
−250
10
−201

O


ATOM
967
OD2
ASP
A
504
−23.364
−27.356
15.328
1.00
17.52


O


ANISOU
967
OD2
ASP
A
504
2347
1918
2393
−237
−24
−161

O


ATOM
968
C
ASP
A
504
−18.936
−28.268
17.127
1.00
12.42


C


ANISOU
968
C
ASP
A
504
1774
1179
1766
−117
22
−9

C


ATOM
969
O
ASP
A
504
−18.027
−28.834
16.508
1.00
7.25


O


ANISOU
969
O
ASP
A
504
1109
501
1143
−95
23
−61

O


ATOM
970
N
VAL
A
505
−18.724
−27.181
17.875
1.00
8.43


N


ANISOU
970
N
VAL
A
505
1285
746
1172
−105
11
41

N


ATOM
971
CA
VAL
A
505
−17.382
−26.624
18.010
1.00
8.52


C


ANISOU
971
CA
VAL
A
505
1296
808
1132
−78
−2
39

C


ATOM
972
CB
VAL
A
505
−17.455
−25.264
18.726
1.00
10.86


C


ANISOU
972
CB
VAL
A
505
1597
1172
1359
−82
−19
49

C


ATOM
973
CG1
VAL
A
505
−16.059
−24.741
19.069
1.00
13.02


C


ANISOU
973
CG1
VAL
A
505
1848
1494
1607
−62
−36
32

C


ATOM
974
CG2
VAL
A
505
−18.172
−24.274
17.846
1.00
8.38


C


ANISOU
974
CG2
VAL
A
505
1292
862
1029
−117
−23
15

C


ATOM
975
C
VAL
A
505
−16.458
−27.606
18.728
1.00
10.94


C


ANISOU
975
C
VAL
A
505
1587
1093
1477
−26
8
90

C


ATOM
976
O
VAL
A
505
−15.289
−27.769
18.358
1.00
8.40


O


ANISOU
976
O
VAL
A
505
1249
782
1159
−1
3
63

O


ATOM
977
N
CYS
A
506
−16.971
−28.294
19.746
1.00
9.38


N


ANISOU
977
N
CYS
A
506
1383
871
1311
−2
29
182

N


ATOM
978
CA
CYS
A
506
−16.123
−29.196
20.520
1.00
8.08


C


ANISOU
978
CA
CYS
A
506
1195
697
1177
67
42
270

C


ATOM
979
CB
CYS
A
506
−16.893
−29.695
21.750
1.00
8.80


C


ANISOU
979
CB
CYS
A
506
1272
798
1273
98
77
412

C


ATOM
980
SG
CYS
A
506
−15.842
−30.486
23.001
1.00
12.49


S


ANISOU
980
SG
CYS
A
506
1698
1329
1717
216
90
571

S


ATOM
981
C
CYS
A
506
−15.622
−30.371
19.675
1.00
9.93


C


ANISOU
981
C
CYS
A
506
1419
811
1543
81
62
238

C


ATOM
982
O
CYS
A
506
−14.476
−30.812
19.828
1.00
9.14


O


ANISOU
982
O
CYS
A
506
1297
717
1458
143
60
260

O


ATOM
983
N
GLU
A
507
−16.462
−30.904
18.791
1.00
8.82


N


ANISOU
983
N
GLU
A
507
1280
567
1503
31
78
168

N


ATOM
984
CA
GLU
A
507
−16.000
−31.973
17.912
1.00
9.59


C


ANISOU
984
CA
GLU
A
507
1357
554
1733
46
92
86

C


ATOM
985
CB
GLU
A
507
−17.174
−32.529
17.095
1.00
12.55


C


ANISOU
985
CB
GLU
A
507
1717
830
2223
−18
102
−15

C


ATOM
986
CG
GLU
A
507
−18.222
−33.238
17.945
1.00
10.82


C


ANISOU
986
CG
GLU
A
507
1476
540
2095
−41
136
93

C


ATOM
987
CD
GLU
A
507
−19.532
−33.441
17.216
1.00
23.28


C


ANISOU
987
CD
GLU
A
507
3026
2103
3717
−114
127
−14

C


ATOM
988
OE1
GLU
A
507
−20.323
−34.301
17.637
1.00
22.95


O


ANISOU
988
OE1
GLU
A
507
2943
1993
3782
−135
158
37

O


ATOM
989
OE2
GLU
A
507
−19.783
−32.736
16.227
1.00
23.89


O


ANISOU
989
OE2
GLU
A
507
3110
2247
3721
−145
89
−144

O


ATOM
990
C
GLU
A
507
−14.881
−31.486
16.998
1.00
9.19


C


ANISOU
990
C
GLU
A
507
1304
587
1602
65
66
−19

C


ATOM
991
O
GLU
A
507
−13.888
−32.193
16.780
1.00
9.86


O


ANISOU
991
O
GLU
A
507
1364
634
1750
121
76
−43

O


ATOM
992
N
ALA
A
508
−15.018
−30.285
16.448
1.00
8.29


N


ANISOU
992
N
ALA
A
508
1206
585
1360
25
42
−71

N


ATOM
993
CA
ALA
A
508
−13.952
−29.760
15.597
1.00
11.33


C


ANISOU
993
CA
ALA
A
508
1575
1058
1672
40
34
−139

C


ATOM
994
CB
ALA
A
508
−14.378
−28.434
14.977
1.00
7.41


C


ANISOU
994
CB
ALA
A
508
1092
660
1064
−8
22
−158

C


ATOM
995
C
ALA
A
508
−12.664
−29.575
16.387
1.00
10.06


C


ANISOU
995
C
ALA
A
508
1395
944
1485
88
29
−73

C


ATOM
996
O
ALA
A
508
−11.568
−29.869
15.890
1.00
8.61


O


ANISOU
996
O
ALA
A
508
1176
785
1311
128
37
−116

O


ATOM
997
N
MET
A
509
−12.774
−29.057
17.617
1.00
9.27


N


ANISOU
997
N
MET
A
509
1302
880
1342
91
13
17

N


ATOM
998
CA
MET
A
509
−11.583
−28.834
18.434
1.00
10.06


C


ANISOU
998
CA
MET
A
509
1363
1056
1401
140
−6
59

C


ATOM
999
CB
MET
A
509
−11.925
−27.948
19.638
1.00
8.88


C


ANISOU
999
CB
MET
A
509
1216
989
1171
132
−34
106

C


ATOM
1000
CG
MET
A
509
−12.297
−26.482
19.262
1.00
8.08


C


ANISOU
1000
CG
MET
A
509
1126
925
1019
57
−48
41

C


ATOM
1001
SD
MET
A
509
−11.052
−25.613
18.239
1.00
13.74


S


ANISOU
1001
SD
MET
A
509
1798
1682
1740
23
−45
−29

S


ATOM
1002
CE
MET
A
509
−9.631
−25.669
19.326
1.00
14.54


C


ANISOU
1002
CE
MET
A
509
1822
1879
1823
78
−82
−30

C


ATOM
1003
C
MET
A
509
−10.955
−30.143
18.891
1.00
9.17


C


ANISOU
1003
C
MET
A
509
1223
893
1367
227
7
121

C


ATOM
1004
O
MET
A
509
−9.729
−30.222
19.036
1.00
12.50


O


ANISOU
1004
O
MET
A
509
1597
1375
1777
281
−5
121

O


ATOM
1005
N
GLU
A
510
−11.759
−31.173
19.153
1.00
11.33


N


ANISOU
1005
N
GLU
A
510
1515
1051
1741
244
37
184

N


ATOM
1006
CA
GLU
A
510
−11.153
−32.460
19.469
1.00
13.81


C


ANISOU
1006
CA
GLU
A
510
1796
1279
2171
333
62
257

C


ATOM
1007
CB
GLU
A
510
−12.205
−33.472
19.919
1.00
17.68


C


ANISOU
1007
CB
GLU
A
510
2298
1620
2799
337
107
360

C


ATOM
1008
CG
GLU
A
510
−11.561
−34.745
20.416
1.00
19.82


C


ANISOU
1008
CG
GLU
A
510
2529
1790
3213
443
142
481

C


ATOM
1009
CD
GLU
A
510
−12.348
−35.991
20.109
1.00
39.08


C


ANISOU
1009
CD
GLU
A
510
4965
4062
5823
399
184
461

C


ATOM
1010
OE1
GLU
A
510
−11.880
−37.085
20.503
1.00
42.67


O


ANISOU
1010
OE1
GLU
A
510
5385
4453
6374
458
210
539

O


ATOM
1011
OE2
GLU
A
510
−13.422
−35.884
19.478
1.00
49.43


O


ANISOU
1011
OE2
GLU
A
510
6294
5318
7168
305
188
362

O


ATOM
1012
C
GLU
A
510
−10.399
−33.001
18.267
1.00
11.33


C


ANISOU
1012
C
GLU
A
510
1459
906
1937
352
73
131

C


ATOM
1013
O
GLU
A
510
−9.365
−33.658
18.416
1.00
15.91


O


ANISOU
1013
O
GLU
A
510
1997
1474
2573
439
79
158

O


ATOM
1014
N
TYR
A
511
−10.915
−32.752
17.068
1.00
11.98


N


ANISOU
1014
N
TYR
A
511
1561
972
2019
283
76
−9

N


ATOM
1015
CA
TYR
A
511
−10.212
−33.178
15.862
1.00
11.37


C


ANISOU
1015
CA
TYR
A
511
1452
888
1981
309
88
−150

C


ATOM
1016
CB
TYR
A
511
−11.092
−32.949
14.635
1.00
11.10


C


ANISOU
1016
CB
TYR
A
511
1433
864
1920
240
87
−294

C


ATOM
1017
CG
TYR
A
511
−10.344
−33.168
13.336
1.00
11.72


C


ANISOU
1017
CG
TYR
A
511
1467
1007
1977
275
99
−450

C


ATOM
1018
CD1
TYR
A
511
−10.102
−34.445
12.870
1.00
13.08


C


ANISOU
1018
CD1
TYR
A
511
1603
1067
2302
333
119
−564

C


ATOM
1019
CE1
TYR
A
511
−9.404
−34.662
11.688
1.00
13.86


C


ANISOU
1019
CE1
TYR
A
511
1650
1252
2364
378
132
−727

C


ATOM
1020
CZ
TYR
A
511
−8.952
−33.589
10.959
1.00
19.85


C


ANISOU
1020
CZ
TYR
A
511
2395
2219
2928
363
134
−742

C


ATOM
1021
OH
TYR
A
511
−8.267
−33.816
9.789
1.00
16.02


O


ANISOU
1021
OH
TYR
A
511
1848
1853
2386
418
157
−890

O


ATOM
1022
CE2
TYR
A
511
−9.172
−32.303
11.397
1.00
14.74


C


ANISOU
1022
CE2
TYR
A
511
1785
1661
2156
298
120
−606

C


ATOM
1023
CD2
TYR
A
511
−9.878
−32.097
12.588
1.00
12.68


C


ANISOU
1023
CD2
TYR
A
511
1576
1304
1938
254
98
−478

C


ATOM
1024
C
TYR
A
511
−8.888
−32.437
15.714
1.00
12.91


C


ANISOU
1024
C
TYR
A
511
1609
1233
2065
336
75
−160

C


ATOM
1025
O
TYR
A
511
−7.842
−33.050
15.457
1.00
13.69


O


ANISOU
1025
O
TYR
A
511
1657
1330
2213
411
88
−195

O


ATOM
1026
N
LEU
A
512
−8.918
−31.111
15.868
1.00
10.14


N


ANISOU
1026
N
LEU
A
512
1269
1001
1582
276
54
−135

N


ATOM
1027
CA
LEU
A
512
−7.690
−30.327
15.787
1.00
11.21


C


ANISOU
1027
CA
LEU
A
512
1351
1264
1644
283
46
−141

C


ATOM
1028
CB
LEU
A
512
−8.001
−28.843
15.919
1.00
10.53


C


ANISOU
1028
CB
LEU
A
512
1278
1257
1466
199
30
−122

C


ATOM
1029
CG
LEU
A
512
−8.707
−28.203
14.717
1.00
13.62


C


ANISOU
1029
CG
LEU
A
512
1697
1668
1812
136
54
−171

C


ATOM
1030
CD1
LEU
A
512
−8.896
−26.707
14.968
1.00
12.93


C


ANISOU
1030
CD1
LEU
A
512
1611
1627
1674
65
44
−130

C


ATOM
1031
CD2
LEU
A
512
−7.897
−28.442
13.440
1.00
9.43


C


ANISOU
1031
CD2
LEU
A
512
1115
1206
1262
165
92
−242

C


ATOM
1032
C
LEU
A
512
−6.701
−30.753
16.860
1.00
14.57


C


ANISOU
1032
C
LEU
A
512
1727
1715
2094
364
26
−67

C


ATOM
1033
O
LEU
A
512
−5.497
−30.821
16.610
1.00
13.60


O


ANISOU
1033
O
LEU
A
512
1536
1661
1971
410
30
−97

O


ATOM
1034
N
GLU
A
513
−7.195
−31.039
18.062
1.00
12.05


N


ANISOU
1034
N
GLU
A
513
1429
1366
1784
392
6
37

N


ATOM
1035
CA
GLU
A
513
−6.312
−31.496
19.123
1.00
15.07


C


ANISOU
1035
CA
GLU
A
513
1754
1804
2166
492
−16
128

C


ATOM
1036
CB
GLU
A
513
−7.083
−31.545
20.444
1.00
13.12


C


ANISOU
1036
CB
GLU
A
513
1533
1574
1879
514
−33
257

C


ATOM
1037
CG
GLU
A
513
−6.196
−31.817
21.676
1.00
18.34


C


ANISOU
1037
CG
GLU
A
513
2121
2364
2485
630
−68
366

C


ATOM
1038
CD
GLU
A
513
−6.866
−31.391
22.986
1.00
35.32


C


ANISOU
1038
CD
GLU
A
513
4276
4626
4517
644
−95
461

C


ATOM
1039
OE1
GLU
A
513
−7.801
−32.086
23.459
1.00
18.97


O


ANISOU
1039
OE1
GLU
A
513
2245
2476
2487
671
−56
591

O


ATOM
1040
OE2
GLU
A
513
−6.464
−30.336
23.527
1.00
44.51


O


ANISOU
1040
OE2
GLU
A
513
5395
5962
5555
624
−152
393

O


ATOM
1041
C
GLU
A
513
−5.697
−32.848
18.773
1.00
15.96


C


ANISOU
1041
C
GLU
A
513
1835
1819
2408
593
15
137

C


ATOM
1042
O
GLU
A
513
−4.509
−33.084
19.031
1.00
18.05


O


ANISOU
1042
O
GLU
A
513
2026
2159
2672
677
2
156

O


ATOM
1043
N
SER
A
514
−6.474
−33.736
18.139
1.00
15.41


N


ANISOU
1043
N
SER
A
514
1809
1580
2466
586
57
105

N


ATOM
1044
CA
SER
A
514
−5.926
−35.029
17.734
1.00
15.69


C


ANISOU
1044
CA
SER
A
514
1808
1491
2664
681
91
81

C


ATOM
1045
CB
SER
A
514
−7.031
−35.943
17.203
1.00
18.24


C


ANISOU
1045
CB
SER
A
514
2172
1604
3154
652
130
29

C


ATOM
1046
OG
SER
A
514
−7.377
−35.560
15.880
1.00
15.87


O


ANISOU
1046
OG
SER
A
514
1887
1330
2813
574
133
−162

O


ATOM
1047
C
SER
A
514
−4.846
−34.884
16.669
1.00
16.84


C


ANISOU
1047
C
SER
A
514
1899
1718
2784
701
98
−64

C


ATOM
1048
O
SER
A
514
−4.072
−35.820
16.454
1.00
19.30


O


ANISOU
1048
O
SER
A
514
2158
1969
3208
803
119
−89

O


ATOM
1049
N
LYS
A
515
−4.789
−33.746
15.982
1.00
14.13


N


ANISOU
1049
N
LYS
A
515
1558
1507
2304
613
88
−150

N


ATOM
1050
CA
LYS
A
515
−3.731
−33.462
15.022
1.00
16.06


C


ANISOU
1050
CA
LYS
A
515
1735
1865
2501
629
107
−256

C


ATOM
1051
CB
LYS
A
515
−4.319
−32.834
13.748
1.00
14.98


C


ANISOU
1051
CB
LYS
A
515
1626
1782
2285
542
131
−369

C


ATOM
1052
CG
LYS
A
515
−5.438
−33.620
13.100
1.00
15.05


C


ANISOU
1052
CG
LYS
A
515
1684
1663
2371
532
145
−466

C


ATOM
1053
CD
LYS
A
515
−4.979
−35.023
12.725
1.00
21.87


C


ANISOU
1053
CD
LYS
A
515
2504
2416
3389
637
171
−566

C


ATOM
1054
CE
LYS
A
515
−5.967
−35.689
11.778
1.00
26.93


C


ANISOU
1054
CE
LYS
A
515
3164
2965
4104
616
183
−735

C


ATOM
1055
NZ
LYS
A
515
−5.495
−37.038
11.365
1.00
30.28


N


ANISOU
1055
NZ
LYS
A
515
3556
3295
4653
681
200
−817

N


ATOM
1056
C
LYS
A
515
−2.668
−32.536
15.595
1.00
13.88


C


ANISOU
1056
C
LYS
A
515
1391
1752
2131
625
79
−200

C


ATOM
1057
O
LYS
A
515
−1.827
−32.041
14.840
1.00
20.81


O


ANISOU
1057
O
LYS
A
515
2204
2744
2961
612
101
−266

O


ATOM
1058
N
GLN
A
516
−2.702
−32.267
16.898
1.00
16.16


N


ANISOU
1058
N
GLN
A
516
1679
2070
2390
634
33
−89

N


ATOM
1059
CA
GLN
A
516
−1.751
−31.349
17.545
1.00
22.52


C


ANISOU
1059
CA
GLN
A
516
2403
3039
3114
623
−9
−69

C


ATOM
1060
CB
GLN
A
516
−0.344
−31.954
17.591
1.00
24.32


C


ANISOU
1060
CB
GLN
A
516
2521
3340
3380
736
−10
−74

C


ATOM
1061
CG
GLN
A
516
−0.212
−33.149
18.517
1.00
37.66


C


ANISOU
1061
CG
GLN
A
516
4199
4973
5136
879
−28
39

C


ATOM
1062
CD
GLN
A
516
−0.806
−34.412
17.925
1.00
54.20


C


ANISOU
1062
CD
GLN
A
516
6355
6863
7375
934
27
33

C


ATOM
1063
OE1
GLN
A
516
−0.598
−34.719
16.749
1.00
61.55


O


ANISOU
1063
OE1
GLN
A
516
7276
7748
8360
932
71
−91

O


ATOM
1064
NE2
GLN
A
516
−1.558
−35.150
18.735
1.00
58.20


N


ANISOU
1064
NE2
GLN
A
516
6912
7250
7952
984
27
162

N


ATOM
1065
C
GLN
A
516
−1.717
−29.976
16.867
1.00
22.23


C


ANISOU
1065
C
GLN
A
516
2354
3081
3012
497
3
−138

C


ATOM
1066
O
GLN
A
516
−0.661
−29.359
16.720
1.00
20.60


O


ANISOU
1066
O
GLN
A
516
2050
2988
2790
479
2
−171

O


ATOM
1067
N
PHE
A
517
−2.889
−29.470
16.490
1.00
14.21


N


ANISOU
1067
N
PHE
A
517
1426
2001
1972
409
16
−145

N


ATOM
1068
CA
PHE
A
517
−3.028
−28.180
15.818
1.00
13.84


C


ANISOU
1068
CA
PHE
A
517
1375
2001
1882
299
38
−175

C


ATOM
1069
CB
PHE
A
517
−3.790
−28.353
14.498
1.00
13.42


C


ANISOU
1069
CB
PHE
A
517
1380
1905
1814
274
91
−213

C


ATOM
1070
CG
PHE
A
517
−3.737
−27.158
13.581
1.00
18.41


C


ANISOU
1070
CG
PHE
A
517
1986
2607
2400
191
134
−210

C


ATOM
1071
CD1
PHE
A
517
−4.595
−26.082
13.755
1.00
17.77


C


ANISOU
1071
CD1
PHE
A
517
1952
2495
2304
106
125
−168

C


ATOM
1072
CE1
PHE
A
517
−4.549
−24.988
12.884
1.00
15.29


C


ANISOU
1072
CE1
PHE
A
517
1609
2229
1972
40
176
−130

C


ATOM
1073
CZ
PHE
A
517
−3.657
−24.980
11.837
1.00
12.30


C


ANISOU
1073
CZ
PHE
A
517
1151
1952
1570
58
242
−128

C


ATOM
1074
CE2
PHE
A
517
−2.797
−26.053
11.649
1.00
19.21


C


ANISOU
1074
CE2
PHE
A
517
1978
2879
2443
143
249
−190

C


ATOM
1075
CD2
PHE
A
517
−2.844
−27.133
12.512
1.00
24.07


C


ANISOU
1075
CD2
PHE
A
517
2626
3423
3096
209
193
−235

C


ATOM
1076
C
PHE
A
517
−3.772
−27.244
16.762
1.00
19.01


C


ANISOU
1076
C
PHE
A
517
2068
2647
2509
230
−6
−144

C


ATOM
1077
O
PHE
A
517
−4.946
−27.484
17.076
1.00
19.33


O


ANISOU
1077
O
PHE
A
517
2195
2610
2539
224
−17
−115

O


ATOM
1078
N
LEU
A
518
−3.108
−26.184
17.221
1.00
11.03


N


ANISOU
1078
N
LEU
A
518
980
1712
1499
177
−31
−165

N


ATOM
1079
CA
LEU
A
518
−3.799
−25.211
18.062
1.00
11.24


C


ANISOU
1079
CA
LEU
A
518
1031
1730
1510
114
−72
−173

C


ATOM
1080
CB
LEU
A
518
−2.832
−24.412
18.934
1.00
13.95


C


ANISOU
1080
CB
LEU
A
518
1258
2174
1870
91
−124
−235

C


ATOM
1081
CG
LEU
A
518
−1.922
−25.138
19.910
1.00
16.92


C


ANISOU
1081
CG
LEU
A
518
1552
2669
2206
194
−182
−241

C


ATOM
1082
CD1
LEU
A
518
−1.227
−24.090
20.770
1.00
14.26


C


ANISOU
1082
CD1
LEU
A
518
1095
2444
1881
148
−247
−345

C


ATOM
1083
CD2
LEU
A
518
−2.718
−26.096
20.764
1.00
18.45


C


ANISOU
1083
CD2
LEU
A
518
1823
2859
2328
290
−210
−163

C


ATOM
1084
C
LEU
A
518
−4.570
−24.252
17.177
1.00
14.57


C


ANISOU
1084
C
LEU
A
518
1501
2083
1953
19
−26
−168

C


ATOM
1085
O
LEU
A
518
−4.115
−23.896
16.092
1.00
15.81


O


ANISOU
1085
O
LEU
A
518
1621
2249
2136
−17
31
−160

O


ATOM
1086
N
HIS
A
519
−5.752
−23.846
17.639
1.00
12.10


N


ANISOU
1086
N
HIS
A
519
1262
1715
1622
−10
−46
−159

N


ATOM
1087
CA
HIS
A
519
−6.466
−22.783
16.955
1.00
11.18


C


ANISOU
1087
CA
HIS
A
519
1177
1536
1535
−90
−10
−145

C


ATOM
1088
CB
HIS
A
519
−7.914
−22.743
17.422
1.00
12.93


C


ANISOU
1088
CB
HIS
A
519
1490
1701
1721
−92
−31
−131

C


ATOM
1089
CG
HIS
A
519
−8.764
−21.808
16.628
1.00
15.77


C


ANISOU
1089
CG
HIS
A
519
1886
1998
2106
−150
6
−99

C


ATOM
1090
ND1
HIS
A
519
−8.542
−20.448
16.602
1.00
12.25


N


ANISOU
1090
ND1
HIS
A
519
1392
1516
1746
−217
21
−106

N


ATOM
1091
CE1
HIS
A
519
−9.436
−19.876
15.812
1.00
15.54


C


ANISOU
1091
CE1
HIS
A
519
1852
1880
2173
−240
60
−43

C


ATOM
1092
NE2
HIS
A
519
−10.225
−20.817
15.325
1.00
13.35


N


ANISOU
1092
NE2
HIS
A
519
1644
1624
1805
−195
62
−17

N


ATOM
1093
CD2
HIS
A
519
−9.820
−22.036
15.814
1.00
9.90


C


ANISOU
1093
CD2
HIS
A
519
1212
1226
1325
−145
32
−56

C


ATOM
1094
C
HIS
A
519
−5.786
−21.442
17.191
1.00
16.65


C


ANISOU
1094
C
HIS
A
519
1780
2231
2317
−167
−11
−185

C


ATOM
1095
O
HIS
A
519
−5.521
−20.693
16.241
1.00
14.75


O


ANISOU
1095
O
HIS
A
519
1504
1961
2141
−224
50
−144

O


ATOM
1096
N
ARG
A
520
−5.517
−21.120
18.460
1.00
10.11


N


ANISOU
1096
N
ARG
A
520
902
1441
1498
−166
−78
−265

N


ATOM
1097
CA
ARG
A
520
−4.821
−19.951
18.989
1.00
11.90


C


ANISOU
1097
CA
ARG
A
520
1020
1674
1830
−236
−103
−360

C


ATOM
1098
CB
ARG
A
520
−3.510
−19.633
18.235
1.00
12.08


C


ANISOU
1098
CB
ARG
A
520
927
1712
1950
−284
−55
−353

C


ATOM
1099
CG
ARG
A
520
−2.318
−20.498
18.674
1.00
12.61


C


ANISOU
1099
CG
ARG
A
520
908
1914
1969
−218
−96
−394

C


ATOM
1100
CD
ARG
A
520
−1.086
−20.350
17.740
1.00
13.48


C


ANISOU
1100
CD
ARG
A
520
906
2052
2164
−256
−31
−367

C


ATOM
1101
NE
ARG
A
520
0.140
−20.890
18.337
1.00
14.39


N


ANISOU
1101
NE
ARG
A
520
902
2301
2263
−203
−83
−435

N


ATOM
1102
CZ
ARG
A
520
0.698
−22.053
18.002
1.00
14.39


C


ANISOU
1102
CZ
ARG
A
520
899
2379
2190
−107
−70
−390

C


ATOM
1103
NH1
ARG
A
520
0.135
−22.810
17.073
1.00
13.58


N


ANISOU
1103
NH1
ARG
A
520
902
2229
2027
−60
−10
−303

N


ATOM
1104
NH2
ARG
A
520
1.816
−22.465
18.597
1.00
15.39


N


ANISOU
1104
NH2
ARG
A
520
904
2634
2309
−50
−121
−446

N


ATOM
1105
C
ARG
A
520
−5.699
−18.693
19.037
1.00
11.10


C


ANISOU
1105
C
ARG
A
520
942
1458
1819
−309
−91
−386

C


ATOM
1106
O
ARG
A
520
−5.265
−17.692
19.610
1.00
14.04


O


ANISOU
1106
O
ARG
A
520
1221
1808
2306
−369
−118
−496

O


ATOM
1107
N
ASP
A
521
−6.916
−18.705
18.485
1.00
10.22


N


ANISOU
1107
N
ASP
A
521
939
1270
1673
−303
−55
−302

N


ATOM
1108
CA
ASP
A
521
−7.813
−17.561
18.646
1.00
11.33


C


ANISOU
1108
CA
ASP
A
521
1101
1305
1900
−352
−49
−326

C


ATOM
1109
CB
ASP
A
521
−7.474
−16.466
17.622
1.00
16.00


C


ANISOU
1109
CB
ASP
A
521
1638
1783
2657
−431
29
−257

C


ATOM
1110
CG
ASP
A
521
−8.260
−15.174
17.866
1.00
24.49


C


ANISOU
1110
CG
ASP
A
521
2713
2717
3874
−478
37
−288

C


ATOM
1111
OD1
ASP
A
521
−8.788
−14.997
18.991
1.00
21.75


O


ANISOU
1111
OD1
ASP
A
521
2383
2386
3496
−451
−29
−411

O


ATOM
1112
OD2
ASP
A
521
−8.356
−14.333
16.941
1.00
20.59


O


ANISOU
1112
OD2
ASP
A
521
2219
2132
3473
−501
110
−168

O


ATOM
1113
C
ASP
A
521
−9.284
−17.952
18.527
1.00
14.01


C


ANISOU
1113
C
ASP
A
521
1561
1620
2143
−308
−46
−263

C


ATOM
1114
O
ASP
A
521
−10.050
−17.294
17.815
1.00
11.74


O


ANISOU
1114
O
ASP
A
521
1310
1244
1908
−333
−1
−195

O


ATOM
1115
N
LEU
A
522
−9.697
−18.998
19.245
1.00
10.27


N


ANISOU
1115
N
LEU
A
522
1136
1227
1538
−240
−89
−275

N


ATOM
1116
CA
LEU
A
522
−11.073
−19.477
19.192
1.00
9.95


C


ANISOU
1116
CA
LEU
A
522
1192
1168
1421
−206
−84
−219

C


ATOM
1117
CB
LEU
A
522
−11.178
−20.841
19.877
1.00
10.25


C


ANISOU
1117
CB
LEU
A
522
1259
1288
1348
−134
−112
−199

C


ATOM
1118
CG
LEU
A
522
−12.565
−21.494
19.910
1.00
11.06


C


ANISOU
1118
CG
LEU
A
522
1442
1368
1392
−106
−102
−140

C


ATOM
1119
CD1
LEU
A
522
−13.018
−21.830
18.476
1.00
10.93


C


ANISOU
1119
CD1
LEU
A
522
1470
1290
1393
−125
−57
−82

C


ATOM
1120
CD2
LEU
A
522
−12.568
−22.754
20.793
1.00
9.99


C


ANISOU
1120
CD2
LEU
A
522
1313
1298
1184
−36
−119
−99

C


ATOM
1121
C
LEU
A
522
−12.027
−18.479
19.850
1.00
13.67


C


ANISOU
1121
C
LEU
A
522
1673
1595
1928
−221
−101
−277

C


ATOM
1122
O
LEU
A
522
−11.796
−18.028
20.977
1.00
12.07


O


ANISOU
1122
O
LEU
A
522
1419
1440
1729
−215
−147
−390

O


ATOM
1123
N
ALA
A
523
−13.097
−18.124
19.140
1.00
10.68


N


ANISOU
1123
N
ALA
A
523
1349
1141
1568
−232
−66
−212

N


ATOM
1124
CA
ALA
A
523
−14.085
−17.196
19.674
1.00
7.82


C


ANISOU
1124
CA
ALA
A
523
994
727
1248
−234
−75
−261

C


ATOM
1125
CB
ALA
A
523
−13.539
−15.767
19.742
1.00
8.89


C


ANISOU
1125
CB
ALA
A
523
1058
765
1557
−287
−67
−335

C


ATOM
1126
C
ALA
A
523
−15.316
−17.273
18.790
1.00
12.65


C


ANISOU
1126
C
ALA
A
523
1672
1298
1836
−222
−41
−159

C


ATOM
1127
O
ALA
A
523
−15.249
−17.766
17.661
1.00
9.28


O


ANISOU
1127
O
ALA
A
523
1268
878
1381
−223
−10
−68

O


ATOM
1128
N
ALA
A
524
−16.457
−16.809
19.321
1.00
8.13


N


ANISOU
1128
N
ALA
A
524
1119
707
1265
−202
−51
−190

N


ATOM
1129
CA
ALA
A
524
−17.677
−16.876
18.511
1.00
6.89


C


ANISOU
1129
CA
ALA
A
524
1008
529
1081
−184
−26
−100

C


ATOM
1130
CB
ALA
A
524
−18.891
−16.355
19.280
1.00
7.63


C


ANISOU
1130
CB
ALA
A
524
1108
614
1179
−155
−38
−149

C


ATOM
1131
C
ALA
A
524
−17.528
−16.087
17.224
1.00
7.26


C


ANISOU
1131
C
ALA
A
524
1042
503
1212
−202
18
−4

C


ATOM
1132
O
ALA
A
524
−18.138
−16.437
16.214
1.00
9.61


O


ANISOU
1132
O
ALA
A
524
1367
836
1450
−181
36
87

O


ATOM
1133
N
ARG
A
525
−16.743
−15.012
17.245
1.00
8.15


N


ANISOU
1133
N
ARG
A
525
1104
524
1469
−237
39
−20

N


ATOM
1134
CA
ARG
A
525
−16.561
−14.226
16.033
1.00
8.85


C


ANISOU
1134
CA
ARG
A
525
1169
542
1651
−248
99
115

C


ATOM
1135
CB
ARG
A
525
−15.730
−12.972
16.315
1.00
18.16


C


ANISOU
1135
CB
ARG
A
525
2280
1629
2991
−281
117
75

C


ATOM
1136
CG
ARG
A
525
−14.246
−13.262
16.497
1.00
23.28


C


ANISOU
1136
CG
ARG
A
525
2875
2302
3667
−330
115
23

C


ATOM
1137
CD
ARG
A
525
−13.391
−12.028
16.768
1.00
33.54


C


ANISOU
1137
CD
ARG
A
525
4093
3520
5129
−362
130
−25

C


ATOM
1138
NE
ARG
A
525
−12.182
−12.434
17.486
1.00
39.43


N


ANISOU
1138
NE
ARG
A
525
4784
4315
5881
−401
95
−146

N


ATOM
1139
CZ
ARG
A
525
−12.077
−12.452
18.811
1.00
32.14


C


ANISOU
1139
CZ
ARG
A
525
3837
3433
4944
−394
30
−321

C


ATOM
1140
NH1
ARG
A
525
−13.089
−12.054
19.558
1.00
27.57


N


ANISOU
1140
NH1
ARG
A
525
3282
2842
4353
−356
2
−396

N


ATOM
1141
NH2
ARG
A
525
−10.959
−12.859
19.390
1.00
27.12


N


ANISOU
1141
NH2
ARG
A
525
3141
2871
4294
−415
−7
−420

N


ATOM
1142
C
ARG
A
525
−15.898
−15.029
14.915
1.00
14.81


C


ANISOU
1142
C
ARG
A
525
1926
1393
2308
−247
129
212

C


ATOM
1143
O
ARG
A
525
−16.016
−14.637
13.750
1.00
13.96


O


ANISOU
1143
O
ARG
A
525
1806
1294
2204
−229
181
354

O


ATOM
1144
N
ASN
A
526
−15.206
−16.130
15.250
1.00
10.87


N


ANISOU
1144
N
ASN
A
526
1434
978
1718
−252
99
142

N


ATOM
1145
CA
ASN
A
526
−14.496
−16.994
14.306
1.00
16.88


C


ANISOU
1145
CA
ASN
A
526
2189
1833
2390
−242
122
193

C


ATOM
1146
CB
ASN
A
526
−13.156
−17.466
14.911
1.00
23.54


C


ANISOU
1146
CB
ASN
A
526
2992
2699
3252
−267
106
114

C


ATOM
1147
CG
ASN
A
526
−12.192
−16.342
15.092
1.00
34.37


C


ANISOU
1147
CG
ASN
A
526
4285
3991
4782
−323
134
111

C


ATOM
1148
OD1
ASN
A
526
−12.207
−15.377
14.328
1.00
52.95


O


ANISOU
1148
OD1
ASN
A
526
6607
6280
7233
−344
195
217

O


ATOM
1149
ND2
ASN
A
526
−11.346
−16.441
16.095
1.00
23.07


N


ANISOU
1149
ND2
ASN
A
526
2808
2567
3390
−346
93
−5

N


ATOM
1150
C
ASN
A
526
−15.279
−18.234
13.904
1.00
14.65


C


ANISOU
1150
C
ASN
A
526
1959
1644
1962
−199
98
182

C


ATOM
1151
O
ASN
A
526
−14.950
−18.846
12.882
1.00
24.26


O


ANISOU
1151
O
ASN
A
526
3167
2948
3102
−177
120
215

O


ATOM
1152
N
CYS
A
527
−16.282
−18.632
14.678
1.00
10.07


N


ANISOU
1152
N
CYS
A
527
1420
1054
1352
−186
56
126

N


ATOM
1153
CA
CYS
A
527
−17.123
−19.745
14.271
1.00
6.18


C


ANISOU
1153
CA
CYS
A
527
959
623
765
−158
38
111

C


ATOM
1154
CB
CYS
A
527
−17.808
−20.367
15.491
1.00
5.68


C


ANISOU
1154
CB
CYS
A
527
923
537
697
−157
3
52

C


ATOM
1155
SG
CYS
A
527
−16.610
−20.912
16.725
1.00
11.87


S


ANISOU
1155
SG
CYS
A
527
1695
1319
1498
−158
−15
1

S


ATOM
1156
C
CYS
A
527
−18.154
−19.243
13.270
1.00
6.50


C


ANISOU
1156
C
CYS
A
527
999
703
769
−133
50
177

C


ATOM
1157
O
CYS
A
527
−18.577
−18.083
13.321
1.00
9.76


O


ANISOU
1157
O
CYS
A
527
1403
1064
1240
−130
65
236

O


ATOM
1158
N
LEU
A
528
−18.549
−20.122
12.352
1.00
8.49


N


ANISOU
1158
N
LEU
A
528
1248
1049
929
−109
41
159

N


ATOM
1159
CA
LEU
A
528
−19.468
−19.786
11.273
1.00
7.17


C


ANISOU
1159
CA
LEU
A
528
1062
974
690
−69
43
212

C


ATOM
1160
CB
LEU
A
528
−18.767
−19.844
9.901
1.00
8.01


C


ANISOU
1160
CB
LEU
A
528
1128
1213
703
−32
76
260

C


ATOM
1161
CG
LEU
A
528
−17.544
−18.926
9.769
1.00
16.36


C


ANISOU
1161
CG
LEU
A
528
2162
2234
1821
−44
137
368

C


ATOM
1162
CD1
LEU
A
528
−16.790
−19.160
8.467
1.00
10.32


C


ANISOU
1162
CD1
LEU
A
528
1348
1630
945
−2
180
416

C


ATOM
1163
CD2
LEU
A
528
−18.036
−17.494
9.821
1.00
15.50


C


ANISOU
1163
CD2
LEU
A
528
2044
2051
1794
−36
165
502

C


ATOM
1164
C
LEU
A
528
−20.635
−20.757
11.300
1.00
11.33


C


ANISOU
1164
C
LEU
A
528
1592
1540
1175
−65
−3
121

C


ATOM
1165
O
LEU
A
528
−20.548
−21.824
11.907
1.00
8.58


O


ANISOU
1165
O
LEU
A
528
1257
1145
856
−93
−20
33

O


ATOM
1166
N
VAL
A
529
−21.731
−20.369
10.638
1.00
9.74


N


ANISOU
1166
N
VAL
A
529
1364
1419
916
−29
−18
153

N


ATOM
1167
CA
VAL
A
529
−22.979
−21.130
10.618
1.00
9.30


C


ANISOU
1167
CA
VAL
A
529
1289
1406
838
−32
−63
64

C


ATOM
1168
CB
VAL
A
529
−24.096
−20.393
11.384
1.00
11.98


C


ANISOU
1168
CB
VAL
A
529
1633
1689
1229
−30
−71
107

C


ATOM
1169
CG1
VAL
A
529
−25.335
−21.294
11.488
1.00
12.38


C


ANISOU
1169
CG1
VAL
A
529
1649
1775
1280
−49
−110
11

C


ATOM
1170
CG2
VAL
A
529
−23.595
−19.970
12.785
1.00
6.60


C


ANISOU
1170
CG2
VAL
A
529
998
864
648
−64
−48
123

C


ATOM
1171
C
VAL
A
529
−23.401
−21.372
9.174
1.00
8.58


C


ANISOU
1171
C
VAL
A
529
1138
1503
618
20
−87
36

C


ATOM
1172
O
VAL
A
529
−23.474
−20.427
8.381
1.00
9.29


O


ANISOU
1172
O
VAL
A
529
1203
1695
632
81
−71
152

O


ATOM
1173
N
ASN
A
530
−23.684
−22.631
8.830
1.00
11.42


N


ANISOU
1173
N
ASN
A
530
1465
1915
960
3
−123
−119

N


ATOM
1174
CA
ASN
A
530
−24.065
−22.961
7.464
1.00
10.17


C


ANISOU
1174
CA
ASN
A
530
1233
1968
665
57
−159
−198

C


ATOM
1175
CB
ASN
A
530
−23.508
−24.332
7.063
1.00
11.07


C


ANISOU
1175
CB
ASN
A
530
1319
2101
786
38
−174
−385

C


ATOM
1176
CG
ASN
A
530
−24.303
−25.502
7.634
1.00
14.89


C


ANISOU
1176
CG
ASN
A
530
1780
2471
1406
