CRYSTAL STRUCTURE OF GLYPHOSATE ACETYLTRANSFERASE (GLYAT) AND METHODS OF USE

Information

  • Patent Application
  • 20120288914
  • Publication Number
    20120288914
  • Date Filed
    July 07, 2010
    14 years ago
  • Date Published
    November 15, 2012
    12 years ago
Abstract
The presently disclosed subject matter provides compositions and methods for evaluating the potential of candidate polypeptides to associate with glyphosate with a higher binding affinity, higher binding specificity, or both or to have N-acetyltransferase activity with a higher catalytic rate when compared to a native glyphosate acetyltransferase (GLYAT) polypeptide through the provision and comparison of three-dimensional molecular structures of the candidate polypeptides and the GLYAT polypeptides provided herein. The methods further provide for identification of polypeptides with these advantageous properties using the three-dimensional molecular structures of GLYAT polypeptides.
Description

The official copy of the sequence listing is submitted electronically via EFS-Web as an ASCII formatted sequence listing with a file named 389762SEQLIST.TXT, created on Jul. 7, 2010, and having a size of 4.14 kilobytes and is filed concurrently with the specification. The sequence listing contained in this ASCII formatted document is part of the specification and is herein incorporated by reference in its entirety.


FIELD OF THE INVENTION

The present invention relates to the fields of molecular biology, three-dimensional structural determinations of polypeptides, and their methods of use.


BACKGROUND OF THE INVENTION

Transgenic crops carrying herbicide resistance genes allow non-selective, broad-range herbicides such as glufosinate and glyphosate to be used as selective herbicides, effectively controlling a broader spectrum of weed species, and at the same time, minimizing injury to the crops (Castle et al. (2006) Curr. Opin. Biotechnol. 17(2):105-112). Glyphosate inhibits 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase, an enzyme in the aromatic amino acid biosynthetic pathway essential for plants but absent in animals. The transgene present in most glyphosate-tolerant crops codes for a glyphosate-insensitive form of EPSPS, from Agrobacterium sp. (Padgette et al. (1996) In S. O. Duke (ed) Herbicide-Resistant Crops: Agricultural, Economic, Environmental, Regulatory, and Technological Aspects, Lewis Publishers: 53-84). An alternative glyphosate resistance strategy was recently reported (Castle et al. (2004) Science 304:1151-1154), in which glyphosate is converted to non-herbicidal N-acetylglyphosate, catalyzed by glyphosate N-acetyltransferase (GLYAT), optimized from B. licheniformis parental enzymes. In their native form, these enzymes exhibit acetylation activity to glyphosate in vitro but are unable to confer tolerance to transgenic organisms. High-efficiency variants exhibiting up to ˜5,000 fold enhancement in kcat/Km were obtained through multiple iterations of DNA shuffling.


Compositions and methods are needed that provide a clear understanding of how the tertiary structure of GLYAT variants impacts enzymatic activity. Such methods and compositions can be used to further develop GCN5-related N-acetyltransferases (GNATS) with improved enzymatic or substrate binding activity.


BRIEF SUMMARY OF THE INVENTION

Compositions and methods for evaluating and identifying polypeptides that have an increased affinity or specificity for glyphosate when compared to a native glyphosate N-acetyltransferase (GLYAT) polypeptide are described. Further provided herein are methods for evaluating and identifying polypeptides having greater N-acetyltransferase activity when compared to a native N-acetyltransferase enzyme. Such methods involve the comparison of a three-dimensional molecular structure of region(s) of a GLYAT polypeptide with a three-dimensional molecular structure of a candidate polypeptide to evaluate the potential of the candidate polypeptide to bind to glyphosate with a higher binding affinity or specificity or to have higher activity than native GLYAT proteins. The methods further provide for the modification of the primary structure of the candidate polypeptide to maximize a similarity or relationship between the three-dimensional molecular structures of the GLYAT polypeptide region(s) and the candidate polypeptide in order to identify polypeptides with a higher binding affinity or activity for glyphosate.


Compositions include a computer-readable storage medium comprising the atomic coordinates of GLYAT polypeptide variants bound to glyphosate and acetyl coenzyme A (acetyl coA).





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1A and FIG. 1B provide three-dimensional representations of the liganded structures of the R7 (FIG. 1A) and R11 (FIG. 1B) variant GLYAT polypeptides with all residue substitutions of R7 compared to the wild-type and R11 compared to R7. The altered residues and ligands are shown with ball-and-stick figures. The structure of FIG. 1A is from a snapshot of a simulation of the R7 variant with AcCoA and glyphosate and the substitutions represent changes relative to the native GLYAT polypeptide. The structure of FIG. 1B is from a snapshot of a simulation of the R11 variant with AcCoA and 3PG and substitutions represent changes relative to the R7 variant.