−31
−210
−544

C


ATOM
1177
OD1
ASN
A
530
−25.277
−25.328
8.356
1.00
12.47


O


ANISOU
1177
OD1
ASN
A
530
1476
2089
1174
−67
−221
−510

O


ATOM
1178
ND2
ASN
A
530
−23.880
−26.708
7.293
1.00
11.81


N


ANISOU
1178
ND2
ASN
A
530
1360
2051
1078
−44
−215
−700

N


ATOM
1179
C
ASN
A
530
−25.587
−22.866
7.307
1.00
17.01


C


ANISOU
1179
C
ASN
A
530
2043
2914
1508
70
−211
−233

C


ATOM
1180
O
ASN
A
530
−26.310
−22.538
8.246
1.00
14.13


O


ANISOU
1180
O
ASN
A
530
1700
2433
1237
37
−210
−187

O


ATOM
1181
N
ASP
A
531
−26.082
−23.140
6.097
1.00
12.08


N


ANISOU
1181
N
ASP
A
531
1333
2486
770
124
−248
−314

N


ATOM
1182
CA
ASP
A
531
−27.499
−22.954
5.804
1.00
14.50


C


ANISOU
1182
CA
ASP
A
531
1569
2879
1060
148
−290
−333

C


ATOM
1183
CB
ASP
A
531
−27.785
−23.170
4.305
1.00
16.65


C


ANISOU
1183
CB
ASP
A
531
1745
3356
1226
222
−303
−396

C


ATOM
1184
CG
ASP
A
531
−27.354
−24.553
3.816
1.00
28.82


C


ANISOU
1184
CG
ASP
A
531
3244
4902
2804
193
−314
−604

C


ATOM
1185
OD1
ASP
A
531
−26.318
−25.083
4.281
1.00
32.84


O


ANISOU
1185
OD1
ASP
A
531
3812
5287
3380
148
−290
−637

O


ATOM
1186
OD2
ASP
A
531
−28.047
−25.116
2.948
1.00
36.95


O


ANISOU
1186
OD2
ASP
A
531
4174
6064
3803
222
−346
−739

O


ATOM
1187
C
ASP
A
531
−28.387
−23.885
6.606
1.00
17.77


C


ANISOU
1187
C
ASP
A
531
1959
3185
1607
61
−328
−482

C


ATOM
1188
O
ASP
A
531
−29.597
−23.656
6.652
1.00
18.93


O


ANISOU
1188
O
ASP
A
531
2051
3381
1762
67
−359
−486

O


ATOM
1189
N
GLN
A
532
−27.822
−24.941
7.196
1.00
12.82


N


ANISOU
1189
N
GLN
A
532
1362
2407
1104
−18
−316
−592

N


ATOM
1190
CA
GLN
A
532
−28.561
−25.867
8.044
1.00
17.72


C


ANISOU
1190
CA
GLN
A
532
1956
2876
1899
−109
−324
−693

C


ATOM
1191
CB
GLN
A
532
−28.089
−27.298
7.783
1.00
16.59


C


ANISOU
1191
CB
GLN
A
532
1794
2636
1875
−145
−309
−836

C


ATOM
1192
CG
GLN
A
532
−28.296
−27.743
6.332
1.00
21.68


C


ANISOU
1192
CG
GLN
A
532
2349
3448
2441
−87
−335
−961

C


ATOM
1193
CD
GLN
A
532
−29.753
−27.713
5.922
1.00
28.87


C


ANISOU
1193
CD
GLN
A
532
3163
4464
3341
−82
−375
−1024

C


ATOM
1194
OE1
GLN
A
532
−30.583
−28.402
6.508
1.00
30.97


O


ANISOU
1194
OE1
GLN
A
532
3391
4613
3762
−154
−377
−1090

O


ATOM
1195
NE2
GLN
A
532
−30.074
−26.902
4.921
1.00
27.46


N


ANISOU
1195
NE2
GLN
A
532
2939
4509
2985
8
−399
−988

N


ATOM
1196
C
GLN
A
532
−28.433
−25.538
9.527
1.00
19.63


C


ANISOU
1196
C
GLN
A
532
2280
2926
2252
−157
−273
−559

C


ATOM
1197
O
GLN
A
532
−28.965
−26.271
10.369
1.00
17.83


O


ANISOU
1197
O
GLN
A
532
2034
2565
2174
−229
−257
−593

O


ATOM
1198
N
GLY
A
533
−27.750
−24.455
9.867
1.00
12.70


N


ANISOU
1198
N
GLY
A
533
1483
2027
1317
−115
−236
−396

N


ATOM
1199
CA
GLY
A
533
−27.593
−24.092
11.254
1.00
9.81


C


ANISOU
1199
CA
GLY
A
533
1185
1504
1040
−144
−189
−287

C


ATOM
1200
C
GLY
A
533
−26.473
−24.814
11.963
1.00
12.20


C


ANISOU
1200
C
GLY
A
533
1543
1669
1422
−181
−152
−289

C


ATOM
1201
O
GLY
A
533
−26.360
−24.686
13.189
1.00
13.04


O


ANISOU
1201
O
GLY
A
533
1692
1672
1591
−201
−118
−213

O


ATOM
1202
N
VAL
A
534
−25.655
−25.578
11.236
1.00
12.51


N


ANISOU
1202
N
VAL
A
534
1574
1724
1454
−180
−159
−377

N


ATOM
1203
CA
VAL
A
534
−24.515
−26.278
11.824
1.00
10.27


C


ANISOU
1203
CA
VAL
A
534
1336
1319
1249
−198
−125
−374

C


ATOM
1204
CB
VAL
A
534
−24.089
−27.466
10.946
1.00
10.71


C


ANISOU
1204
CB
VAL
A
534
1348
1383
1341
−201
−141
−531

C


ATOM
1205
CG1
VAL
A
534
−22.824
−28.151
11.537
1.00
10.20


C


ANISOU
1205
CG1
VAL
A
534
1325
1190
1361
−201
−103
−511

C


ATOM
1206
CG2
VAL
A
534
−25.209
−28.455
10.805
1.00
15.33


C


ANISOU
1206
CG2
VAL
A
534
1855
1930
2041
−252
−166
−664

C


ATOM
1207
C
VAL
A
534
−23.368
−25.289
11.991
1.00
15.10


C


ANISOU
1207
C
VAL
A
534
2007
1942
1789
−161
−101
−265

C


ATOM
1208
O
VAL
A
534
−23.075
−24.506
11.079
1.00
8.49


O


ANISOU
1208
O
VAL
A
534
1162
1217
846
−119
−105
−236

O


ATOM
1209
N
VAL
A
535
−22.732
−25.309
13.166
1.00
8.96


N


ANISOU
1209
N
VAL
A
535
1275
1059
1071
−175
−72
−197

N


ATOM
1210
CA
VAL
A
535
−21.620
−24.417
13.487
1.00
10.11


C


ANISOU
1210
CA
VAL
A
535
1459
1201
1181
−154
−53
−120

C


ATOM
1211
CB
VAL
A
535
−21.632
−24.034
14.981
1.00
10.74


C


ANISOU
1211
CB
VAL
A
535
1567
1213
1301
−163
−39
−55

C


ATOM
1212
CG1
VAL
A
535
−20.454
−23.136
15.281
1.00
10.13


C


ANISOU
1212
CG1
VAL
A
535
1509
1133
1208
−149
−29
−15

C


ATOM
1213
CG2
VAL
A
535
−22.931
−23.344
15.336
1.00
11.17


C


ANISOU
1213
CG2
VAL
A
535
1613
1284
1349
−164
−45
−30

C


ATOM
1214
C
VAL
A
535
−20.319
−25.110
13.127
1.00
9.62


C


ANISOU
1214
C
VAL
A
535
1397
1131
1126
−142
−41
−158

C


ATOM
1215
O
VAL
A
535
−20.139
−26.299
13.423
1.00
8.78


O


ANISOU
1215
O
VAL
A
535
1284
955
1096
−150
−37
−208

O


ATOM
1216
N
LYS
A
536
−19.393
−24.372
12.497
1.00
7.90


N


ANISOU
1216
N
LYS
A
536
1178
977
848
−119
−27
−125

N


ATOM
1217
CA
LYS
A
536
−18.077
−24.921
12.176
1.00
10.39


C


ANISOU
1217
CA
LYS
A
536
1483
1301
1164
−101
−10
−157

C


ATOM
1218
CB
LYS
A
536
−17.941
−25.258
10.676
1.00
10.06


C


ANISOU
1218
CB
LYS
A
536
1400
1385
1039
−67
−8
−230

C


ATOM
1219
CG
LYS
A
536
−18.999
−26.241
10.172
1.00
9.76


C


ANISOU
1219
CG
LYS
A
536
1331
1365
1012
−70
−42
−359

C


ATOM
1220
CD
LYS
A
536
−18.651
−26.809
8.814
1.00
9.65


C


ANISOU
1220
CD
LYS
A
536
1262
1489
916
−25
−47
−485

C


ATOM
1221
CE
LYS
A
536
−19.865
−27.514
8.223
1.00
10.13


C


ANISOU
1221
CE
LYS
A
536
1272
1599
980
−31
−94
−636

C


ATOM
1222
NZ
LYS
A
536
−19.495
−28.369
7.072
1.00
12.05


N


ANISOU
1222
NZ
LYS
A
536
1449
1949
1182
14
−104
−802

N


ATOM
1223
C
LYS
A
536
−16.984
−23.937
12.576
1.00
12.36


C


ANISOU
1223
C
LYS
A
536
1739
1544
1414
−103
14
−75

C


ATOM
1224
O
LYS
A
536
−17.200
−22.724
12.617
1.00
9.62


O


ANISOU
1224
O
LYS
A
536
1395
1203
1059
−112
23
−3

O


ATOM
1225
N
VAL
A
537
−15.809
−24.467
12.864
1.00
10.29


N


ANISOU
1225
N
VAL
A
537
1466
1262
1182
−93
24
−94

N


ATOM
1226
CA
VAL
A
537
−14.683
−23.650
13.315
1.00
8.89


C


ANISOU
1226
CA
VAL
A
537
1273
1081
1024
−102
40
−42

C


ATOM
1227
CB
VAL
A
537
−13.766
−24.485
14.231
1.00
9.62


C


ANISOU
1227
CB
VAL
A
537
1357
1134
1162
−85
29
−68

C


ATOM
1228
CG1
VAL
A
537
−12.391
−23.839
14.427
1.00
11.48


C


ANISOU
1228
CG1
VAL
A
537
1547
1398
1415
−91
42
−49

C


ATOM
1229
CG2
VAL
A
537
−14.442
−24.723
15.579
1.00
9.21


C


ANISOU
1229
CG2
VAL
A
537
1335
1025
1140
−87
2
−52

C


ATOM
1230
C
VAL
A
537
−13.948
−23.123
12.085
1.00
9.11


C


ANISOU
1230
C
VAL
A
537
1259
1198
1004
−92
81
−11

C


ATOM
1231
O
VAL
A
537
−13.759
−23.847
11.106
1.00
8.37


O


ANISOU
1231
O
VAL
A
537
1144
1183
854
−57
93
−61

O


ATOM
1232
N
SER
A
538
−13.569
−21.845
12.106
1.00
9.63


N


ANISOU
1232
N
SER
A
538
1303
1255
1100
−118
107
70

N


ATOM
1233
CA
SER
A
538
−12.844
−21.267
10.981
1.00
8.92


C


ANISOU
1233
CA
SER
A
538
1161
1251
978
−109
165
143

C


ATOM
1234
CB
SER
A
538
−13.758
−20.417
10.090
1.00
16.50


C


ANISOU
1234
CB
SER
A
538
2119
2262
1887
−93
190
242

C


ATOM
1235
OG
SER
A
538
−13.869
−19.109
10.603
1.00
17.58


O


ANISOU
1235
OG
SER
A
538
2252
2294
2134
−132
207
329

O


ATOM
1236
C
SER
A
538
−11.683
−20.417
11.491
1.00
10.33


C


ANISOU
1236
C
SER
A
538
1290
1375
1259
−153
193
186

C


ATOM
1237
O
SER
A
538
−11.498
−20.222
12.694
1.00
13.40


O


ANISOU
1237
O
SER
A
538
1685
1678
1729
−185
157
139

O


ATOM
1238
N
ASP
A
539
−10.898
−19.912
10.544
1.00
11.54


N


ANISOU
1238
N
ASP
A
539
1380
1598
1406
−152
261
272

N


ATOM
1239
CA
ASP
A
539
−9.747
−19.069
10.831
1.00
10.83


C


ANISOU
1239
CA
ASP
A
539
1217
1459
1439
−205
301
317

C


ATOM
1240
CB
ASP
A
539
−10.184
−17.767
11.508
1.00
12.48


C


ANISOU
1240
CB
ASP
A
539
1426
1524
1793
−262
299
359

C


ATOM
1241
CG
ASP
A
539
−10.542
−16.685
10.503
1.00
31.17


C


ANISOU
1241
CG
ASP
A
539
3765
3885
4195
−261
376
533

C


ATOM
1242
OD1
ASP
A
539
−10.153
−16.825
9.323
1.00
38.44


O


ANISOU
1242
OD1
ASP
A
539
4645
4936
5026
−224
442
636

O


ATOM
1243
OD2
ASP
A
539
−11.194
−15.693
10.886
1.00
31.87


O


ANISOU
1243
OD2
ASP
A
539
3863
3846
4399
−286
376
573

O


ATOM
1244
C
ASP
A
539
−8.697
−19.771
11.684
1.00
12.79


C


ANISOU
1244
C
ASP
A
539
1436
1702
1722
−213
265
208

C


ATOM
1245
O
ASP
A
539
−7.892
−19.109
12.340
1.00
10.85


O


ANISOU
1245
O
ASP
A
539
1128
1398
1594
−266
265
195

O


ATOM
1246
N
PHE
A
540
−8.665
−21.096
11.694
1.00
12.41


N


ANISOU
1246
N
PHE
A
540
1418
1711
1586
−157
232
125

N


ATOM
1247
CA
PHE
A
540
−7.834
−21.789
12.667
1.00
11.35


C


ANISOU
1247
CA
PHE
A
540
1262
1564
1487
−146
188
41

C


ATOM
1248
CB
PHE
A
540
−8.208
−23.276
12.722
1.00
13.93


C


ANISOU
1248
CB
PHE
A
540
1640
1903
1748
−78
154
−30

C


ATOM
1249
CG
PHE
A
540
−8.644
−23.860
11.400
1.00
19.33


C


ANISOU
1249
CG
PHE
A
540
2338
2661
2344
−35
187
−44

C


ATOM
1250
CD1
PHE
A
540
−9.970
−23.764
10.984
1.00
19.17


C


ANISOU
1250
CD1
PHE
A
540
2374
2636
2275
−38
177
−36

C


ATOM
1251
CE1
PHE
A
540
−10.380
−24.307
9.763
1.00
14.71


C


ANISOU
1251
CE1
PHE
A
540
1803
2174
1613
8
195
−78

C


ATOM
1252
CZ
PHE
A
540
−9.481
−24.966
8.975
1.00
13.24


C


ANISOU
1252
CZ
PHE
A
540
1561
2090
1380
60
228
−136

C


ATOM
1253
CE2
PHE
A
540
−8.148
−25.078
9.380
1.00
22.52


C


ANISOU
1253
CE2
PHE
A
540
2685
3259
2612
65
248
−133

C


ATOM
1254
CD2
PHE
A
540
−7.743
−24.529
10.593
1.00
17.97


C


ANISOU
1254
CD2
PHE
A
540
2110
2584
2133
16
224
−84

C


ATOM
1255
C
PHE
A
540
−6.346
−21.587
12.366
1.00
15.34


C


ANISOU
1255
C
PHE
A
540
1662
2132
2036
−157
232
53

C


ATOM
1256
O
PHE
A
540
−5.877
−21.820
11.243
1.00
13.92


O


ANISOU
1256
O
PHE
A
540
1440
2048
1800
−128
294
87

O


ATOM
1257
N
GLY
A
541
−5.607
−21.120
13.375
1.00
12.14


N


ANISOU
1257
N
GLY
A
541
1197
1690
1725
−198
201
15

N


ATOM
1258
CA
GLY
A
541
−4.176
−20.921
13.281
1.00
11.25


C


ANISOU
1258
CA
GLY
A
541
966
1634
1675
−217
231
8

C


ATOM
1259
C
GLY
A
541
−3.744
−19.645
12.592
1.00
12.28


C


ANISOU
1259
C
GLY
A
541
1012
1745
1909
−296
313
102

C


ATOM
1260
O
GLY
A
541
−2.540
−19.346
12.566
1.00
13.30


O


ANISOU
1260
O
GLY
A
541
1021
1910
2121
−332
345
99

O


ATOM
1261
N
LEU
A
542
−4.683
−18.875
12.042
1.00
12.75


N


ANISOU
1261
N
LEU
A
542
1237
2414
1192
−304
78
−358

N


ATOM
1262
CA
LEU
A
542
−4.318
−17.765
11.171
1.00
12.90


C


ANISOU
1262
CA
LEU
A
542
1258
2505
1137
−135
−5
−222

C


ATOM
1263
CB
LEU
A
542
−5.551
−17.269
10.407
1.00
15.91


C


ANISOU
1263
CB
LEU
A
542
1489
3266
1289
−24
−74
−284

C


ATOM
1264
CG
LEU
A
542
−6.011
−18.134
9.232
1.00
21.67


C


ANISOU
1264
CG
LEU
A
542
2079
4312
1844
−146
−34
−485

C


ATOM
1265
CD1
LEU
A
542
−6.941
−17.311
8.370
1.00
22.33


C


ANISOU
1265
CD1
LEU
A
542
1994
4794
1697
82
−109
−450

C


ATOM
1266
CD2
LEU
A
542
−4.835
−18.655
8.426
1.00
25.76


C


ANISOU
1266
CD2
LEU
A
542
2703
4653
2432
−220
49
−457

C


ATOM
1267
C
LEU
A
542
−3.683
−16.602
11.918
1.00
14.43


C


ANISOU
1267
C
LEU
A
542
1549
2500
1432
−12
−46
−46

C


ATOM
1268
O
LEU
A
542
−3.005
−15.782
11.286
1.00
13.90


O


ANISOU
1268
O
LEU
A
542
1555
2369
1359
87
−30
71

O


ATOM
1269
N
SER
A
543
−3.880
−16.499
13.238
1.00
14.27


N


ANISOU
1269
N
SER
A
543
1541
2381
1500
−37
−65
−45

N


ATOM
1270
CA
SER
A
543
−3.261
−15.391
13.960
1.00
12.52


C


ANISOU
1270
CA
SER
A
543
1399
2000
1358
20
−71
64

C


ATOM
1271
CB
SER
A
543
−3.712
−15.390
15.432
1.00
16.62


C


ANISOU
1271
CB
SER
A
543
1900
2478
1938
−14
−103
31

C


ATOM
1272
OG
SER
A
543
−3.303
−16.568
16.098
1.00
14.59


O


ANISOU
1272
OG
SER
A
543
1621
2178
1745
−102
−71
−11

O


ATOM
1273
C
SER
A
543
−1.738
−15.427
13.875
1.00
12.60


C


ANISOU
1273
C
SER
A
543
1457
1874
1456
−41
−21
115

C


ATOM
1274
O
SER
A
543
−1.093
−14.400
14.094
1.00
13.29


O


ANISOU
1274
O
SER
A
543
1603
1864
1582
−42
17
160

O


ATOM
1275
N
ARG
A
544
−1.147
−16.572
13.543
1.00
10.22


N


ANISOU
1275
N
ARG
A
544
1135
1573
1174
−100
15
94

N


ATOM
1276
CA
ARG
A
544
0.310
−16.657
13.482
1.00
10.15


C


ANISOU
1276
CA
ARG
A
544
1136
1502
1219
−126
61
151

C


ATOM
1277
CB
ARG
A
544
0.747
−18.114
13.319
1.00
11.03


C


ANISOU
1277
CB
ARG
A
544
1248
1606
1338
−137
143
151

C


ATOM
1278
CG
ARG
A
544
0.507
−19.022
14.539
1.00
14.14


C


ANISOU
1278
CG
ARG
A
544
1636
1986
1752
−115
198
146

C


ATOM
1279
CD
ARG
A
544
0.755
−20.514
14.176
1.00
14.16


C


ANISOU
1279
CD
ARG
A
544
1720
1909
1752
−104
386
153

C


ATOM
1280
NE
ARG
A
544
−0.237
−21.026
13.225
1.00
11.93


N


ANISOU
1280
NE
ARG
A
544
1480
1612
1440
−228
453
12

N


ATOM
1281
CZ
ARG
A
544
−0.193
−22.232
12.657
1.00
19.84


C


ANISOU
1281
CZ
ARG
A
544
2580
2520
2436
−294
666
−48

C


ATOM
1282
NH1
ARG
A
544
0.802
−23.078
12.927
1.00
21.91


N


ANISOU
1282
NH1
ARG
A
544
2944
2655
2727
−186
851
77

N


ATOM
1283
NH2
ARG
A
544
−1.149
−22.598
11.811
1.00
17.14


N


ANISOU
1283
NH2
ARG
A
544
2230
2245
2036
−463
723
−242

N


ATOM
1284
C
ARG
A
544
0.897
−15.820
12.350
1.00
14.90


C


ANISOU
1284
C
ARG
A
544
1792
2066
1802
−108
93
198

C


ATOM
1285
O
ARG
A
544
2.107
−15.570
12.349
1.00
15.35


O


ANISOU
1285
O
ARG
A
544
1842
2089
1900
−154
138
223

O


ATOM
1286
N
TYR
A
545
0.080
−15.391
11.382
1.00
12.14


N


ANISOU
1286
N
TYR
A
545
1482
1762
1369
−24
88
212

N


ATOM
1287
CA
TYR
A
545
0.584
−14.738
10.176
1.00
13.64


C


ANISOU
1287
CA
TYR
A
545
1748
1915
1518
42
155
283

C


ATOM
1288
CB
TYR
A
545
0.157
−15.546
8.928
1.00
14.51


C


ANISOU
1288
CB
TYR
A
545
1818
2180
1517
82
138
256

C


ATOM
1289
CG
TYR
A
545
0.463
−17.005
9.181
1.00
15.81


C


ANISOU
1289
CG
TYR
A
545
1930
2342
1736
−54
147
170

C


ATOM
1290
CD1
TYR
A
545
1.777
−17.420
9.346
1.00
21.30


C


ANISOU
1290
CD1
TYR
A
545
2650
2920
2525
−105
205
216

C


ATOM
1291
CE1
TYR
A
545
2.086
−18.734
9.657
1.00
19.01


C


ANISOU
1291
CE1
TYR
A
545
2355
2598
2268
−156
278
188

C


ATOM
1292
CZ
TYR
A
545
1.083
−19.645
9.830
1.00
15.42


C


ANISOU
1292
CZ
TYR
A
545
1900
2176
1783
−217
325
78

C


ATOM
1293
OH
TYR
A
545
1.421
−20.941
10.145
1.00
18.17


O


ANISOU
1293
OH
TYR
A
545
2312
2422
2170
−249
489
66

O


ATOM
1294
CE2
TYR
A
545
−0.241
−19.266
9.687
1.00
15.30


C


ANISOU
1294
CE2
TYR
A
545
1827
2305
1682
−234
250
−22

C


ATOM
1295
CD2
TYR
A
545
−0.548
−17.939
9.379
1.00
16.23


C


ANISOU
1295
CD2
TYR
A
545
1921
2507
1740
−123
144
42

C


ATOM
1296
C
TYR
A
545
0.153
−13.278
10.094
1.00
16.27


C


ANISOU
1296
C
TYR
A
545
2196
2178
1809
170
232
361

C


ATOM
1297
O
TYR
A
545
0.448
−12.605
9.096
1.00
19.14


O


ANISOU
1297
O
TYR
A
545
2666
2485
2121
276
341
448

O


ATOM
1298
N
VAL
A
546
−0.471
−12.759
11.145
1.00
14.82


N


ANISOU
1298
N
VAL
A
546
2022
1964
1647
178
222
344

N


ATOM
1299
CA
VAL
A
546
−0.922
−11.371
11.188
1.00
15.91


C


ANISOU
1299
CA
VAL
A
546
2314
1986
1746
319
361
431

C


ATOM
1300
CB
VAL
A
546
−2.023
−11.196
12.249
1.00
17.66


C


ANISOU
1300
CB
VAL
A
546
2499
2262
1949
364
299
406

C


ATOM
1301
CG1
VAL
A
546
−2.373
−9.716
12.411
1.00
19.88


C


ANISOU
1301
CG1
VAL
A
546
2987
2363
2202
515
509
507

C


ATOM
1302
CG2
VAL
A
546
−3.250
−12.010
11.876
1.00
18.03


C


ANISOU
1302
CG2
VAL
A
546
2389
2606
1855
481
149
386

C


ATOM
1303
C
VAL
A
546
0.260
−10.462
11.489
1.00
16.55


C


ANISOU
1303
C
VAL
A
546
2532
1814
1942
170
551
408

C


ATOM
1304
O
VAL
A
546
0.958
−10.648
12.492
1.00
16.15


O


ANISOU
1304
O
VAL
A
546
2400
1746
1990
−50
521
288

O


ATOM
1305
N
LEU
A
547
0.465
−9.449
10.643
1.00
19.01


N


ANISOU
1305
N
LEU
A
547
3048
1959
2218
290
780
509

N


ATOM
1306
CA
LEU
A
547
1.620
−8.568
10.783
1.00
20.45


C


ANISOU
1306
CA
LEU
A
547
3377
1886
2506
92
1034
440

C


ATOM
1307
CB
LEU
A
547
2.092
−8.073
9.407
1.00
21.84


C


ANISOU
1307
CB
LEU
A
547
3734
1928
2638
222
1245
559

C


ATOM
1308
CG
LEU
A
547
2.701
−9.154
8.509
1.00
19.10


C


ANISOU
1308
CG
LEU
A
547
3230
1753
2274
200
1070
563

C


ATOM
1309
CD1
LEU
A
547
3.059
−8.620
7.134
1.00
21.70


C


ANISOU
1309
CD1
LEU
A
547
3746
1959
2541
364
1282
697

C


ATOM
1310
CD2
LEU
A
547
3.932
−9.762
9.173
1.00
20.18


C


ANISOU
1310
CD2
LEU
A
547
3193
1941
2532
−124
986
389

C


ATOM
1311
C
LEU
A
547
1.354
−7.369
11.682
1.00
19.49


C


ANISOU
1311
C
LEU
A
547
3439
1539
2427
34
1273
397

C


ATOM
1312
O
LEU
A
547
2.311
−6.761
12.171
1.00
33.64


O


ANISOU
1312
O
LEU
A
547
5294
3173
4316
−253
1476
236

O


ATOM
1313
N
ASP
A
548
0.091
−7.017
11.911
1.00
19.87


N


ANISOU
1313
N
ASP
A
548
3563
1596
2392
281
1277
512

N


ATOM
1314
CA
ASP
A
548
−0.258
−5.891
12.780
1.00
32.42


C


ANISOU
1314
CA
ASP
A
548
5356
2945
4017
252
1536
485

C


ATOM
1315
CB
ASP
A
548
−1.737
−5.551
12.626
1.00
36.29


C


ANISOU
1315
CB
ASP
A
548
5919
3509
4359
658
1538
681

C


ATOM
1316
CG
ASP
A
548
−2.122
−4.277
13.352
1.00
42.97


C


ANISOU
1316
CG
ASP
A
548
6962
4135
5231
689
1820
625

C


ATOM
1317
OD1
ASP
A
548
−1.335
−3.801
14.201
1.00
41.81


O


ANISOU
1317
OD1
ASP
A
548
6874
3803
5210
345
1971
411

O


ATOM
1318
OD2
ASP
A
548
−3.217
−3.750
13.066
1.00
48.60


O


ANISOU
1318
OD2
ASP
A
548
7741
4918
5807
1057
1902
773

O


ATOM
1319
C
ASP
A
548
0.064
−6.236
14.231
1.00
29.22


C


ANISOU
1319
C
ASP
A
548
4767
2621
3713
−80
1386
256

C


ATOM
1320
O
ASP
A
548
−0.575
−7.110
14.824
1.00
25.71


O


ANISOU
1320
O
ASP
A
548
4111
2411
3246
−39
1085
247

O


ATOM
1321
N
ASP
A
549
1.043
−5.542
14.818
1.00
31.15


N


ANISOU
1321
N
ASP
A
549
5082
2703
4050
−415
1620
51

N


ATOM
1322
CA
ASP
A
549
1.464
−5.892
16.172
1.00
31.19


C


ANISOU
1322
CA
ASP
A
549
4861
2890
4101
−721
1472
−180

C


ATOM
1323
CB
ASP
A
549
2.750
−5.143
16.536
1.00
42.81


C


ANISOU
1323
CB
ASP
A
549
6309
4371
5587
−1030
1657
−468

C


ATOM
1324
CG
ASP
A
549
3.975
−5.678
15.792
1.00
50.01


C


ANISOU
1324
CG
ASP
A
549
7073
5430
6498
−1139
1589
−521

C


ATOM
1325
OD1
ASP
A
549
3.918
−6.800
15.240
1.00
46.47


O


ANISOU
1325
OD1
ASP
A
549
6490
5113
6053
−1039
1373
−364

O


ATOM
1326
OD2
ASP
A
549
5.005
−4.972
15.764
1.00
58.80


O


ANISOU
1326
OD2
ASP
A
549
8211
6535
7594
−1329
1776
−733

O


ATOM
1327
C
ASP
A
549
0.379
−5.635
17.218
1.00
29.10


C


ANISOU
1327
C
ASP
A
549
4629
2606
3823
−644
1435
−172

C


ATOM
1328
O
ASP
A
549
0.395
−6.281
18.273
1.00
27.54


O


ANISOU
1328
O
ASP
A
549
4194
2643
3625
−768
1199
−288

O


ATOM
1329
N
GLU
A
550
−0.576
−4.735
16.952
1.00
26.01


N


ANISOU
1329
N
GLU
A
550
4522
1959
3399
−399
1671
−15

N


ATOM
1330
CA
GLU
A
550
−1.674
−4.529
17.900
1.00
21.91


C


ANISOU
1330
CA
GLU
A
550
4029
1438
2859
−291
1629
15

C


ATOM
1331
CB
GLU
A
550
−2.634
−3.465
17.368
1.00
28.21


C


ANISOU
1331
CB
GLU
A
550
5104
2049
3566
77
1902
207

C


ATOM
1332
CG
GLU
A
550
−2.031
−2.066
17.257
1.00
40.91


C


ANISOU
1332
CG
GLU
A
550
6944
3428
5171
−12
2334
72

C


ATOM
1333
CD
GLU
A
550
−1.970
−1.333
18.599
1.00
53.18


C


ANISOU
1333
CD
GLU
A
550
8544
4907
6753
−274
2509
−147

C


ATOM
1334
OE1
GLU
A
550
−1.441
−1.905
19.578
1.00
49.98


O


ANISOU
1334
OE1
GLU
A
550
7916
4666
6408
−604
2300
−355

O


ATOM
1335
OE2
GLU
A
550
−2.462
−0.184
18.676
1.00
58.93


O


ANISOU
1335
OE2
GLU
A
550
9507
5455
7427
−139
2840
−100

O


ATOM
1336
C
GLU
A
550
−2.440
−5.818
18.188
1.00
25.05


C


ANISOU
1336
C
GLU
A
550
4133
2177
3209
−143
1187
81

C


ATOM
1337
O
GLU
A
550
−3.043
−5.949
19.264
1.00
18.95


O


ANISOU
1337
O
GLU
A
550
3281
1478
2441
−172
1077
26

O


ATOM
1338
N
TYR
A
551
−2.413
−6.776
17.256
1.00
24.06


N


ANISOU
1338
N
TYR
A
551
3860
2244
3037
−12
972
177

N


ATOM
1339
CA
TYR
A
551
−3.130
−8.040
17.372
1.00
22.10


C


ANISOU
1339
CA
TYR
A
551
3371
2282
2743
91
638
208

C


ATOM
1340
CB
TYR
A
551
−3.593
−8.522
15.986
1.00
24.59


C


ANISOU
1340
CB
TYR
A
551
3654
2740
2948
336
562
353

C


ATOM
1341
CG
TYR
A
551
−4.721
−7.725
15.386
1.00
35.85


C


ANISOU
1341
CG
TYR
A
551
5217
4176
4227
687
692
534

C


ATOM
1342
CD2
TYR
A
551
−6.043
−8.124
15.547
1.00
36.45


C


ANISOU
1342
CD2
TYR
A
551
5152
4515
4182
876
534
575

C


ATOM
1343
CE2
TYR
A
551
−7.083
−7.390
14.979
1.00
46.31


C


ANISOU
1343
CE2
TYR
A
551
6481
5875
5238
1260
654
761

C


ATOM
1344
CZ
TYR
A
551
−6.798
−6.253
14.245
1.00
48.82


C


ANISOU
1344
CZ
TYR
A
551
7066
5983
5501
1481
967
927

C


ATOM
1345
OH
TYR
A
551
−7.816
−5.515
13.682
1.00
52.45


O


ANISOU
1345
OH
TYR
A
551
7521
6620
5787
1827
1103
1019

O


ATOM
1346
CE1
TYR
A
551
−5.491
−5.844
14.074
1.00
46.68


C


ANISOU
1346
CE1
TYR
A
551
6994
5369
5375
1273
1167
890

C


ATOM
1347
CD1
TYR
A
551
−4.464
−6.578
14.641
1.00
39.09


C


ANISOU
1347
CD1
TYR
A
551
5898
4360
4595
856
1009
672

C


ATOM
1348
C
TYR
A
551
−2.315
−9.173
17.982
1.00
21.94


C


ANISOU
1348
C
TYR
A
551
3120
2434
2783
−131
431
73

C


ATOM
1349
O
TYR
A
551
−2.902
−10.183
18.378
1.00
21.62


O


ANISOU
1349
O
TYR
A
551
2927
2563
2724
−84
231
72

O


ATOM
1350
N
THR
A
552
−0.988
−9.074
18.025
1.00
21.39


N


ANISOU
1350
N
THR
A
552
3018
2349
2761
−347
503
−35

N


ATOM
1351
CA
THR
A
552
−0.197
−10.286
18.189
1.00
27.02


C


ANISOU
1351
CA
THR
A
552
3510
3280
3476
−429
324
−83

C


ATOM
1352
CB
THR
A
552
0.897
−10.353
17.113
1.00
27.45


C


ANISOU
1352
CB
THR
A
552
3569
3322
3537
−484
395
−74

C


ATOM
1353
OG1
THR
A
552
1.742
−9.201
17.201
1.00
28.16


O


ANISOU
1353
OG1
THR
A
552
3751
3290
3657
−692
628
−200

O


ATOM
1354
CG2
THR
A
552
0.266
−10.424
15.716
1.00
30.35


C


ANISOU
1354
CG2
THR
A
552
4056
3604
3870
−272
408
81

C


ATOM
1355
C
THR
A
552
0.431
−10.453
19.571
1.00
28.62


C


ANISOU
1355
C
THR
A
552
3546
3656
3672
−603
273
−230

C


ATOM
1356
O
THR
A
552
1.000
−11.515
19.844
1.00
30.19


O


ANISOU
1356
O
THR
A
552
3564
4071
3835
−587
145
−226

O


ATOM
1357
N
SER
A
553
0.342
−9.463
20.450
1.00
26.05


N


ANISOU
1357
N
SER
A
553
3276
3267
3354
−744
394
−353

N


ATOM
1358
CA
SER
A
553
0.812
−9.646
21.817
1.00
33.54


C


ANISOU
1358
CA
SER
A
553
4028
4465
4251
−889
326
−505

C


ATOM
1359
CB
SER
A
553
2.231
−9.083
22.023
1.00
34.52


C


ANISOU
1359
CB
SER
A
553
4029
4761
4328
−1180
460
−728

C


ATOM
1360
OG
SER
A
553
2.185
−7.696
22.304
1.00
38.72


O


ANISOU
1360
OG
SER
A
553
4750
5087
4873
−1336
707
−871

O


ATOM
1361
C
SER
A
553
−0.159
−8.972
22.775
1.00
27.08


C


ANISOU
1361
C
SER
A
553
3308
3536
3447
−902
374
−550

C


ATOM
1362
O
SER
A
553
−0.849
−8.016
22.409
1.00
24.40


O


ANISOU
1362
O
SER
A
553
3209
2908
3156
−868
549
−510

O


ATOM
1363
N
SER
A
554
−0.194
−9.480
24.012
1.00
29.48


N


ANISOU
1363
N
SER
A
554
3431
4079
3689
−914
241
−613

N


ATOM
1364
CA
SER
A
554
−1.102
−8.952
25.027
1.00
36.01


C


ANISOU
1364
CA
SER
A
554
4330
4830
4524
−925
266
−659

C


ATOM
1365
CB
SER
A
554
−0.841
−9.644
26.358
1.00
39.38


C


ANISOU
1365
CB
SER
A
554
4516
5598
4846
−924
117
−726

C


ATOM
1366
OG
SER
A
554
0.528
−9.509
26.701
1.00
39.53


O


ANISOU
1366
OG
SER
A
554
4397
5877
4745
−1010
169
−838

O


ATOM
1367
C
SER
A
554
−0.966
−7.445
25.197
1.00
45.93


C


ANISOU
1367
C
SER
A
554
5765
5876
5809
−1165
553
−833

C


ATOM
1368
O
SER
A
554
−1.936
−6.775
25.568
1.00
56.25


O


ANISOU
1368
O
SER
A
554
7257
6964
7153
−1116
657
−807

O


ATOM
1369
N
VAL
A
555
0.224
−6.894
24.947
1.00
48.06


N


ANISOU
1369
N
VAL
A
555
6012
6216
6033
−1332
705
−970

N


ATOM
1370
CA
VAL
A
555
0.392
−5.445
24.997
1.00
54.57


C


ANISOU
1370
CA
VAL
A
555
7053
6822
6861
−1492
1043
−1110

C


ATOM
1371
CB
VAL
A
555
1.879
−5.059
24.868
1.00
48.92


C


ANISOU
1371
CB
VAL
A
555
6236
6305
6047
−1693
1177
−1316

C


ATOM
1372
CG1
VAL
A
555
2.742
−5.961
25.737
0.00
47.21


C


ANISOU
1372
CG1
VAL
A
555
5670
6591
5676
−1704
941
−1400

C


ATOM
1373
CG2
VAL
A
555
2.320
−5.105
23.414
0.00
46.94


C


ANISOU
1373
CG2
VAL
A
555
6093
5880
5862
−1656
1246
−1229

C


ATOM
1374
C
VAL
A
555
−0.418
−4.751
23.912
1.00
60.67


C


ANISOU
1374
C
VAL
A
555
8173
7139
7741
−1364
1268
−948

C


ATOM
1375
O
VAL
A
555
−0.673
−3.544
24.009
1.00
68.61


O


ANISOU
1375
O
VAL
A
555
9420
7903
8746
−1393
1586
−991

O


ATOM
1376
N
GLY
A
556
−0.833
−5.487
22.882
1.00
50.07


N


ANISOU
1376
N
GLY
A
556
6868
5697
6461
−1183
1144
−741

N


ATOM
1377
CA
GLY
A
556
−1.506
−4.870
21.757
1.00
41.47


C


ANISOU
1377
CA
GLY
A
556
6084
4273
5399
−935
1348
−527

C


ATOM
1378
C
GLY
A
556
−2.943
−4.503
22.073
1.00
32.07


C


ANISOU
1378
C
GLY
A
556
5054
2940
4189
−664
1378
−364

C


ATOM
1379
O
GLY
A
556
−3.633
−5.168
22.844
1.00
32.35


O


ANISOU
1379
O
GLY
A
556
4922
3165
4204
−584
1118
−344

O


ATOM
1380
N
SER
A
557
−3.401
−3.420
21.442
1.00
31.24


N


ANISOU
1380
N
SER
A
557
5272
2528
4068
−479
1719
−231

N


ATOM
1381
CA
SER
A
557
−4.743
−2.909
21.669
1.00
29.12


C


ANISOU
1381
CA
SER
A
557
5165
2158
3743
−169
1805
−52

C


ATOM
1382
CB
SER
A
557
−4.872
−1.505
21.078
1.00
37.95


C


ANISOU
1382
CB
SER
A
557
6565
3078
4776
−1
2234
35

C


ATOM
1383
OG
SER
A
557
−4.769
−1.538
19.666
1.00
41.51


O


ANISOU
1383
OG
SER
A
557
7079
3527
5166
251
2284
206

O


ATOM
1384
C
SER
A
557
−5.820
−3.808
21.089
1.00
26.56


C


ANISOU
1384
C
SER
A
557
4702
2055
3335
210
1498
188

C


ATOM
1385
O
SER
A
557
−6.997
−3.605
21.402
1.00
33.12


O


ANISOU
1385
O
SER
A
557
5575
2913
4096
466
1491
317

O


ATOM
1386
N
LYS
A
558
−5.448
−4.806
20.285
1.00
21.09


N


ANISOU
1386
N
LYS
A
558
3800
1592
2622
232
1241
217

N


ATOM
1387
CA
LYS
A
558
−6.409
−5.658
19.590
1.00
21.48


C


ANISOU
1387
CA
LYS
A
558
3675
1930
2555
534
979
378

C


ATOM
1388
CB
LYS
A
558
−6.286
−5.472
18.076
1.00
21.63


C


ANISOU
1388
CB
LYS
A
558
3786
1956
2477
772
1087
546

C


ATOM
1389
CG
LYS
A
558
−6.387
−4.031
17.614
1.00
27.35


C


ANISOU
1389
CG
LYS
A
558
4867
2379
3147
995
1523
699

C


ATOM
1390
CD
LYS
A
558
−7.779
−3.483
17.751
1.00
31.05


C


ANISOU
1390
CD
LYS
A
558
5344
2998
3456
1334
1579
829

C


ATOM
1391
CE
LYS
A
558
−7.784
−1.996
17.441
0.00
33.40


C


ANISOU
1391
CE
LYS
A
558
5926
3081
3684
1476
2036
883

C


ATOM
1392
NZ
LYS
A
558
−9.151
−1.420
17.476
0.00
34.82


N


ANISOU
1392
NZ
LYS
A
558
6101
3431
3700
1811
2077
1040

N


ATOM
1393
C
LYS
A
558
−6.244
−7.129
19.936
1.00
22.73


C


ANISOU
1393
C
LYS
A
558
3517
2370
2751
368
614
259

C


ATOM
1394
O
LYS
A
558
−6.814
−7.984
19.249
1.00
21.51


O


ANISOU
1394
O
LYS
A
558
3204
2456
2512
514
429
320

O


ATOM
1395
N
PHE
A
559
−5.476
−7.440
20.975
1.00
16.67


N


ANISOU
1395
N
PHE
A
559
2656
1597
2081
77
547
83

N


ATOM
1396
CA
PHE
A
559
−5.275
−8.814
21.384
1.00
14.29


C


ANISOU
1396
CA
PHE
A
559
2106
1524
1799
−20
279
10

C


ATOM
1397
CB
PHE
A
559
−4.094
−8.891
22.349
1.00
15.43


C


ANISOU
1397
CB
PHE
A
559
2163
1703
1998
−291
278
−156

C


ATOM
1398
CG
PHE
A
559
−3.669
−10.281
22.687
1.00
20.07


C


ANISOU
1398
CG
PHE
A
559
2534
2515
2578
−321
75
−181

C


ATOM
1399
CD1
PHE
A
559
−2.782
−10.969
21.861
1.00
18.38


C


ANISOU
1399
CD1
PHE
A
559
2246
2377
2359
−337
38
−159

C


ATOM
1400
CE1
PHE
A
559
−2.373
−12.255
22.176
1.00
23.59


C


ANISOU
1400
CE1
PHE
A
559
2753
3212
3000
−315
−79
−149

C


ATOM
1401
CZ
PHE
A
559
−2.838
−12.870
23.330
1.00
22.12


C


ANISOU
1401
CZ
PHE
A
559
2490
3121
2795
−272
−153
−158

C


ATOM
1402
CE2
PHE
A
559
−3.711
−12.186
24.178
1.00
19.16


C


ANISOU
1402
CE2
PHE
A
559
2166
2686
2430
−279
−146
−197

C


ATOM
1403
CD2
PHE
A
559
−4.120
−10.893
23.850
1.00
16.36


C


ANISOU
1403
CD2
PHE
A
559
1959
2160
2097
−308
−36
−210

C


ATOM
1404
C
PHE
A
559
−6.545
−9.338
22.055
1.00
20.09


C


ANISOU
1404
C
PHE
A
559
2750
2383
2501
94
137
32

C


ATOM
1405
O
PHE
A
559
−7.271
−8.576
22.691
1.00
17.98


O


ANISOU
1405
O
PHE
A
559
2577
2031
2222
160
220
49

O


ATOM
1406
N
PRO
A
560
−6.854
−10.674
21.908
1.00
18.19


N


ANISOU
1406
N
PRO
A
560
2338
2328
2243
108
−42
19

N


ATOM
1407
CA
PRO
A
560
−8.097
−11.246
22.501
1.00
18.96


C


ANISOU
1407
CA
PRO
A
560
2345
2548
2310
177
−138
3

C


ATOM
1408
CB
PRO
A
560
−8.300
−12.516
21.672
1.00
19.70


C


ANISOU
1408
CB
PRO
A
560
2314
2805
2367
171
−220
−26

C


ATOM
1409
CG
PRO
A
560
−6.871
−12.938
21.319
1.00
18.11


C


ANISOU
1409
CG
PRO
A
560
2122
2537
2224
61
−203
−31

C


ATOM
1410
CD
PRO
A
560
−6.158
−11.634
21.034
1.00
14.39


C


ANISOU
1410
CD
PRO
A
560
1775
1928
1764
65
−100
15

C


ATOM
1411
C
PRO
A
560
−7.951
−11.539
23.991
1.00
17.20


C


ANISOU
1411
C
PRO
A
560
2085
2301
2150
64
−177
−73

C


ATOM
1412
O
PRO
A
560
−7.996
−12.691
24.465
1.00
13.23


O


ANISOU
1412
O
PRO
A
560
1485
1878
1664
23
−246
−112

O


ATOM
1413
N
VAL
A
561
−7.776
−10.462
24.753
1.00
10.56


N


ANISOU
1413
N
VAL
A
561
1340
1343
1330
19
−90
−95

N


ATOM
1414
CA
VAL
A
561
−7.584
−10.569
26.199
1.00
10.33


C


ANISOU
1414
CA
VAL
A
561
1261
1338
1325
−85
−120
−181

C


ATOM
1415
CB
VAL
A
561
−7.504
−9.168
26.822
1.00
11.63


C


ANISOU
1415
CB
VAL
A
561
1563
1356
1499
−165
34
−239

C


ATOM
1416
CG1
VAL
A
561
−7.568
−9.273
28.348
1.00
14.23


C


ANISOU
1416
CG1
VAL
A
561
1821
1765
1823
−252
−12
−337

C


ATOM
1417
CG2
VAL
A
561
−6.225
−8.430
26.371
1.00
16.65


C


ANISOU
1417
CG2
VAL
A
561
2266
1912
2147
−336
185
−319

C


ATOM
1418
C
VAL
A
561
−8.705
−11.382
26.838
1.00
11.40


C


ANISOU
1418
C
VAL
A
561
1325
1553
1454
−2
−213
−169

C


ATOM
1419
O
VAL
A
561
−8.468
−12.249
27.683
1.00
9.04


O


ANISOU
1419
O
VAL
A
561
942
1331
1160
−35
−264
−201

O


ATOM
1420
N
ARG
A
562
−9.945
−11.098
26.447
1.00
9.80


N


ANISOU
1420
N
ARG
A
562
1150
1358
1216
128
−207
−120

N


ATOM
1421
CA
ARG
A
562
−11.115
−11.677
27.096
1.00
11.24


C


ANISOU
1421
CA
ARG
A
562
1260
1626
1385
176
−263
−143

C


ATOM
1422
CB
ARG
A
562
−12.371
−10.928
26.655
1.00
14.98


C


ANISOU
1422
CB
ARG
A
562
1752
2166
1775
349
−234
−82

C


ATOM
1423
CG
ARG
A
562
−12.369
−9.448
27.011
1.00
11.47


C


ANISOU
1423
CG
ARG
A
562
1484
1548
1326
431
−100
−12

C


ATOM
1424
CD
ARG
A
562
−13.439
−8.654
26.255
1.00
13.05


C


ANISOU
1424
CD
ARG
A
562
1728
1836
1396
710
−18
120

C


ATOM
1425
NE
ARG
A
562
−13.151
−7.233
26.363
1.00
14.53


N


ANISOU
1425
NE
ARG
A
562
2168
1762
1589
794
212
210

N


ATOM
1426
CZ
ARG
A
562
−13.662
−6.421
27.286
1.00
15.35


C


ANISOU
1426
CZ
ARG
A
562
2406
1722
1702
847
340
231

C


ATOM
1427
NH1
ARG
A
562
−14.544
−6.878
28.169
1.00
14.65


N


ANISOU
1427
NH1
ARG
A
562
2196
1759
1610
853
219
188

N


ATOM
1428
NH2
ARG
A
562
−13.308
−5.138
27.301
1.00
17.15


N


ANISOU
1428
NH2
ARG
A
562
2915
1658
1943
888
633
290

N


ATOM
1429
C
ARG
A
562
−11.287
−13.156
26.796
1.00
13.23


C


ANISOU
1429
C
ARG
A
562
1402
1985
1640
127
−305
−195

C


ATOM
1430
O
ARG
A
562
−12.170
−13.792
27.385
1.00
8.99


O


ANISOU
1430
O
ARG
A
562
814
1499
1104
118
−305
−249

O


ATOM
1431
N
TRP
A
563
−10.513
−13.705
25.862
1.00
11.14


N


ANISOU
1431
N
TRP
A
563
1121
1735
1377
85
−298
−192

N


ATOM
1432
CA
TRP
A
563
−10.527
−15.132
25.575
1.00
8.70


C


ANISOU
1432
CA
TRP
A
563
761
1466
1079
15
−260
−253

C


ATOM
1433
CB
TRP
A
563
−10.743
−15.363
24.076
1.00
9.26


C


ANISOU
1433
CB
TRP
A
563
776
1657
1085
2
−257
−289

C


ATOM
1434
CG
TRP
A
563
−12.153
−15.014
23.628
1.00
10.51


C


ANISOU
1434
CG
TRP
A
563
827
2036
1130
60
−289
−346

C


ATOM
1435
CD1
TRP
A
563
−13.190
−15.877
23.466
1.00
11.13


C


ANISOU
1435
CD1
TRP
A
563
790
2288
1149
−37
−243
−500

C


ATOM
1436
NE1
TRP
A
563
−14.323
−15.192
23.068
1.00
12.35


N


ANISOU
1436
NE1
TRP
A
563
869
2653
1172
84
−259
−487

N


ATOM
1437
CE2
TRP
A
563
−14.028
−13.856
22.977
1.00
12.28


C


ANISOU
1437
CE2
TRP
A
563
922
2616
1129
288
−321
−321

C


ATOM
1438
CD2
TRP
A
563
−12.668
−13.702
23.328
1.00
12.37


C


ANISOU
1438
CD2
TRP
A
563
1063
2365
1270
247
−330
−248

C


ATOM
1439
CE3
TRP
A
563
−12.109
−12.418
23.310
1.00
15.09


C


ANISOU
1439
CE3
TRP
A
563
1548
2558
1626
376
−302
−105

C


ATOM
1440
CZ3
TRP
A
563
−12.927
−11.332
22.926
1.00
12.83


C


ANISOU
1440
CZ3
TRP
A
563
1282
2383
1209
614
−263
2

C


ATOM
1441
CH2
TRP
A
563
−14.282
−11.523
22.594
1.00
16.25


C


ANISOU
1441
CH2
TRP
A
563
1548
3145
1483
723
−293
−38

C


ATOM
1442
CZ2
TRP
A
563
−14.845
−12.771
22.600
1.00
13.71


C


ANISOU
1442
CZ2
TRP
A
563
1087
2956
1166
516
−308
−220

C


ATOM
1443
C
TRP
A
563
−9.243
−15.817
26.054
1.00
8.37


C


ANISOU
1443
C
TRP
A
563
754
1343
1082
−7
−214
−211

C


ATOM
1444
O
TRP
A
563
−8.986
−16.965
25.684
1.00
12.04


O


ANISOU
1444
O
TRP
A
563
1232
1785
1556
−35
−121
−226

O


ATOM
1445
N
SER
A
564
−8.446
−15.150
26.900
1.00
10.87


N


ANISOU
1445
N
SER
A
564
1080
1650
1401
12
−250
−171

N


ATOM
1446
CA
SER
A
564
−7.118
−15.696
27.167
1.00
8.49


C


ANISOU
1446
CA
SER
A
564
751
1397
1078
34
−220
−125

C


ATOM
1447
CB
SER
A
564
−6.039
−14.663
26.829
1.00
12.78


C


ANISOU
1447
CB
SER
A
564
1266
1988
1601
−32
−260
−137

C


ATOM
1448
OG
SER
A
564
−6.080
−14.330
25.456
1.00
15.56


O


ANISOU
1448
OG
SER
A
564
1664
2271
1978
−61
−254
−129

O


ATOM
1449
C
SER
A
564
−6.944
−16.127
28.622
1.00
8.88


C


ANISOU
1449
C
SER
A
564
771
1517
1083
117
−194
−97

C


ATOM
1450
O
SER
A
564
−7.381
−15.424
29.539
1.00
12.67


O


ANISOU
1450
O
SER
A
564
1240
2020
1555
102
−241
−136

O


ATOM
1451
N
PRO
A
565
−6.270
−17.250
28.859
1.00
9.48


N


ANISOU
1451
N
PRO
A
565
847
1644
1113
237
−95
−13

N


ATOM
1452
CA
PRO
A
565
−6.026
−17.708
30.227
1.00
10.35


C


ANISOU
1452
CA
PRO
A
565
926
1874
1131
397
−44
55

C


ATOM
1453
CB
PRO
A
565
−5.578
−19.166
30.032
1.00
11.30


C


ANISOU
1453
CB
PRO
A
565
1131
1945
1217
577
163
187

C


ATOM
1454
CG
PRO
A
565
−4.895
−19.146
28.686
1.00
11.01


C


ANISOU
1454
CG
PRO
A
565
1084
1890
1211
495
144
179

C


ATOM
1455
CD
PRO
A
565
−5.748
−18.194
27.855
1.00
9.74


C


ANISOU
1455
CD
PRO
A
565
927
1619
1155
270
13
41

C


ATOM
1456
C
PRO
A
565
−4.930
−16.886
30.887
1.00
12.19


C


ANISOU
1456
C
PRO
A
565
992
2400
1239
402
−152
29

C


ATOM
1457
O
PRO
A
565
−4.157
−16.194
30.202
1.00
13.38


O


ANISOU
1457
O
PRO
A
565
1072
2629
1384
278
−217
−34

O


ATOM
1458
N
PRO
A
566
−4.814
−16.957
32.216
1.00
8.25


N


ANISOU
1458
N
PRO
A
566
1064
981
1091
−21
−297
−75

N


ATOM
1459
CA
PRO
A
566
−3.789
−16.151
32.905
1.00
11.73


C


ANISOU
1459
CA
PRO
A
566
1454
1466
1538
−47
−338
−126

C


ATOM
1460
CB
PRO
A
566
−3.955
−16.538
34.388
1.00
14.59


C


ANISOU
1460
CB
PRO
A
566
1823
1897
1821
−19
−384
−131

C


ATOM
1461
CG
PRO
A
566
−4.864
−17.723
34.406
1.00
16.09


C


ANISOU
1461
CG
PRO
A
566
2063
2073
1978
26
−363
−62

C


ATOM
1462
CD
PRO
A
566
−5.692
−17.669
33.155
1.00
11.53


C


ANISOU
1462
CD
PRO
A
566
1519
1416
1445
13
−307
−49

C


ATOM
1463
C
PRO
A
566
−2.372
−16.401
32.413
1.00
14.02


C


ANISOU
1463
C
PRO
A
566
1674
1780
1872
−48
−348
−123

C


ATOM
1464
O
PRO
A
566
−1.603
−15.439
32.322
1.00
9.29


O


ANISOU
1464
O
PRO
A
566
1029
1186
1316
−93
−356
−168

O


ATOM
1465
N
GLU
A
567
−1.994
−17.645
32.086
1.00
11.41


N


ANISOU
1465
N
GLU
A
567
1330
1459
1545
0
−343
−77

N


ATOM
1466
CA
GLU
A
567
−0.615
−17.867
31.646
1.00
9.94


C


ANISOU
1466
CA
GLU
A
567
1067
1302
1409
5
−348
−82

C


ATOM
1467
CB
GLU
A
567
−0.268
−19.368
31.648
1.00
9.76


C


ANISOU
1467
CB
GLU
A
567
1027
1288
1394
75
−353
−35

C


ATOM
1468
CG
GLU
A
567
−0.976
−20.220
30.578
1.00
10.35


C


ANISOU
1468
CG
GLU
A
567
1145
1300
1488
96
−293
−10

C


ATOM
1469
CD
GLU
A
567
−2.405
−20.663
30.950
1.00
12.14


C


ANISOU
1469
CD
GLU
A
567
1452
1489
1673
109
−286
21

C


ATOM
1470
OE1
GLU
A
567
−2.943
−20.223
31.995
1.00
10.39


O


ANISOU
1470
OE1
GLU
A
567
1259
1291
1399
101
−318
24

O


ATOM
1471
OE2
GLU
A
567
−2.995
−21.458
30.171
1.00
9.56


O


ANISOU
1471
OE2
GLU
A
567
1154
1113
1364
125
−244
33

O


ATOM
1472
C
GLU
A
567
−0.347
−17.244
30.272
1.00
10.37


C


ANISOU
1472
C
GLU
A
567
1104
1321
1516
−41
−292
−94

C


ATOM
1473
O
GLU
A
567
0.799
−16.898
29.973
1.00
11.27


O


ANISOU
1473
O
GLU
A
567
1145
1461
1674
−64
−292
−115

O


ATOM
1474
N
VAL
A
568
−1.376
−17.056
29.438
1.00
8.57


N


ANISOU
1474
N
VAL
A
568
935
1042
1281
−57
−245
−77

N


ATOM
1475
CA
VAL
A
568
−1.175
−16.285
28.210
1.00
9.76


C


ANISOU
1475
CA
VAL
A
568
1070
1173
1467
−106
−197
−75

C


ATOM
1476
CB
VAL
A
568
−2.352
−16.466
27.231
1.00
11.98


C


ANISOU
1476
CB
VAL
A
568
1412
1417
1720
−105
−153
−43

C


ATOM
1477
CG1
VAL
A
568
−2.357
−15.351
26.185
1.00
11.74


C


ANISOU
1477
CG1
VAL
A
568
1377
1371
1714
−162
−114
−22

C


ATOM
1478
CG2
VAL
A
568
−2.272
−17.805
26.517
1.00
10.40


C


ANISOU
1478
CG2
VAL
A
568
1211
1234
1509
−64
−124
−36

C


ATOM
1479
C
VAL
A
568
−0.964
−14.816
28.542
1.00
9.60


C


ANISOU
1479
C
VAL
A
568
1032
1134
1482
−166
−210
−101

C


ATOM
1480
O
VAL
A
568
−0.039
−14.173
28.037
1.00
12.84


O


ANISOU
1480
O
VAL
A
568
1385
1550
1942
−210
−192
−107

O


ATOM
1481
N
LEU
A
569
−1.836
−14.259
29.384
1.00
13.76


N


ANISOU
1481
N
LEU
A
569
1604
1634
1991
−171
−235
−121

N


ATOM
1482
CA
LEU
A
569
−1.753
−12.845
29.715
1.00
9.21


C


ANISOU
1482
CA
LEU
A
569
1014
1021
1465
−227
−243
−160

C


ATOM
1483
CB
LEU
A
569
−2.955
−12.444
30.559
1.00
10.18


C


ANISOU
1483
CB
LEU
A
569
1193
1113
1560
−217
−260
−188

C


ATOM
1484
CG
LEU
A
569
−4.297
−12.556
29.858
1.00
11.88


C


ANISOU
1484
CG
LEU
A
569
1473
1282
1761
−198
−223
−137

C


ATOM
1485
CD1
LEU
A
569
−5.404
−12.041
30.787
1.00
14.53


C


ANISOU
1485
CD1
LEU
A
569
1849
1590
2083
−190
−235
−176

C


ATOM
1486
CD2
LEU
A
569
−4.273
−11.789
28.545
1.00
16.25


C


ANISOU
1486
CD2
LEU
A
569
2019
1784
2372
−237
−180
−90

C


ATOM
1487
C
LEU
A
569
−0.470
−12.505
30.456
1.00
12.11


C


ANISOU
1487
C
LEU
A
569
1306
1434
1863
−254
−285
−218

C


ATOM
1488
O
LEU
A
569
0.072
−11.411
30.271
1.00
10.59


O


ANISOU
1488
O
LEU
A
569
1072
1208
1742
−316
−276
−245

O


ATOM
1489
N
MET
A
570
0.027
−13.413
31.292
1.00
10.29


N


ANISOU
1489
N
MET
A
570
1050
1276
1583
−211
−332
−231

N


ATOM
1490
CA
MET
A
570
1.176
−13.102
32.129
1.00
12.15


C


ANISOU
1490
CA
MET
A
570
1209
1574
1835
−233
−386
−289

C


ATOM
1491
CB
MET
A
570
1.092
−13.871
33.453
1.00
19.13


C


ANISOU
1491
CB
MET
A
570
2099
2538
2633
−181
−451
−301

C


ATOM
1492
CG
MET
A
570
−0.053
−13.441
34.369
1.00
17.80


C


ANISOU
1492
CG
MET
A
570
1996
2362
2405
−182
−465
−338

C


ATOM
1493
SD
MET
A
570
−0.428
−14.718
35.608
1.00
21.25


S


ANISOU
1493
SD
MET
A
570
2461
2894
2719
−107
−516
−298

S


ATOM
1494
CE
MET
A
570
1.138
−14.778
36.487
1.00
19.47


C


ANISOU
1494
CE
MET
A
570
2131
2789
2479
−109
−602
−336

C


ATOM
1495
C
MET
A
570
2.509
−13.408
31.464
1.00
15.42


C


ANISOU
1495
C
MET
A
570
1536
2022
2301
−241
−376
−275

C


ATOM
1496
O
MET
A
570
3.478
−12.657
31.650
1.00
14.51


O


ANISOU
1496
O
MET
A
570
1345
1926
2241
−294
−396
−324

O


ATOM
1497
N
ATYR
A
571
2.565
−14.492
30.683
0.60
13.08


N


ANISOU
1497
N
ATYR
A
571
1244
1732
1993
−191
−342
−217

N


ATOM
1498
CA
ATYR
A
571
3.823
−15.056
30.206
0.60
13.17


C


ANISOU
1498
CA
ATYR
A
571
1168
1791
2045
−176
−334
−209

C


ATOM
1499
CB
ATYR
A
571
4.167
−16.311
31.020
0.60
12.51


C


ANISOU
1499
CB
ATYR
A
571
1060
1767
1925
−95
−388
−193

C


ATOM
1500
CG
ATYR
A
571
4.133
−16.145
32.526
0.60
16.36


C


ANISOU
1500
CG
ATYR
A
571
1546
2311
2361
−87
−473
−220

C


ATOM
1501
CD1
ATYR
A
571
4.800
−15.099
33.157
0.60
18.68


C


ANISOU
1501
CD1
ATYR
A
571
1778
2645
2673
−147
−519
−290

C


ATOM
1502
CE1
ATYR
A
571
4.781
−14.968
34.534
0.60
27.00


C


ANISOU
1502
CE1
ATYR
A
571
2827
3771
3662
−141
−598
−328

C


ATOM
1503
CZ
ATYR
A
571
4.083
−15.891
35.291
0.60
31.40


C


ANISOU
1503
CZ
ATYR
A
571
3441
4361
4130
−73
−629
−278

C


ATOM
1504
OH
ATYR
A
571
4.043
−15.789
36.657
0.60
33.73


O


ANISOU
1504
OH
ATYR
A
571
3730
4748
4338
−66
−705
−308

O


ATOM
1505
CE2
ATYR
A
571
3.420
−16.934
34.686
0.60
22.93


C


ANISOU
1505
CE2
ATYR
A
571
2427
3234
3052
−14
−581
−198

C


ATOM
1506
CD2
ATYR
A
571
3.452
−17.057
33.316
0.60
18.76


C


ANISOU
1506
CD2
ATYR
A
571
1902
2633
2592
−22
−507
−179

C


ATOM
1507
C
ATYR
A
571
3.824
−15.425
28.723
0.60
13.42


C


ANISOU
1507
C
ATYR
A
571
1203
1797
2098
−174
−252
−169

C


ATOM
1508
O
ATYR
A
571
4.866
−15.851
28.210
0.60
13.42


O


ANISOU
1508
O
ATYR
A
571
1126
1838
2137
−164
−230
−171

O


ATOM
1509
N
BTYR
A
571
2.618
−14.513
30.715
0.40
13.52


N


ANISOU
1509
N
BTYR
A
571
1296
1791
2049
−190
−344
−218

N


ATOM
1510
CA
BTYR
A
571
3.907
−14.818
30.096
0.40
13.06


C


ANISOU
1510
CA
BTYR
A
571
1147
1773
2044
−192
−328
−214

C


ATOM
1511
CB
BTYR
A
571
4.805
−15.597
31.061
0.40
13.55


C


ANISOU
1511
CB
BTYR
A
571
1139
1916
2093
−141
−397
−227

C


ATOM
1512
CG
BTYR
A
571
4.209
−16.848
31.675
0.40
14.68


C


ANISOU
1512
CG
BTYR
A
571
1331
2073
2172
−55
−428
−183

C


ATOM
1513
CD1
BTYR
A
571
3.441
−16.787
32.831
0.40
18.18


C


ANISOU
1513
CD1
BTYR
A
571
1830
2533
2543
−43
−479
−186

C


ATOM
1514
CE1
BTYR
A
571
2.915
−17.941
33.403
0.40
19.85


C


ANISOU
1514
CE1
BTYR
A
571
2083
2758
2701
30
−502
−130

C


ATOM
1515
CZ
BTYR
A
571
3.175
−19.170
32.825
0.40
16.70


C


ANISOU
1515
CZ
BTYR
A
571
1670
2339
2338
94
−476
−77

C


ATOM
1516
OH
BTYR
A
571
2.667
−20.334
33.372
0.40
17.77


O


ANISOU
1516
OH
BTYR
A
571
1844
2469
2440
164
−495
−12

O


ATOM
1517
CE2
BTYR
A
571
3.943
−19.247
31.691
0.40
13.63


C


ANISOU
1517
CE2
BTYR
A
571
1225
1932
2021
87
−427
−90

C


ATOM
1518
CD2
BTYR
A
571
4.462
−18.094
31.129
0.40
15.09


C


ANISOU
1518
CD2
BTYR
A
571
1368
2121
2243
12
−402
−139

C


ATOM
1519
C
BTYR
A
571
3.761
−15.565
28.774
0.40
13.04


C


ANISOU
1519
C
BTYR
A
571
1160
1749
2044
−165
−255
−167

C


ATOM
1520
O
BTYR
A
571
4.618
−16.387
28.429
0.40
12.99


O


ANISOU
1520
O
BTYR
A
571
1091
1783
2061
−128
−243
−162

O


ATOM
1521
N
SER
A
572
2.696
−15.280
28.024
1.00
10.64


N


ANISOU
1521
N
SER
A
572
933
1390
1719
−183
−207
−138

N


ATOM
1522
CA
SER
A
572
2.543
−15.733
26.635
1.00
13.96


C


ANISOU
1522
CA
SER
A
572
1366
1805
2132
−177
−135
−105

C


ATOM
1523
CB
SER
A
572
3.480
−14.979
25.698
1.00
19.24


C


ANISOU
1523
CB
SER
A
572
1966
2494
2850
−239
−83
−100

C


ATOM
1524
OG
SER
A
572
3.388
−13.586
25.909
1.00
21.59


O


ANISOU
1524
OG
SER
A
572
2266
2750
3187
−310
−90
−98

O


ATOM
1525
C
SER
A
572
2.753
−17.235
26.478
1.00
16.11


C


ANISOU
1525
C
SER
A
572
1627
2103
2390
−102
−128
−105

C


ATOM
1526
O
SER
A
572
3.362
−17.692
25.505
1.00
14.73


O


ANISOU
1526
O
SER
A
572
1407
1955
2233
−95
−75
−110

O


ATOM
1527
N
LYS
A
573
2.221
−18.022
27.414
1.00
11.75


N


ANISOU
1527
N
LYS
A
573
1114
1540
1812
−46
−175
−100

N


ATOM
1528
CA
LYS
A
573
2.334
−19.476
27.310
1.00
11.96


C


ANISOU
1528
CA
LYS
A
573
1133
1566
1845
28
−168
−93

C


ATOM
1529
CB
LYS
A
573
2.514
−20.123
28.677
1.00
13.68


C


ANISOU
1529
CB
LYS
A
573
1340
1798
2062
84
−240
−75

C


ATOM
1530
CG
LYS
A
573
2.827
−21.621
28.539
1.00
17.08


C


ANISOU
1530
CG
LYS
A
573
1746
2213
2532
165
−230
−59

C


ATOM
1531
CD
LYS
A
573
3.214
−22.293
29.834
1.00
20.86


C


ANISOU
1531
CD
LYS
A
573
2196
2713
3016
227
−303
−19

C


ATOM
1532
CE
LYS
A
573
3.774
−23.688
29.565
1.00
21.96


C


ANISOU
1532
CE
LYS
A
573
2290
2825
3230
309
−287
−3

C


ATOM
1533
NZ
LYS
A
573
2.792
−24.584
28.894
1.00
22.28


N


ANISOU
1533
NZ
LYS
A
573
2400
2783
3284
330
−232
−1

N


ATOM
1534
C
LYS
A
573
1.096
−20.028
26.604
1.00
12.69


C


ANISOU
1534
C
LYS
A
573
1307
1612
1903
39
−127
−81

C


ATOM
1535
O
LYS
A
573
0.060
−20.242
27.229
1.00
12.80


O


ANISOU
1535
O
LYS
A
573
1388
1593
1884
53
−153
−61

O


ATOM
1536
N
PHE
A
574
1.217
−20.295
25.303
1.00
14.48


N


ANISOU
1536
N
PHE
A
574
1521
1846
2133
30
−61
−99

N


ATOM
1537
CA
PHE
A
574
0.150
−20.920
24.526
1.00
11.53


C


ANISOU
1537
CA
PHE
A
574
1210
1444
1725
38
−24
−104

C


ATOM
1538
CB
PHE
A
574
0.196
−20.409
23.083
1.00
11.89


C


ANISOU
1538
CB
PHE
A
574
1248
1531
1740
−11
41
−115

C


ATOM
1539
CG
PHE
A
574
−0.148
−18.962
22.962
1.00
14.40


C


ANISOU
1539
CG
PHE
A
574
1587
1853
2031
−76
36
−75

C


ATOM
1540
CD1
PHE
A
574
0.824
−17.988
23.148
1.00
17.53


C


ANISOU
1540
CD1
PHE
A
574
1926
2270
2463
−116
34
−65

C


ATOM
1541
CE1
PHE
A
574
0.504
−16.641
23.051
1.00
17.42


C


ANISOU
1541
CE1
PHE
A
574
1931
2239
2449
−176
33
−27

C


ATOM
1542
CZ
PHE
A
574
−0.814
−16.265
22.785
1.00
11.35


C


ANISOU
1542
CZ
PHE
A
574
1236
1437
1638
−188
31
7

C


ATOM
1543
CE2
PHE
A
574
−1.801
−17.232
22.612
1.00
14.82


C


ANISOU
1543
CE2
PHE
A
574
1730
1870
2032
−148
29
−3

C


ATOM
1544
CD2
PHE
A
574
−1.465
−18.569
22.697
1.00
18.96


C


ANISOU
1544
CD2
PHE
A
574
2237
2406
2561
−97
34
−47

C


ATOM
1545
C
PHE
A
574
0.261
−22.448
24.569
1.00
12.50


C


ANISOU
1545
C
PHE
A
574
1323
1539
1889
107
−16
−126

C


ATOM
1546
O
PHE
A
574
1.359
−23.010
24.612
1.00
12.32


O


ANISOU
1546
O
PHE
A
574
1229
1531
1922
147
−10
−146

O


ATOM
1547
N
SER
A
575
−0.891
−23.123
24.585
1.00
12.05


N


ANISOU
1547
N
SER
A
575
1332
1433
1815
123
−15
−123

N


ATOM
1548
CA
SER
A
575
−0.905
−24.584
24.630
1.00
12.16


C


ANISOU
1548
CA
SER
A
575
1340
1395
1885
183
−4
−142

C


ATOM
1549
CB
SER
A
575
−0.496
−25.122
26.003
1.00
15.40


C


ANISOU
1549
CB
SER
A
575
1733
1776
2343
240
−61
−92

C


ATOM
1550
OG
SER
A
575
−1.553
−24.912
26.948
1.00
10.73


O


ANISOU
1550
OG
SER
A
575
1208
1162
1708
229
−102
−40

O


ATOM
1551
C
SER
A
575
−2.311
−25.053
24.294
1.00
12.93


C


ANISOU
1551
C
SER
A
575
1510
1447
1956
170
11
−151

C


ATOM
1552
O
SER
A
575
−3.227
−24.250
24.095
1.00
11.44


O


ANISOU
1552
O
SER
A
575
1369
1273
1703
122
6
−136

O


ATOM
1553
N
SER
A
576
−2.487
−26.372
24.263
1.00
9.83


N


ANISOU
1553
N
SER
A
576
1119
990
1626
214
27
−175

N


ATOM
1554
CA
SER
A
576
−3.836
−26.900
24.085
1.00
15.74


C


ANISOU
1554
CA
SER
A
576
1928
1687
2364
198
36
−184

C


ATOM
1555
CB
SER
A
576
−3.814
−28.425
24.117
1.00
21.29


C


ANISOU
1555
CB
SER
A
576
2620
2301
3168
249
56
−212

C


ATOM
1556
OG
SER
A
576
−3.392
−28.883
25.390
1.00
24.42


O


ANISOU
1556
OG
SER
A
576
3004
2651
3623
303
15
−134

O


ATOM
1557
C
SER
A
576
−4.772
−26.369
25.159
1.00
10.80


C


ANISOU
1557
C
SER
A
576
1356
1050
1697
181
−11
−110

C


ATOM
1558
O
SER
A
576
−5.978
−26.210
24.919
1.00
10.19


O


ANISOU
1558
O
SER
A
576
1327
965
1581
145
−7
−112

O


ATOM
1559
N
LYS
A
577
−4.242
−26.096
26.350
1.00
11.70


N


ANISOU
1559
N
LYS
A
577
1457
1172
1815
207
−56
−49

N


ATOM
1560
CA
LYS
A
577
−5.073
−25.601
27.443
1.00
8.18


C


ANISOU
1560
CA
LYS
A
577
1057
729
1322
193
−95
10

C


ATOM
1561
CB
LYS
A
577
−4.358
−25.821
28.784
1.00
8.62


C


ANISOU
1561
CB
LYS
A
577
1088
795
1392
239
−143
72

C


ATOM
1562
CG
LYS
A
577
−3.977
−27.287
29.039
1.00
9.39


C


ANISOU
1562
CG
LYS
A
577
1164
828
1577
302
−140
103

C


ATOM
1563
CD
LYS
A
577
−5.231
−28.187
28.971
1.00
10.79


C


ANISOU
1563
CD
LYS
A
577
1392
924
1783
296
−111
117

C


ATOM
1564
CE
LYS
A
577
−4.873
−29.602
29.412
1.00
13.91


C


ANISOU
1564
CE
LYS
A
577
1767
1236
2282
361
−110
167

C


ATOM
1565
NZ
LYS
A
577
−5.962
−30.564
29.155
1.00
15.17


N


ANISOU
1565
NZ
LYS
A
577
1965
1301
2500
348
−73
165

N


ATOM
1566
C
LYS
A
577
−5.455
−24.131
27.295
1.00
7.58


C


ANISOU
1566
C
LYS
A
577
1000
705
1174
139
−104
4

C


ATOM
1567
O
LYS
A
577
−6.416
−23.695
27.937
1.00
12.26


O


ANISOU
1567
O
LYS
A
577
1635
1296
1728
121
−121
31

O


ATOM
1568
N
SER
A
578
−4.745
−23.346
26.484
1.00
11.08


N


ANISOU
1568
N
SER
A
578
1411
1192
1607
112
−88
−29

N


ATOM
1569
CA
SER
A
578
−5.269
−22.015
26.186
1.00
11.61


C


ANISOU
1569
CA
SER
A
578
1500
1286
1624
61
−88
−26

C


ATOM
1570
CB
SER
A
578
−4.140
−21.065
25.730
1.00
7.80


C


ANISOU
1570
CB
SER
A
578
969
849
1147
34
−81
−38

C


ATOM
1571
OG
SER
A
578
−3.352
−21.601
24.680
1.00
9.52


O


ANISOU
1571
OG
SER
A
578
1144
1090
1384
40
−39
−71

O


ATOM
1572
C
SER
A
578
−6.413
−22.081
25.162
1.00
9.85


C


ANISOU
1572
C
SER
A
578
1314
1055
1373
34
−58
−40

C


ATOM
1573
O
SER
A
578
−7.345
−21.267
25.230
1.00
9.16


O


ANISOU
1573
O
SER
A
578
1259
968
1253
7
−68
−19

O


ATOM
1574
N
ASP
A
579
−6.408
−23.071
24.260
1.00
10.56


N


ANISOU
1574
N
ASP
A
579
1395
1139
1477
44
−25
−80

N


ATOM
1575
CA
ASP
A
579
−7.603
−23.332
23.449
1.00
10.74


C


ANISOU
1575
CA
ASP
A
579
1450
1160
1470
20
−7
−101

C


ATOM
1576
CB
ASP
A
579
−7.335
−24.415
22.399
1.00
8.92


C


ANISOU
1576
CB
ASP
A
579
1198
935
1258
27
33
−172

C


ATOM
1577
CG
ASP
A
579
−6.674
−23.881
21.127
1.00
13.54


C


ANISOU
1577
CG
ASP
A
579
1751
1601
1794
0
68
−204

C


ATOM
1578
OD1
ASP
A
579
−6.354
−22.674
21.021
1.00
12.35


O


ANISOU
1578
OD1
ASP
A
579
1593
1494
1607
−26
62
−159

O


ATOM
1579
OD2
ASP
A
579
−6.463
−24.706
20.220
1.00
16.30


O


ANISOU
1579
OD2
ASP
A
579
2079
1968
2144
4
106
−277

O


ATOM
1580
C
ASP
A
579
−8.774
−23.773
24.323
1.00
9.72


C


ANISOU
1580
C
ASP
A
579
1360
979
1353
28
−28
−76

C


ATOM
1581
O
ASP
A
579
−9.925
−23.399
24.071
1.00
7.53


O


ANISOU
1581
O
ASP
A
579
1109
709
1043
1
−33
−69

O


ATOM
1582
N
ILE
A
580
−8.508
−24.622
25.321
1.00
6.94


N


ANISOU
1582
N
ILE
A
580
1008
579
1051
66
−39
−56

N


ATOM
1583
CA
ILE
A
580
−9.574
−25.062
26.216
1.00
7.20


C


ANISOU
1583
CA
ILE
A
580
1075
568
1093
70
−51
−19

C


ATOM
1584
CB
ILE
A
580
−9.043
−26.090
27.236
1.00
7.27


C


ANISOU
1584
CB
ILE
A
580
1076
529
1158
116
−60
20

C


ATOM
1585
CG1
ILE
A
580
−8.626
−27.399
26.551
1.00
7.90


C


ANISOU
1585
CG1
ILE
A
580
1132
550
1318
141
−30
−22

C


ATOM
1586
CD1
ILE
A
580
−9.776
−28.319
26.127
1.00
8.10


C


ANISOU
1586
CD1
ILE
A
580
1179
514
1383
119
−3
−52

C


ATOM
1587
CG2
ILE
A
580
−10.097
−26.358
28.358
1.00
7.23


C


ANISOU
1587
CG2
ILE
A
580
1104
496
1145
116
−71
81

C


ATOM
1588
C
ILE
A
580
−10.209
−23.868
26.916
1.00
9.40


C


ANISOU
1588
C
ILE
A
580
1376
877
1318
50
−75
18

C


ATOM
1589
O
ILE
A
580
−11.436
−23.741
26.976
1.00
6.55


O


ANISOU
1589
O
ILE
A
580
1039
508
941
30
−73
25

O


ATOM
1590
N
TRP
A
581
−9.385
−22.991
27.490
1.00
8.75


N


ANISOU
1590
N
TRP
A
581
1280
828
1218
55
−98
33

N


ATOM
1591
CA
TRP
A
581
−9.919
−21.805
28.143
1.00
6.00


C


ANISOU
1591
CA
TRP
A
581
948
500
831
37
−117
48

C


ATOM
1592
CB
TRP
A
581
−8.764
−20.930
28.638
1.00
8.97


C


ANISOU
1592
CB
TRP
A
581
1298
909
1202
37
−141
43

C


ATOM
1593
CG
TRP
A
581
−9.214
−19.644
29.291
1.00
8.61


C


ANISOU
1593
CG
TRP
A
581
1265
876
1132
16
−157
38

C