FIG. 2A and FIG. 2B provide the molecular structure, atom names, and partial charges for glyphosate (FIG. 2A) and D-2-amino-3-phosphonopropionic acid (D-AP3; FIG. 2B). The partial charges used for the molecular modeling and MD simulations were calculated from the web server vcharge (Gilson et al (2003) J. Chem. Inf. Comput. Sci. 43(6):1982-1997). FIG. 2C and FIG. 2D show the structure conformation and atom names of 3PG (FIG. 2C) and AcCoA (FIG. 2D) in PDB:2DJJ (Siehl et al. (2007) J Biol Chem 282(15):11446-11455).



FIG. 3A and FIG. 3B provide graphs demonstrating the root mean square deviation (RMSD) and root mean square fluctuations (RMSF), respectively, for unliganded simulations. FIG. 3A graphs the heavy atom RMSD versus simulation time in picoseconds (ps). The RMSD was calculated by superimposing trajectory frames into the initial structure. All the simulations were carried out in unliganded form. The dashed line represents the R11 GLYAT variant; the solid black line represents the R7 GLYAT variant; and the gray line represents the YVII GLYAT polypeptide. FIG. 3B provides the Cα B factor profile versus residue number in the GLYAT sequence. The B factor was converted from the RMSF, B=8π<Δr2>/3 and the RMSF was calculated from the trajectory between 3 and 5 nanoseconds (ns). The dashed line represents the R11 GLYAT variant; the solid line represents the R7 GLYAT variant; and gray line represents the YVII GLYAT polypeptide. The secondary structures were assigned with DSSP based on the initial structure.



FIG. 4A provides a three-dimensional representation of the Ca trace of the open conformation of R7 GLYAT superimposed over that of the closed conformation. The gray model represents the closed conformation, which was a snapshot taken from the trajectory at ˜500 picoseconds (ps) while the black model represents the open conformation at ˜4,200 ps. The large open hole near the center of the structure is the ligand binding site. To easily monitor the openness of the active site, a distance between Q24Cα and P134Cα is marked as a dashed line. FIG. 4B shows a graph describing the openness of the glyphosate binding site as a function of simulation time. The y-axis of the graph of FIG. 4B is the distance between Q24Cα and P134Cα (as shown in FIG. 4A). A solid line represents the R7 GLYAT variant; a dashed line represents the R11 GLYAT variant; and a gray line represents the YVII GLYAT polypeptide.



FIG. 5A and FIG. 5B show a three-dimensional representation of the inter-subdomain motions of the R7 GLYAT polypeptide variant. The three superimposed structures represent the most closed, the most open, and the middle frames of trajectory projection along the first two eigenvectors. The thin black line represents the most closed form; the thick black line represents the most open form; and the gray line represents the intermediate structure. The eigenvalues and eigenvectors were calculated with principal component analysis (PCA) of the R7 trajectory ensemble before 7 nanoseconds (ns). FIG. 5A depicts the trajectory projection against the first most significant eigenvector. FIG. 5B depicts the trajectory projection against the second eigenvector.



FIG. 6A presents a three-dimensional representation of the inter-domain motions versus the wedge angles. Pseudo-dihedral angles used to measure the wedge configuration are the wedge opening angle (α+β−180°) and the wedge twisting angle (θ). FIGS. 6B-6G present graphs depicting the wedge angle population distribution of trajectory ensembles of 10 nanoseconds (ns). The x-axis of the graphs is the angle in degrees while the y-axis is the relative population. The line represents the normal distribution fitting curve with the mean (r) and standard deviation (a) provided.



FIG. 7 shows a typical β hairpin conformation taken from a snapshot of a YVII GLYAT polypeptide variant simulation at 5 ns. The β hairpin connecting β6 and β7 covers glyphosate's phosphono group and provides H138 as the catalytic base. The four tip residues (IPPI135) forms a Vla β-turn. Proline 134 adopts a cis-peptide conformation and the dashed lines show hydrogen bond interactions.



FIG. 8 shows a stereo view of the 3PG and glyphosate binding site conformations in the crystal structure and a molecular dynamics simulation, respectively. The single black line represents the crystal structure with 3-phosphoglycerate (3PG) in the glyphosate binding site, from PDB:2JDD. The glyphosate structure was taken from a snapshot of a trajectory at 700 ps. The active site and the wedge formed by β4/5 strands in the snapshot model are represented with a double-line. Glyphosate and the acetyl part of AcCoA are shown with sticks and balls (middle). The two isolated circles are water molecules and dashed lines represent hydrogen bonds involved in glyphosate recognition.





DETAILED DESCRIPTION OF THE INVENTION

Provided herein is the structure of the optimized R7 or R11 variant of glyphosate N-acetyltransferase (GLYAT) bound to glyphosate and acetyl coA. Table 18 provides the atomic coordinates of GLYAT R7 bound to glyphosate and acetyl coA, whereas Table 19 provides the atomic coordinates of GLYAT R11 bound to glyphosate and acetyl coA. Compositions therefore include a computer readable storage medium as well as an electronic representation of these structures.