ATOM
1594
CD1
TRP
A
581
−9.718
−18.546
28.664
1.00
6.75


C


ANISOU
1594
CD1
TRP
A
581
1035
631
901
−14
−147
29

C


ATOM
1595
NE1
TRP
A
581
−9.999
−17.566
29.575
1.00
7.17


N


ANISOU
1595
NE1
TRP
A
581
1094
684
947
−22
−163
14

N


ATOM
1596
CE2
TRP
A
581
−9.668
−18.018
30.822
1.00
9.38


C


ANISOU
1596
CE2
TRP
A
581
1373
993
1199
−1
−185
10

C


ATOM
1597
CD2
TRP
A
581
−9.152
−19.317
30.678
1.00
10.76


C


ANISOU
1597
CD2
TRP
A
581
1539
1172
1376
25
−185
37

C


ATOM
1598
CE3
TRP
A
581
−8.727
−20.007
31.823
1.00
9.02


C


ANISOU
1598
CE3
TRP
A
581
1314
983
1130
55
−210
58

C


ATOM
1599
CZ3
TRP
A
581
−8.820
−19.375
33.052
1.00
10.59


C


ANISOU
1599
CZ3
TRP
A
581
1516
1227
1282
52
−235
43

C


ATOM
1600
CH2
TRP
A
581
−9.334
−18.077
33.160
1.00
8.16


C


ANISOU
1600
CH2
TRP
A
581
1216
915
970
22
−230
−5

C


ATOM
1601
CZ2
TRP
A
581
−9.757
−17.382
32.058
1.00
13.53


C


ANISOU
1601
CZ2
TRP
A
581
1900
1545
1695
−2
−205
−18

C


ATOM
1602
C
TRP
A
581
−10.819
−21.017
27.198
1.00
8.10


C


ANISOU
1602
C
TRP
A
581
1225
771
1079
3
−104
36

C


ATOM
1603
O
TRP
A
581
−11.922
−20.598
27.570
1.00
7.80


O


ANISOU
1603
O
TRP
A
581
1208
726
1028
−5
−106
47

O


ATOM
1604
N
ALA
A
582
−10.336
−20.770
25.974
1.00
5.79


N


ANISOU
1604
N
ALA
A
582
914
499
785
−14
−89
19

N


ATOM
1605
CA
ALA
A
582
−11.101
−19.982
25.018
1.00
6.09


C


ANISOU
1605
CA
ALA
A
582
959
555
800
−42
−83
26

C


ATOM
1606
CB
ALA
A
582
−10.260
−19.736
23.759
1.00
6.93


C


ANISOU
1606
CB
ALA
A
582
1039
703
891
−61
−63
18

C


ATOM
1607
C
ALA
A
582
−12.421
−20.666
24.671
1.00
6.32


C


ANISOU
1607
C
ALA
A
582
1005
578
820
−47
−78
19

C


ATOM
1608
O
ALA
A
582
−13.456
−20.000
24.513
1.00
6.62


O


ANISOU
1608
O
ALA
A
582
1050
621
845
−59
−86
38

O


ATOM
1609
N
PHE
A
583
−12.414
−21.995
24.572
1.00
6.65


N


ANISOU
1609
N
PHE
A
583
1045
600
879
−37
−64
−11

N


ATOM
1610
CA
PHE
A
583
−13.656
−22.726
24.345
1.00
9.28


C


ANISOU
1610
CA
PHE
A
583
1389
920
1219
−49
−60
−27

C


ATOM
1611
CB
PHE
A
583
−13.378
−24.219
24.203
1.00
6.26


C


ANISOU
1611
CB
PHE
A
583
1000
498
880
−40
−39
−68

C


ATOM
1612
CG
PHE
A
583
−14.642
−25.049
24.040
1.00
6.46


C


ANISOU
1612
CG
PHE
A
583
1030
497
929
−61
−32
−91

C


ATOM
1613
CD1
PHE
A
583
−15.259
−25.156
22.798
1.00
11.12


C


ANISOU
1613
CD1
PHE
A
583
1605
1129
1491
−94
−31
−144

C


ATOM
1614
CE1
PHE
A
583
−16.424
−25.915
22.640
1.00
13.62


C


ANISOU
1614
CE1
PHE
A
583
1915
1424
1835
−121
−29
−176

C


ATOM
1615
CZ
PHE
A
583
−16.980
−26.566
23.740
1.00
10.07


C


ANISOU
1615
CZ
PHE
A
583
1476
903
1447
−117
−19
−144

C


ATOM
1616
CE2
PHE
A
583
−16.357
−26.469
24.990
1.00
9.99


C


ANISOU
1616
CE2
PHE
A
583
1485
856
1455
−81
−17
−80

C


ATOM
1617
CD2
PHE
A
583
−15.191
−25.711
25.124
1.00
6.52


C


ANISOU
1617
CD2
PHE
A
583
1050
446
982
−53
−27
−59

C


ATOM
1618
C
PHE
A
583
−14.655
−22.487
25.472
1.00
10.18


C


ANISOU
1618
C
PHE
A
583
1519
1008
1340
−45
−69
8

C


ATOM
1619
O
PHE
A
583
−15.851
−22.299
25.219
1.00
8.37


O


ANISOU
1619
O
PHE
A
583
1288
788
1103
−62
−73
10

O


ATOM
1620
N
GLY
A
584
−14.186
−22.511
26.723
1.00
11.14


N


ANISOU
1620
N
GLY
A
584
1651
1111
1473
−22
−74
35

N


ATOM
1621
CA
GLY
A
584
−15.067
−22.174
27.830
1.00
9.03


C


ANISOU
1621
CA
GLY
A
584
1396
839
1197
−19
−76
63

C


ATOM
1622
C
GLY
A
584
−15.695
−20.803
27.663
1.00
8.45


C


ANISOU
1622
C
GLY
A
584
1319
787
1104
−29
−86
63

C


ATOM
1623
O
GLY
A
584
−16.892
−20.624
27.912
1.00
7.82


O


ANISOU
1623
O
GLY
A
584
1238
707
1026
−35
−80
69

O


ATOM
1624
N
VAL
A
585
−14.895
−19.811
27.251
1.00
5.27


N


ANISOU
1624
N
VAL
A
585
909
398
695
−31
−97
61

N


ATOM
1625
CA
VAL
A
585
−15.442
−18.479
27.003
1.00
7.17


C


ANISOU
1625
CA
VAL
A
585
1144
641
940
−38
−105
70

C


ATOM
1626
CB
VAL
A
585
−14.299
−17.466
26.733
1.00
6.51


C


ANISOU
1626
CB
VAL
A
585
1051
558
866
−45
−113
73

C


ATOM
1627
CG1
VAL
A
585
−14.839
−16.074
26.393
1.00
5.49


C


ANISOU
1627
CG1
VAL
A
585
913
411
762
−51
−118
95

C


ATOM
1628
CG2
VAL
A
585
−13.353
−17.358
27.958
1.00
5.39


C


ANISOU
1628
CG2
VAL
A
585
911
412
725
−35
−121
53

C


ATOM
1629
C
VAL
A
585
−16.442
−18.536
25.850
1.00
6.62


C


ANISOU
1629
C
VAL
A
585
1062
587
865
−52
−106
80

C


ATOM
1630
O
VAL
A
585
−17.500
−17.896
25.894
1.00
8.05


O


ANISOU
1630
O
VAL
A
585
1235
766
1059
−48
−111
94

O


ATOM
1631
N
ALEU
A
586
−16.123
−19.302
24.804
0.74
5.42


N


ANISOU
1631
N
ALEU
A
586
905
460
695
−65
−103
67

N


ATOM
1632
CA
ALEU
A
586
−17.075
−19.451
23.707
0.74
8.53


C


ANISOU
1632
CA
ALEU
A
586
1283
890
1069
−82
−111
67

C


ATOM
1633
CB
ALEU
A
586
−16.481
−20.325
22.606
0.74
7.16


C


ANISOU
1633
CB
ALEU
A
586
1103
753
866
−99
−103
31

C


ATOM
1634
CG
ALEU
A
586
−17.455
−20.727
21.498
0.74
9.81


C


ANISOU
1634
CG
ALEU
A
586
1418
1142
1167
−123
−115
9

C


ATOM
1635
CD1
ALEU
A
586
−17.876
−19.508
20.709
0.74
6.52


C


ANISOU
1635
CD1
ALEU
A
586
986
779
714
−126
−140
66

C


ATOM
1636
CD2
ALEU
A
586
−16.802
−21.764
20.585
0.74
9.34


C


ANISOU
1636
CD2
ALEU
A
586
1352
1116
1082
−140
−99
−56

C


ATOM
1637
C
ALEU
A
586
−18.396
−20.033
24.200
0.74
8.52


C


ANISOU
1637
C
ALEU
A
586
1276
875
1087
−84
−110
56

C


ATOM
1638
O
ALEU
A
586
−19.471
−19.581
23.792
0.74
6.69


O


ANISOU
1638
O
ALEU
A
586
1022
666
853
−88
−126
72

O


ATOM
1639
N
BLEU
A
586
−16.134
−19.327
24.820
0.26
7.55


N


ANISOU
1639
N
BLEU
A
586
1175
729
965
−65
−103
67

N


ATOM
1640
CA
BLEU
A
586
−17.058
−19.466
23.698
0.26
8.21


C


ANISOU
1640
CA
BLEU
A
586
1242
849
1028
−82
−111
67

C


ATOM
1641
CB
BLEU
A
586
−16.407
−20.299
22.592
0.26
8.11


C


ANISOU
1641
CB
BLEU
A
586
1223
874
985
−99
−103
31

C


ATOM
1642
CG
BLEU
A
586
−17.093
−20.403
21.227
0.26
9.85


C


ANISOU
1642
CG
BLEU
A
586
1423
1162
1158
−123
−116
20

C


ATOM
1643
CD1
BLEU
A
586
−16.076
−20.797
20.152
0.26
8.17


C


ANISOU
1643
CD1
BLEU
A
586
1202
1001
899
−137
−99
−14

C


ATOM
1644
CD2
BLEU
A
586
−18.220
−21.414
21.275
0.26
9.07


C


ANISOU
1644
CD2
BLEU
A
586
1314
1057
1076
−137
−119
−23

C


ATOM
1645
C
BLEU
A
586
−18.384
−20.078
24.146
0.26
8.06


C


ANISOU
1645
C
BLEU
A
586
1217
818
1027
−85
−110
55

C


ATOM
1646
O
BLEU
A
586
−19.451
−19.680
23.664
0.26
7.43


O


ANISOU
1646
O
BLEU
A
586
1116
764
944
−91
−126
68

O


ATOM
1647
N
MET
A
587
−18.342
−21.046
25.067
1.00
6.50


N


ANISOU
1647
N
MET
A
587
1033
584
854
−81
−92
39

N


ATOM
1648
CA
MET
A
587
−19.592
−21.602
25.596
1.00
11.01


C


ANISOU
1648
CA
MET
A
587
1594
1141
1449
−90
−82
37

C


ATOM
1649
CB
MET
A
587
−19.332
−22.760
26.573
1.00
7.39


C


ANISOU
1649
CB
MET
A
587
1153
638
1018
−88
−57
38

C


ATOM
1650
CG
MET
A
587
−18.824
−24.049
25.955
1.00
11.38


C


ANISOU
1650
CG
MET
A
587
1658
1116
1550
−101
−48
4

C


ATOM
1651
SD
MET
A
587
−18.788
−25.378
27.186
1.00
14.58


S


ANISOU
1651
SD
MET
A
587
2078
1452
2010
−95
−18
34

S


ATOM
1652
CE
MET
A
587
−20.522
−25.466
27.683
1.00
10.52


C


ANISOU
1652
CE
MET
A
587
1544
939
1514
−124
−0
51

C


ATOM
1653
C
MET
A
587
−20.380
−20.518
26.306
1.00
9.23


C


ANISOU
1653
C
MET
A
587
1359
919
1228
−75
−84
63

C


ATOM
1654
O
MET
A
587
−21.612
−20.440
26.187
1.00
6.70


O


ANISOU
1654
O
MET
A
587
1012
613
922
−82
−85
64

O


ATOM
1655
N
TRP
A
588
−19.676
−19.660
27.040
1.00
5.52


N


ANISOU
1655
N
TRP
A
588
906
438
753
−53
−83
74

N


ATOM
1656
CA
TRP
A
588
−20.323
−18.542
27.712
1.00
5.60


C


ANISOU
1656
CA
TRP
A
588
906
445
777
−35
−80
81

C


ATOM
1657
CB
TRP
A
588
−19.304
−17.830
28.599
1.00
6.03


C


ANISOU
1657
CB
TRP
A
588
981
486
825
−20
−78
71

C


ATOM
1658
CG
TRP
A
588
−19.862
−16.718
29.438
1.00
6.17


C


ANISOU
1658
CG
TRP
A
588
989
495
862
−1
−68
54

C


ATOM
1659
CD1
TRP
A
588
−20.240
−16.789
30.766
1.00
5.97


C


ANISOU
1659
CD1
TRP
A
588
967
483
819
8
−43
31

C


ATOM
1660
NE1
TRP
A
588
−20.691
−15.566
31.185
1.00
8.35


N


ANISOU
1660
NE1
TRP
A
588
1252
769
1151
26
−34
−1

N


ATOM
1661
CE2
TRP
A
588
−20.617
−14.676
30.141
1.00
7.81


C


ANISOU
1661
CE2
TRP
A
588
1170
665
1133
30
−56
16

C


ATOM
1662
CD2
TRP
A
588
−20.078
−15.366
29.029
1.00
5.96


C


ANISOU
1662
CD2
TRP
A
588
945
441
880
11
−78
55

C


ATOM
1663
CE3
TRP
A
588
−19.892
−14.673
27.815
1.00
7.21


C


ANISOU
1663
CE3
TRP
A
588
1092
583
1066
9
−101
91

C


ATOM
1664
CZ3
TRP
A
588
−20.237
−13.324
27.760
1.00
6.44


C


ANISOU
1664
CZ3
TRP
A
588
974
442
1031
28
−103
99

C


ATOM
1665
CH2
TRP
A
588
−20.759
−12.659
28.899
1.00
9.20


C


ANISOU
1665
CH2
TRP
A
588
1314
764
1417
50
−81
50

C


ATOM
1666
CZ2
TRP
A
588
−20.935
−13.315
30.099
1.00
9.20


C


ANISOU
1666
CZ2
TRP
A
588
1325
797
1374
50
−56
2

C


ATOM
1667
C
TRP
A
588
−20.953
−17.573
26.720
1.00
6.86


C


ANISOU
1667
C
TRP
A
588
1038
614
954
−31
−101
99

C


ATOM
1668
O
TRP
A
588
−22.087
−17.132
26.920
1.00
8.35


O


ANISOU
1668
O
TRP
A
588
1199
804
1170
−19
−98
103

O


ATOM
1669
N
GLU
A
589
−20.235
−17.224
25.642
1.00
5.78


N


ANISOU
1669
N
GLU
A
589
903
489
804
−38
−122
118

N


ATOM
1670
CA
GLU
A
589
−20.823
−16.373
24.608
1.00
6.12


C


ANISOU
1670
CA
GLU
A
589
918
551
855
−33
−147
158

C


ATOM
1671
CB
GLU
A
589
−19.836
−16.165
23.457
1.00
8.88


C


ANISOU
1671
CB
GLU
A
589
1275
930
1171
−48
−160
186

C


ATOM
1672
CG
GLU
A
589
−18.566
−15.407
23.779
1.00
14.50


C


ANISOU
1672
CG
GLU
A
589
2006
1605
1900
−47
−150
195

C


ATOM
1673
CD
GLU
A
589
−17.704
−15.223
22.514
1.00
13.03


C


ANISOU
1673
CD
GLU
A
589
1816
1459
1675
−67
−155
232

C


ATOM
1674
OE1
GLU
A
589
−16.907
−16.132
22.190
1.00
9.62


O


ANISOU
1674
OE1
GLU
A
589
1394
1060
1203
−84
−143
199

O


ATOM
1675
OE2
GLU
A
589
−17.850
−14.182
21.839
1.00
9.21


O


ANISOU
1675
OE2
GLU
A
589
1318
977
1205
−65
−167
297

O


ATOM
1676
C
GLU
A
589
−22.101
−16.985
24.043
1.00
6.84


C


ANISOU
1676
C
GLU
A
589
976
685
938
−43
−161
156

C


ATOM
1677
O
GLU
A
589
−23.082
−16.277
23.782
1.00
9.22


O


ANISOU
1677
O
GLU
A
589
1241
995
1266
−25
−179
186

O


ATOM
1678
N
ILE
A
590
−22.080
−18.293
23.776
1.00
6.32


N


ANISOU
1678
N
ILE
A
590
915
643
845
−71
−156
118

N


ATOM
1679
CA
ILE
A
590
−23.244
−18.940
23.174
1.00
6.70


C


ANISOU
1679
CA
ILE
A
590
924
734
889
−91
−172
102

C


ATOM
1680
CB
ILE
A
590
−22.920
−20.402
22.819
1.00
7.31


C


ANISOU
1680
CB
ILE
A
590
1011
819
947
−128
−161
46

C


ATOM
1681
CG1
ILE
A
590
−21.972
−20.477
21.608
1.00
6.88


C


ANISOU
1681
CG1
ILE
A
590
966
811
835
−141
−176
34

C


ATOM
1682
CD1
ILE
A
590
−21.356
−21.872
21.379
1.00
10.60


C


ANISOU
1682
CD1
ILE
A
590
1452
1270
1305
−167
−154
−36

C


ATOM
1683
CG2
ILE
A
590
−24.205
−21.170
22.560
1.00
7.19


C


ANISOU
1683
CG2
ILE
A
590
953
830
951
−157
−170
13

C


ATOM
1684
C
ILE
A
590
−24.439
−18.844
24.117
1.00
8.88


C


ANISOU
1684
C
ILE
A
590
1172
990
1214
−79
−157
101

C


ATOM
1685
O
ILE
A
590
−25.543
−18.460
23.711
1.00
7.87


O


ANISOU
1685
O
ILE
A
590
994
895
1102
−73
−180
117

O


ATOM
1686
N
TYR
A
591
−24.243
−19.211
25.389
1.00
8.38


N


ANISOU
1686
N
TYR
A
591
1132
881
1169
−75
−118
86

N


ATOM
1687
CA
TYR
A
591
−25.361
−19.182
26.326
1.00
8.27


C


ANISOU
1687
CA
TYR
A
591
1089
861
1192
−68
−91
83

C


ATOM
1688
CB
TYR
A
591
−25.055
−20.077
27.540
1.00
7.84


C


ANISOU
1688
CB
TYR
A
591
1065
777
1135
−80
−47
72

C


ATOM
1689
CG
TYR
A
591
−25.385
−21.536
27.244
1.00
11.99


C


ANISOU
1689
CG
TYR
A
591
1582
1299
1675
−124
−37
55

C


ATOM
1690
CD1
TYR
A
591
−24.447
−22.370
26.663
1.00
8.44


C


ANISOU
1690
CD1
TYR
A
591
1162
831
1214
−141
−46
39

C


ATOM
1691
CE1
TYR
A
591
−24.738
−23.699
26.377
1.00
9.13


C


ANISOU
1691
CE1
TYR
A
591
1238
896
1334
−182
−35
12

C


ATOM
1692
CZ
TYR
A
591
−25.991
−24.194
26.640
1.00
7.56


C


ANISOU
1692
CZ
TYR
A
591
997
698
1178
−212
−16
8

C


ATOM
1693
OH
TYR
A
591
−26.272
−25.501
26.349
1.00
12.12


O


ANISOU
1693
OH
TYR
A
591
1560
1240
1804
−259
−3
−25

O


ATOM
1694
CE2
TYR
A
591
−26.961
−23.388
27.204
1.00
7.67


C


ANISOU
1694
CE2
TYR
A
591
976
742
1195
−197
−6
29

C


ATOM
1695
CD2
TYR
A
591
−26.657
−22.060
27.499
1.00
7.33


C


ANISOU
1695
CD2
TYR
A
591
946
717
1121
−149
−16
50

C


ATOM
1696
C
TYR
A
591
−25.728
−17.766
26.762
1.00
9.32


C


ANISOU
1696
C
TYR
A
591
1205
984
1354
−26
−90
100

C


ATOM
1697
O
TYR
A
591
−26.808
−17.565
27.331
1.00
10.78


O


ANISOU
1697
O
TYR
A
591
1348
1174
1573
−14
−70
93

O


ATOM
1698
N
SER
A
592
−24.875
−16.790
26.479
1.00
7.40


N


ANISOU
1698
N
SER
A
592
984
720
1109
−4
−108
119

N


ATOM
1699
CA
SER
A
592
−25.167
−15.380
26.659
1.00
7.09


C


ANISOU
1699
CA
SER
A
592
924
652
1119
36
−111
135

C


ATOM
1700
CB
SER
A
592
−23.905
−14.642
27.086
1.00
9.27


C


ANISOU
1700
CB
SER
A
592
1243
883
1396
45
−104
128

C


ATOM
1701
OG
SER
A
592
−23.452
−15.145
28.324
1.00
10.60


O


ANISOU
1701
OG
SER
A
592
1442
1048
1538
38
−71
84

O


ATOM
1702
C
SER
A
592
−25.730
−14.728
25.405
1.00
7.54


C


ANISOU
1702
C
SER
A
592
939
729
1197
51
−156
188

C


ATOM
1703
O
SER
A
592
−25.873
−13.503
25.373
1.00
7.92


O


ANISOU
1703
O
SER
A
592
969
739
1302
88
−163
218

O


ATOM
1704
N
LEU
A
593
−26.036
−15.510
24.374
1.00
7.64


N


ANISOU
1704
N
LEU
A
593
933
802
1167
23
−187
200

N


ATOM
1705
CA
LEU
A
593
−26.566
−14.975
23.113
1.00
8.22


C


ANISOU
1705
CA
LEU
A
593
963
923
1238
34
−238
259

C


ATOM
1706
CB
LEU
A
593
−28.014
−14.509
23.294
1.00
10.17


C


ANISOU
1706
CB
LEU
A
593
1138
1177
1548
68
−249
273

C


ATOM
1707
CG
LEU
A
593
−28.937
−15.601
23.856
1.00
11.10


C


ANISOU
1707
CG
LEU
A
593
1225
1323
1669
40
−225
214

C


ATOM
1708
CD1
LEU
A
593
−30.369
−15.068
24.052
1.00
14.92


C


ANISOU
1708
CD1
LEU
A
593
1626
1820
2225
77
−231
226

C


ATOM
1709
CD2
LEU
A
593
−28.936
−16.840
22.957
1.00
9.50


C


ANISOU
1709
CD2
LEU
A
593
1020
1189
1403
−15
−252
189

C


ATOM
1710
C
LEU
A
593
−25.676
−13.859
22.551
1.00
9.02


C


ANISOU
1710
C
LEU
A
593
1087
998
1343
54
−255
324

C


ATOM
1711
O
LEU
A
593
−26.146
−12.864
21.995
1.00
9.00


O


ANISOU
1711
O
LEU
A
593
1047
992
1379
87
−285
394

O


ATOM
1712
N
GLY
A
594
−24.365
−14.047
22.650
1.00
10.31


N


ANISOU
1712
N
GLY
A
594
1305
1140
1472
32
−235
308

N


ATOM
1713
CA
GLY
A
594
−23.448
−13.148
21.983
1.00
8.94


C


ANISOU
1713
CA
GLY
A
594
1148
952
1296
35
−247
371

C


ATOM
1714
C
GLY
A
594
−23.028
−11.922
22.765
1.00
12.18


C


ANISOU
1714
C
GLY
A
594
1571
1265
1794
63
−225
383

C


ATOM
1715
O
GLY
A
594
−22.448
−11.005
22.174
1.00
12.50


O


ANISOU
1715
O
GLY
A
594
1613
1278
1857
67
−234
451

O


ATOM
1716
N
LYS
A
595
−23.300
−11.862
24.066
1.00
11.77


N


ANISOU
1716
N
LYS
A
595
1522
1160
1789
79
−193
317

N


ATOM
1717
CA
LYS
A
595
−22.780
−10.751
24.854
1.00
14.20


C


ANISOU
1717
CA
LYS
A
595
1842
1378
2175
98
−171
300

C


ATOM
1718
CB
LYS
A
595
−23.273
−10.819
26.307
1.00
9.51


C


ANISOU
1718
CB
LYS
A
595
1246
758
1610
115
−135
212

C


ATOM
1719
CG
LYS
A
595
−24.727
−10.445
26.500
1.00
14.14


C


ANISOU
1719
CG
LYS
A
595
1779
1337
2258
157
−131
212

C


ATOM
1720
CD
LYS
A
595
−25.085
−10.449
27.993
1.00
24.33


C


ANISOU
1720
CD
LYS
A
595
3067
2611
3565
170
−83
118

C


ATOM
1721
CE
LYS
A
595
−26.572
−10.211
28.203
0.00
22.53


C


ANISOU
1721
CE
LYS
A
595
2776
2388
3396
210
−70
110

C


ATOM
1722
NZ
LYS
A
595
−27.400
−11.283
27.583
0.00
20.54


N


ANISOU
1722
NZ
LYS
A
595
2495
2216
3094
193
−90
143

N


ATOM
1723
C
LYS
A
595
−21.256
−10.771
24.841
1.00
9.57


C


ANISOU
1723
C
LYS
A
595
1298
779
1558
64
−162
291

C


ATOM
1724
O
LYS
A
595
−20.626
−11.824
24.721
1.00
12.58


O


ANISOU
1724
O
LYS
A
595
1705
1213
1862
34
−160
268

O


ATOM
1725
N
AMET
A
596
−20.667
−9.590
24.960
0.65
8.24


N


ANISOU
1725
N
AMET
A
596
1132
534
1466
69
−156
308

N


ATOM
1726
CA
AMET
A
596
−19.234
−9.499
25.179
0.65
9.41


C


ANISOU
1726
CA
AMET
A
596
1309
663
1604
35
−144
284

C


ATOM
1727
CB
AMET
A
596
−18.796
−8.037
25.116
0.65
10.89


C


ANISOU
1727
CB
AMET
A
596
1483
782
1872
36
−130
299

C


ATOM
1728
CG
AMET
A
596
−17.320
−7.801
25.414
0.65
13.06


C


ANISOU
1728
CG
AMET
A
596
1775
1038
2151
−2
−116
265

C


ATOM
1729
SD
AMET
A
596
−16.235
−8.108
24.010
0.65
16.86


S


ANISOU
1729
SD
AMET
A
596
2260
1573
2574
−42
−122
353

S


ATOM
1730
CE
AMET
A
596
−16.463
−6.611
23.056
0.65
23.00


C


ANISOU
1730
CE
AMET
A
596
3011
2312
3417
−34
−115
443

C


ATOM
1731
C
AMET
A
596
−18.872
−10.109
26.534
0.65
8.51


C


ANISOU
1731
C
AMET
A
596
1216
558
1458
29
−124
181

C


ATOM
1732
O
AMET
A
596
−19.519
−9.803
27.542
0.65
8.11


O


ANISOU
1732
O
AMET
A
596
1158
480
1444
52
−108
122

O


ATOM
1733
N
BMET
A
596
−20.660
−9.599
24.997
0.35
9.14


N


ANISOU
1733
N
BMET
A
596
1246
647
1580
69
−155
305

N


ATOM
1734
CA
BMET
A
596
−19.213
−9.531
25.133
0.35
9.35


C


ANISOU
1734
CA
BMET
A
596
1301
658
1592
34
−144
286

C


ATOM
1735
CB
BMET
A
596
−18.719
−8.108
24.906
0.35
11.27


C


ANISOU
1735
CB
BMET
A
596
1532
841
1911
33
−132
313

C


ATOM
1736
CG
BMET
A
596
−17.231
−7.946
25.151
0.35
13.58


C


ANISOU
1736
CG
BMET
A
596
1842
1117
2202
−7
−119
282

C


ATOM
1737
SD
BMET
A
596
−16.652
−6.259
24.927
0.35
18.62


S


ANISOU
1737
SD
BMET
A
596
2460
1679
2934
−18
−102
306

S


ATOM
1738
CE
BMET
A
596
−16.856
−6.046
23.159
0.35
24.00


C


ANISOU
1738
CE
BMET
A
596
3127
2406
3586
−19
−114
447

C


ATOM
1739
C
BMET
A
596
−18.790
−10.020
26.517
0.35
8.77


C


ANISOU
1739
C
BMET
A
596
1249
586
1496
27
−124
182

C


ATOM
1740
O
BMET
A
596
−19.302
−9.524
27.528
0.35
7.81


O


ANISOU
1740
O
BMET
A
596
1120
424
1423
49
−108
122

O


ATOM
1741
N
PRO
A
597
−17.859
−10.968
26.609
1.00
8.44


N


ANISOU
1741
N
PRO
A
597
1231
594
1381
0
−124
159

N


ATOM
1742
CA
PRO
A
597
−17.387
−11.410
27.929
1.00
10.40


C


ANISOU
1742
CA
PRO
A
597
1497
855
1601
−3
−112
79

C


ATOM
1743
CB
PRO
A
597
−16.273
−12.411
27.605
1.00
7.95


C


ANISOU
1743
CB
PRO
A
597
1202
593
1225
−27
−119
85

C


ATOM
1744
CG
PRO
A
597
−16.496
−12.809
26.142
1.00
12.74


C


ANISOU
1744
CG
PRO
A
597
1802
1231
1805
−35
−127
152

C


ATOM
1745
CD
PRO
A
597
−17.130
−11.611
25.495
1.00
11.49


C


ANISOU
1745
CD
PRO
A
597
1625
1033
1710
−25
−133
207

C


ATOM
1746
C
PRO
A
597
−16.855
−10.230
28.722
1.00
7.78


C


ANISOU
1746
C
PRO
A
597
1159
460
1336
−7
−105
26

C


ATOM
1747
O
PRO
A
597
−16.149
−9.364
28.188
1.00
8.22


O


ANISOU
1747
O
PRO
A
597
1205
466
1451
−25
−109
52

O


ATOM
1748
N
TYR
A
598
−17.181
−10.207
30.014
1.00
7.42


N


ANISOU
1748
N
TYR
A
598
1116
422
1281
6
−92
−54

N


ATOM
1749
CA
TYR
A
598
−16.755
−9.133
30.909
1.00
8.04


C


ANISOU
1749
CA
TYR
A
598
1186
451
1418
1
−85
−135

C


ATOM
1750
CB
TYR
A
598
−15.237
−9.163
31.141
1.00
9.69


C


ANISOU
1750
CB
TYR
A
598
1399
676
1605
−36
−102
−163

C


ATOM
1751
CG
TYR
A
598
−14.630
−10.545
31.311
1.00
8.76


C


ANISOU
1751
CG
TYR
A
598
1298
648
1381
−42
−116
−147

C


ATOM
1752
CD1
TYR
A
598
−14.561
−11.147
32.566
1.00
11.10


C


ANISOU
1752
CD1
TYR
A
598
1604
1011
1602
−35
−118
−203

C


ATOM
1753
CE1
TYR
A
598
−14.012
−12.419
32.720
1.00
10.86


C


ANISOU
1753
CE1
TYR
A
598
1587
1049
1492
−34
−132
−172

C


ATOM
1754
CZ
TYR
A
598
−13.529
−13.098
31.615
1.00
10.69


C


ANISOU
1754
CZ
TYR
A
598
1566
1026
1469
−41
−139
−106

C


ATOM
1755
OH
TYR
A
598
−12.979
−14.352
31.776
1.00
8.50


O


ANISOU
1755
OH
TYR
A
598
1296
800
1133
−33
−150
−81

O


ATOM
1756
CE2
TYR
A
598
−13.577
−12.522
30.362
1.00
6.58


C


ANISOU
1756
CE2
TYR
A
598
1037
456
1007
−52
−134
−63

C


ATOM
1757
CD2
TYR
A
598
−14.132
−11.248
30.218
1.00
9.40


C


ANISOU
1757
CD2
TYR
A
598
1383
748
1439
−53
−125
−74

C


ATOM
1758
C
TYR
A
598
−17.187
−7.770
30.366
1.00
8.71


C


ANISOU
1758
C
TYR
A
598
1247
433
1631
12
−77
−115

C


ATOM
1759
O
TYR
A
598
−16.412
−6.817
30.340
1.00
9.24


O


ANISOU
1759
O
TYR
A
598
1304
457
1750
−10
−74
−130

O


ATOM
1760
N
GLU
A
599
−18.449
−7.677
29.927
1.00
8.81


N


ANISOU
1760
N
GLU
A
599
1244
430
1675
49
−70
−71

N


ATOM
1761
CA
GLU
A
599
−18.890
−6.512
29.159
1.00
9.94


C


ANISOU
1761
CA
GLU
A
599
1360
522
1895
65
−65
−12

C


ATOM
1762
CB
GLU
A
599
−20.345
−6.679
28.706
1.00
13.52


C


ANISOU
1762
CB
GLU
A
599
1789
984
2365
108
−67
38

C


ATOM
1763
CG
GLU
A
599
−21.311
−6.817
29.857
1.00
13.76


C


ANISOU
1763
CG
GLU
A
599
1805
1011
2412
141
−41
−52

C


ATOM
1764
CD
GLU
A
599
−22.767
−6.931
29.400
1.00
27.23


C


ANISOU
1764
CD
GLU
A
599
3471
2724
4151
185
−43
−3

C


ATOM
1765
OE1
GLU
A
599
−23.016
−6.913
28.174
1.00
26.85


O


ANISOU
1765
OE1
GLU
A
599
3410
2689
4104
189
−73
103

O


ATOM
1766
OE2
GLU
A
599
−23.662
−7.029
30.272
1.00
28.59


O


ANISOU
1766
OE2
GLU
A
599
3621
2904
4338
215
−12
−73

O


ATOM
1767
C
GLU
A
599
−18.767
−5.193
29.913
1.00
17.96


C


ANISOU
1767
C
GLU
A
599
2358
1473
2992
67
−44
−87

C


ATOM
1768
O
GLU
A
599
−18.747
−4.134
29.273
1.00
13.10


O


ANISOU
1768
O
GLU
A
599
1723
802
2451
70
−43
−36

O


ATOM
1769
N
ARG
A
600
−18.704
−5.199
31.241
1.00
10.62


N


ANISOU
1769
N
ARG
A
600
1433
553
2051
66
−27
−207

N


ATOM
1770
CA
ARG
A
600
−18.569
−3.925
31.932
1.00
11.68


C


ANISOU
1770
CA
ARG
A
600
1547
631
2261
65
−8
−287

C


ATOM
1771
CB
ARG
A
600
−19.401
−3.932
33.216
1.00
16.49


C


ANISOU
1771
CB
ARG
A
600
2145
1263
2857
93
21
−405

C


ATOM
1772
CG
ARG
A
600
−20.874
−3.895
32.894
1.00
22.23


C


ANISOU
1772
CG
ARG
A
600
2844
1975
3627
145
38
−366

C


ATOM
1773
CD
ARG
A
600
−21.788
−4.173
34.082
1.00
30.85


C


ANISOU
1773
CD
ARG
A
600
3922
3111
4688
173
76
−474

C


ATOM
1774
NE
ARG
A
600
−23.172
−4.225
33.612
1.00
29.27


N


ANISOU
1774
NE
ARG
A
600
3686
2899
4536
223
89
−421

N


ATOM
1775
CZ
ARG
A
600
−23.876
−3.150
33.272
1.00
32.14


C


ANISOU
1775
CZ
ARG
A
600
4009
3194
5008
256
97
−400

C


ATOM
1776
NH1
ARG
A
600
−23.333
−1.939
33.364
1.00
23.12


N


ANISOU
1776
NH1
ARG
A
600
2861
1981
3944
243
98
−429

N


ATOM
1777
NH2
ARG
A
600
−25.123
−3.283
32.840
1.00
38.10


N


ANISOU
1777
NH2
ARG
A
600
4724
3949
5801
301
102
−350

N


ATOM
1778
C
ARG
A
600
−17.128
−3.549
32.233
1.00
11.92


C


ANISOU
1778
C
ARG
A
600
1585
654
2292
15
−18
−332

C


ATOM
1779
O
ARG
A
600
−16.895
−2.474
32.803
1.00
12.92


O


ANISOU
1779
O
ARG
A
600
1692
733
2486
5
−5
−405

O


ATOM
1780
N
PHE
A
601
−16.165
−4.389
31.840
1.00
11.15


N


ANISOU
1780
N
PHE
A
601
1508
601
2128
−18
−41
−292

N


ATOM
1781
CA
PHE
A
601
−14.743
−4.192
32.093
1.00
11.34


C


ANISOU
1781
CA
PHE
A
601
1530
631
2148
−68
−55
−332

C


ATOM
1782
CB
PHE
A
601
−14.095
−5.476
32.619
1.00
15.21


C


ANISOU
1782
CB
PHE
A
601
2040
1206
2533
−85
−79
−369

C


ATOM
1783
CG
PHE
A
601
−14.521
−5.866
33.998
1.00
15.77


C


ANISOU
1783
CG
PHE
A
601
2118
1338
2536
−70
−76
−482

C


ATOM
1784
CD1
PHE
A
601
−15.114
−4.943
34.855
1.00
22.34


C


ANISOU
1784
CD1
PHE
A
601
2934
2151
3404
−55
−50
−571

C


ATOM
1785
CE1
PHE
A
601
−15.499
−5.316
36.147
1.00
29.13


C


ANISOU
1785
CE1
PHE
A
601
3797
3090
4179
−43
−40
−676

C


ATOM
1786
CZ
PHE
A
601
−15.276
−6.613
36.586
1.00
27.11


C


ANISOU
1786
CZ
PHE
A
601
3564
2935
3802
−45
−60
−685

C


ATOM
1787
CE2
PHE
A
601
−14.663
−7.532
35.748
1.00
25.53


C


ANISOU
1787
CE2
PHE
A
601
3380
2756
3565
−55
−89
−578

C


ATOM
1788
CD2
PHE
A
601
−14.291
−7.156
34.457
1.00
20.50


C


ANISOU
1788
CD2
PHE
A
601
2736
2029
3022
−69
−97
−494

C


ATOM
1789
C
PHE
A
601
−14.002
−3.805
30.816
1.00
11.40


C


ANISOU
1789
C
PHE
A
601
1530
601
2201
−94
−60
−226

C


ATOM
1790
O
PHE
A
601
−14.383
−4.211
29.717
1.00
10.93


O


ANISOU
1790
O
PHE
A
601
1479
551
2125
−80
−63
−118

O


ATOM
1791
N
THR
A
602
−12.912
−3.056
30.979
1.00
12.07


N


ANISOU
1791
N
THR
A
602
1597
655
2335
−136
−61
−261

N


ATOM
1792
CA
THR
A
602
−11.923
−2.915
29.912
1.00
12.62


C


ANISOU
1792
CA
THR
A
602
1658
711
2428
−174
−64
−174

C


ATOM
1793
CB
THR
A
602
−10.994
−1.723
30.160
1.00
13.24


C


ANISOU
1793
CB
THR
A
602
1707
728
2597
−216
−56
−220

C


ATOM
1794
OG1
THR
A
602
−10.266
−1.940
31.372
1.00
13.35


O


ANISOU
1794
OG1
THR
A
602
1712
785
2577
−242
−73
−345

O


ATOM
1795
CG2
THR
A
602
−11.760
−0.395
30.247
1.00
14.38


C


ANISOU
1795
CG2
THR
A
602
1835
778
2850
−193
−35
−230

C


ATOM
1796
C
THR
A
602
−11.075
−4.183
29.819
1.00
11.19


C


ANISOU
1796
C
THR
A
602
1486
608
2159
−197
−85
−167

C


ATOM
1797
O
THR
A
602
−11.159
−5.077
30.662
1.00
13.74


O


ANISOU
1797
O
THR
A
602
1822
988
2410
−187
−102
−233

O


ATOM
1798
N
ASN
A
603
−10.270
−4.271
28.756
1.00
11.13


N


ANISOU
1798
N
ASN
A
603
1469
604
2157
−227
−81
−81

N


ATOM
1799
CA
ASN
A
603
−9.295
−5.352
28.652
1.00
15.07


C


ANISOU
1799
CA
ASN
A
603
1963
1168
2596
−254
−99
−81

C


ATOM
1800
CB
ASN
A
603
−8.499
−5.222
27.354
1.00
10.70


C


ANISOU
1800
CB
ASN
A
603
1390
614
2061
−288
−81
21

C


ATOM
1801
CG
ASN
A
603
−9.250
−5.757
26.145
1.00
13.67


C


ANISOU
1801
CG
ASN
A
603
1787
1018
2387
−262
−72
134

C


ATOM
1802
OD1
ASN
A
603
−10.171
−6.566
26.274
1.00
14.76


O


ANISOU
1802
OD1
ASN
A
603
1952
1189
2467
−223
−85
133

O


ATOM
1803
ND2
ASN
A
603
−8.840
−5.323
24.963
1.00
16.21


N


ANISOU
1803
ND2
ASN
A
603
2095
1339
2724
−285
−49
230

N


ATOM
1804
C
ASN
A
603
−8.340
−5.349
29.841
1.00
14.32


C


ANISOU
1804
C
ASN
A
603
1845
1097
2498
−284
−122
−199

C


ATOM
1805
O
ASN
A
603
−8.034
−6.402
30.412
1.00
14.99


O


ANISOU
1805
O
ASN
A
603
1933
1249
2515
−280
−152
−244

O


ATOM
1806
N
ASER
A
604
−7.832
−4.170
30.204
0.38
15.59


N


ANISOU
1806
N
ASER
A
604
1979
1210
2733
−314
−114
−248

N


ATOM
1807
CA
ASER
A
604
−6.917
−4.073
31.338
0.38
17.07


C


ANISOU
1807
CA
ASER
A
604
2139
1435
2913
−346
−140
−365

C


ATOM
1808
CB
ASER
A
604
−6.473
−2.621
31.528
0.38
18.64


C


ANISOU
1808
CB
ASER
A
604
2309
1561
3214
−381
−124
−406

C


ATOM
1809
OG
ASER
A
604
−5.638
−2.493
32.666
0.38
18.73


O


ANISOU
1809
OG
ASER
A
604
2289
1618
3209
−412
−154
−526

O


ATOM
1810
C
ASER
A
604
−7.565
−4.606
32.610
0.38
15.57


C


ANISOU
1810
C
ASER
A
604
1969
1303
2644
−313
−163
−461

C


ATOM
1811
O
ASER
A
604
−6.960
−5.390
33.350
0.38
14.13


O


ANISOU
1811
O
ASER
A
604
1775
1208
2386
−320
−200
−521

O


ATOM
1812
N
BSER
A
604
−7.853
−4.173
30.226
0.62
15.63


N


ANISOU
1812
N
BSER
A
604
1986
1216
2739
−314
−114
−249

N


ATOM
1813
CA
BSER
A
604
−6.910
−4.102
31.338
0.62
17.34


C


ANISOU
1813
CA
BSER
A
604
2172
1470
2945
−346
−141
−365

C


ATOM
1814
CB
BSER
A
604
−6.378
−2.681
31.472
0.62
19.14


C


ANISOU
1814
CB
BSER
A
604
2370
1628
3275
−384
−125
−401

C


ATOM
1815
OG
BSER
A
604
−5.504
−2.412
30.400
0.62
13.81


O


ANISOU
1815
OG
BSER
A
604
1670
926
2653
−424
−109
−317

O


ATOM
1816
C
BSER
A
604
−7.547
−4.568
32.641
0.62
15.60


C


ANISOU
1816
C
BSER
A
604
1972
1307
2650
−314
−163
−465

C


ATOM
1817
O
BSER
A
604
−6.907
−5.266
33.438
0.62
12.02


O


ANISOU
1817
O
BSER
A
604
1504
938
2123
−323
−200
−531

O


ATOM
1818
N
GLU
A
605
−8.804
−4.187
32.878
1.00
12.18


N


ANISOU
1818
N
GLU
A
605
1564
836
2227
−274
−141
−474

N


ATOM
1819
CA
GLU
A
605
−9.498
−4.632
34.081
1.00
12.10


C


ANISOU
1819
CA
GLU
A
605
1572
888
2139
−244
−151
−564

C


ATOM
1820
CB
GLU
A
605
−10.790
−3.829
34.264
1.00
13.76


C


ANISOU
1820
CB
GLU
A
605
1793
1036
2399
−208
−116
−581

C


ATOM
1821
CG
GLU
A
605
−10.544
−2.358
34.610
1.00
20.01


C


ANISOU
1821
CG
GLU
A
605
2555
1757
3292
−229
−101
−646

C


ATOM
1822
CD
GLU
A
605
−11.783
−1.502
34.414
1.00
28.69


C


ANISOU
1822
CD
GLU
A
605
3655
2772
4472
−190
−65
−631

C


ATOM
1823
OE1
GLU
A
605
−12.698
−1.939
33.687
1.00
22.45


O


ANISOU
1823
OE1
GLU
A
605
2885
1972
3675
−152
−55
−541

O


ATOM
1824
OE2
GLU
A
605
−11.843
−0.393
34.985
1.00
30.38


O


ANISOU
1824
OE2
GLU
A
605
3846
2935
4764
−196
−50
−712

O


ATOM
1825
C
GLU
A
605
−9.798
−6.123
34.020
1.00
16.63


C


ANISOU
1825
C
GLU
A
605
2173
1535
2613
−217
−172
−528

C


ATOM
1826
O
GLU
A
605
−9.747
−6.814
35.049
1.00
11.88


O


ANISOU
1826
O
GLU
A
605
1575
1023
1914
−208
−198
−598

O


ATOM
1827
N
THR
A
606
−10.118
−6.632
32.822
1.00
11.01


N


ANISOU
1827
N
THR
A
606
1477
791
1915
−203
−162
−415

N


ATOM
1828
CA
THR
A
606
−10.357
−8.063
32.649
1.00
9.35


C


ANISOU
1828
CA
THR
A
606
1292
666
1594
−171
−172
−353

C


ATOM
1829
CB
THR
A
606
−10.788
−8.346
31.203
1.00
14.23


C


ANISOU
1829
CB
THR
A
606
1922
1251
2231
−160
−153
−231

C


ATOM
1830
OG1
THR
A
606
−12.010
−7.657
30.925
1.00
14.25


O


ANISOU
1830
OG1
THR
A
606
1935
1182
2299
−137
−131
−213

O


ATOM
1831
CG2
THR
A
606
−10.989
−9.843
30.962
1.00
7.97


C


ANISOU
1831
CG2
THR
A
606
1153
544
1333
−131
−158
−176

C


ATOM
1832
C
THR
A
606
−9.113
−8.862
33.009
1.00
10.14


C


ANISOU
1832
C
THR
A
606
1375
856
1622
−186
−205
−364

C


ATOM
1833
O
THR
A
606
−9.183
−9.853
33.747
1.00
12.39


O


ANISOU
1833
O
THR
A
606
1673
1231
1805
−160
−222
−371

O


ATOM
1834
N
ALA
A
607
−7.962
−8.439
32.494
1.00
9.57


N


ANISOU
1834
N
ALA
A
607
1266
761
1608
−228
−213
−357

N


ATOM
1835
CA
ALA
A
607
−6.710
−9.104
32.837
1.00
11.26


C


ANISOU
1835
CA
ALA
A
607
1449
1060
1771
−240
−247
−372

C


ATOM
1836
CB
ALA
A
607
−5.549
−8.392
32.146
1.00
11.75


C


ANISOU
1836
CB
ALA
A
607
1461
1079
1925
−295
−243
−365

C


ATOM
1837
C
ALA
A
607
−6.497
−9.157
34.353
1.00
10.19


C


ANISOU
1837
C
ALA
A
607
1302
1002
1569
−238
−286
−474

C


ATOM
1838
O
ALA
A
607
−6.151
−10.206
34.904
1.00
12.27


O


ANISOU
1838
O
ALA
A
607
1564
1363
1735
−211
−316
−459

O


ATOM
1839
N .
AGLU
A
608
−6.708
−8.034
35.040
0.56
14.10


N


ANISOU
1839
N
AGLU
A
608
1787
1457
2115
−265
−286
−578

N


ATOM
1840
CA
AGLU
A
608
−6.527
−8.015
36.492
0.56
17.37


C


ANISOU
1840
CA
AGLU
A
608
2187
1964
2449
−267
−323
−691

C


ATOM
1841
CB
AGLU
A
608
−6.649
−6.584
37.012
0.56
19.64


C


ANISOU
1841
CB
AGLU
A
608
2463
2196
2804
−295
−297
−776

C


ATOM
1842
CG
AGLU
A
608
−6.686
−6.454
38.533
0.56
23.44


C


ANISOU
1842
CG
AGLU
A
608
2938
2780
3188
−291
−317
−881

C


ATOM
1843
CD
AGLU
A
608
−5.350
−6.749
39.188
0.56
27.73


C


ANISOU
1843
CD
AGLU
A
608
3436
3432
3668
−317
−376
−916

C


ATOM
1844
OE1
AGLU
A
608
−4.324
−6.778
38.475
0.56
29.01


O


ANISOU
1844
OE1
AGLU
A
608
3561
3571
3890
−346
−394
−878

O


ATOM
1845
OE2
AGLU
A
608
−5.325
−6.953
40.422
0.56
27.26


O


ANISOU
1845
OE2
AGLU
A
608
3373
3488
3497
−308
−402
−976

O


ATOM
1846
C
AGLU
A
608
−7.529
−8.931
37.189
0.56
19.99


C


ANISOU
1846
C
AGLU
A
608
2564
2377
2656
−213
−317
−668

C


ATOM
1847
O
AGLU
A
608
−7.173
−9.643
38.137
0.56
19.57


O


ANISOU
1847
O
AGLU
A
608
2503
2445
2486
−199
−355
−684

O


ATOM
1848
N
BGLU
A
608
−6.699
−8.031
35.040
0.44
14.40


N


ANISOU
1848
N
BGLU
A
608
1825
1495
2153
−265
−286
−579

N


ATOM
1849
CA
BGLU
A
608
−6.527
−8.019
36.492
0.44
17.44


C


ANISOU
1849
CA
BGLU
A
608
2197
1973
2458
−267
−323
−690

C


ATOM
1850
CB
BGLU
A
608
−6.674
−6.597
37.031
0.44
19.61


C


ANISOU
1850
CB
BGLU
A
608
2459
2193
2797
−294
−297
−777

C


ATOM
1851
CG
BGLU
A
608
−5.652
−5.592
36.505
0.44
19.11


C


ANISOU
1851
CG
BGLU
A
608
2353
2059
2847
−346
−291
−780

C


ATOM
1852
CD
BGLU
A
608
−4.289
−5.712
37.173
0.44
26.84


C


ANISOU
1852
CD
BGLU
A
608
3280
3132
3785
−380
−342
−836

C


ATOM
1853
OE1
BGLU
A
608
−4.134
−6.558
38.082
0.44
29.47


O


ANISOU
1853
OE1
BGLU
A
608
3611
3591
3995
−359
−386
−865

O


ATOM
1854
OE2
BGLU
A
608
−3.371
−4.952
36.792
0.44
24.48


O


ANISOU
1854
OE2
BGLU
A
608
2941
2785
3576
−426
−338
−843

O


ATOM
1855
C
BGLU
A
608
−7.524
−8.951
37.173
0.44
19.65


C


ANISOU
1855
C
BGLU
A
608
2520
2333
2612
−213
−317
−666

C


ATOM
1856
O
BGLU
A
608
−7.162
−9.693
38.095
0.44
19.70


O


ANISOU
1856
O
BGLU
A
608
2520
2461
2502
−197
−355
−677

O


ATOM
1857
N
HIS
A
609
−8.787
−8.921
36.732
1.00
15.26


N


ANISOU
1857
N
HIS
A
609
2004
1714
2080
−184
−271
−624

N


ATOM
1858
CA
HIS
A
609
−9.830
−9.797
37.285
1.00
15.66


C


ANISOU
1858
CA
HIS
A
609
2092
1830
2026
−139
−255
−592

C


ATOM
1859
CB
HIS
A
609
−11.125
−9.544
36.489
1.00
17.80


C


ANISOU
1859
CB
HIS
A
609
2390
2008
2365
−117
−205
−545

C


ATOM
1860
CG
HIS
A
609
−12.358
−10.286
36.948
1.00
20.94


C


ANISOU
1860
CG
HIS
A
609
2817
2455
2684
−78
−178
−518

C


ATOM
1861
ND1
HIS
A
609
−13.178
−9.821
37.957
1.00
19.06


N


ANISOU
1861
ND1
HIS
A
609
2580
2247
2415
−67
−153
−606

N


ATOM
1862
CE1
HIS
A
609
−14.215
−10.632
38.097
1.00
13.67


C


ANISOU
1862
CE1
HIS
A
609
1919
1604
1673
−37
−124
−550

C


ATOM
1863
NE2
HIS
A
609
−14.123
−11.583
37.184
1.00
19.13


N


ANISOU
1863
NE2
HIS
A
609
2624
2279
2364
−29
−131
−435

N


ATOM
1864
CD2
HIS
A
609
−12.986
−11.377
36.437
1.00
18.74


C


ANISOU
1864
CD2
HIS
A
609
2563
2190
2369
−51
−163
−415

C


ATOM
1865
C
HIS
A
609
−9.410
−11.256
37.192
1.00
16.15


C


ANISOU
1865
C
HIS
A
609
2163
1971
2000
−113
−278
−491

C


ATOM
1866
O
HIS
A
609
−9.445
−12.002
38.180
1.00
15.33


O


ANISOU
1866
O
HIS
A
609
2067
1972
1786
−92
−296
−488

O


ATOM
1867
N
ILE
A
610
−8.996
−11.666
35.994
1.00
15.69


N


ANISOU
1867
N
ILE
A
610
2104
1864
1996
−113
−274
−407

N


ATOM
1868
CA
ILE
A
610
−8.596
−13.042
35.725
1.00
13.46


C


ANISOU
1868
CA
ILE
A
610
1826
1628
1660
−85
−287
−317

C


ATOM
1869
CB
ILE
A
610
−8.368
−13.209
34.206
1.00
19.01


C


ANISOU
1869
CB
ILE
A
610
2526
2260
2436
−91
−266
−249

C


ATOM
1870
CG1
ILE
A
610
−9.707
−13.181
33.487
1.00
22.34


C


ANISOU
1870
CG1
ILE
A
610
2984
2623
2883
−79
−225
−210

C


ATOM
1871
CD1
ILE
A
610
−10.678
−14.168
34.029
1.00
26.98


C


ANISOU
1871
CD1
ILE
A
610
3602
3248
3401
−46
−213
−179

C


ATOM
1872
CG2
ILE
A
610
−7.564
−14.457
33.888
1.00
26.58


C


ANISOU
1872
CG2
ILE
A
610
3472
3260
3367
−69
−282
−187

C


ATOM
1873
C
ILE
A
610
−7.354
−13.390
36.523
1.00
18.43


C


ANISOU
1873
C
ILE
A
610
2418
2349
2237
−87
−340
−338

C


ATOM
1874
O
ILE
A
610
−7.250
−14.478
37.106
1.00
16.92


O


ANISOU
1874
O
ILE
A
610
2232
2231
1965
−53
−361
−287

O


ATOM
1875
N
ALA
A
611
−6.409
−12.452
36.588
1.00
18.53


N


ANISOU
1875
N
ALA
A
611
2387
2357
2299
−128
−365
−410

N


ATOM
1876
CA
ALA
A
611
−5.161
−12.685
37.306
1.00
20.04


C


ANISOU
1876
CA
ALA
A
611
2527
2641
2445
−134
−424
−438

C


ATOM
1877
CB
ALA
A
611
−4.212
−11.501
37.118
1.00
19.28


C


ANISOU
1877
CB
ALA
A
611
2377
2513
2437
−193
−440
−523

C


ATOM
1878
C
ALA
A
611
−5.405
−12.928
38.784
1.00
26.62


C


ANISOU
1878
C
ALA
A
611
3367
3592
3156
−117
−458
−478

C


ATOM
1879
O
ALA
A
611
−4.663
−13.695
39.411
1.00
33.29


O


ANISOU
1879
O
ALA
A
611
4183
4538
3927
−94
−509
−445

O


ATOM
1880
N
GLN
A
612
−6.437
−12.292
39.358
1.00
20.67


N


ANISOU
1880
N
GLN
A
612
2645
2834
2376
−124
−430
−546

N


ATOM
1881
CA
GLN
A
612
−6.800
−12.468
40.760
1.00
21.63


C


ANISOU
1881
CA
GLN
A
612
2774
3080
2364
−111
−450
−590

C


ATOM
1882
CB
GLN
A
612
−7.521
−11.234
41.308
1.00
30.57


C


ANISOU
1882
CB
GLN
A
612
3913
4194
3510
−141
−421
−728

C


ATOM
1883
CG
GLN
A
612
−6.772
−9.933
41.245
1.00
44.59


C


ANISOU
1883
CG
GLN
A
612
5646
5909
5385
−193
−429
−832

C


ATOM
1884
CD
GLN
A
612
−7.677
−8.751
41.590
1.00
53.38


C


ANISOU
1884
CD
GLN
A
612
6776
6955
6552
−206
−373
−923

C


ATOM
1885
OE1
GLN
A
612
−8.841
−8.931
41.972
1.00
50.83


O


ANISOU
1885
OE1
GLN
A
612
6487
6650
6176
−178
−334
−927

O


ATOM
1886
NE2
GLN
A
612
−7.149
−7.537
41.446
1.00
55.21


N


ANISOU
1886
NE2
GLN
A
612
6976
7106
6894
−247
−366
−991

N


ATOM
1887
C
GLN
A
612
−7.706
−13.666
40.991
1.00
26.92


C


ANISOU
1887
C
GLN
A
612
3490
3788
2951
−63
−424
−479

C


ATOM
1888
O
GLN
A
612
−8.271
−13.780
42.086
1.00
24.86


O


ANISOU
1888
O
GLN
A
612
3244
3626
2577
−53
−421
−503

O


ATOM
1889
N
GLY
A
613
−7.896
−14.519
39.990
1.00
23.00


N


ANISOU
1889
N
GLY
A
613
3014
3216
2508
−37
−399
−367

N


ATOM
1890
CA
GLY
A
613
−8.681
−15.720
40.158
1.00
18.90


C


ANISOU
1890
CA
GLY
A
613
2531
2717
1931
2
−375
−260

C


ATOM
1891
C
GLY
A
613
−10.173
−15.561
40.004
1.00
19.47


C


ANISOU
1891
C
GLY
A
613
2644
2738
2015
3
−310
−263

C


ATOM
1892
O
GLY
A
613
−10.907
−16.515
40.287
1.00
19.83


O


ANISOU
1892
O
GLY
A
613
2717
2809
2010
27
−285
−182

O


ATOM
1893
N
LEU
A
614
−10.655
−14.405
39.564
1.00
17.23


N


ANISOU
1893
N
LEU
A
614
2361
2380
1805
−21
−281
−346

N


ATOM
1894
CA
LEU
A
614
−12.087
−14.230
39.372
1.00
12.05


C


ANISOU
1894
CA
LEU
A
614
1732
1675
1171
−14
−223
−347

C


ATOM
1895
CB
LEU
A
614
−12.503
−12.793
39.693
1.00
14.48


C


ANISOU
1895
CB
LEU
A
614
2027
1955
1518
−34
−203
−475

C


ATOM
1896
CG
LEU
A
614
−12.052
−12.336
41.090
1.00
19.11


C


ANISOU
1896
CG
LEU
A
614
2596
2659
2007
−47
−229
−582

C


ATOM
1897
CD1
LEU
A
614
−12.396
−10.859
41.341
1.00
22.09


C


ANISOU
1897
CD1
LEU
A
614
2956
2988
2450
−69
−205
−731

C


ATOM
1898
CD2
LEU
A
614
−12.661
−13.217
42.179
1.00
17.08


C


ANISOU
1898
CD2
LEU
A
614
2355
2530
1604
−25
−213
−541

C


ATOM
1899
C
LEU
A
614
−12.467
−14.603
37.941
1.00
11.66


C


ANISOU
1899
C
LEU
A
614
1696
1519
1216
−7
−200
−270

C


ATOM
1900
O
LEU
A
614
−11.628
−14.644
37.046
1.00
12.28


O


ANISOU
1900
O
LEU
A
614
1762
1551
1354
−16
−221
−244

O


ATOM
1901
N
ARG
A
615
−13.751
−14.886
37.740
1.00
9.37


N


ANISOU
1901
N
ARG
A
615
1425
1202
934
5
−155
−238

N


ATOM
1902
CA
ARG
A
615
−14.194
−15.539
36.523
1.00
10.71


C


ANISOU
1902
CA
ARG
A
615
1606
1302
1162
11
−139
−161

C


ATOM
1903
CB
ARG
A
615
−14.393
−17.046
36.756
1.00
9.70


C


ANISOU
1903
CB
ARG
A
615
1493
1209
983
27
−132
−73

C


ATOM
1904
CG
ARG
A
615
−13.130
−17.782
37.212
1.00
11.46


C


ANISOU
1904
CG
ARG
A
615
1710
1482
1161
38
−174
−35

C


ATOM
1905
CD
ARG
A
615
−12.053
−17.765
36.136
1.00
14.73


C


ANISOU
1905
CD
ARG
A
615
2108
1846
1644
34
−200
−30

C


ATOM
1906
NE
ARG
A
615
−10.889
−18.597
36.453
1.00
16.09


N


ANISOU
1906
NE
ARG
A
615
2264
2059
1792
53
−237
14

N


ATOM
1907
CZ
ARG
A
615
−9.697
−18.105
36.747
1.00
14.56


C


ANISOU
1907
CZ
ARG
A
615
2038
1904
1589
48
−280
−24

C


ATOM
1908
NH1
ARG
A
615
−9.538
−16.796
36.773
1.00
9.35


N


ANISOU
1908
NH1
ARG
A
615
1364
1240
947
18
−286
−110

N


ATOM
1909
NH2
ARG
A
615
−8.672
−18.913
37.003
1.00
14.74


N


ANISOU
1909
NH2
ARG
A
615
2037
1965
1598
73
−317
23

N


ATOM
1910
C
ARG
A
615
−15.486
−14.901
36.028
1.00
10.14


C


ANISOU
1910
C
ARG
A
615
1532
1172
1147
12
−100
−180

C


ATOM
1911
O
ARG
A
615
−16.132
−14.128
36.734
1.00
14.01


O


ANISOU
1911
O
ARG
A
615
2015
1676
1630
15
−78
−246

O


ATOM
1912
N
LEU
A
616
−15.841
−15.225
34.782
1.00
10.09


N


ANISOU
1912
N
LEU
A
616
1529
1107
1198
12
−94
−125

N


ATOM
1913
CA
LEU
A
616
−17.204
−15.036
34.298
1.00
9.71


C


ANISOU
1913
CA
LEU
A
616
1475
1024
1191
19
−63
−115

C


ATOM
1914
CB
LEU
A
616
−17.324
−15.522
32.844
1.00
6.34


C


ANISOU
1914
CB
LEU
A
616
1048
555
807
13
−71
−55

C


ATOM
1915
CG
LEU
A
616
−16.487
−14.797
31.800
1.00
6.19


C


ANISOU
1915
CG
LEU
A
616
1021
493
838
2
−93
−50

C


ATOM
1916
CD1
LEU
A
616
−16.393
−15.647
30.512
1.00
5.78


C


ANISOU
1916
CD1
LEU
A
616
972
437
789
−7
−100
4

C


ATOM
1917
CD2
LEU
A
616
−17.098
−13.447
31.514
1.00
6.48


C


ANISOU
1917
CD2
LEU
A
616
1041
479
943
7
−86
−71

C


ATOM
1918
C
LEU
A
616
−18.169
−15.829
35.172
1.00
11.66


C


ANISOU
1918
C
LEU
A
616
1727
1324
1381
27
−30
−100

C


ATOM
1919
O
LEU
A
616
−17.792
−16.811
35.828
1.00
12.91


O


ANISOU
1919
O
LEU
A
616
1898
1532
1475
27
−33
−64

O


ATOM
1920
N
TYR
A
617
−19.438
−15.421
35.176
1.00
9.27


N


ANISOU
1920
N
TYR
A
617
1405
1008
1107
36
3
−118

N


ATOM
1921
CA
TYR
A
617
−20.410
−16.189
35.944
1.00
9.18


C


ANISOU
1921
CA
TYR
A
617
1391
1049
1048
37
43
−98

C


ATOM
1922
CB
TYR
A
617
−20.901
−15.414
37.174
1.00
10.28


C


ANISOU
1922
CB
TYR
A
617
1516
1240
1148
48
78
−173

C


ATOM
1923
CG
TYR
A
617
−21.640
−14.117
36.942
1.00
10.33


C


ANISOU
1923
CG
TYR
A
617
1492
1199
1235
66
96
−243

C


ATOM
1924
CD1
TYR
A
617
−20.950
−12.904
36.803
1.00
12.02


C


ANISOU
1924
CD1
TYR
A
617
1703
1362
1501
70
73
−310

C


ATOM
1925
CE1
TYR
A
617
−21.641
−11.711
36.627
1.00
15.69


C


ANISOU
1925
CE1
TYR
A
617
2136
1765
2058
92
92
−369

C


ATOM
1926
CZ
TYR
A
617
−23.035
−11.719
36.622
1.00
15.79


C


ANISOU
1926
CZ
TYR
A
617
2115
1780
2103
114
134
−366

C


ATOM
1927
OH
TYR
A
617
−23.751
−10.547
36.456
1.00
15.64


O


ANISOU
1927
OH
TYR
A
617
2058
1696
2191
146
153
−420

O


ATOM
1928
CE2
TYR
A
617
−23.730
−12.904
36.781
1.00
15.14


C


ANISOU
1928
CE2
TYR
A
617
2031
1760
1960
105
157
−307

C


ATOM
1929
CD2
TYR
A
617
−23.029
−14.092
36.941
1.00
9.45


C


ANISOU
1929
CD2
TYR
A
617
1347
1089
1155
79
140
−245

C


ATOM
1930
C
TYR
A
617
−21.562
−16.653
35.044
1.00
7.85


C


ANISOU
1930
C
TYR
A
617
1202
846
934
33
60
−55

C


ATOM
1931
O
TYR
A
617
−21.577
−16.425
33.835
1.00
12.04


O


ANISOU
1931
O
TYR
A
617
1724
1325
1524
32
35
−40

O


ATOM
1932
N
ARG
A
618
−22.497
−17.355
35.658
1.00
8.43


N


ANISOU
1932
N
ARG
A
618
1264
959
980
27
101
−33

N


ATOM
1933
CA
ARG
A
618
−23.430
−18.222
34.930
1.00
7.55


C


ANISOU
1933
CA
ARG
A
618
1132
826
909
11
114
15

C


ATOM
1934
CB
ARG
A
618
−24.170
−19.088
35.949
1.00
8.71


C


ANISOU
1934
CB
ARG
A
618
1272
1027
1012
−4
166
47

C


ATOM
1935
CG
ARG
A
618
−25.148
−20.086
35.350
1.00
9.89


C


ANISOU
1935
CG
ARG
A
618
1395
1153
1211
−32
185
92

C


ATOM
1936
CD
ARG
A
618
−25.769
−20.908
36.456
1.00
10.74


C


ANISOU
1936
CD
ARG
A
618
1494
1309
1276
−52
244
136

C


ATOM
1937
NE
ARG
A
618
−26.995
−21.544
35.999
1.00
16.67


N


ANISOU
1937
NE
ARG
A
618
2200
2044
2091
−82
273
157

N


ATOM
1938
CZ
ARG
A
618
−27.889
−22.078
36.814
1.00
15.03


C


ANISOU
1938
CZ
ARG
A
618
1965
1877
1869
−105
337
190

C


ATOM
1939
NH1
ARG
A
618
−27.698
−22.045
38.134
1.00
13.74


N


ANISOU
1939
NH1
ARG
A
618
1819
1786
1616
−98
378
210

N


ATOM
1940
NH2
ARG
A
618
−28.977
−22.632
36.314
1.00
14.41


N


ANISOU
1940
NH2
ARG
A
618
1836
1778
1860
−139
359
202

N


ATOM
1941
C
ARG
A
618
−24.422
−17.425
34.085
1.00
7.54


C


ANISOU
1941
C
ARG
A
618
1089
794
982
22
112
−9

C


ATOM
1942
O
ARG
A
618
−25.162
−16.602
34.635
1.00
8.91


O


ANISOU
1942
O
ARG
A
618
1232
983
1170
42
142
−54

O


ATOM
1943
N
PRO
A
619
−24.469
−17.628
32.764
1.00
7.15


N


ANISOU
1943
N
PRO
A
619
1031
708
978
13
76
17

N


ATOM
1944
CA
PRO
A
619
−25.525
−17.007
31.948
1.00
7.37


C


ANISOU
1944
CA
PRO
A
619
1010
722
1070
25
68
13

C


ATOM
1945
CB
PRO
A
619
−25.186
−17.449
30.517
1.00
6.92


C


ANISOU
1945
CB
PRO
A
619
957
648
1026
7
21
45

C


ATOM
1946
CG
PRO
A
619
−23.706
−17.809
30.564
1.00
8.47


C


ANISOU
1946
CG
PRO
A
619
1206
831
1180
−2
5
51

C


ATOM
1947
CD
PRO
A
619
−23.530
−18.417
31.948
1.00
6.68


C


ANISOU
1947
CD
PRO
A
619
1002
628
910
−6
42
48

C


ATOM
1948
C
PRO
A
619
−26.899
−17.516
32.345
1.00
7.79


C


ANISOU
1948
C
PRO
A
619
1015
806
1137
15
109
14

C


ATOM
1949
O
PRO
A
619
−27.068
−18.670
32.730
1.00
8.47


O


ANISOU
1949
O
PRO
A
619
1109
912
1199
−16
134
39

O


ATOM
1950
N
HIS
A
620
−27.905
−16.658
32.176
1.00
8.20


N


ANISOU
1950
N
HIS
A
620
1012
858
1244
42
115
−6

N


ATOM
1951
CA
HIS
A
620
−29.257
−17.050
32.557
1.00
10.22


C


ANISOU
1951
CA
HIS
A
620
1210
1151
1524
34
158
−9

C


ATOM
1952
CB
HIS
A
620
−30.201
−15.886
32.304
1.00
11.02


C


ANISOU
1952
CB
HIS
A
620
1244
1243
1699
79
157
−34

C


ATOM
1953
CG
HIS
A
620
−29.953
−14.717
33.212
1.00
20.41


C


ANISOU
1953
CG
HIS
A
620
2441
2417
2897
122
188
−92

C


ATOM
1954
ND1
HIS
A
620
−30.371
−13.437
32.918
1.00
25.62


N


ANISOU
1954
ND1
HIS
A
620
3059
3035
3643
174
178
−117

N


ATOM
1955
CE1
HIS
A
620
−30.023
−12.624
33.900
1.00
25.46


C


ANISOU
1955
CE1
HIS
A
620
3053
3001
3621
199
215
−187

C


ATOM
1956
NE2
HIS
A
620
−29.397
−13.331
34.823
1.00
23.31


N


ANISOU
1956
NE2
HIS
A
620
2830
2777
3248
165
244
−204

N


ATOM
1957
CD2
HIS
A
620
−29.340
−14.642
34.417
1.00
22.42


C


ANISOU
1957
CD2
HIS
A
620
2736
2694
3088
120
228
−136

C


ATOM
1958
C
HIS
A
620
−29.727
−18.318
31.838
1.00
13.92


C


ANISOU
1958
C
HIS
A
620
1659
1629
2002
−14
145
28

C


ATOM
1959
O
HIS
A
620
−30.494
−19.099
32.413
1.00
10.88


O


ANISOU
1959
O
HIS
A
620
1245
1272
1619
−43
192
35

O


ATOM
1960
N
LEU
A
621
−29.272
−18.567
30.612
1.00
11.21


N


ANISOU
1960
N
LEU
A
621
1329
1266
1665
−27
88
46

N


ATOM
1961
CA
LEU
A
621
−29.762
−19.731
29.873
1.00
10.47


C


ANISOU
1961
CA
LEU
A
621
1210
1181
1587
−76
74
58

C


ATOM
1962
CB
LEU
A
621
−29.771
−19.445
28.360
1.00
8.65


C


ANISOU
1962
CB
LEU
A
621
959
961
1369
−74
5
61

C


ATOM
1963
CG
LEU
A
621
−30.843
−18.456
27.884
1.00
8.84


C


ANISOU
1963
CG
LEU
A
621
908
1013
1439
−40
−21
66

C


ATOM
1964
CD1
LEU
A
621
−30.627
−18.054
26.439
1.00
10.07


C


ANISOU
1964
CD1
LEU
A
621
1054
1189
1584
−32
−94
90

C


ATOM
1965
CD2
LEU
A
621
−32.224
−19.090
28.048
1.00
13.18


C


ANISOU
1965
CD2
LEU
A
621
1379
1598
2031
−69
2
53

C


ATOM
1966
C
LEU
A
621
−28.973
−21.009
30.142
1.00
10.00


C


ANISOU
1966
C
LEU
A
621
1204
1097
1499
−116
90
71

C


ATOM
1967
O
LEU
A
621
−29.363
−22.069
29.645
1.00
10.15


O


ANISOU
1967
O
LEU
A
621
1203
1110
1545
−161
87
70

O


ATOM
1968
N
ALA
A
622
−27.894
−20.953
30.922
1.00
7.86


N


ANISOU
1968
N
ALA
A
622
994
811
1183
−99
104
82

N


ATOM
1969
CA
ALA
A
622
−27.078
−22.128
31.197
1.00
9.01


C


ANISOU
1969
CA
ALA
A
622
1185
928
1310
−125
115
108

C


ATOM
1970
CB
ALA
A
622
−25.604
−21.736
31.356
1.00
7.27


C


ANISOU
1970
CB
ALA
A
622
1023
695
1044
−96
91
110

C


ATOM
1971
C
ALA
A
622
−27.592
−22.840
32.447
1.00
10.06


C


ANISOU
1971
C
ALA
A
622
1313
1073
1436
−145
178
142

C


ATOM
1972
O
ALA
A
622
−27.714
−22.230
33.519
1.00
12.95


O


ANISOU
1972
O
ALA
A
622
1681
1479
1759
−122
212
144

O


ATOM
1973
N
SER
A
623
−27.908
−24.126
32.303
1.00
12.08


N


ANISOU
1973
N
SER
A
623
1559
1296
1735
−190
196
168

N


ATOM
1974
CA
SER
A
623
−28.210
−24.952
33.456
1.00
12.15


C


ANISOU
1974
CA
SER
A
623
1571
1307
1739
−214
258
226

C


ATOM
1975
CB
SER
A
623
−28.670
−26.338
33.022
1.00
12.19


C


ANISOU
1975
CB
SER
A
623
1554
1251
1825
−272
274
246

C


ATOM
1976
OG
SER
A
623
−27.584
−27.043
32.433
1.00
9.54


O


ANISOU
1976
OG
SER
A
623
1262
851
1512
−272
241
246

O


ATOM
1977
C
SER
A
623
−26.974
−25.075
34.343
1.00
12.89


C


ANISOU
1977
C
SER
A
623
1728
1403
1767
−186
260
272

C


ATOM
1978
O
SER
A
623
−25.846
−24.714
33.956
1.00
8.62


O


ANISOU
1978
O
SER
A
623
1225
848
1203
−156
213
253

O


ATOM
1979
N
GLU
A
624
−27.188
−25.611
35.550
1.00
10.91


N


ANISOU
1979
N
GLU
A
624
1482
1179
1485
−197
314
339

N


ATOM
1980
CA
GLU
A
624
−26.050
−25.855
36.434
1.00
12.17


C


ANISOU
1980
CA
GLU
A
624
1695
1353
1577
−171
310
397

C


ATOM
1981
CB
GLU
A
624
−26.522
−26.406
37.784
1.00
15.37


C


ANISOU
1981
CB
GLU
A
624
2096
1811
1933
−189
377
485

C


ATOM
1982
CG
GLU
A
624
−27.340
−25.400
38.595
1.00
27.95


C


ANISOU
1982
CG
GLU
A
624
3659
3507
3452
−180
421
446

C


ATOM
1983
CD
GLU
A
624
−27.561
−25.844
40.035
1.00
44.84


C


ANISOU
1983
CD
GLU
A
624
5802
5729
5505
−192
486
534

C


ATOM
1984
OE1
GLU
A
624
−26.640
−26.445
40.631
1.00
51.47


O


ANISOU
1984
OE1
GLU
A
624
6686
6577
6295
−180
473
617

O


ATOM
1985
OE2
GLU
A
624
−28.658
−25.591
40.568
1.00
49.83


O


ANISOU
1985
OE2
GLU
A
624
6390
6426
6118
−210
551
524

O


ATOM
1986
C
GLU
A
624
−25.047
−26.807
35.796
1.00
9.97


C


ANISOU
1986
C
GLU
A
624
1447
989
1352
−172
274
425

C


ATOM
1987
O
GLU
A
624
−23.836
−26.608
35.922
1.00
12.36


O


ANISOU
1987
O
GLU
A
624
1787
1296
1613
−135
235
431

O


ATOM
1988
N
LYS
A
625
−25.531
−27.864
35.120
1.00
12.45


N


ANISOU
1988
N
LYS
A
625
1741
1223
1766
−214
287
435

N


ATOM
1989
CA
LYS
A
625
−24.611
−28.808
34.484
1.00
11.42


C


ANISOU
1989
CA
LYS
A
625
1634
1001
1702
−212
260
445

C


ATOM
1990
CB
LYS
A
625
−25.356
−30.032
33.951
1.00
11.56


C


ANISOU
1990
CB
LYS
A
625
1623
929
1842
−268
289
450

C


ATOM
1991
CG
LYS
A
625
−25.950
−30.925
35.032
1.00
20.48


C


ANISOU
1991
CG
LYS
A
625
2744
2055
2983
−295
339
541

C


ATOM
1992
CD
LYS
A
625
−26.182
−32.343
34.505
1.00
26.68


C


ANISOU
1992
CD
LYS
A
625
3514
2748
3875
−331
337
524

C


ATOM
1993
CE
LYS
A
625
−26.753
−33.272
35.579
1.00
35.97


C


ANISOU
1993
CE
LYS
A
625
4683
3917
5066
−358
384
619

C


ATOM
1994
NZ
LYS
A
625
−28.219
−33.072
35.772
1.00
40.62


N


ANISOU
1994
NZ
LYS
A
625
5220
4545
5669
−413
434
617

N


ATOM
1995
C
LYS
A
625
−23.821
−28.147
33.362
1.00
9.22


C


ANISOU
1995
C
LYS
A
625
1367
719
1415
−185
200
359

C


ATOM
1996
O
LYS
A
625
−22.622
−28.415
33.201
1.00
9.62


O


ANISOU
1996
O
LYS
A
625
1448
739
1469
−155
172
366

O


ATOM
1997
N
VAL
A
626
−24.462
−27.271
32.584
1.00
8.76


N


ANISOU
1997
N
VAL
A
626
1281
698
1349
−193
181
284

N


ATOM
1998
CA
VAL
A
626
−23.756
−26.587
31.504
1.00
8.07


C


ANISOU
1998
CA
VAL
A
626
1202
617
1245
−171
130
218

C


ATOM
1999
CB
VAL
A
626
−24.755
−25.854
30.589
1.00
11.17


C


ANISOU
1999
CB
VAL
A
626
1553
1046
1645
−189
112
158

C


ATOM
2000
CG1
VAL
A
626
−24.011
−24.851
29.696
1.00
13.30


C


ANISOU
2000
CG1
VAL
A
626
1834
1342
1877
−160
63
116

C


ATOM
2001
CG2
VAL
A
626
−25.543
−26.873
29.756
1.00
13.37


C


ANISOU
2001
CG2
VAL
A
626
1794
1284
2000
−241
117
125

C


ATOM
2002
C
VAL
A
626
−22.709
−25.635
32.060
1.00
13.99


C


ANISOU
2002
C
VAL
A
626
1985
1410
1920
−124
107
227

C


ATOM
2003
O
VAL
A
626
−21.580
−25.562
31.550
1.00
11.69


O


ANISOU
2003
O
VAL
A
626
1713
1104
1623
−103
75
209

O


ATOM
2004
N
TYR
A
627
−23.067
−24.882
33.107
1.00
9.02


N


ANISOU
2004
N
TYR
A
627
1355
839
1234
−109
126
245

N


ATOM
2005
CA
TYR
A
627
−22.113
−23.989
33.757
1.00
8.03


C


ANISOU
2005
CA
TYR
A
627
1255
758
1038
−72
105
241

C


ATOM
2006
CB
TYR
A
627
−22.818
−23.218
34.889
1.00
8.17


C


ANISOU
2006
CB
TYR
A
627
1262
844
998
−65
138
238

C


ATOM
2007
CG
TYR
A
627
−21.980
−22.124
35.551
1.00
12.15


C


ANISOU
2007
CG
TYR
A
627
1785
1400
1434
−33
116
204

C


ATOM
2008
CD1
TYR
A
627
−21.253
−21.209
34.780
1.00
10.34


C


ANISOU
2008
CD1
TYR
A
627
1560
1150
1220
−18
73
152

C


ATOM
2009
CE1
TYR
A
627
−20.500
−20.201
35.379
1.00
9.20


C


ANISOU
2009
CE1
TYR
A
627
1424
1041
1028
2
55
112

C


ATOM
2010
CZ
TYR
A
627
−20.477
−20.092
36.774
1.00
10.25


C


ANISOU
2010
CZ
TYR
A
627
1564
1247
1082
9
75
112

C


ATOM
2011
OH
TYR
A
627
−19.740
−19.093
37.368
1.00
11.95


O