Further provided herein are methods for evaluating the potential of a candidate polypeptide to associate with glyphosate with a higher binding affinity and/or higher binding specificity than a native GLYAT. The method comprises providing a three-dimensional molecular structure of a candidate polypeptide and comparing the candidate polypeptide molecular structure to a three-dimensional molecular structure of at least a substrate binding cavity of a GLYAT polypeptide comprising the atomic coordinates provided herein or a variant thereof to determine if the candidate polypeptide comprises the GLYAT substrate binding cavity or variant thereof. In some embodiments of the methods of the invention, the molecular structure of the GLYAT polypeptide further comprises a GNAT wedge joining region. In these embodiments, the candidate polypeptide can be a polypeptide suspected of or having N-acetyltransferase activity. The molecular structure of the candidate polypeptide is compared to the GNAT wedge joining region of the GLYAT polypeptide to determine if the candidate polypeptide comprises the wedge joining region to evaluate the potential of the candidate polypeptide to have N-acetyltransferase activity with a higher catalytic rate (Kcat), a higher catalytic efficiency (KM/kcat), or both for glyphosate when compared to a native GLYAT polypeptide. The provided molecular structures of the candidate polypeptide and GLYAT polypeptide are determined with the polypeptides bound to glyphosate and an acetyl donor (e.g., acetyl coA).


Described methods involve comparing the three-dimensional molecular structures of a GLYAT polypeptide and a candidate polypeptide to evaluate the substrate binding affinity, specificity or N-acetyl transferase activity of the candidate polypeptide. As used herein, a polypeptide having N-acetyltransferase activity refers to a polypeptide having the ability to catalyze the transfer of an acetyl group from acetyl CoA (AcCoA) or another acetyl donor to an amine (e.g., primary amine, secondary amine). For example, glyphosate N-acetyltransferase (GLYAT) can transfer an acetyl group from acetyl CoA to the nitrogen of glyphosate. As used herein, a GLYAT polypeptide or enzyme comprises a polypeptide which has glyphosate-N-acetyltransferase activity (“GLYAT” activity), i.e., the ability to catalyze the acetylation of glyphosate. In specific embodiments, a polypeptide having glyphosate-N-acetyltransferase activity can transfer the acetyl group from acetyl CoA to the N of glyphosate. Some GLYAT polypeptides are also capable of catalyzing the acetylation of glyphosate analogs and/or glyphosate metabolites, e.g., aminomethylphosphonic acid. Methods to assay for this activity are disclosed, for example, in U.S. Application Publication Nos. 2003/0083480 and 2004/0082770, and U.S. Pat. No. 7,405,074, International Application Publication Nos. WO2005/012515, WO2002/36782, and WO2003/092360, each of which is herein incorporated by reference in its entirety.


The term “GLYAT polypeptide” can refer to native GLYAT polypeptides as well as variants thereof. As used herein, a “native” GLYAT polynucleotide or polypeptide comprises a naturally occurring nucleotide sequence or amino acid sequence, respectively, that encodes or comprises a polypeptide having GLYAT activity. It should be noted, however, that the term “native GLYAT polypeptide” can be used to refer to GLYAT sequences found in nature that have been expressed recombinantly or used in other molecular biological methods. Non-limiting examples of native GLYAT polypeptides include GLYAT polypeptides from Bacillus licheniformis, including the 401, B6, and DS3 polypeptides that are encoded by the genes found in GenBank under the accession numbers AX543338, AX543339, and AX543340, respectively (Castle et al. (2004) Science 304:1151-1154, which is herein incorporated by reference in its entirety). Non-limiting variants of GLYAT polypeptides are set forth in U.S. Application Publication No. 2004/0082770 and U.S. Application. Publication No. 2005/0246798, both of which are herein incorporated by reference in their entirety.


In embodiments, a recombinant GNAT polypeptide is described having an array of amino acid side chains which together comprise a glyphosate acetyltransferase active site, said active site being composed of: (i) at least the atomic coordinates of Table 1 or Table 2; or (ii) a structural variant of the substrate binding cavity of part (i), wherein said structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 1 or Table 2 of not more than 2 Å, wherein said GNAT polypeptide has less than about 60% sequence identity to the native GLYAT as set forth in SEQ ID NO: 3. In embodiments, the recombinant GNAT polypeptide has less than about 55%, 50%, 45%, 40%, 35%, 30%, 25% or 20% sequence identity to SEQ ID NO: 3.