ANISOU
2011
OH
TYR
A
627
1784
1503
1253
23
54
53

O


ATOM
2012
CE2
TYR
A
627
−21.198
−20.976
37.562
1.00
16.02


C


ANISOU
2012
CE2
TYR
A
627
2293
2015
1778
−2
118
170

C


ATOM
2013
CD2
TYR
A
627
−21.956
−21.984
36.943
1.00
14.24


C


ANISOU
2013
CD2
TYR
A
627
2057
1738
1616
−24
141
221

C


ATOM
2014
C
TYR
A
627
−20.906
−24.753
34.298
1.00
7.71


C


ANISOU
2014
C
TYR
A
627
1245
703
980
−54
93
294

C


ATOM
2015
O
TYR
A
627
−19.773
−24.269
34.221
1.00
10.86


O


ANISOU
2015
O
TYR
A
627
1659
1115
1353
−28
57
275

O


ATOM
2016
N
THR
A
628
−21.125
−25.936
34.868
1.00
8.34


N


ANISOU
2016
N
THR
A
628
1328
757
1083
−66
124
367

N


ATOM
2017
CA
THR
A
628
−20.001
−26.718
35.374
1.00
12.52


C


ANISOU
2017
CA
THR
A
628
1880
1268
1609
−41
108
433

C


ATOM
2018
CB
THR
A
628
−20.502
−28.001
36.031
1.00
13.97


C


ANISOU
2018
CB
THR
A
628
2063
1413
1831
−59
151
532

C


ATOM
2019
OG1
THR
A
628
−21.188
−27.673
37.241
1.00
11.51


O


ANISOU
2019
OG1
THR
A
628
1750
1187
1436
−66
187
579

O


ATOM
2020
CG2
THR
A
628
−19.342
−28.937
36.337
1.00
15.28


C


ANISOU
2020
CG2
THR
A
628
2246
1535
2025
−25
131
610

C


ATOM
2021
C
THR
A
628
−19.007
−27.035
34.258
1.00
11.52


C


ANISOU
2021
C
THR
A
628
1756
1077
1543
−27
73
395

C


ATOM
2022
O
THR
A
628
−17.788
−26.989
34.465
1.00
8.31


O


ANISOU
2022
O
THR
A
628
1359
682
1115
8
41
409

O


ATOM
2023
N
ILE
A
629
−19.512
−27.317
33.060
1.00
8.59


N


ANISOU
2023
N
ILE
A
629
1370
651
1242
−54
78
339

N


ATOM
2024
CA
ILE
A
629
−18.631
−27.634
31.942
1.00
7.84


C


ANISOU
2024
CA
ILE
A
629
1274
509
1197
−45
54
290

C


ATOM
2025
CB
ILE
A
629
−19.444
−28.195
30.764
1.00
7.92


C


ANISOU
2025
CB
ILE
A
629
1262
469
1277
−86
68
230

C


ATOM
2026
CG1
ILE
A
629
−20.065
−29.533
31.156
1.00
15.89


C


ANISOU
2026
CG1
ILE
A
629
2266
1401
2371
−112
107
278

C


ATOM
2027
CD1
ILE
A
629
−20.962
−30.105
30.091
1.00
18.42


C


ANISOU
2027
CD1
ILE
A
629
2558
1677
2764
−163
119
205

C


ATOM
2028
CG2
ILE
A
629
−18.531
−28.363
29.523
1.00
8.93


C


ANISOU
2028
CG2
ILE
A
629
1387
573
1434
−77
47
160

C


ATOM
2029
C
ILE
A
629
−17.815
−26.413
31.531
1.00
9.28


C


ANISOU
2029
C
ILE
A
629
1459
746
1321
−23
17
241

C


ATOM
2030
O
ILE
A
629
−16.592
−26.494
31.374
1.00
9.77


O


ANISOU
2030
O
ILE
A
629
1523
802
1387
4
−5
237

O


ATOM
2031
N
MET
A
630
−18.476
−25.270
31.310
1.00
9.68


N


ANISOU
2031
N
MET
A
630
1502
845
1331
−36
12
203

N


ATOM
2032
CA
MET
A
630
−17.716
−24.112
30.852
1.00
9.58


C


ANISOU
2032
CA
MET
A
630
1489
867
1282
−22
−19
164

C


ATOM
2033
CB
MET
A
630
−18.652
−22.984
30.394
1.00
13.54


C


ANISOU
2033
CB
MET
A
630
1978
1398
1770
−37
−21
130

C


ATOM
2034
CG
MET
A
630
−19.294
−22.155
31.497
1.00
11.76


C


ANISOU
2034
CG
MET
A
630
1752
1210
1508
−29
−8
138

C


ATOM
2035
SD
MET
A
630
−20.357
−20.783
30.915
1.00
11.81


S


ANISOU
2035
SD
MET
A
630
1732
1232
1525
−33
−12
101

S


ATOM
2036
CE
MET
A
630
−21.562
−21.629
29.871
1.00
8.94


C


ANISOU
2036
CE
MET
A
630
1339
853
1205
−63
−5
99

C


ATOM
2037
C
MET
A
630
−16.755
−23.642
31.939
1.00
10.21


C


ANISOU
2037
C
MET
A
630
1581
985
1314
7
−36
188

C


ATOM
2038
O
MET
A
630
−15.606
−23.302
31.648
1.00
8.52


O


ANISOU
2038
O
MET
A
630
1364
777
1095
21
−61
170

O


ATOM
2039
N
TYR
A
631
−17.181
−23.686
33.205
1.00
6.75


N


ANISOU
2039
N
TYR
A
631
1151
580
836
12
−22
227

N


ATOM
2040
CA
TYR
A
631
−16.301
−23.265
34.302
1.00
7.02


C


ANISOU
2040
CA
TYR
A
631
1191
669
806
36
−44
242

C


ATOM
2041
CB
TYR
A
631
−17.088
−23.263
35.618
1.00
10.15


C


ANISOU
2041
CB
TYR
A
631
1594
1123
1140
34
−18
277

C


ATOM
2042
CG
TYR
A
631
−16.479
−22.401
36.690
1.00
9.91


C


ANISOU
2042
CG
TYR
A
631
1565
1176
1024
48
−40
256

C


ATOM
2043
CD2
TYR
A
631
−15.559
−22.932
37.587
1.00
13.11


C


ANISOU
2043
CD2
TYR
A
631
1973
1630
1376
71
−66
312

C


ATOM
2044
CE2
TYR
A
631
−14.983
−22.153
38.573
1.00
14.31


C


ANISOU
2044
CE2
TYR
A
631
2120
1876
1439
80
−94
280

C


ATOM
2045
CZ
TYR
A
631
−15.314
−20.814
38.673
1.00
15.03


C


ANISOU
2045
CZ
TYR
A
631
2206
1997
1509
65
−90
182

C


ATOM
2046
OH
TYR
A
631
−14.728
−20.054
39.673
1.00
19.83


O


ANISOU
2046
OH
TYR
A
631
2806
2698
2031
68
−117
130

O


ATOM
2047
CE1
TYR
A
631
−16.221
−20.249
37.799
1.00
9.51


C


ANISOU
2047
CE1
TYR
A
631
1505
1234
875
48
−60
133

C


ATOM
2048
CD1
TYR
A
631
−16.802
−21.047
36.795
1.00
10.53


C


ANISOU
2048
CD1
TYR
A
631
1636
1286
1079
41
−39
175

C


ATOM
2049
C
TYR
A
631
−15.066
−24.155
34.428
1.00
9.42


C


ANISOU
2049
C
TYR
A
631
1494
958
1126
62
−67
287

C


ATOM
2050
O
TYR
A
631
−13.997
−23.683
34.849
1.00
11.11


O


ANISOU
2050
O
TYR
A
631
1701
1216
1304
82
−103
279

O


ATOM
2051
N
SER
A
632
−15.193
−25.449
34.111
1.00
7.60


N


ANISOU
2051
N
SER
A
632
1265
662
959
65
−49
332

N


ATOM
2052
CA
SER
A
632
−14.051
−26.352
34.191
1.00
8.33


C


ANISOU
2052
CA
SER
A
632
1349
725
1090
99
−69
377

C


ATOM
2053
CB
SER
A
632
−14.486
−27.797
33.904
1.00
12.72


C


ANISOU
2053
CB
SER
A
632
1907
1187
1738
96
−37
423

C


ATOM
2054
OG
SER
A
632
−14.743
−27.996
32.519
1.00
12.23


O


ANISOU
2054
OG
SER
A
632
1837
1066
1745
73
−21
346

O


ATOM
2055
C
SER
A
632
−12.931
−25.959
33.234
1.00
8.70


C


ANISOU
2055
C
SER
A
632
1378
764
1164
111
−95
315

C


ATOM
2056
O
SER
A
632
−11.778
−26.365
33.443
1.00
9.77


O


ANISOU
2056
O
SER
A
632
1495
900
1316
147
−120
341

O


ATOM
2057
N
CYS
A
633
−13.236
−25.186
32.187
1.00
7.65


N


ANISOU
2057
N
CYS
A
633
1243
630
1035
83
−88
242

N


ATOM
2058
CA
CYS
A
633
−12.202
−24.705
31.270
1.00
9.27


C


ANISOU
2058
CA
CYS
A
633
1427
841
1253
88
−104
190

C


ATOM
2059
CB
CYS
A
633
−12.850
−24.190
29.980
1.00
9.52


C


ANISOU
2059
CB
CYS
A
633
1459
864
1294
53
−88
133

C


ATOM
2060
SG
CYS
A
633
−13.826
−25.465
29.100
1.00
10.05


S


ANISOU
2060
SG
CYS
A
633
1529
867
1421
34
−54
116

S


ATOM
2061
C
CYS
A
633
−11.334
−23.604
31.861
1.00
13.52


C


ANISOU
2061
C
CYS
A
633
1953
1442
1741
95
−138
179

C


ATOM
2062
O
CYS
A
633
−10.351
−23.202
31.216
1.00
9.56


O


ANISOU
2062
O
CYS
A
633
1428
949
1255
96
−150
145

O


ATOM
2063
N
TRP
A
634
−11.683
−23.082
33.040
1.00
10.41


N


ANISOU
2063
N
TRP
A
634
1571
1096
1287
94
−150
197

N


ATOM
2064
CA
TRP
A
634
−11.053
−21.874
33.567
1.00
7.99


C


ANISOU
2064
CA
TRP
A
634
1252
849
936
89
−181
160

C


ATOM
2065
CB
TRP
A
634
−12.098
−20.798
33.853
1.00
7.14


C


ANISOU
2065
CB
TRP
A
634
1160
757
796
63
−166
122

C


ATOM
2066
CG
TRP
A
634
−12.943
−20.450
32.624
1.00
7.60


C


ANISOU
2066
CG
TRP
A
634
1224
764
898
41
−139
98

C


ATOM
2067
CD1
TRP
A
634
−12.551
−20.468
31.311
1.00
7.89


C


ANISOU
2067
CD1
TRP
A
634
1251
770
979
31
−136
85

C


ATOM
2068
NE1
TRP
A
634
−13.616
−20.103
30.490
1.00
7.58


N


ANISOU
2068
NE1
TRP
A
634
1217
708
954
12
−117
75

N


ATOM
2069
CE2
TRP
A
634
−14.704
−19.846
31.284
1.00
11.40


C


ANISOU
2069
CE2
TRP
A
634
1712
1201
1419
12
−105
77

C


ATOM
2070
CD2
TRP
A
634
−14.314
−20.055
32.630
1.00
8.26


C


ANISOU
2070
CD2
TRP
A
634
1320
840
979
27
−114
89

C


ATOM
2071
CE3
TRP
A
634
−15.258
−19.863
33.652
1.00
10.03


C


ANISOU
2071
CE3
TRP
A
634
1553
1094
1166
28
−96
89

C


ATOM
2072
CZ3
TRP
A
634
−16.534
−19.462
33.306
1.00
8.49


C


ANISOU
2072
CZ3
TRP
A
634
1355
880
990
17
−70
75

C


ATOM
2073
CH2
TRP
A
634
−16.894
−19.268
31.950
1.00
5.81


C


ANISOU
2073
CH2
TRP
A
634
1007
501
701
5
−70
69

C


ATOM
2074
CZ2
TRP
A
634
−15.989
−19.450
30.934
1.00
12.73


C


ANISOU
2074
CZ2
TRP
A
634
1879
1358
1599
1
−87
71

C


ATOM
2075
C
TRP
A
634
−10.222
−22.132
34.812
1.00
9.00


C


ANISOU
2075
C
TRP
A
634
1365
1039
1015
116
−218
195

C


ATOM
2076
O
TRP
A
634
−9.910
−21.184
35.540
1.00
8.77


O


ANISOU
2076
O
TRP
A
634
1327
1073
933
106
−244
157

O


ATOM
2077
N
HIS
A
635
−9.850
−23.383
35.078
1.00
8.03


N


ANISOU
2077
N
HIS
A
635
1237
901
912
150
−224
266

N


ATOM
2078
CA
HIS
A
635
−8.962
−23.656
36.202
1.00
14.42


C


ANISOU
2078
CA
HIS
A
635
2025
1781
1673
183
−270
315

C


ATOM
2079
CB
HIS
A
635
−8.555
−25.133
36.237
1.00
17.21


C


ANISOU
2079
CB
HIS
A
635
2367
2087
2083
229
−272
406

C


ATOM
2080
CG
HIS
A
635
−9.577
−26.026
36.860
1.00
28.23


C


ANISOU
2080
CG
HIS
A
635
3796
3462
3469
233
−242
492

C


ATOM
2081
ND1
HIS
A
635
−10.480
−26.758
36.114
1.00
29.37


N


ANISOU
2081
ND1
HIS
A
635
3961
3507
3689
218
−191
500

N


ATOM
2082
CE1
HIS
A
635
−11.264
−27.444
36.929
1.00
28.32


C


ANISOU
2082
CE1
HIS
A
635
3850
3374
3538
219
−169
587

C


ATOM
2083
NE2
HIS
A
635
−10.902
−27.182
38.173
1.00
34.73


N


ANISOU
2083
NE2
HIS
A
635
4657
4291
4249
237
−204
641

N


ATOM
2084
CD2
HIS
A
635
−9.850
−26.297
38.158
1.00
23.63


C


ANISOU
2084
CD2
HIS
A
635
3224
2950
2805
246
−254
575

C


ATOM
2085
C
HIS
A
635
−7.719
−22.791
36.094
1.00
18.85


C


ANISOU
2085
C
HIS
A
635
2543
2388
2230
179
−312
255

C


ATOM
2086
O
HIS
A
635
−7.138
−22.655
35.014
1.00
11.46


O


ANISOU
2086
O
HIS
A
635
1585
1407
1361
173
−304
216

O


ATOM
2087
N
GLU
A
636
−7.300
−22.202
37.216
1.00
14.82


N


ANISOU
2087
N
GLU
A
636
2018
1976
1639
179
−357
243

N


ATOM
2088
CA
GLU
A
636
−6.079
−21.403
37.170
1.00
14.60


C


ANISOU
2088
CA
GLU
A
636
1939
1992
1615
169
−401
182

C


ATOM
2089
CB
GLU
A
636
−5.802
−20.766
38.534
1.00
14.28


C


ANISOU
2089
CB
GLU
A
636
1883
2073
1471
161
−451
154

C


ATOM
2090
CG
GLU
A
636
−4.534
−19.911
38.567
1.00
14.32


C


ANISOU
2090
CG
GLU
A
636
1826
2127
1486
141
−502
80

C


ATOM
2091
CD
GLU
A
636
−4.402
−19.109
39.865
1.00
31.85


C


ANISOU
2091
CD
GLU
A
636
4033
4471
3600
119
−550
18

C


ATOM
2092
OE1
GLU
A
636
−5.121
−18.095
40.029
1.00
34.72


O


ANISOU
2092
OE1
GLU
A
636
4422
4829
3942
78
−524
−68

O


ATOM
2093
OE2
GLU
A
636
−3.589
−19.501
40.731
1.00
33.59


O


ANISOU
2093
OE2
GLU
A
636
4211
4796
3757
146
−614
53

O


ATOM
2094
C
GLU
A
636
−4.893
−22.250
36.715
1.00
15.59


C


ANISOU
2094
C
GLU
A
636
2016
2098
1808
209
−423
224

C


ATOM
2095
O
GLU
A
636
−4.064
−21.798
35.919
1.00
15.31


O


ANISOU
2095
O
GLU
A
636
1942
2046
1831
195
−425
172

O


ATOM
2096
N
LYS
A
637
−4.807
−23.486
37.190
1.00
14.32


N


ANISOU
2096
N
LYS
A
637
1854
1936
1651
261
−435
322

N


ATOM
2097
CA
LYS
A
637
−3.757
−24.401
36.747
1.00
16.78


C


ANISOU
2097
CA
LYS
A
637
2115
2214
2046
311
−450
364

C


ATOM
2098
CB
LYS
A
637
−3.505
−25.458
37.813
1.00
21.63


C


ANISOU
2098
CB
LYS
A
637
2717
2867
2636
371
−491
484

C


ATOM
2099
CG
LYS
A
637
−2.994
−24.867
39.113
1.00
27.69


C


ANISOU
2099
CG
LYS
A
637
3454
3780
3284
371
−564
493

C


ATOM
2100
CD
LYS
A
637
−2.699
−25.943
40.143
1.00
33.60


C


ANISOU
2100
CD
LYS
A
637
4191
4572
4005
431
−605
623

C


ATOM
2101
CE
LYS
A
637
−2.263
−25.334
41.478
1.00
36.60


C


ANISOU
2101
CE
LYS
A
637
4552
5099
4254
414
−668
605

C


ATOM
2102
NZ
LYS
A
637
−1.998
−26.400
42.488
1.00
40.30


N


ANISOU
2102
NZ
LYS
A
637
5025
5586
4702
455
−690
710

N


ATOM
2103
C
LYS
A
637
−4.146
−25.043
35.416
1.00
13.38


C


ANISOU
2103
C
LYS
A
637
1703
1661
1718
312
−386
351

C


ATOM
2104
O
LYS
A
637
−5.146
−25.763
35.337
1.00
13.36


O


ANISOU
2104
O
LYS
A
637
1748
1596
1733
315
−348
393

O


ATOM
2105
N
ALA
A
638
−3.348
−24.785
34.373
1.00
13.44


N


ANISOU
2105
N
ALA
A
638
1671
1646
1791
306
−373
288

N


ATOM
2106
CA
ALA
A
638
−3.696
−25.248
33.031
1.00
13.03


C


ANISOU
2106
CA
ALA
A
638
1634
1504
1815
298
−311
253

C


ATOM
2107
CB
ALA
A
638
−2.644
−24.794
32.024
1.00
9.59


C


ANISOU
2107
CB
ALA
A
638
1142
1077
1425
287
−299
185

C


ATOM
2108
C
ALA
A
638
−3.853
−26.761
32.978
1.00
12.43


C


ANISOU
2108
C
ALA
A
638
1561
1346
1815
351
−291
314

C


ATOM
2109
O
ALA
A
638
−4.722
−27.269
32.265
1.00
12.46


O


ANISOU
2109
O
ALA
A
638
1603
1274
1859
335
−241
297

O


ATOM
2110
N
ASP
A
639
−3.024
−27.500
33.732
1.00
13.83


N


ANISOU
2110
N
ASP
A
639
1695
1535
2022
413
−332
387

N


ATOM
2111
CA
ASP
A
639
−3.047
−28.961
33.681
1.00
20.33


C


ANISOU
2111
CA
ASP
A
639
2515
2263
2948
470
−312
453

C


ATOM
2112
CB
ASP
A
639
−1.770
−29.556
34.298
1.00
31.27


C


ANISOU
2112
CB
ASP
A
639
3828
3672
4383
547
−365
523

C


ATOM
2113
CG
ASP
A
639
−1.600
−29.223
35.784
1.00
49.85


C


ANISOU
2113
CG
ASP
A
639
6179
6139
6624
557
−435
607

C


ATOM
2114
OD1
ASP
A
639
−2.583
−29.285
36.554
1.00
54.27


O


ANISOU
2114
OD1
ASP
A
639
6801
6715
7104
532
−429
655

O


ATOM
2115
OD2
ASP
A
639
−0.456
−28.912
36.185
1.00
60.46


O


ANISOU
2115
OD2
ASP
A
639
7455
7567
7951
586
−493
609

O


ATOM
2116
C
ASP
A
639
−4.280
−29.565
34.348
1.00
20.42


C


ANISOU
2116
C
ASP
A
639
2588
2230
2940
463
−297
535

C


ATOM
2117
O
ASP
A
639
−4.543
−30.756
34.157
1.00
20.36


O


ANISOU
2117
O
ASP
A
639
2595
2133
3010
481
−258
555

O


ATOM
2118
N
AGLU
A
640
−5.036
−28.787
35.111
0.34
15.09


N


ANISOU
2118
N
AGLU
A
640
1955
1631
2149
421
−312
550

N


ATOM
2119
CA
AGLU
A
640
−6.292
−29.289
35.638
0.34
15.36


C


ANISOU
2119
CA
AGLU
A
640
2044
1632
2161
402
−282
613

C


ATOM
2120
CB
AGLU
A
640
−6.625
−28.591
36.961
0.34
18.45


C


ANISOU
2120
CB
AGLU
A
640
2454
2143
2412
387
−318
662

C


ATOM
2121
CG
AGLU
A
640
−5.528
−28.736
38.014
0.34
23.81


C


ANISOU
2121
CG
AGLU
A
640
3094
2912
3039
430
−381
715

C


ATOM
2122
CD
AGLU
A
640
−5.309
−30.175
38.450
0.34
27.01


C


ANISOU
2122
CD
AGLU
A
640
3500
3257
3507
470
−372
795

C


ATOM
2123
OE1
AGLU
A
640
−6.290
−30.947
38.483
0.34
27.65


O


ANISOU
2123
OE1
AGLU
A
640
3622
3265
3619
451
−322
829

O


ATOM
2124
OE2
AGLU
A
640
−4.153
−30.538
38.757
0.34
32.30


O


ANISOU
2124
OE2
AGLU
A
640
4121
3951
4198
520
−417
825

O


ATOM
2125
C
AGLU
A
640
−7.442
−29.133
34.654
0.34
14.51


C


ANISOU
2125
C
AGLU
A
640
1976
1456
2079
347
−223
539

C


ATOM
2126
O
AGLU
A
640
−8.495
−29.742
34.860
0.34
12.58


O


ANISOU
2126
O
AGLU
A
640
1769
1166
1845
327
−186
573

O


ATOM
2127
N
BGLU
A
640
−5.047
−28.783
35.105
0.66
14.31


N


ANISOU
2127
N
BGLU
A
640
1856
1532
2050
420
−311
549

N


ATOM
2128
CA
BGLU
A
640
−6.309
−29.264
35.652
0.66
14.77


C


ANISOU
2128
CA
BGLU
A
640
1970
1559
2084
401
−282
613

C


ATOM
2129
CB
BGLU
A
640
−6.570
−28.645
37.029
0.66
18.14


C


ANISOU
2129
CB
BGLU
A
640
2413
2107
2372
390
−321
667

C


ATOM
2130
CG
BGLU
A
640
−5.565
−29.069
38.095
0.66
24.73


C


ANISOU
2130
CG
BGLU
A
640
3215
3012
3170
437
−375
732

C


ATOM
2131
CD
BGLU
A
640
−5.800
−28.377
39.427
0.66
26.40


C


ANISOU
2131
CD
BGLU
A
640
3440
3359
3230
417
−413
760

C


ATOM
2132
OE1
BGLU
A
640
−6.644
−27.454
39.483
0.66
24.37


O


ANISOU
2132
OE1
BGLU
A
640
3214
3149
2899
372
−397
718

O


ATOM
2133
OE2
BGLU
A
640
−5.131
−28.750
40.413
0.66
31.09


O


ANISOU
2133
OE2
BGLU
A
640
4014
4019
3781
447
−458
818

O


ATOM
2134
C
BGLU
A
640
−7.490
−28.986
34.734
0.66
15.29


C


ANISOU
2134
C
BGLU
A
640
2078
1568
2163
343
−225
538

C


ATOM
2135
O
BGLU
A
640
−8.619
−29.332
35.084
0.66
12.42


O


ANISOU
2135
O
BGLU
A
640
1753
1178
1786
319
−196
578

O


ATOM
2136
N
ARG
A
641
−7.265
−28.363
33.580
1.00
12.65


N


ANISOU
2136
N
ARG
A
641
1732
1226
1846
316
−209
429

N


ATOM
2137
CA
ARG
A
641
−8.358
−28.184
32.635
1.00
14.55


C


ANISOU
2137
CA
ARG
A
641
2006
1423
2098
265
−162
362

C


ATOM
2138
CB
ARG
A
641
−8.098
−26.991
31.714
1.00
11.17


C


ANISOU
2138
CB
ARG
A
641
1569
1041
1634
229
−161
267

C


ATOM
2139
CG
ARG
A
641
−7.889
−25.677
32.450
1.00
11.52


C


ANISOU
2139
CG
ARG
A
641
1613
1178
1587
212
−197
260

C


ATOM
2140
CD
ARG
A
641
−7.473
−24.497
31.527
1.00
13.45


C


ANISOU
2140
CD
ARG
A
641
1841
1452
1819
177
−195
181

C


ATOM
2141
NE
ARG
A
641
−6.778
−23.492
32.326
1.00
12.13


N


ANISOU
2141
NE
ARG
A
641
1652
1358
1599
172
−237
173

N


ATOM
2142
CZ
ARG
A
641
−5.836
−22.666
31.866
1.00
10.54


C


ANISOU
2142
CZ
ARG
A
641
1413
1187
1407
156
−248
127

C


ATOM
2143
NH1
ARG
A
641
−5.460
−22.680
30.585
1.00
8.08


N


ANISOU
2143
NH1
ARG
A
641
1081
848
1141
144
−216
90

N


ATOM
2144
NH2
ARG
A
641
−5.241
−21.843
32.708
1.00
8.07


N


ANISOU
2144
NH2
ARG
A
641
1077
937
1054
147
−290
113

N


ATOM
2145
C
ARG
A
641
−8.529
−29.459
31.810
1.00
14.26


C


ANISOU
2145
C
ARG
A
641
1966
1274
2179
277
−121
349

C


ATOM
2146
O
ARG
A
641
−7.563
−30.184
31.564
1.00
10.24


O


ANISOU
2146
O
ARG
A
641
1419
720
1751
324
−123
352

O


ATOM
2147
N
PRO
A
642
−9.750
−29.765
31.384
1.00
10.70


N


ANISOU
2147
N
PRO
A
642
1545
772
1748
237
−83
327

N


ATOM
2148
CA
PRO
A
642
−9.980
−31.001
30.624
1.00
11.35


C


ANISOU
2148
CA
PRO
A
642
1622
758
1932
235
−43
289

C


ATOM
2149
CB
PRO
A
642
−11.510
−31.093
30.580
1.00
9.72


C


ANISOU
2149
CB
PRO
A
642
1450
538
1706
178
−16
281

C


ATOM
2150
CG
PRO
A
642
−11.931
−29.652
30.540
1.00
20.44


C


ANISOU
2150
CG
PRO
A
642
2821
1974
2973
148
−32
261

C


ATOM
2151
CD
PRO
A
642
−10.967
−28.950
31.492
1.00
11.96


C


ANISOU
2151
CD
PRO
A
642
1739
976
1830
184
−74
313

C


ATOM
2152
C
PRO
A
642
−9.389
−30.904
29.224
1.00
14.78


C


ANISOU
2152
C
PRO
A
642
2029
1173
2414
235
−25
180

C


ATOM
2153
O
PRO
A
642
−8.906
−29.858
28.787
1.00
12.78


O


ANISOU
2153
O
PRO
A
642
1765
1002
2089
223
−39
133

O


ATOM
2154
N
THR
A
643
−9.421
−32.034
28.522
1.00
11.84


N


ANISOU
2154
N
THR
A
643
1644
734
2119
235
9
124

N


ATOM
2155
CA
THR
A
643
−9.155
−32.103
27.091
1.00
13.59


C


ANISOU
2155
CA
THR
A
643
1844
946
2375
221
39
1

C


ATOM
2156
CB
THR
A
643
−8.559
−33.457
26.725
1.00
11.54


C


ANISOU
2156
CB
THR
A
643
1553
620
2212
253
66
−36

C


ATOM
2157
OG1
THR
A
643
−9.526
−34.464
27.049
1.00
12.12


O


ANISOU
2157
OG1
THR
A
643
1647
632
2324
227
79
−9

O


ATOM
2158
CG2
THR
A
643
−7.276
−33.730
27.518
1.00
12.11


C


ANISOU
2158
CG2
THR
A
643
1592
686
2322
323
43
37

C


ATOM
2159
C
THR
A
643
−10.460
−31.908
26.326
1.00
14.31


C


ANISOU
2159
C
THR
A
643
1960
1045
2433
154
58
−65

C


ATOM
2160
O
THR
A
643
−11.551
−31.944
26.907
1.00
11.26


O


ANISOU
2160
O
THR
A
643
1601
653
2023
123
53
−15

O


ATOM
2161
N
PHE
A
644
−10.353
−31.739
24.996
1.00
9.66


N


ANISOU
2161
N
PHE
A
644
1660
711
1301
23
−108
106

N


ATOM
2162
CA
PHE
A
644
−11.582
−31.609
24.207
1.00
10.00


C


ANISOU
2162
CA
PHE
A
644
1806
705
1288
65
−51
−45

C


ATOM
2163
CB
PHE
A
644
−11.276
−31.074
22.803
1.00
9.23


C


ANISOU
2163
CB
PHE
A
644
1730
617
1161
59
2
−118

C


ATOM
2164
CG
PHE
A
644
−11.013
−29.590
22.786
1.00
10.29


C


ANISOU
2164
CG
PHE
A
644
1916
794
1198
−5
−59
−102

C


ATOM
2165
CD1
PHE
A
644
−12.054
−28.689
22.992
1.00
9.95


C


ANISOU
2165
CD1
PHE
A
644
1948
708
1125
−17
−89
−127

C


ATOM
2166
CE1
PHE
A
644
−11.813
−27.318
23.000
1.00
11.56


C


ANISOU
2166
CE1
PHE
A
644
2200
890
1303
−73
−116
−116

C


ATOM
2167
CZ
PHE
A
644
−10.522
−26.842
22.809
1.00
10.03


C


ANISOU
2167
CZ
PHE
A
644
1998
763
1051
−140
−141
−77

C


ATOM
2168
CE2
PHE
A
644
−9.484
−27.733
22.613
1.00
10.13


C


ANISOU
2168
CE2
PHE
A
644
1918
856
1076
−131
−122
−40

C


ATOM
2169
CD2
PHE
A
644
−9.729
−29.096
22.610
1.00
10.61


C


ANISOU
2169
CD2
PHE
A
644
1912
894
1225
−51
−67
−54

C


ATOM
2170
C
PHE
A
644
−12.342
−32.926
24.150
1.00
12.40


C


ANISOU
2170
C
PHE
A
644
2098
939
1675
118
−7
−70

C


ATOM
2171
O
PHE
A
644
−13.577
−32.926
24.072
1.00
12.90


O


ANISOU
2171
O
PHE
A
644
2200
1026
1677
108
−8
−128

O


ATOM
2172
N
LYS
A
645
−11.631
−34.051
24.228
1.00
10.79


N


ANISOU
2172
N
LYS
A
645
1785
664
1651
167
36
0

N


ATOM
2173
CA
LYS
A
645
−12.293
−35.348
24.336
1.00
15.63


C


ANISOU
2173
CA
LYS
A
645
2392
1175
2372
203
79
−8

C


ATOM
2174
CB
LYS
A
645
−11.247
−36.463
24.292
1.00
17.10


C


ANISOU
2174
CB
LYS
A
645
2410
1260
2827
268
150
80

C


ATOM
2175
CG
LYS
A
645
−11.804
−37.870
24.161
1.00
25.72


C


ANISOU
2175
CG
LYS
A
645
3492
2285
3996
280
209
37

C


ATOM
2176
CD
LYS
A
645
−10.703
−38.822
23.698
1.00
31.33


C


ANISOU
2176
CD
LYS
A
645
4032
2880
4993
339
366
54

C


ATOM
2177
CE
LYS
A
645
−11.109
−40.277
23.836
1.00
37.31


C


ANISOU
2177
CE
LYS
A
645
4756
3525
5896
348
422
62

C


ATOM
2178
NZ
LYS
A
645
−12.339
−40.585
23.050
1.00
40.46


N


ANISOU
2178
NZ
LYS
A
645
5338
3948
6088
273
477
−136

N


ATOM
2179
C
LYS
A
645
−13.130
−35.437
25.610
1.00
14.49


C


ANISOU
2179
C
LYS
A
645
2281
1089
2135
143
−44
76

C


ATOM
2180
O
LYS
A
645
−14.269
−35.913
25.580
1.00
12.43


O


ANISOU
2180
O
LYS
A
645
2081
815
1826
134
−28
8

O


ATOM
2181
N
ILE
A
646
−12.583
−34.996
26.744
1.00
10.36


N


ANISOU
2181
N
ILE
A
646
1715
661
1559
52
−159
223

N


ATOM
2182
CA
ILE
A
646
−13.350
−35.052
27.985
1.00
11.12


C


ANISOU
2182
CA
ILE
A
646
1865
845
1516
−84
−242
273

C


ATOM
2183
CB
ILE
A
646
−12.444
−34.769
29.190
1.00
11.88


C


ANISOU
2183
CB
ILE
A
646
1904
1073
1536
−276
−381
480

C


ATOM
2184
CG1
ILE
A
646
−11.463
−35.933
29.405
1.00
18.70


C


ANISOU
2184
CG1
ILE
A
646
2563
1874
2668
−249
−486
774

C


ATOM
2185
CD1
ILE
A
646
−10.303
−35.620
30.313
1.00
25.18


C


ANISOU
2185
CD1
ILE
A
646
3253
2859
3453
−438
−645
1024

C


ATOM
2186
CG2
ILE
A
646
−13.311
−34.544
30.413
1.00
12.32


C


ANISOU
2186
CG2
ILE
A
646
2071
1258
1352
−502
−413
449

C


ATOM
2187
C
ILE
A
646
−14.535
−34.091
27.928
1.00
10.34


C


ANISOU
2187
C
ILE
A
646
1898
785
1244
−108
−170
75

C


ATOM
2188
O
ILE
A
646
−15.655
−34.443
28.320
1.00
11.02


O


ANISOU
2188
O
ILE
A
646
2025
882
1282
−140
−149
23

O


ATOM
2189
N
LEU
A
647
−14.322
−32.875
27.421
1.00
9.33


N


ANISOU
2189
N
LEU
A
647
1814
662
1070
−89
−125
−17

N


ATOM
2190
CA
LEU
A
647
−15.437
−31.935
27.261
1.00
10.24


C


ANISOU
2190
CA
LEU
A
647
1997
750
1144
−75
−42
−161

C


ATOM
2191
CB
LEU
A
647
−14.933
−30.621
26.659
1.00
9.76


C


ANISOU
2191
CB
LEU
A
647
1933
683
1092
−55
−18
−193

C


ATOM
2192
CG
LEU
A
647
−14.078
−29.705
27.543
1.00
12.26


C


ANISOU
2192
CG
LEU
A
647
2336
1025
1298
−209
−15
−208

C


ATOM
2193
CD1
LEU
A
647
−13.450
−28.604
26.688
1.00
9.72


C


ANISOU
2193
CD1
LEU
A
647
2005
679
1011
−169
−13
−210

C


ATOM
2194
CD2
LEU
A
647
−14.907
−29.089
28.665
1.00
18.67


C


ANISOU
2194
CD2
LEU
A
647
3174
1865
2057
−325
104
−311

C


ATOM
2195
C
LEU
A
647
−16.542
−32.515
26.379
1.00
14.20


C


ANISOU
2195
C
LEU
A
647
2425
1247
1721
23
−18
−180

C


ATOM
2196
O
LEU
A
647
−17.740
−32.355
26.669
1.00
10.12


O


ANISOU
2196
O
LEU
A
647
1891
735
1218
18
25
−224

O


ATOM
2197
N
LEU
A
648
−16.161
−33.151
25.273
1.00
9.22


N


ANISOU
2197
N
LEU
A
648
1748
615
1141
73
−28
−155

N


ATOM
2198
CA
LEU
A
648
−17.166
−33.734
24.385
1.00
11.31


C


ANISOU
2198
CA
LEU
A
648
1991
889
1416
77
−16
−173

C


ATOM
2199
CB
LEU
A
648
−16.488
−34.389
23.182
1.00
8.13


C


ANISOU
2199
CB
LEU
A
648
1591
467
1030
64
21
−201

C


ATOM
2200
CG
LEU
A
648
−17.421
−34.982
22.121
1.00
13.01


C


ANISOU
2200
CG
LEU
A
648
2272
1083
1586
−13
37
−240

C


ATOM
2201
CD1
LEU
A
648
−18.391
−33.907
21.626
1.00
11.90


C


ANISOU
2201
CD1
LEU
A
648
2200
941
1380
−64
−47
−198

C


ATOM
2202
CD2
LEU
A
648
−16.615
−35.547
20.958
1.00
15.57


C


ANISOU
2202
CD2
LEU
A
648
2624
1395
1898
−83
132
−321

C


ATOM
2203
C
LEU
A
648
−18.027
−34.743
25.128
1.00
10.28


C


ANISOU
2203
C
LEU
A
648
1882
742
1282
60
−20
−169

C


ATOM
2204
O
LEU
A
648
−19.264
−34.730
25.015
1.00
12.96


O


ANISOU
2204
O
LEU
A
648
2235
1084
1606
46
−22
−182

O


ATOM
2205
N
ASER
A
649
−17.395
−35.638
25.886
0.34
12.17


N


ANISOU
2205
N
ASER
A
649
2143
927
1554
51
−38
−126

N


ATOM
2206
CA
ASER
A
649
−18.142
−36.603
26.683
0.34
12.22


C


ANISOU
2206
CA
ASER
A
649
2199
897
1549
1
−68
−94

C


ATOM
2207
CB
ASER
A
649
−17.172
−37.532
27.412
0.34
12.39


C


ANISOU
2207
CB
ASER
A
649
2173
863
1672
−22
−128
49

C


ATOM
2208
OG
ASER
A
649
−17.846
−38.329
28.363
0.34
12.93


O


ANISOU
2208
OG
ASER
A
649
2244
964
1705
−121
−189
129

O


ATOM
2209
C
ASER
A
649
−19.069
−35.903
27.669
0.34
12.17


C


ANISOU
2209
C
ASER
A
649
2206
981
1437
−74
−58
−130

C


ATOM
2210
O
ASER
A
649
−20.221
−36.315
27.844
0.34
13.58


O


ANISOU
2210
O
ASER
A
649
2382
1189
1589
−108
−42
−151

O


ATOM
2211
N
BSER
A
649
−17.399
−35.647
25.884
0.26
12.05


N


ANISOU
2211
N
BSER
A
649
2127
912
1539
51
−38
−126

N


ATOM
2212
CA
BSER
A
649
−18.161
−36.600
26.685
0.26
12.16


C


ANISOU
2212
CA
BSER
A
649
2191
889
1539
1
−68
−95

C


ATOM
2213
CB
BSER
A
649
−17.220
−37.528
27.453
0.26
12.44


C


ANISOU
2213
CB
BSER
A
649
2181
874
1672
−27
−130
49

C


ATOM
2214
OG
BSER
A
649
−16.464
−38.338
26.577
0.26
10.25


O


ANISOU
2214
OG
BSER
A
649
1841
470
1582
58
−64
56

O


ATOM
2215
C
BSER
A
649
−19.089
−35.882
27.652
0.26
12.27


C


ANISOU
2215
C
BSER
A
649
2218
993
1449
−73
−57
−133

C


ATOM
2216
O
BSER
A
649
−20.254
−36.264
27.806
0.26
13.38


O


ANISOU
2216
O
BSER
A
649
2355
1163
1564
−104
−39
−156

O


ATOM
2217
N
CSER
A
649
−17.399
−35.641
25.890
0.40
12.26


N


ANISOU
2217
N
CSER
A
649
2154
939
1565
51
−38
−126

N


ATOM
2218
CA
CSER
A
649
−18.162
−36.602
26.678
0.40
12.25


C


ANISOU
2218
CA
CSER
A
649
2202
901
1551
1
−68
−95

C


ATOM
2219
CB
CSER
A
649
−17.219
−37.554
27.417
0.40
12.18


C


ANISOU
2219
CB
CSER
A
649
2149
837
1644
−24
−128
47

C


ATOM
2220
OG
CSER
A
649
−16.547
−36.886
28.472
0.40
14.10


O


ANISOU
2220
OG
CSER
A
649
2365
1178
1813
−118
−200
140

O


ATOM
2221
C
CSER
A
649
−19.082
−35.894
27.663
0.40
12.04


C


ANISOU
2221
C
CSER
A
649
2190
965
1421
−73
−57
−132

C


ATOM
2222
O
CSER
A
649
−20.239
−36.291
27.833
0.40
13.77


O


ANISOU
2222
O
CSER
A
649
2405
1213
1613
−106
−41
−153

O


ATOM
2223
N
ASN
A
650
−18.588
−34.838
28.316
1.00
8.99


N


ANISOU
2223
N
ASN
A
650
1816
623
978
−125
−35
−158

N


ATOM
2224
CA
ASN
A
650
−19.420
−34.100
29.267
1.00
12.38


C


ANISOU
2224
CA
ASN
A
650
2266
1107
1330
−228
63
−259

C


ATOM
2225
CB
ASN
A
650
−18.595
−33.026
29.976
1.00
14.20


C


ANISOU
2225
CB
ASN
A
650
2551
1370
1473
−347
110
−310

C


ATOM
2226
CG
ASN
A
650
−17.501
−33.604
30.847
1.00
24.01


C


ANISOU
2226
CG
ASN
A
650
3813
2721
2589
−528
−21
−159

C


ATOM
2227
OD1
ASN
A
650
−17.558
−34.761
31.259
1.00
23.17


O


ANISOU
2227
OD1
ASN
A
650
3674
2659
2471
−590
−125
−22

O


ATOM
2228
ND2
ASN
A
650
−16.494
−32.792
31.133
1.00
24.91


N


ANISOU
2228
ND2
ASN
A
650
3964
2876
2626
−633
−36
−144

N


ATOM
2229
C
ASN
A
650
−20.617
−33.460
28.575
1.00
11.52


C


ANISOU
2229
C
ASN
A
650
2099
938
1341
−118
159
−338

C


ATOM
2230
O
ASN
A
650
−21.736
−33.467
29.110
1.00
10.48


O


ANISOU
2230
O
ASN
A
650
1929
828
1227
−160
253
−398

O


ATOM
2231
N
ILE
A
651
−20.402
−32.904
27.380
1.00
13.57


N


ANISOU
2231
N
ILE
A
651
2315
1141
1699
−0
125
−303

N


ATOM
2232
CA
ILE
A
651
−21.494
−32.268
26.649
1.00
9.65


C


ANISOU
2232
CA
ILE
A
651
1728
582
1357
78
162
−284

C


ATOM
2233
CB
ILE
A
651
−20.947
−31.486
25.448
1.00
12.64


C


ANISOU
2233
CB
ILE
A
651
2089
911
1802
137
93
−212

C


ATOM
2234
CG1
ILE
A
651
−20.149
−30.271
25.932
1.00
11.89


C


ANISOU
2234
CG1
ILE
A
651
1976
807
1736
132
141
−267

C


ATOM
2235
CD1
ILE
A
651
−19.347
−29.592
24.802
1.00
11.65


C


ANISOU
2235
CD1
ILE
A
651
1938
756
1732
151
65
−193

C


ATOM
2236
CG2
ILE
A
651
−22.079
−31.089
24.520
1.00
14.64


C


ANISOU
2236
CG2
ILE
A
651
2202
1143
2218
170
43
−76

C


ATOM
2237
C
ILE
A
651
−22.517
−33.308
26.215
1.00
9.70


C


ANISOU
2237
C
ILE
A
651
1684
646
1355
62
100
−211

C


ATOM
2238
O
ILE
A
651
−23.727
−33.088
26.319
1.00
10.69


O


ANISOU
2238
O
ILE
A
651
1691
771
1599
77
151
−183

O


ATOM
2239
N
LEU
A
652
−22.055
−34.454
25.730
1.00
9.02


N


ANISOU
2239
N
LEU
A
652
1675
595
1157
22
13
−180

N


ATOM
2240
CA
LEU
A
652
−22.989
−35.507
25.346
1.00
13.38


C


ANISOU
2240
CA
LEU
A
652
2217
1196
1669
−43
−34
−131

C


ATOM
2241
CB
LEU
A
652
−22.239
−36.672
24.696
1.00
12.10


C


ANISOU
2241
CB
LEU
A
652
2166
1003
1428
−95
−65
−148

C


ATOM
2242
CG
LEU
A
652
−21.705
−36.392
23.292
1.00
12.67


C


ANISOU
2242
CG
LEU
A
652
2275
1070
1470
−133
−79
−151

C


ATOM
2243
CD1
LEU
A
652
−20.657
−37.440
22.892
1.00
14.26


C


ANISOU
2243
CD1
LEU
A
652
2540
1212
1667
−154
−6
−226

C


ATOM
2244
CD2
LEU
A
652
−22.848
−36.340
22.274
1.00
10.12


C


ANISOU
2244
CD2
LEU
A
652
1914
844
1086
−269
−155
−57

C


ATOM
2245
C
LEU
A
652
−23.798
−35.993
26.544
1.00
12.28


C


ANISOU
2245
C
LEU
A
652
2052
1102
1510
−89
14
−157

C


ATOM
2246
O
LEU
A
652
−24.993
−36.278
26.412
1.00
12.21


O


ANISOU
2246
O
LEU
A
652
1966
1149
1525
−128
6
−106

O


ATOM
2247
N
ASP
A
653
−23.159
−36.123
27.710
1.00
9.71


N


ANISOU
2247
N
ASP
A
653
1785
783
1122
−130
49
−209

N


ATOM
2248
CA
ASP
A
653
−23.883
−36.522
28.918
1.00
13.84


C


ANISOU
2248
CA
ASP
A
653
2299
1385
1575
−245
100
−239

C


ATOM
2249
CB
ASP
A
653
−22.936
−36.600
30.119
1.00
21.87


C


ANISOU
2249
CB
ASP
A
653
3394
2445
2469
−374
90
−246

C


ATOM
2250
CG
ASP
A
653
−22.048
−37.827
30.105
1.00
39.74


C


ANISOU
2250
CG
ASP
A
653
5703
4677
4718
−402
−61
−102

C


ATOM
2251
OD1
ASP
A
653
−22.374
−38.809
29.402
1.00
49.87


O


ANISOU
2251
OD1
ASP
A
653
6990
5898
6060
−356
−110
−55

O


ATOM
2252
OD2
ASP
A
653
−21.025
−37.810
30.826
1.00
42.35


O


ANISOU
2252
OD2
ASP
A
653
6054
5036
5001
−494
−124
−22

O


ATOM
2253
C
ASP
A
653
−25.004
−35.549
29.242
1.00
16.14


C


ANISOU
2253
C
ASP
A
653
2473
1688
1970
−229
257
−319

C


ATOM
2254
O
ASP
A
653
−26.107
−35.960
29.626
1.00
12.52


O


ANISOU
2254
O
ASP
A
653
1945
1297
1514
−291
307
−322

O


ATOM
2255
N
VAL
A
654
−24.727
−34.249
29.140
1.00
11.98


N


ANISOU
2255
N
VAL
A
654
1909
1076
1568
−150
362
−387

N


ATOM
2256
CA
VAL
A
654
−25.741
−33.254
29.461
1.00
13.72


C


ANISOU
2256
CA
VAL
A
654
1984
1231
1999
−108
572
−472

C


ATOM
2257
CB
VAL
A
654
−25.105
−31.858
29.583
1.00
18.39


C


ANISOU
2257
CB
VAL
A
654
2591
1681
2715
−58
714
−581

C


ATOM
2258
CG1
VAL
A
654
−26.184
−30.819
29.809
1.00
20.76


C


ANISOU
2258
CG1
VAL
A
654
2704
1831
3354
20
979
−667

C


ATOM
2259
CG2
VAL
A
654
−24.075
−31.833
30.704
1.00
19.96


C


ANISOU
2259
CG2
VAL
A
654
2972
1958
2654
−250
757
−710

C


ATOM
2260
C
VAL
A
654
−26.847
−33.269
28.422
1.00
14.26


C


ANISOU
2260
C
VAL
A
654
1855
1281
2281
3
504
−303

C


ATOM
2261
O
VAL
A
654
−28.027
−33.099
28.749
1.00
15.97


O


ANISOU
2261
O
VAL
A
654
1898
1493
2677
15
639
−304

O


ATOM
2262
N
MET
A
65 5
−26.493
−33.456
27.150
1.00
13.24


N


ANISOU
2262
N
MET
A
65 5
1737
1158
2135
49
301
−141

N


ATOM
2263
CA
MET
A
65 5
−27.534
−33.598
26.139
1.00
14.15


C


ANISOU
2263
CA
MET
A
65 5
1680
1319
2377
54
182
73

C


ATOM
2264
CB
MET
A
65 5
−26.913
−33.819
24.764
1.00
13.30


C


ANISOU
2264
CB
MET
A
65 5
1654
1252
2148
2
−25
205

C


ATOM
2265
CG
MET
A
65 5
−26.422
−32.581
24.114
1.00
28.12


C


ANISOU
2265
CG
MET
A
65 5
3468
3032
4186
80
−51
286

C


ATOM
2266
SD
MET
A
65 5
−25.867
−32.948
22.439
1.00
28.57


S


ANISOU
2266
SD
MET
A
65 5
3622
3200
4032
−86
−279
437

S


ATOM
2267
CE
MET
A
65 5
−25.345
−31.312
21.945
1.00
32.39


C


ANISOU
2267
CE
MET
A
65 5
4005
3561
4739
6
−306
551

C


ATOM
2268
C
MET
A
65 5
−28.469
−34.753
26.468
1.00
15.75


C


ANISOU
2268
C
MET
A
65 5
1862
1651
2469
−54
155
100

C


ATOM
2269
O
MET
A
65 5
−29.691
−34.647
26.298
1.00
18.10


O


ANISOU
2269
O
MET
A
65 5
1943
1989
2946
−54
161
239

O


ATOM
2270
N
ASP
A
65 6
−27.912
−35.879
26.908
1.00
13.20


N


ANISOU
2270
N
ASP
A
65 6
1742
1388
1886
−153
114
5

N


ATOM
2271
CA
ASP
A
65 6
−28.756
−37.004
27.277
1.00
15.35


C


ANISOU
2271
CA
ASP
A
65 6
2016
1770
2046
−275
84
32

C


ATOM
2272
CB
ASP
A
65 6
−27.902
−38.238
27.576
1.00
17.09


C


ANISOU
2272
CB
ASP
A
65 6
2460
1991
2043
−369
9
−26

C


ATOM
2273
CG
ASP
A
65 6
−27.345
−38.890
26.315
1.00
19.68


C


ANISOU
2273
CG
ASP
A
65 6
2905
2277
2295
−404
−112
26

C


ATOM
2274
OD1
ASP
A
65 6
−27.813
−38.551
25.203
1.00
18.84


O


ANISOU
2274
OD1
ASP
A
65 6
2730
2213
2217
−435
−178
126

O


ATOM
2275
OD2
ASP
A
65 6
−26.447
−39.752
26.444
1.00
18.24


O


ANISOU
2275
OD2
ASP
A
65 6
2874
2017
2040
−431
−130
−23

O


ATOM
2276
C
ASP
A
65 6
−29.622
−36.662
28.479
1.00
18.81


C


ANISOU
2276
C
ASP
A
65 6
2324
2241
2580
−289
276
−58

C


ATOM
2277
O
ASP
A
65 6
−30.816
−36.979
28.503
1.00
19.05


O


ANISOU
2277
O
ASP
A
65 6
2204
2359
2676
−340
288
26

O


ATOM
2278
N
GLU
A
657
−29.037
−36.007
29.484
1.00
15.22


N


ANISOU
2278
N
GLU
A
657
1929
1732
2122
−284
448
−238

N


ATOM
2279
CA
GLU
A
657
−29.766
−35.743
30.722
1.00
25.99


C


ANISOU
2279
CA
GLU
A
657
3218
3139
3518
−377
693
−394

C


ATOM
2280
CB
GLU
A
657
−28.788
−35.378
31.843
1.00
31.13


C


ANISOU
2280
CB
GLU
A
657
4049
3787
3992
−508
820
−594

C


ATOM
2281
CG
GLU
A
657
−27.767
−36.478
32.135
1.00
45.79


C


ANISOU
2281
CG
GLU
A
657
6118
5737
5544
−650
594
−517

C


ATOM
2282
CD
GLU
A
657
−26.473
−35.943
32.719
1.00
64.38


C


ANISOU
2282
CD
GLU
A
657
8616
8073
7771
−738
610
−594

C


ATOM
2283
OE1
GLU
A
657
−26.451
−34.760
33.115
1.00
70.30


O


ANISOU
2283
OE1
GLU
A
657
9353
8762
8598
−753
838
−771

O


ATOM
2284
OE2
GLU
A
657
−25.475
−36.698
32.769
1.00
69.69


O


ANISOU
2284
OE2
GLU
A
657
9400
8778
8299
−801
403
−465

O


ATOM
2285
C
GLU
A
657
−30.805
−34.647
30.542
1.00
23.85


C


ANISOU
2285
C
GLU
A
657
2664
2763
3637
−239
906
−394

C


ATOM
2286
O
GLU
A
657
−31.828
−34.651
31.233
1.00
22.50


O


ANISOU
2286
O
GLU
A
657
2344
2634
3569
−299
1111
−472

O


ATOM
2287
N
GLU
A
658
−30.579
−33.721
29.615
1.00
23.54


N


ANISOU
2287
N
GLU
A
658
2518
2574
3853
−61
865
−285

N


ATOM
2288
CA
GLU
A
658
−31.531
−32.641
29.386
1.00
37.83


C


ANISOU
2288
CA
GLU
A
658
4003
4227
6143
95
1049
−213

C


ATOM
2289
CB
GLU
A
658
−30.813
−31.289
29.349
1.00
44.04


C


ANISOU
2289
CB
GLU
A
658
4795
4776
7161
221
1202
−315

C


ATOM
2290
CG
GLU
A
658
−30.095
−30.916
30.649
1.00
45.44


C


ANISOU
2290
CG
GLU
A
658
5198
4908
7159
91
1488
−686

C


ATOM
2291
CD
GLU
A
658
−29.328
−29.586
30.558
1.00
49.40


C


ANISOU
2291
CD
GLU
A
658
5778
5239
7753
121
1501
−709

C


ATOM
2292
OE1
GLU
A
658
−29.313
−28.952
29.475
1.00
56.62


O


ANISOU
2292
OE1
GLU
A
658
6554
6039
8918
281
1361
−487

O


ATOM
2293
OE2
GLU
A
658
−28.732
−29.175
31.576
1.00
35.16


O


ANISOU
2293
OE2
GLU
A
658
4158
3449
5751
−60
1636
−919

O


ATOM
2294
C
GLU
A
658
−32.309
−32.875
28.091
1.00
45.63


C


ANISOU
2294
C
GLU
A
658
4762
5275
7300
152
783
161

C


ATOM
2295
O
GLU
A
658
−32.156
−32.141
27.116
1.00
48.75


O


ANISOU
2295
O
GLU
A
658
5037
5569
7918
256
656
371

O


HETATM
2296
C01
LIG
A
1
−18.924
−12.046
13.195
1.00
15.02

A
C


HETATM
2297
C02
LIG
A
1
−17.769
−12.009
12.218
1.00
16.76

A
C


HETATM
2298
C03
LIG
A
1
−18.026
−11.155
10.980
1.00
22.91

A
C


HETATM
2299
O04
LIG
A
1
−18.759
−10.183
11.030
1.00
24.67

A
O


HETATM
2300
N05
LIG
A
1
−17.447
−11.496
9.784
1.00
22.08

A
N


HETATM
2301
C06
LIG
A
1
−17.601
−10.714
8.585
1.00
24.36

A
C


HETATM
2302
C07
LIG
A
1
−16.279
−10.534
7.843
1.00
28.76

A
C


HETATM
2303
C08
LIG
A
1
−16.672
−10.244
6.394
1.00
23.13

A
C


HETATM
2304
C09
LIG
A
1
−18.174
−10.405
6.315
1.00
27.01

A
C


HETATM
2305
C10
LIG
A
1
−18.448
−11.337
7.473
1.00
22.92

A
C


HETATM
2306
N11
LIG
A
1
−18.040
−12.675
7.088
1.00
13.11

A
N


HETATM
2307
C12
LIG
A
1
−18.809
−13.738
6.661
1.00
17.10

A
C


HETATM
2308
O13
LIG
A
1
−20.039
−13.565
6.614
1.00
13.18

A
O


HETATM
2309
C14
LIG
A
1
−18.360
−15.051
6.250
1.00
9.60

A
C


HETATM
2310
S15
LIG
A
1
−19.413
−16.333
5.605
1.00
11.77

A
S


HETATM
2311
C16
LIG
A
1
−18.065
−17.480
5.367
1.00
4.84

A
C


HETATM
2312
N17
LIG
A
1
−18.129
−18.727
4.877
1.00
8.39

A
N


HETATM
2313
C18
LIG
A
1
−16.965
−19.394
4.811
1.00
11.17

A
C


HETATM
2314
C19
LIG
A
1
−15.722
−18.876
5.195
1.00
9.38

A
C


HETATM
2315
C20
LIG
A
1
−15.668
−17.584
5.697
1.00
5.96

A
C


HETATM
2316
C21
LIG
A
1
−16.876
−16.877
5.778
1.00
8.23

A
C


HETATM
2317
C22
LIG
A
1
−17.088
−15.536
6.259
1.00
10.04

A
C


HETATM
2318
N23
LIG
A
1
−15.874
−14.988
6.632
1.00
11.10

A
N


HETATM
2319
C24
LIG
A
1
−14.617
−15.632
6.599
1.00
14.44

A
C


HETATM
2320
O25
LIG
A
1
−13.632
−15.029
6.975
1.00
10.44

A
O


HETATM
2321
N26
LIG
A
1
−14.501
−16.956
6.088
1.00
8.76

A
N


HETATM
2322
C27
LIG
A
1
−13.275
−17.563
6.123
1.00
14.75

A
C


HETATM
2323
C28
LIG
A
1
−12.777
−18.003
7.378
1.00
12.74

A
C


HETATM
2324
N29
LIG
A
1
−11.626
−18.639
7.595
1.00
14.25

A
N


HETATM
2325
C30
LIG
A
1
−10.818
−18.902
6.551
1.00
16.18

A
C


HETATM
2326
C31
LIG
A
1
−11.266
−18.516
5.269
1.00
9.86

A
C


HETATM
2327
C32
LIG
A
1
−12.461
−17.858
5.036
1.00
9.68

A
C


HETATM
2328
C33
LIG
A
1
−12.917
−17.449
3.660
1.00
13.02

A
C


HETATM
2329
C34
LIG
A
1
−9.522
−19.663
6.816
1.00
14.99

A
C


HETATM
2330
C35
LIG
A
1
−9.512
−21.180
6.396
1.00
16.68

A
C


HETATM
2331
C36
LIG
A
1
−10.689
−22.003
6.970
1.00
15.58

A
C


HETATM
2332
C37
LIG
A
1
−8.238
−21.927
6.692
1.00
19.43

A
C


HETATM
2333
H061
LIG
A
1
−17.886
−9.847
8.806
1.00
29.24

A
H


HETATM
2334
H101
LIG
A
1
−19.359
−11.245
7.680
1.00
27.51

A
H


HETATM
2335
H021
LIG
A
1
−17.004
−11.723
12.681
1.00
20.11

A
H


HETATM
2336
H022
LIG
A
1
−17.588
−12.896
11.968
1.00
20.11

A
H


HETATM
2337
H051
LIG
A
1
−16.904
−12.170
9.717
1.00
26.50

A
H


HETATM
2338
H071
LIG
A
1
−15.762
−9.852
8.230
1.00
34.51

A
H


HETATM
2339
H072
LIG
A
1
−15.782
−11.322
7.955
1.00
34.51

A
H


HETATM
2340
H081
LIG
A
1
−16.393
−9.398
6.097
1.00
27.76

A
H


HETATM
2341
H082
LIG
A
1
−16.258
−10.852
5.810
1.00
27.76

A
H


HETATM
2342
H091
LIG
A
1
−18.507
−10.772
5.518
1.00
32.41

A
H


HETATM
2343
H092
LIG
A
1
−18.637
−9.589
6.354
1.00
32.41

A
H


HETATM
2344
H111
LIG
A
1
−17.175
−12.743
7.124
1.00
15.73

A
H


HETATM
2345
H181
LIG
A
1
−16.989
−20.263
4.483
1.00
13.41

A
H


HETATM
2346
H191
LIG
A
1
−14.983
−19.432
5.108
1.00
11.26

A
H


HETATM
2347
H231
LIG
A
1
−15.850
−14.183
6.956
1.00
13.32

A
H


HETATM
2348
H281
LIG
A
1
−13.235
−17.872
8.175
1.00
15.29

A
H


HETATM
2349
H311
LIG
A
1
−10.705
−18.720
4.558
1.00
11.83

A
H


HETATM
2350
H331
LIG
A
1
−12.240
−17.453
2.965
1.00
15.63

A
H


HETATM
2351
H332
LIG
A
1
−13.282
−16.551
3.619
1.00
15.63

A
H


HETATM
2352
H333
LIG
A
1
−13.625
−18.004
3.300
1.00
15.63

A
H


HETATM
2353
H341
LIG
A
1
−9.279
−19.602
7.754
1.00
17.99

A
H


HETATM
2354
H342
LIG
A
1
−8.765
−19.235
6.386
1.00
17.99

A
H


HETATM
2355
H351
LIG
A
1
−9.590
−21.188
5.429
1.00
20.02

A
H


HETATM
2356
H361
LIG
A
1
−11.389
−22.238
6.342
1.00
18.70

A
H


HETATM
2357
H362
LIG
A
1
−10.444
−22.850
7.374
1.00
18.70

A
H


HETATM
2358
H363
LIG
A
1
−11.174
−21.536
7.668
1.00
18.70

A
H


HETATM
2359
H371
LIG
A
1
−7.484
−21.667
6.140
1.00
23.32

A
H


HETATM
2360
H372
LIG
A
1
−8.287
−22.882
6.528
1.00
23.32

A
H


HETATM
2361
H373
LIG
A
1
−7.903
−21.877
7.601
1.00
23.32

A
H


TER


HETATM
2362
O
HOH
S
1
−28.356
−16.157
28.996
1.00
8.18


O


HETATM
2363
O
HOH
S
2
−23.778
−22.748
3.921
1.00
10.79


O


HETATM
2364
O
HOH
S
3
−11.246
−14.935
29.778
1.00
11.84


O


HETATM
2365
O
HOH
S
4
−13.850
−16.632
33.319
1.00
7.93


O


HETATM
2366
O
HOH
S
5
−30.782
−15.074
19.843
1.00
13.54


O


HETATM
2367
O
HOH
S
6
−9.169
−13.455
30.033
1.00
13.95


O


HETATM
2368
O
HOH
S
7
−16.575
−29.312
6.763
1.00
9.52


O


HETATM
2369
O
HOH
S
8
−17.086
−20.469
−11.337
1.00
12.41


O


HETATM
2370
O
HOH
S
9
−23.295
−13.941
33.140
1.00
15.94


O


HETATM
2371
O
HOH
S
10
−29.099
−24.864
29.749
1.00
15.26


O


HETATM
2372
O
HOH
S
11
−16.351
−13.418
19.557
1.00
10.09


O


HETATM
2373
O
HOH
S
12
−8.004
−20.261
21.120
1.00
9.98


O


HETATM
2374
O
HOH
S
13
−22.199
−7.109
25.534
1.00
17.85


O


HETATM
2375
O
HOH
S
14
−15.020
−18.628
−13.422
1.00
12.35


O


HETATM
2376
O
HOH
S
15
−20.203
−19.375
−13.208
1.00
10.68


O


HETATM
2377
O
HOH
S
16
−9.021
−24.193
−9.542
1.00
14.56


O


HETATM
2378
O
HOH
S
17
−16.539
−13.243
−11.273
1.00
16.03


O


HETATM
2379
O
HOH
S
18
−25.750
−26.372
15.537
1.00
15.99


O


HETATM
2380
O
HOH
S
19
−10.411
−8.868
24.456
1.00
11.18


O


HETATM
2381
O
HOH
S
20
−16.633
−26.784
36.955
1.00
16.80


O


HETATM
2382
O
HOH
S
21
−15.797
−10.718
19.501
1.00
13.61


O


HETATM
2383
O
HOH
S
22
7.354
−14.909
28.387
1.00
16.55


O


HETATM
2384
O
HOH
S
23
−32.676
−16.492
21.201
1.00
15.19


O


HETATM
2385
O
HOH
S
24
−9.630
−16.126
21.211
1.00
14.08


O


HETATM
2386
O
HOH
S
25
−5.269
−18.272
15.235
1.00
12.57


O


HETATM
2387
O
HOH
S
26
−30.155
−37.946
23.629
1.00
11.83


O


HETATM
2388
O
HOH
S
27
−20.493
−13.197
33.592
1.00
16.15


O


HETATM
2389
O
HOH
S
28
−4.544
−20.872
22.310
1.00
12.82


O


HETATM
2390
O
HOH
S
29
−28.435
−26.509
27.632
1.00
13.73


O


HETATM
2391
O
HOH
S
30
−1.502
−22.551
28.061
1.00
13.99


O


HETATM
2392
O
HOH
S
31
−18.834
−11.753
22.350
1.00
14.19


O


HETATM
2393
O
HOH
S
32
−6.523
−17.239
37.857
1.00
14.17


O


HETATM
2394
O
HOH
S
33
−17.497
−9.799
21.602
1.00
14.80


O


HETATM
2395
O
HOH
S
34
−30.743
−21.299
6.725
1.00
15.00


O


HETATM
2396
O
HOH
S
35
2.936
−23.248
14.848
1.00
16.88


O


HETATM
2397
O
HOH
S
36
−3.355
−21.500
10.109
1.00
16.79


O


HETATM
2398
O
HOH
S
37
−8.713
−34.221
23.064
1.00
16.35


O


HETATM
2399
O
HOH
S
38
−12.762
−29.598
7.123
1.00
13.28


O


HETATM
2400
O
HOH
S
39
4.882
−21.462
7.677
1.00
18.73


O


HETATM
2401
O
HOH
S
40
−8.949
−21.929
39.341
1.00
15.06


O


HETATM
2402
O
HOH
S
41
−1.760
−23.124
15.218
1.00
23.36


O


HETATM
2403
O
HOH
S
42
−14.039
−34.690
16.861
1.00
21.22


O


HETATM
2404
O
HOH
S
43
−34.131
−21.131
16.025
1.00
17.12


O


HETATM
2405
O
HOH
S
44
−11.440
−21.224
−15.718
1.00
16.51


O


HETATM
2406
O
HOH
S
45
−14.986
−30.791
32.209
1.00
20.30


O


HETATM
2407
O
HOH
S
46
−23.139
−36.689
18.214
1.00
18.93


O


HETATM
2408
O
HOH
S
47
−8.996
0.163
32.288
1.00
24.93


O


HETATM
2409
O
HOH
S
48
−0.681
−9.520
3.274
1.00
20.52


O


HETATM
2410
O
HOH
S
49
−31.482
−39.504
27.221
1.00
21.64


O


HETATM
2411
O
HOH
S
50
−24.230
−13.858
30.613
1.00
16.97


O


HETATM
2412
O
HOH
S
51
3.183
−24.405
25.973
1.00
14.03


O


HETATM
2413
O
HOH
S
52
6.215
−14.929
5.107
1.00
22.39


O


HETATM
2414
O
HOH
S
53
−27.180
−13.618
30.972
1.00
22.94


O


HETATM
2415
O
HOH
S
54
−24.285
−14.310
11.195
1.00
10.27


O


HETATM
2416
O
HOH
S
55
−28.243
−28.832
35.506
1.00
17.51


O


HETATM
2417
O
HOH
S
56
−8.426
−34.997
20.765
1.00
19.00


O


HETATM
2418
O
HOH
S
57
−22.465
−7.925
−3.470
1.00
24.08


O


HETATM
2419
O
HOH
S
58
−5.088
−32.961
30.127
1.00
20.57


O


HETATM
2420
O
HOH
S
59
−6.451
−26.631
−4.188
1.00
16.53


O


HETATM
2421
O
HOH
S
61
−19.493
−10.497
31.913
1.00
22.56


O


HETATM
2422
O
HOH
S
62
−12.608
−20.812
40.634
1.00
20.25


O


HETATM
2423
O
HOH
S
63
−19.580
−24.679
0.279
1.00
25.89


O


HETATM
2424
O
HOH
S
64
−0.952
−23.187
34.417
1.00
23.74


O


HETATM
2425
O
HOH
S
65
−29.952
−26.237
36.363
1.00
25.36


O


HETATM
2426
O
HOH
S
66
−27.945
−25.866
17.124
1.00
15.95


O


HETATM
2427
O
HOH
S
67
−12.252
−23.624
37.104
1.00
15.26


O


HETATM
2428
O
HOH
S
68
−17.538
−11.829
36.258
1.00
21.45


O


HETATM
2429
O
HOH
S
69
−22.701
−20.838
−12.014
1.00
19.68


O


HETATM
2430
O
HOH
S
70
−21.272
−12.944
9.004
1.00
17.18


O


HETATM
2431
O
HOH
S
71
−26.709
−9.788
14.793
1.00
20.44


O


HETATM
2432
O
HOH
S
72
−8.634
−37.025
27.174
1.00
21.26


O


HETATM
2433
O
HOH
S
73
−4.918
−5.503
28.298
1.00
29.85


O


HETATM
2434
O
HOH
S
75
−33.507
−10.349
15.555
1.00
21.72


O


HETATM
2435
O
HOH
S
76
−25.802
−13.529
34.009
1.00
16.65


O


HETATM
2436
O
HOH
S
77
−10.102
−24.391
−15.202
1.00
23.33


O


HETATM
2437
O
HOH
S
78
−34.711
−14.644
21.542
1.00
22.01


O


HETATM
2438
O
HOH
S
79
−25.104
−29.820
14.517
1.00
21.70


O


HETATM
2439
O
HOH
S
80
−25.360
−22.746
1.620
1.00
17.32


O


HETATM
2440
O
HOH
S
81
−3.345
−16.964
−8.402
1.00
23.59


O


HETATM
2441
O
HOH
S
82
0.712
−23.381
32.341
1.00
21.85


O


HETATM
2442
O
HOH
S
83
−0.358
−25.993
16.210
1.00
28.08


O


HETATM
2443
O
HOH
S
84
0.023
−24.155
29.771
1.00
19.35


O


HETATM
2444
O
HOH
S
85
−28.127
−23.323
14.642
1.00
21.19


O


HETATM
2445
O
HOH
S
86
−5.895
−30.566
26.163
1.00
21.91


O


HETATM
2446
O
HOH
S
87
−32.934
−18.076
23.294
1.00
16.85


O


HETATM
2447
O
HOH
S
88
−19.442
−36.494
18.804
1.00
21.42


O


HETATM
2448
O
HOH
S
89
−0.586
−26.368
34.979
1.00
25.53


O


HETATM
2449
O
HOH
S
90
−7.077
−0.786
34.266
1.00
32.74


O


HETATM
2450
O
HOH
S
91
−7.881
−14.579
14.271
1.00
22.48


O


HETATM
2451
O
HOH
S
92
−13.148
−12.347
7.714
1.00
27.05


O


HETATM
2452
O
HOH
S
93
−16.246
−8.883
17.483
1.00
21.49


O


HETATM
2453
O
HOH
S
94
−11.387
−21.174
38.198
1.00
21.72


O


HETATM
2454
O
HOH
S
95
−4.149
−5.328
33.878
1.00
23.15


O


HETATM
2455
O
HOH
S
96
−2.058
−7.581
9.923
1.00
24.92


O


HETATM
2456
O
HOH
S
97
−17.414
−30.780
34.002
1.00
31.10


O


HETATM
2457
O
HOH
S
98
−22.726
−25.357
38.124
1.00
22.44


O


HETATM
2458
O
HOH
S
99
−22.168
−26.929
5.149
1.00
24.31


O


HETATM
2459
O
HOH
S
100
−38.410
−28.221
24.129
1.00
28.39


O


HETATM
2460
O
HOH
S
101
−24.937
−27.138
3.577
1.00
30.94


O


HETATM
2461
O
HOH
S
102
−7.543
−17.123
22.848
1.00
27.87


O


HETATM
2462
O
HOH
S
103
−5.152
−15.568
23.248
1.00
19.74


O


HETATM
2463
O
HOH
S
104
−6.777
−36.944
29.331
1.00
31.74


O


HETATM
2464
O
HOH
S
105
−6.483
−27.577
19.701
1.00
22.68


O


HETATM
2465
O
HOH
S
106
−20.460
−26.110
−13.881
1.00
21.94


O


HETATM
2466
O
HOH
S
107
−4.701
−27.791
−8.021
1.00
32.37


O


HETATM
2467
O
HOH
S
108
−13.168
−32.064
33.597
1.00
25.14


O


HETATM
2468
O
HOH
S
109
−22.221
−13.511
5.464
1.00
21.03


O


HETATM
2469
O
HOH
S
110
−24.957
−29.271
7.144
1.00
22.03


O


HETATM
2470
O
HOH
S
111
−8.225
−36.233
8.923
1.00
31.19


O


HETATM
2471
O
HOH
S
112
−25.568
−13.444
2.780
1.00
33.31


O


HETATM
2472
O
HOH
S
113
−22.156
−26.181
−3.730
1.00
25.33


O


HETATM
2473
O
HOH
S
114
−32.266
−8.986
17.820
1.00
31.11


O


HETATM
2474
O
HOH
S
116
4.260
−24.190
8.004
1.00
29.10


O


HETATM
2475
O
HOH
S
117
−28.753
−8.984
20.629
1.00
23.92


O


HETATM
2476
O
HOH
S
118
−16.996
−9.380
15.014
1.00
24.79


O


HETATM
2477
O
HOH
S
119
−31.740
−26.265
30.613
1.00
36.03


O


HETATM
2478
O
HOH
S
120
−23.471
−30.979
17.183
1.00
40.25


O


HETATM
2479
O
HOH
S
121
−10.517
−39.145
27.260
1.00
22.57


O


HETATM
2480
O
HOH
S
122
−0.285
−27.095
29.193
1.00
31.04


O


HETATM
2481
O
HOH
S
123
−29.498
−20.585
1.927
1.00
31.95


O


HETATM
2482
O
HOH
S
124
−21.756
−31.098
34.133
1.00
21.20


O


HETATM
2483
O
HOH
S
125
−20.706
−35.704
32.850
1.00
52.91


O


HETATM
2484
O
HOH
S
126
−3.459
−32.346
31.983
1.00
35.74


O


HETATM
2485
O
HOH
S
127
−7.962
−31.166
0.651
1.00
36.65


O


HETATM
2486
O
HOH
S
128
−11.041
−14.308
−10.223
1.00
27.70


O


HETATM
2487
O
HOH
S
129
2.710
−9.046
3.480
1.00
27.90


O


HETATM
2488
O
HOH
S
130
−18.450
−7.550
20.468
1.00
25.93


O


HETATM
2489
O
HOH
S
131
−0.737
−28.752
26.716
1.00
36.84


O


HETATM
2490
O
HOH
S
132
−21.015
−10.380
9.566
1.00
33.15


O


HETATM
2491
O
HOH
S
133
−14.549
−17.305
41.265
1.00
30.61


O


HETATM
2492
O
HOH
S
134
−12.874
−14.791
−12.134
1.00
24.07


O


HETATM
2493
O
HOH
S
135
−23.640
−33.629
14.498
1.00
28.15


O


HETATM
2494
O
HOH
S
137
−3.196
−17.249
−11.223
1.00
26.70


O


HETATM
2495
O
HOH
S
138
−11.951
−37.712
12.108
1.00
43.79


O


HETATM
2496
O
HOH
S
139
−28.707
−28.436
11.970
1.00
24.05


O


HETATM
2497
O
HOH
S
140
−28.811
−30.544
22.744
1.00
25.91


O


HETATM
2498
O
HOH
S
141
−32.195
−9.951
12.466
1.00
32.71


O


HETATM
2499
O
HOH
S
142
−5.218
−8.777
9.860
1.00
36.10


O


HETATM
2500
O
HOH
S
143
−29.647
−27.732
16.776
1.00
31.21


O


HETATM
2501
O
HOH
S
144
3.631
−11.758
28.093
1.00
38.81


O


HETATM
2502
O
HOH
S
145
−10.997
−5.938
37.772
1.00
34.22


O


HETATM
2503
O
HOH
S
146
−22.550
−7.889
36.301
1.00
31.59


O


HETATM
2504
O
HOH
S
147
−2.193
−20.575
34.851
1.00
30.37


O


HETATM
2505
O
HOH
S
148
−25.055
−31.881
12.445
1.00
35.81


O


HETATM
2506
O
HOH
S
149
5.972
−12.854
2.827
1.00
27.17


O


HETATM
2507
O
HOH
S
150
−7.513
−36.430
24.515
1.00
28.92


O


HETATM
2508
O
HOH
S
151
−25.850
−16.914
0.532
1.00
24.82


O


HETATM
2509
O
HOH
S
152
−16.196
−36.096
15.495
1.00
28.80


O


HETATM
2510
O
HOH
S
153
−8.060
0.399
29.626
1.00
33.48


O


HETATM
2511
O
HOH
S
154
−28.661
−17.395
4.707
1.00
31.92


O


HETATM
2512
O
HOH
S
156
−29.746
−19.750
4.525
1.00
22.45


O


HETATM
2513
O
HOH
S
157
−29.434
−30.166
33.849
1.00
30.15


O


HETATM
2514
O
HOH
S
158
−31.313
−12.670
30.304
1.00
28.16


O


HETATM
2515
O
HOH
S
159
−33.005
−35.360
26.684
1.00
46.31


O


HETATM
2516
O
HOH
S
160
−7.418
−16.971
14.205
1.00
21.64


O


HETATM
2517
O
HOH
S
161
−2.159
−10.267
−0.451
1.00
25.50


O


HETATM
2518
O
HOH
S
163
−23.462
−6.685
32.849
1.00
37.35


O


HETATM
2519
O
HOH
S
164
−8.865
−6.405
22.154
1.00
26.86


O


HETATM
2520
O
HOH
S
165
−5.776
−36.585
20.789
1.00
35.69


O


HETATM
2521
O
HOH
S
166
−11.950
−9.681
10.412
1.00
52.04


O


HETATM
2522
O
HOH
S
167
−27.470
−10.627
22.813
1.00
31.68


O


HETATM
2523
O
HOH
S
169
−30.453
−10.793
10.062
1.00
31.81


O


HETATM
2524
O
HOH
S
170
−8.893
−3.592
37.874
1.00
45.39


O


HETATM
2525
O
HOH
S
171
4.534
−7.222
4.107
1.00
34.33


O


HETATM
2526
O
HOH
S
172
−12.793
−36.175
10.099
1.00
30.92


O


HETATM
2527
O
HOH
S
173
−10.811
−10.681
6.610
1.00
40.30


O


HETATM
2528
O
HOH
S
174
−12.562
−7.429
39.091
1.00
34.94


O


HETATM
2529
O
HOH
S
175
−19.697
−8.383
14.850
1.00
29.94


O


HETATM
2530
O
HOH
S
176
5.940
−19.869
9.889
1.00
30.45


O


HETATM
2531
O
HOH
S
177
−3.280
−19.530
−7.912
1.00
29.25


O


HETATM
2532
O
HOH
S
178
−22.945
−7.872
16.204
1.00
37.33


O


HETATM
2533
O
HOH
S
179
−7.022
−2.597
35.760
1.00
37.46


O


HETATM
2534
O
HOH
S
180
−9.546
−29.739
−0.018
1.00
36.51


O


HETATM
2535
O
HOH
S
181
−5.529
−2.948
27.346
1.00
35.33


O


HETATM
2536
O
HOH
S
182
3.065
−25.869
11.515
1.00
34.32


O


HETATM
2537
O
HOH
S
183
0.116
−23.871
36.485
1.00
34.55


O


HETATM
2538
O
HOH
S
184
4.841
−23.681
12.487
1.00
36.20


O


HETATM
2539
O
HOH
S
185
−23.376
−11.894
10.150
1.00
32.92


O


HETATM
2540
O
HOH
S
186
−15.886
−14.006
9.671
1.00
23.89


O


HETATM
2541
O
HOH
S
187
5.731
−20.138
0.918
1.00
25.18


O


HETATM
2542
O
HOH
S
188
−18.599
−37.259
30.615
1.00
34.73


O


HETATM
2543
O
HOH
S
189
−24.482
−24.769
−6.790
1.00
43.09


O


HETATM
2544
O
HOH
S
190
−10.441
−14.523
13.343
1.00
35.01