In embodiments, a recombinant GNAT polypeptide is described having an array of amino acid side chains which together comprise a glyphosate acetyltransferase active site, said active site being composed of: (i) at least the atomic coordinates of Table 7 or Table 8; or (ii) a structural variant of the GNAT wedge joining region of part (i), wherein said structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 7 or Table 8 of not more than 2 Å, wherein said GNAT polypeptide has less than about 60% sequence identity to the native GLYAT as set forth in SEQ ID NO: 3. In embodiments, the recombinant GNAT polypeptide has less than about 55%, 50%, 45%, 40%, 35%, 30%, 25% or 20% sequence identity to SEQ ID NO: 3.


The active sites described herein can be combined with any polypeptide scaffold. Thus, a de novo polypeptide or protein can be designed having the active site described herein.


The methods of the invention also encompass the use of three-dimensional molecular structures of fragments and variants of GLYAT and candidate polypeptides. By “fragment” is intended a portion of the polynucleotide or a portion of the amino acid sequence and hence polypeptide encoded thereby. In general, three-dimensional molecular structures of polypeptides are determined with the entire polypeptide sequence because tertiary structures of the polypeptide can comprise interactions between amino acid residues that are distantly located within the primary structure of the polypeptide. In some embodiments, however, a molecular structure of a fragment of a polypeptide (candidate polypeptide or GLYAT polypeptide) is provided. Fragments of a polynucleotide may encode biologically active portions of GLYAT polypeptides. A biologically active fragment of a GLYAT polypeptide is one that retains glyphosate N-acetyltransferase activity or retains the ability to bind to glyphosate, acetyl CoA, or both.


A fragment of a GLYAT polynucleotide that encodes a biologically active portion of a GLYAT polypeptide will encode at least 15, 25, 30, 50, 100, 150, 200, or 250 contiguous amino acids, or up to the total number of amino acids present in a full-length GLYAT polypeptide. A biologically active portion of a GLYAT polypeptide can be prepared by isolating a portion of one of the native or variant GLYAT polynucleotides, expressing the encoded portion of the GLYAT polypeptide (e.g., by recombinant expression in vitro), and assessing the activity of the encoded portion of the GLYAT. Polynucleotides that are fragments of a GLYAT nucleotide sequence comprise at least 15, 20, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 800, 900, 1,000, 1,100, 1,200, 1,300, or 1,400 contiguous nucleotides, or up to the number of nucleotides present in a full-length GLYAT polynucleotide.


Molecular structures of variant GLYAT polypeptides are provided. As used herein, a variant GLYAT polypeptide is a polypeptide having GLYAT activity that is not found in nature without human intervention. A variant can be encoded by a variant polynucleotide that comprises a deletion and/or addition of one or more nucleotides at one or more internal sites within the native GLYAT polynucleotide and/or a substitution of one or more nucleotides at one or more sites in the native polynucleotide. For polynucleotides, conservative variants include those sequences that, because of the degeneracy of the genetic code, encode the amino acid sequence of one of the native GLYAT polypeptides. Variant polynucleotides include synthetically derived polynucleotides, such as those generated, for example, by using site-directed mutagenesis but which still encode a polypeptide having GLYAT activity. Generally, variants of a particular polynucleotide will have at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to that particular polynucleotide as determined by sequence alignment programs and parameters described elsewhere herein. The mutations that will be made in the polynucleotide encoding the variant must not place the sequence out of reading frame and optimally will not create complementary regions that could produce secondary mRNA structure.


Variants of a particular native. GLYAT polynucleotide (i.e., the reference polynucleotide) can also be evaluated by comparison of the percent sequence identity between the polypeptide encoded by a variant polynucleotide and the polypeptide encoded by the reference polynucleotide. Percent sequence identity between any two polypeptides can be calculated using sequence alignment programs and parameters described elsewhere herein. Where any given pair of polynucleotides is evaluated by comparison of the percent sequence identity shared by the two polypeptides they encode, the percent sequence identity between the two encoded polypeptides is at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity.


“Variant” protein is intended to mean a protein derived from the reference protein (i.e., native GLYAT polypeptide) by deletion or addition of one or more amino acids at one or more internal sites in the reference protein and/or substitution of one or more amino acids at one or more sites in the reference protein. Variant proteins encompassed by the present invention are biologically active, that is they continue to possess the desired biological activity of the reference protein, that is, glyphosate N-acetyl transferase activity or the ability to bind to glyphosate and/or acetyl coA as described herein. Biologically active variants of a GLYAT protein of the invention will have at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to the amino acid sequence for the native protein as determined by sequence alignment programs and parameters described elsewhere herein. A biologically active variant of a protein may differ from that protein by as few as 1-15 amino acid residues, as few as 1-10, such as 6-10, as few as 5, as few as 4, 3, 2, or even 1 amino acid residue.


The proteins may be altered in various ways including amino acid substitutions, deletions, truncations, and insertions. Methods for such manipulations are generally known in the art. For example, amino acid sequence variants and fragments of the GLYAT proteins can be prepared by mutations in the DNA. Methods for mutagenesis and polynucleotide alterations are well known in the art. See, for example, Kunkel (1985) Proc. Natl. Acad. Sci. USA 82:488-492; Kunkel et al. (1987) Methods in Enzymol. 154:367-382; U.S. Pat. No. 4,873,192; Walker and Gaastra, eds. (1983) Techniques in Molecular Biology (MacMillan Publishing Company, New York) and the references cited therein. Guidance as to appropriate amino acid substitutions that do not affect biological activity of the protein of interest may be found in the model of Dayhoff et al. (1978) Atlas of Protein Sequence and Structure (Natl. Biomed. Res. Found., Washington, D.C.), herein incorporated by reference. Conservative substitutions, such as exchanging one amino acid with another having similar properties, may be optimal.


The deletions, insertions, and substitutions of the protein sequence encompassed herein are not expected to produce radical negative changes in the characteristics of the protein. However, to confirm the effect of the substitution, deletion, or insertion in advance of doing so, one skilled in the art will appreciate that the effect may be evaluated by routine screening assays. Assays for measuring the acetylation of glyphosate are disclosed, for example, in U.S. Application Publication Nos. 2003/0083480 and 2004/0082770, and U.S. Pat. No. 7,405,074, and International Application Publication Nos. WO2005/012515 and WO2002/36782, each of which are herein incorporated by reference in its entirety.


Variant polynucleotides and proteins also encompass sequences and proteins derived from a mutagenic and recombinogenic procedure such as DNA shuffling. With such a procedure, one or more different GLYAT coding sequences can be manipulated to create a new GLYAT possessing the desired properties (having GLYAT activity). In this manner, libraries of recombinant polynucleotides are generated from a population of related sequence polynucleotides comprising sequence regions that have substantial sequence identity and can be homologously recombined in vitro or in vivo. For example, using this approach, sequence motifs encoding a domain of interest may be shuffled between a first GLYAT gene and other known GLYAT genes to obtain a new gene coding for a protein with an improved property of interest, such as a decreased KM. Strategies for such DNA shuffling are known in the art. See, for example, Stemmer (1994) Proc. Natl. Acad. Sci. USA 91:10747-10751; Stemmer (1994) Nature 370:389-391; Crameri et al. (I 997) Nature Biotech. 15:436-438; Moore et al. (1997) J. Mol. Biol. 272:336-347; Zhang et al. 0997) Proc. Natl. Acad. Sci. USA 94:4504-4509; Crameri et al. (1998) Nature 391:288-291; and U.S. Pat. Nos. 5,605,793 and 5,837,458.


Such gene shuffling procedures were used to identify optimized variants of GLYAT polypeptides with enhanced binding, specificity, or catalytic activities (Castle et al. (2004) Science 304:1151-1154). These optimized GLYAT polypeptides and the polynucleotides encoding them are known in the art and particularly disclosed, for example, in U.S. Application Publication Nos. 2003/0083480, 2004/0082770, and 2008/0234130 and U.S. Pat. No. 7,405,074, each of which is herein incorporated by reference in its entirety.


The GLYAT polypeptide used to generate the atomic coordinates provided in herein is a GLYAT R7 variant resulting from seven rounds of DNA shuffling of a native GLYAT polypeptide (Keenan et al. (2005) Proc Natl Acad Sci USA 102:8887-8892, which is herein incorporated by reference in its entirety) for which a crystal structure was determined (Siehl et al. (2007) J Biol Chem 282:11446-11455; Protein Databank (PDB):2JDC; PDB:2JDD; each of which is herein incorporated by reference in its entirety). In some embodiments, the R7 GLYAT variant polypeptide comprises the sequence set forth in SEQ JD NO: 1. The R7 GLYAT variant exhibits an improved catalytic efficiency for glyphosate in comparison to native GLYAT polypeptides (Siehl et al. (2007) J Biol Chem 282:11446-11455, which is herein incorporated by reference in its entirety). Thus, in some embodiments, the GLYAT polypeptide for which a molecular structure is provided for comparison to the structure of a candidate polypeptide has the sequence set forth in SEQ ID NO: 1. In other embodiments, the molecular structure represents an R11 GLYAT variant from the eleventh round of DNA shuffling (Keenan et al. (2005) Proc Natl Acad Sci USA 102:8887-8892) referred to by Siehl et al. (2007) J Biol Chem 282:11446-11455. In some embodiments, the R 11 GLYAT variant polypeptide has the sequence set forth in SEQ ID NO: 2.


Described methods are used to evaluate candidate polypeptides to determine if the polypeptides bind glyphosate with a higher binding affinity or greater specificity or if they exhibit greater catalytic activity than a native GLYAT polypeptide. As used herein, a “candidate polypeptide” refers to polypeptides that are being evaluated in the methods of the invention. The candidate polypeptide can be a naturally-occurring polypeptide or one that is not found in nature. Naturally-occurring candidate polypeptides may be from any organism, including but not limited to, a bacterium, fungus, animal, or human. The non-naturally occurring candidate polypeptide may have resulted from the mutagenesis or gene shuffling of a naturally-occurring sequence and may have been produced through recombinant or synthetic means.