O


HETATM
2545
O
HOH
S
191
−29.115
−23.334
42.124
1.00
37.02


O


HETATM
2546
O
HOH
S
192
−29.500
−23.779
1.232
1.00
40.56


O


HETATM
2547
O
HOH
S
193
−28.226
−30.210
38.042
1.00
41.48


O


HETATM
2548
O
HOH
S
194
−6.796
−27.383
−6.655
1.00
29.03


O


HETATM
2549
O
HOH
S
195
−26.080
−15.777
−1.205
1.00
50.07


O


HETATM
2550
O
HOH
S
196
−27.833
−10.061
24.904
1.00
42.07


O


HETATM
2551
O
HOH
S
197
−3.459
−35.453
21.016
1.00
51.21


O


HETATM
2552
O
HOH
S
198
−5.379
−35.016
24.443
1.00
38.88


O


HETATM
2553
O
HOH
S
199
−9.852
−32.880
−3.378
1.00
39.68


O


HETATM
2554
O
HOH
S
200
−21.530
−33.763
32.275
1.00
48.39


O


HETATM
2555
O
HOH
S
201
−9.486
−7.275
0.860
1.00
31.45


O


HETATM
2556
O
HOH
S
202
−26.275
−10.767
35.425
1.00
42.68


O


HETATM
2557
O
HOH
S
203
−18.589
−7.519
33.367
1.00
27.20


O


HETATM
2558
O
HOH
S
204
−17.341
−36.964
17.343
1.00
27.87


O


HETATM
2559
O
HOH
S
205
2.084
−25.458
17.120
1.00
27.00


O


HETATM
2560
O
HOH
S
206
3.851
−21.058
11.401
1.00
32.64


O


HETATM
2561
O
HOH
S
207
7.845
−21.430
10.338
1.00
27.62


O


HETATM
2562
O
HOH
S
208
−5.613
−18.932
22.383
1.00
34.63


O


HETATM
2563
O
HOH
S
210
−12.003
−36.514
15.521
1.00
31.33


O


HETATM
2564
O
HOH
S
211
−13.613
−30.082
−12.820
1.00
30.22


O


HETATM
2565
O
HOH
S
212
−24.092
−24.051
39.963
1.00
27.39


O


HETATM
2566
O
HOH
S
213
−25.216
−34.320
16.616
1.00
39.96


O


HETATM
2567
O
HOH
S
214
−23.843
−14.884
3.731
1.00
31.01


O


HETATM
2568
O
HOH
S
215
−21.435
−7.859
33.613
1.00
29.71


O


HETATM
2569
O
HOH
S
216
−17.346
−2.961
24.469
1.00
26.91


O


HETATM
2570
O
HOH
S
217
−36.647
−13.404
22.087
1.00
30.24


O


HETATM
2571
O
HOH
S
218
−9.284
−24.091
40.407
1.00
38.24


O


HETATM
2572
O
HOH
S
219
4.383
−27.008
4.367
1.00
32.13


O


HETATM
2573
O
HOH
S
220
−3.536
−24.391
−15.998
1.00
29.40


O


HETATM
2574
O
HOH
S
222
2.367
−13.812
−1.993
1.00
29.61


O


HETATM
2575
O
HOH
S
223
−33.886
−19.588
13.827
1.00
38.69


O


HETATM
2576
O
HOH
S
225
−2.336
−29.673
−0.959
1.00
29.36


O


HETATM
2577
O
HOH
S
226
−10.830
2.203
33.063
1.00
43.60


O


HETATM
2578
O
HOH
S
227
−4.074
−5.849
25.841
1.00
36.60


O


HETATM
2579
O
HOH
S
228
−22.626
−10.848
5.010
1.00
30.90


O


HETATM
2580
O
HOH
S
229
2.562
−7.169
19.903
1.00
47.22


O


HETATM
2581
O
HOH
S
230
−14.998
−3.423
24.921
1.00
37.21


O


HETATM
2582
O
HOH
S
231
−2.652
−32.255
21.308
1.00
41.96


O


HETATM
2583
O
HOH
S
232
6.902
−11.892
7.651
1.00
27.57


O


HETATM
2584
O
HOH
S
233
−20.308
−27.366
−2.451
1.00
39.06


O


HETATM
2585
O
HOH
S
235
4.483
−11.460
3.111
1.00
38.14


O


HETATM
2586
O
HOH
S
237
−7.969
−26.755
−9.175
1.00
31.12


O


HETATM
2587
O
HOH
S
238
−25.252
−29.452
4.590
1.00
30.91


O


HETATM
2588
O
HOH
S
239
−20.779
−25.297
3.811
1.00
28.95


O


HETATM
2589
O
HOH
S
240
−12.548
−17.836
42.426
1.00
37.65


O


HETATM
2590
O
HOH
S
241
−21.037
−4.730
25.423
1.00
25.30


O


HETATM
2591
O
HOH
S
242
−18.040
−9.423
34.695
1.00
34.64


O


HETATM
2592
O
HOH
S
243
−31.638
−22.424
38.648
1.00
32.97


O


HETATM
2593
O
HOH
S
244
5.668
−22.531
0.378
1.00
40.48


O


HETATM
2594
O
HOH
S
245
−9.947
0.303
36.793
1.00
36.13


O


HETATM
2595
O
HOH
S
246
−13.857
−16.138
10.548
1.00
31.55


O


HETATM
2596
O
HOH
S
247
−9.097
−31.140
37.124
1.00
42.40


O


HETATM
2597
O
HOH
S
248
−12.224
−22.359
42.022
1.00
38.93


O


HETATM
2598
O
HOH
S
249
−9.818
−10.345
13.710
1.00
38.28


O


HETATM
2599
O
HOH
S
250
−16.581
−31.411
35.954
1.00
35.72


O


HETATM
2600
O
HOH
S
251
−21.401
−29.473
5.952
1.00
47.48


O


HETATM
2601
O
HOH
S
252
−1.945
−9.820
−9.333
1.00
38.44


O


HETATM
2602
O
HOH
S
253
−30.015
−23.200
39.877
1.00
30.60


O


HETATM
2603
O
HOH
S
255
−3.796
−28.198
42.414
1.00
42.20


O


HETATM
2604
O
HOH
S
256
−5.939
−25.976
−11.982
1.00
35.06


O


HETATM
2605
O
HOH
S
257
5.453
−18.688
−1.225
1.00
34.80


O


HETATM
2606
O
HOH
S
259
1.219
−8.196
0.980
1.00
39.75


O


HETATM
2607
O
HOH
S
260
−0.826
−9.096
29.105
1.00
41.56


O


HETATM
2608
O
HOH
S
262
−5.387
−24.214
−14.530
1.00
33.12


O


HETATM
2609
O
HOH
S
263
−2.025
−3.663
5.659
1.00
37.10


O


HETATM
2610
O
HOH
S
264
−12.863
−30.626
−2.813
1.00
26.95


O


HETATM
2611
O
HOH
S
266
−27.043
−30.780
8.504
1.00
26.68


O


HETATM
2612
O
HOH
S
267
−19.802
−32.332
33.672
1.00
33.49


O


HETATM
2613
O
HOH
S
268
−30.196
−24.636
15.645
1.00
33.84


O


HETATM
2614
O
HOH
S
269
−22.456
−31.549
36.548
1.00
29.51


O


HETATM
2615
O
HOH
S
270
1.054
−30.249
−5.874
1.00
32.47


O


HETATM
2616
O
HOH
S
272
−21.511
−6.041
1.993
1.00
44.52


O


HETATM
2617
O
HOH
S
273
3.613
−10.343
33.440
1.00
40.42


O


HETATM
2618
O
HOH
S
275
−26.607
−22.456
−6.102
1.00
33.47


O


HETATM
2619
O
HOH
S
276
5.225
−7.621
12.292
1.00
45.77


O


HETATM
2620
O
HOH
S
278
3.034
−4.987
6.079
1.00
43.47


O


HETATM
2621
O
HOH
S
279
−13.681
−20.921
15.010
1.00
12.77


O


HETATM
2622
O
HOH
S
280
−25.510
−13.753
7.014
1.00
35.72


O


TER


HETATM
2623
O01
PEG
D
1
−16.872
−29.806
−3.025
1.00
48.99

A
O


HETATM
2624
C02
PEG
D
1
−15.628
−29.263
−3.189
1.00
38.71

A
C


HETATM
2625
C03
PEG
D
1
−15.656
−28.169
−4.373
1.00
38.41

A
C


HETATM
2626
O04
PEG
D
1
−14.380
−27.519
−4.533
1.00
38.35

A
O


HETATM
2627
C05
PEG
D
1
−13.277
−28.340
−4.770
1.00
34.73

A
C


HETATM
2628
C06
PEG
D
1
−11.949
−27.519
−5.091
1.00
29.73

A
C


HETATM
2629
O07
PEG
D
1
−10.908
−27.961
−4.237
1.00
40.52

A
O


HETATM
2630
C08
PEG
D
1
−9.764
−28.601
−4.795
1.00
42.14

A
C


HETATM
2631
C09
PEG
D
1
−9.460
−30.010
−4.055
1.00
39.27

A
C


HETATM
2632
O10
PEG
D
1
−9.534
−29.837
−2.701
1.00
40.16

A
O


HETATM
2633
H011
PEG
D
1
−17.050
−29.987
−2.214
1.00
58.79

A
H


HETATM
2634
H021
PEG
D
1
−14.987
−29.957
−3.412
1.00
46.45

A
H


HETATM
2635
H022
PEG
D
1
−15.331
−28.840
−2.368
1.00
46.45

A
H


HETATM
2636
H031
PEG
D
1
−16.343
−27.517
−4.163
1.00
46.10

A
H


HETATM
2637
H032
PEG
D
1
−15.916
−28.619
−5.191
1.00
46.10

A
H


HETATM
2638
H051
PEG
D
1
−13.452
−28.931
−5.519
1.00
41.67

A
H


HETATM
2639
H052
PEG
D
1
−13.103
−28.892
−3.992
1.00
41.67

A
H


HETATM
2640
H061
PEG
D
1
−11.715
−27.659
−6.022
1.00
35.68

A
H


HETATM
2641
H062
PEG
D
1
−12.130
−26.576
−4.958
1.00
35.68

A
H


HETATM
2642
H081
PEG
D
1
−8.979
−28.039
−4.709
1.00
50.56

A
H


HETATM
2643
H082
PEG
D
1
−9.900
−28.780
−5.739
1.00
50.56

A
H


HETATM
2644
H091
PEG
D
1
−10.105
−30.673
−4.348
1.00
47.12

A
H


HETATM
2645
H092
PEG
D
1
−8.577
−30.322
−4.308
1.00
47.12

A
H


HETATM
2646
H101
PEG
D
1
−9.382
−29.036
−2.461
1.00
48.19

A
H


TER


END









While the foregoing specification teaches the principles of the present invention, with examples provided for the purpose of illustration, it will be understood that the practice of the invention encompasses all of the usual variations, adaptations and/or modifications as come within the scope of the following claims and their equivalents.


Embodiments

The following list of embodiments is intended to complement, rather than displace or supersede, the previous descriptions. All steps in methods described herein, are also relevant for use in any of these methods. All embodiments to methods described herein, also apply for use in such methods.

  • Embodiment 1. A crystalline composition comprising SEQ ID NO:3, and a ligand, wherein said crystalline composition is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°.
  • Embodiment 2. The crystalline composition according to embodiment 1, wherein the ligand is a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof.

  • Embodiment 3. A method for identifying and/or designing a candidate inhibitor of BTK, wherein said method comprises:
  • generating a three-dimensional structure of a binding site of BTK on a computer, wherein the three dimensional structure coordinates possess the unit cell and space group parameters of the crystalline composition of claim 1,
  • employing said three dimensional structure to design or select a candidate inhibitor; and
  • contacting said candidate inhibitor with human BTK and measuring the ability of said candidate inhibitor to bind to BTK.
  • Embodiment 4. The method of embodiment 3, wherein the candidate inhibitor makes a direct covalent bond with Cys 481.
  • Embodiment 5. The method of embodiment 3, wherein the candidate inhibitor makes a hydrogen bond with Lys 430.
  • Embodiment 6. The method of embodiment 3, wherein the candidate inhibitor makes a hydrogen bond with Met 477.
  • Embodiment 7. A method for identifying and/or designing a candidate inhibitor using a human BTK crystal comprising a human BTK protein, wherein said method comprises:
  • a) preparing the crystalline composition of claim 2;
  • b) soaking another candidate inhibitor into the crystalline composition, displacing the compound of Formula (I) to form an inhibitor-crystal complex;
  • c) determining the three-dimensional structure coordinates of the inhibitor-crystal complex prepared in step b);
  • d) using the structure coordinates from step c) to design or select a candidate inhibitor; and
  • e) contacting said candidate inhibitor with human BTK and measuring the ability of said candidate inhibitor to bind to BTK.


Embodiment 8, A method of designing a compound or complex that interacts with a binding pocket or domain selected from the group consisting of:

  • (i) human BTK amino acid residues Leu408, Gly409, Thr410, Gly411, Val416, Ala428, Lys430, Asn439, Met449, Leu452, Val458, Ile472, Thr474, Glu475, Tyr476, Met477, Gly480, Cys481, Asn 484, Arg525, Leu528, Ser538, Asp539, and Phe540 according to Table 2; and
  • (ii) human BTK amino acid residues according to Table 2;
  • comprising the steps of:
  • (a) producing a crystal of BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK comprises SEQ ID NO: 3, wherein said crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) providing the structure coordinates of said binding pocket or domain of the crystal of step (a), according to Table 2, on a computer capable of generating three-dimensional structural information from said structure coordinates, wherein the root mean square deviation of the backbone atoms is not greater than about 2.5Å;
  • (c) using the computer to dock a first chemical entity in part of the binding pocket or domain;
  • (d) docking at least a second chemical entity in another part of the binding pocket or domain;
  • (e) quantifying the association between the first or second chemical entity and part of the binding pocket or domain;
  • (f) optionally repeating steps (c) to (e) with one or more additional chemical entities, selecting the additional chemical entities based on said quantified association of all the first, second and one or more additional chemical entities;
  • (g) optionally, visually inspecting the relationship of the first, second and one or more additional chemical entity to each other in relation to the binding pocket or domain on a computer screen using the three-dimensional graphical representation of the binding pocket or domain and said first, second and one or more additional chemical entities; and
  • (h) assembling the first, second and one or more additional chemical entity into a compound or complex that interacts with said binding pocket or domain by model building.


Embodiment 9. A method for identifying a candidate inhibitor that interacts with a binding site of a BTK protein, comprising the steps of:

  • (a) producing a crystal of BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK comprises SEQ ID NO: 3. wherein the crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) obtaining the stnicture coordinates of amino acids of the crystal of step (a) according to Table 2;
  • (c) generating a three-dimensional model of said BTK protein using the stnicture coordinates of the amino acids generated in step (b), wherein the root mean square deviation from backbone atoms is not more than ±2.0 Å;
  • (d) determining a binding site of said human BTK protein from said three-dimensional model; and
  • (e) performing computer fitting analysis to identify the candidate inhibitor which interacts with said binding site.
  • Embodiment 10, The method according to embodiment 9, further comprising the step of:
  • (f) contacting the identified candidate inhibitor with said BTK protein in order to determine the effect of the inhibitor on BACK activity.
  • Embodiment 11, The method according to embodiment 9, wherein the binding site of said BTK protein determined in step (d) comprises the structure coordinates, according to Table 2, of BTK amino acid residues Leu408, Gly409, Thr410, Gly411, Val416, Ala428, Lys430, Asn439, Met449, Leu452, Val458, Ile472, Thr474, Glu475, Tyr476, Met477, Gly480, Cys481, Asn 484, Arg525, Leu528, Ser538,Asp539, and Phe540, wherein the root mean square deviation is not more than ±2.0 Å.
  • Embodiment 12. A method of using a crystal comprising a BTK binding pocket or domain in an inhibitor screening assay comprising the steps of:
  • (a) producing a crystal of BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK comprises SEQ ID NO: 3, wherein said crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) providing the structure coordinates of said binding pocket or domain of the crystal of step (a), according to Table 2, on a computer capable of generating three-dimensional structural information from said structure coordinates;
  • (c) selecting a potential inhibitor by performing rational drug design with a three-dimensional structure determined for the crystal, wherein said selecting is performed in conjunction with computer modeling;
  • (d) contacting the potential inhibitor with the kinase; and
  • (e) detecting the ability of the potential inhibitor for inhibiting the kinase's enzymatic activity.
  • Embodiment 13. A method of designing a compound or complex that interacts with a BTK binding pocket or domain comprising the steps of:
  • (a) producing a crystal of human BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK comprises SEQ ID NO: 3, wherein said crystal is characterized with space group space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) providing the structure coordinates of said binding pocket or domain of the crystal of step (a), according to Table 2, on a computer capable of generating three-dimensional structural information from said structure coordinates;
  • (c) using the computer to dock a first chemical entity in part of the binding pocket or domain;
  • (d) docking at least a second chemical entity in another part of the binding pocket or domain;
  • (e) quantifying the association between the first or second chemical entity and part of the binding pocket or domain;
  • (f) repeating steps (c) to (e) with at least one additional chemical entity, selecting a first, second and at least one additional chemical entity based on said quantified association of all of said first, second and at least one additional chemical entity;
  • (g) optionally, visually inspecting the relationship of the first, second and at least one additional chemical entity to each other in relation to the binding pocket or domain on a computer screen using the three-dimensional graphical representation of the binding pocket or domain and said first, second and at least one additional chemical entity; and
  • (h) assembling the first, second and at least one additional chemical entity into a compound or complex that interacts with said binding pocket or domain by model building.
  • Embodiment 14. A method for identifying a candidate inhibitor that interacts with a binding site of a BTK protein comprising the steps of:
  • (a) producing a crystal of BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK comprises SEQ ID NO: 3, wherein said crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) determining the three-dimensional structure coordinates of BTK using the crystal. in step (a);
  • (c) using the structure coordinates from step (b) to generate a three-dimensional structure of the crystallized BTK protein produced in step (a);
  • (d) employing said three-dimensional structure to design or select said candidate inhibitor;
  • (e) synthesizing said candidate inhibitor; and
  • (f) contacting said candidate inhibitor with human BTK protein to determine the ability of said candidate inhibitor to bind to human BTK.
  • Embodiment 15. A method for identifying a candidate inhibitor that interacts with a binding site of a human BTK protein comprising the steps of:
  • (a) producing a crystal of BTK in complex with a compound of Formula (I):




embedded image


or pharmaceutically acceptable salts, hydrates, polymorphs or solvates thereof, wherein said BTK comprises SEQ ID NO: 3, wherein said crystal is characterized with space group p 2 21 21 and has unit cell parameters a=38.155±2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°;

  • (b) determining the three-dimensional structure coordinates of13TK using the crystal in step (a);
  • (c) using the structure coordinates from step (b) to generate a three-dimensional structure of a molecular complex comprising a binding site of amino acid residues Leu408, Gly409, Thr410, Gly411, Val416, Ala428, Lys430, Asn439, Met449, Leu452, Val458, Ile472, Thr474, Glu475, Tyr476 Met477, Gly480, Cys481, Asn 484, Arg525, Leu528, Ser538, Asp539, and Phe540 according to Table 2, wherein the root mean square deviation of the backbone atoms is not greater than about 2.5 Å;
  • (d) employing said three-dimensional structure to design or select said candidate inhibitor;
  • (e) synthesizing said candidate inhibitor; and
  • (f) contacting said candidate inhibitor with BTK to determine the ability of said candidate inhibitor to bind to BTK.










Sequence listing



NUMBER OF SEQ ID NOS: 3


LENGTH: 1500


TYPE: DNA


ORGANISM: Homo sapiens


SEQUENCE: 1


SEQ ID NO 1



atgtccccta tactaggtta ttggaaaatt aagggccttg tgcaacccac tcgacttctt






ttggaatatc ttgaagaaaa atatgaagag catttgtatg agcgcgatga aggtgataaa





tggcgaaaca aaaagtttga attgggtttg gagtttccca atcttcctta ttatattgat





ggtgatgtta aattaacaca gtctatggcc atcatacgtt atatagctga caagcacaac





atgttgggtg gttgtccaaa agagcgtgca gagatttcaa tgcttgaagg agcggttttg





gatattagat acggtgtttc gagaattgca tatagtaaag actttgaaac tctcaaagtt





gattttctta gcaagctacc tgaaatgctg aaaatgttcg aagatcgttt atgtcataaa





acatatttaa atggtgatca tgtaacccat cctgacttca tgttgtatga cgctcttgat





gttgttttat acatggaccc aatgtgcctg gatgcgttcc caaaattagt ttgttttaaa





aaacgtattg aagctatccc acaaattgat aagtacttga aatccagcaa gtatatagca





tggcctttgc agggctggca agccacgttt ggtggtggcg accatcctcc aaaatcggat





acgaccgaaa acctgtattt tcagggcctg ggatacggat catgggaaat tgatccaaag





gacctgacct tcttgaagga gctggggact ggacaatttg gggtagtgaa gtatgggaaa





tggagaggcc agtacgacgt ggccatcaag atgatcaaag aaggctccat gtctgaagat





gaattcattg aagaagccaa agtcatgatg aatctttccc atgagaagct ggtgcagttg





tatggcgtct gcaccaagca gcgccccatc ttcatcatca ctgagtacat ggccaatggc





tgcctcctga actacctgag ggagatgcgc caccgcttcc agactcagca gctgctagag





atgtgcaagg atgtctgtga agccatggaa tacctggagt caaagcagtt ccttcaccga





gacctggcag ctcgaaactg tttggtaaac gatcaaggag ttgttaaagt atctgatttc





ggcctgtcca ggtatgtcct ggatgatgaa tacacaagct cagtaggctc caaatttcca





gtccggtggt ccccaccgga agtcctgatg tatagcaagt tcagcagcaa atctgacatt





tgggcttttg gggttttgat gtgggaaatt tactccctgg ggaagatgcc atatgagaga





tttactaaca gtgagactgc tgaacacatt gcccaaggcc tacgtctcta caggcctcat





ctggcttcag agaaggtata taccatcatg tacagttgtt ggcatgagaa agcagatgag





cgtcccactt tcaaaattct tctgagcaat attctagatg tcatggatga agaatcctga





LENGTH: 228


TYPE: PRT


ORGANISM: Homo sapiens


SEQUENCE: 2


SEQ ID NO 2



MSPILGYWKI KGLVQPTRLL LEYLEEKYEE HLYERDEGDK WRNKKFELGL EFPNLPYYID






GDVKLTQSMA IIRYIADKHN MLGGCPKERA EISMLEGAVL DIRYGVSRIA YSKDFETLKV





DFLSKLPEML KMFEDRLCHK TYLNGDHVTH PDFMLYDALD VVLYMDPMCL DAFPKLVCFK





KRIEAIPQID KYLKSSKYIA WPLQGWQATF GGGDHPPKSD TTENLYFQ





LENGTH: 271


TYPE: PRT


ORGANISM: Homo sapiens


SEQUENCE: 3


SEQ ID NO 3



GLGYGSWEID PKDLTFLKEL GTGQFGVVKY GKWRGQYDVA IKMIKEGSMS EDEFIEEAKV






MMNLSHEKLV QLYGVCTKQR PIFIITEYMA NGCLLNYLRE MRHRFQTQQL LEMCKDVCEA





MEYLESKQFL HRDLAARNCL VNDQGVVKVS DFGLSRYVLD DEYTSSVGSK FPVRWSPPEV





LMYSKFSSKS DIWAFGVLMW EIYSLGKMPY ERFTNSETAE HIAQGLRLYR PHLASEKVYT





IMYSCWHEKA DERPTFKILL SNILDVMDEE S





Claims
  • 1. A crystalline composition comprising SEQ ID NO:3, and a ligand, wherein said crystalline composition is characterized with space group p 2 21 21 and has unit cell parameters a=38.155 2Å; b=72.394±2Å; c=103.946±2Å; a=90°; b=90°; g=90°.
  • 2. The crystalline composition according to claim 1, wherein the ligand is a compound of Formula (I):
  • 3. A method for identifying and/or designing a candidate inhibitor of BTK, wherein said method comprises: generating a three-dimensional structure of a binding site of BTK on a computer, wherein the three dimensional structure coordinates possess the unit cell and space group parameters of the crystalline composition of claim 1,employing said three dimensional structure to design or select a candidate inhibitor; andcontacting said candidate inhibitor with human BTK and measuring the ability of said candidate inhibitor to bind to BTK.
  • 4. The method of claim 3, wherein the candidate inhibitor makes a direct covalent bond with Cys 481.
  • 5. The method of claim 3, wherein the candidate inhibitor makes a hydrogen bond with Lys 430.
  • 6. The method of claim 3, wherein the candidate inhibitor makes a hydrogen bond with Met 477.
  • 7. A method for identifying and/or designing a candidate inhibitor using a human BTK crystal comprising a human BTK protein, wherein said method comprises: a) preparing the crystalline composition of claim 2;b)soaking another candidate inhibitor into the crystalline composition, displacing the compound of Formula (I) to form an inhibitor-crystal complex;c) determining the three-dimensional structure coordinates of the inhibitor-crystal complex prepared in step b);d) using the structure coordinates from step c) to design or select a candidate inhibitor; ande) contacting said candidate inhibitor with human BTK and measuring the ability of said candidate inhibitor to bind to BTK.
  • 8. A method of designing a compound or complex that interacts with binding pocket or domain selected from the group consisting of: (i) human BTK amino acid residues Leu408, Gly409, Thr410, Gly411, Val416, Ila428, Lys430, Asn439, Met449, Leu452, Val458, Ile472, Thr474, Glu475, Tyr476, Met477, Gly480, Cys481, Asn 484, Arg525, Leu528, Ser538, Asp539, and Phe540 according to Table 2; and(ii) human BTK amino acid residues according to Table 2;comprising the steps of:(a) producing a crystal of BTK in complex with a compound of Formula (I):
  • 9. A method for identifying a candidate inhibitor that interacts with a binding site of a BTK protein, comprising the steps of: (a) producing a crystal of BTK in complex with a compound of Formula (I):
  • 10. The method according to claim 9, further comprising the step of: (f) contacting the identified candidate inhibitor with said BTK protein in order to determine the effect of the inhibitor on BTK activity.
  • 11. The method according to claim 9, wherein the binding site of said BTK protein determined in step (d) comprises the structure coordinates, according to Table 2, of BTK amino acid residues Leu408, Gly409, Thr410, Gly411, Val416, Ala428, Lys430, Asn439, Met449, Leu452, Val458, Ile472, Thr474, Glu475, Tyr476, Met477, Gly480, Cys481, Asn 484, Arg525, Leu528, Ser538, Asp539, and Phe540, wherein the root mean square deviation is not more than +2.0 Å.
  • 12. A method of using a crystal comprising a BTK binding pocket or domain in an inhibitor screening assay comprising the steps of: (a) producing a crystal of BTK in complex with a compound of Formula (I):
  • 13. A method of designing a compound or complex that interacts with a BTK binding pocket or domain comprising the steps of: (a) producing a crystal of human BTK in complex with a compound of Formula (I):
  • 14. A method for identifying a candidate inhibitor that interacts with a binding site of a BTK protein comprising the steps of: (a) producing a crystal of BTK in complex with a compound of Formula (I):
  • 15. A method for identifying a candidate inhibitor that interacts with a binding site of a human BTK protein comprising the steps of: (a) producing a crystal of BTK in complex with a compound of Formula (I):
CROSS-REFERENCE TO OTHER APPLICATIONS

This application claims priority to U.S. Provisional Application No. 63/287,228 filed on Dec. 8, 2021 titled “CRYSTAL STRUCTURE OF BTK PROTEIN AND BINDING POCKETS THEREOF” which is incorporated herein by reference in its entirety.

Provisional Applications (1)
Number Date Country
63287228 Dec 2021 US