In some embodiments, the candidate polypeptide has been shown to exhibit N-acetyltransferase activity or has sequence similarity to an N-acetyltransferase enzyme known in the art. Several families of N-acetyltransferase polypeptides are known. Such families include the GCN5 family, the p300/CBP family, the TAF250 family, the SRC) family, the MOZ family, and the N-terminal acetyltransferases (NAT) family. See, for example, Kouzarides et al., (2002) The EMBO J. 19:1176-1179; Kouzarides (1999) Current Opinions in Genetics Development 79:40-48, and Polevoda et al. (2003) J. Mol. Biol. 325:595-622, each of which are herein incorporated by reference in its entirety. Another family of N-acetyltransferases includes the GCN5-related N-acetyltransferases. See, INTERPRO Acc. No. IPRO00182, PFAM Accession No. PF00583 and Prosite profile PS51186. The GNAT superfamily includes aminoglycoside N-acetyltransferases, serotonin N-acetyltransferase (also known as aryl alkylamine N-acetyltransferase or AANAT), phosphinothricin acetyltransferase (PAT); glucosamine-6-phosphate N-acetyltransferase, glyphosate-N-acetyltransferase, the histone acetyltransferases, mycothiol synthase, protein N-myristoyltransferase, and the Fern family of amino acyl transferases (see Dyda et al, (2000) Annu. Rev. Biophys. Biomol. Struct. 29:81-103, which is herein incorporated in its entirety).


In some of these embodiments, the candidate polypeptide shares at least 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or greater sequence identity with a known N-acetyltransferase enzyme over the full-length of the polypeptide or with a fragment of the polypeptide. The candidate polypeptide and known N-acetyltransferase enzyme may share sequence similarity over at least about 20, 30, 40, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000 or more contiguous amino acids. The candidate polypeptide or the N-acetyltransferase with which a candidate polypeptide shares sequence identity may be a known member of the GCN5-related N-acetyltransferase (GNAT) superfamily of enzymes. In some embodiments, the three-dimensional molecular structure of the candidate polypeptide comprises a GNAT wedge. As used herein, a GNAT wedge comprises a V-shaped wedge formed by two central parallel beta strands splaying apart at the middle point (see β4 and β5 in FIG. 1).


In some embodiments, the candidate polypeptide exhibits a similar primary structure to a native or variant GLYAT polypeptide. For example, the candidate polypeptide may share at least 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or greater sequence identity with a native GLYAT polypeptide or an optimized variant GLYAT polypeptide.


In some embodiments, the candidate polypeptide exhibits a similar primary structure to a native or variant phosphinothricin acetyltransferase (PAT) polypeptide, another enzyme capable of herbicide detoxification (De Block et al. (1987) EMBO J. 6:2513-2518). PAT polypeptides acetylate and detoxify phosphinothricin herbicides, such as glufosinate. Interestingly, GLYAT and PAT not only carry out the same acetylation reaction, but also share similar three-dimensional structures. Despite sequence divergence, the structural alignment between GLYAT PDB:2bsw (Keenan et al. (2005) Proc. Natl. Acad. Sci. USA 102(25):8887-8892) and PAT PDB:1 yr0 (Berman et al. (2000) Nucleic Acids Research 28:235-242) shows the two structures possessing the same fold with a Dali Z-score of 14.7 and an RMSD of 2.2 Å (Holm & Sander (1996) Science 273(5275):595-603). Furthermore, both glyphosate and glufosinate are similar in their chemical composition and structure.


Three-dimensional molecular structures of a GLYAT polypeptide and a candidate polypeptide are described herein. As used herein, the terms “molecular structure” refer to the arrangement of atoms within a particular object (e.g., polypeptide). Polypeptides can comprise a primary, secondary, and a tertiary molecular structure. A primary structure of a polypeptide consists of the linear arrangement of its amino acid residues, which is described by the amino acid sequence of the polypeptide. The secondary structure of a polypeptide consists of local inter-residue interactions by hydrogen bonds between backbone amide and carbonyl groups. The most common secondary structures are alpha helices and beta sheets. The tertiary structure represents the folding of the polypeptide chain, combining the elements of secondary structure, linked by turns and loops imparted by non-bond interactions and disulfide bonds. A three-dimensional molecular structure refers to the three-dimensional arrangement of atoms within a particular object (e.g., the three-dimensional structure of the atoms that comprise a polypeptide, and, optionally, the atoms that comprise a substrate that interacts with the polypeptide). In reference to a polypeptide, a three-dimensional molecular structure of a polypeptide is a representation of the tertiary structure of the polypeptide.


As used herein, a “beta-sheet” refers to two or more polypeptide chains (or beta-strands) that run alongside each other and are linked in a regular manner by hydrogen bonds between the main chain C═O and N—H groups. Therefore all hydrogen bonds in a beta-sheet are between different segments of a polypeptide. Hydrogen bonds in anti-parallel sheets are perpendicular to the chain direction and spaced evenly as pairs between strands. Hydrogen bonds in parallel sheets are slanted with respect to the chain direction and spaced evenly between strands.


As used herein, an “alpha helix” refers to the most abundant helical conformation found in globular proteins and the term is used in accordance with the standard meaning of the art. In an alpha helix, all amide protons point toward the N-terminus and all carbonyl oxygens point toward the C-terminus. Hydrogen bonds within an alpha helix also display a repeating pattern in which the backbone C═O of residue X (wherein X refers to ally amino acid) hydrogen bonds to the backbone H—N of residue X+4. The alpha helix is a coiled structure characterized by 3.6 residues per turn, and translating along its axis 1.5 Å per amino acid. Thus the pitch is 3.6×1.5 or 5.4 Å. The screw sense of alpha helices is always right-handed.


As used herein, a “loop” refers to any other conformation of amino acids (i.e. not a helix, strand or sheet). Additionally, a loop may contain hydrogen bond interactions between amino acids, including the side chains of the amino acids, but not in a repetitive, regular fashion.


A three-dimensional molecular structure of a polypeptide or a fragment thereof is most often provided through a solved structure based on X-ray diffraction data from a crystal of the polypeptide. One of skill in the art will also appreciate that, along with X-ray crystallography, three-dimensional molecular structures can also be generated using nuclear magnetic resonance (NMR) spectroscopy. Although NMR spectroscopy advantageously allows for the structure of a particular polypeptide to be determined in solution, the utility of NMR for structure determination is limited to very small proteins. Methods for structure determination using NMR can be found, for example, in Wüthrich (1986) NMR of proteins and nucleic acids, Wiley New York; Wüthrich (1990) J Biol Chem 265:22059-22062; Cavanagh et al, (1996) Protein NMR Spectroscopy, Academic Press; San Diego), each of which is herein incorporated by reference in its entirety.


In some embodiments, the three-dimensional molecular structures of a GLYAT polypeptide, a candidate polypeptide, or both are determined using X-ray crystallography, wherein the polypeptides are purified, crystallized, and exposed to an X-ray beam to generate diffraction data from which a three-dimensional molecular structure can be determined.


As used herein, the term “crystal” refers to any three-dimensional ordered array of molecules that diffracts X-rays. In order to generate crystals of a polypeptide or for structure determination via NMR spectroscopy, the polypeptide must be purified and concentrated. The polypeptide can be naturally or synthetically derived or produced by recombinant means. For example, a bacterial host, such as E. coli, can be used to express large quantities of the GLYAT or candidate polypeptide. The polypeptide can be purified by methods known in the art, including, but not limited to, selective precipitation, dialysis, chromatography, and/or electrophoresis. In some embodiments, the GLYAT polypeptide is purified using CoA-agarose affinity chromatography and gel filtration. Purification may be monitored by SDS-PAGE or by measuring the ability of a fraction to perform the catalytic activity. Any standard method of measuring acetyltransferase activity may be used.


For certain embodiments, it may be desirable to express the polypeptide as a fusion protein. In specific non-limiting embodiments, the fusion protein comprises a tag which facilitates purification of the GLYAT or candidate polypeptide. As referred to herein, a “tag” is any added series of amino acids which are provided in a protein at either the C-terminus, the N-terminus, or internally that contributes to the identification or purification of the protein. Suitable tags include but are not limited to tags known to those skilled in the art to be useful in purification including but not limited to a His tag, flag tag, glutathione-s-transferase, and maltose binding protein. Such tagged proteins may also be engineered to comprise a cleavage site, such as a thrombin, enterokinase or factor X cleavage site, for ease of removal, of the tag before, during or after purification. Vector systems which provide a tag and a cleavage site for removal of the tag are particularly useful to make expression constructs for expression and purification of the polypeptide. A tagged polypeptide may be purified by immuno-affinity or conventional chromatography, including but not limited to, chromatography employing the following:


glutathione-sepharose (Amersham-Pharmacia, Piscataway, N.J.) or an equivalent resin, nickel or cobalt-purification resins, nickel-agarose resin, anion exchange chromatography, cation exchange chromatography, hydrophobic resins, gel filtration, antibody-conjugated resin, and reverse phase chromatography. In some embodiments, after purification, at least about 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, or greater of total protein is the GLYAT or candidate polypeptide or a mixture of the polypeptide and one or more substrates or modulators thereof (e.g., glyphosate, acetyl coA). The polypeptide or complexed polypeptide may be concentrated to achieve a concentration equal to or greater than about 1 mg/ml for crystallization purposes, including but not limited to about 1 mg/ml, 2 mg/ml, 3 mg/ml, 4 mg/ml, 5 mg/ml, 6 mg/ml, 7 mg/ml, 8 mg/ml, 9 mg/ml, 10 mg/ml, 15 mg/ml, 20 mg/ml, 25 mg/ml, or greater. In one embodiment, the concentration is greater than about 5 mg/ml. In some embodiments, the concentration is about 10 mg/ml.


Crystals can be grown from an aqueous solution containing the purified and concentrated GLYAT or candidate polypeptide by a variety of techniques. These techniques include batch, liquid, bridge, dialysis, vapor diffusion, and hanging drop methods (McPherson (1982) John Wiley, New York; McPherson (1990) Eur. J. Biochem. 189:1-23; Webber (1991) Adv. Protein Chem. 41:1-36, each of which is herein incorporated by reference in its entirety). Seeding of the crystals in some instances may be required to obtain X-ray quality crystals. Standard micro and/or macro seeding of crystals may therefore be used. In general, crystals are grown by adding precipitants to the concentrated solution of the polypeptide. The precipitants are added at a concentration just below that necessary to precipitate the protein. Water is removed by controlled evaporation to produce precipitating conditions, which are maintained until crystal growth ceases.


In some embodiments, the GLYAT or candidate polypeptide is crystallized via hanging drop vapor diffusion against a crystallization solution. In some embodiments, the crystallization solution comprises sodium acetate, ammonium sulfate, and polyethylene glycol. In some of these embodiments, the concentration of sodium acetate within the crystallization solution ranges from about 50 mM to about 200 mM, including but not limited to about 50 mM, 60 mM, 70 mM, 80 mM, 90 mM, 100 mM, 125 mM, 150 mM, 175 mM, and 200 mM. In these embodiments, the pH of the sodium acetate can range from about 3.5 to about 6.0, including but not limited to about 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, and 6.0. In particular embodiments, the crystallization solution comprises 100 mM sodium acetate at a pH of about 4.6. In certain embodiments, the concentration of ammonium sulfate within the crystallization solution ranges from about 150 mM to about 300 mM, including but not limited to, about 150 mM, 175 mM, 200 mM, 225 mM, 250 mM, 275 mM, and 300 mM. In some embodiments, the crystallization solution comprises PEG4000 at a concentration ranging from about 15% to about 40%, including but not limited to about 15%, 20%, 25%, 30%, 35%, and 40%. In certain embodiments, the concentration of PEG4000 in the crystallization solution ranges from about 20% to about 25%. In particular embodiments, the crystallization solution comprises about 100 mM sodium acetate at a pH of about 4.6, 150 mM to about 300 mM ammonium sulfate, and about 20% to about 25% PEG4000.


To collect diffraction data From the crystals of the GLYAT polypeptide or candidate polypeptide, the crystals may be flash-frozen in the crystallization solution employed for the growth of said crystals. In some embodiments, the crystals are flash frozen in a buffer wherein the precipitant concentration is higher than the crystallization buffer. If the precipitant is not a sufficient cryoprotectant (i.e. a glass is not formed upon flash-freezing), cryoprotectants (e.g. glycerol, ethylene glycol, low molecular weight PEGs, alcohols, etc.) may be added to the solution in order to achieve glass formation upon flash-freezing, providing the cryoprotectant is compatible with preserving the integrity of the crystals. In some embodiments, the cryoprotectant solution comprises sodium acetate, glycerol, and polyethylene glycol. In some of these embodiments, the concentration of sodium acetate within the cryoprotectant solution ranges from about 50 mM to about 200 mM, including but not limited to about 50 mM, 60 mM, 70 mM, 80 mM, 90 mM, 100 mM, 125 mM, 150 mM, 175 mM, and 200 mM. In these embodiments, the pH of the sodium acetate can range from about 3.5 to about 6.0, including but not limited to about 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, and 6.0. In particular embodiments, the cryoprotectant solution comprises about 100 mM sodium acetate at a pH of about 4.6. In some embodiments, the cryoprotectant solution comprises PEG4000 at a concentration ranging from about 15% to about 40%, including but not limited to about 15%, 20%, 25%, 30%, 35%, and 40%. In certain embodiments, the concentration of PEG4000 in the cryoprotectant solution is about 20%. The cryoprotectant solution can comprise glycerol at a concentration ranging from about 10% to about 30%, including but not limited to about 10%, 15%, 20%, 25%, and 30%. In particular embodiments, the cryoprotectant solution comprises about 100 mM sodium acetate at a pH of about 4.6, about 20% PEG4000, and about 20% glycerol.


In those embodiments wherein a molecular structure of the GLYAT or candidate polypeptide in complex with substrate(s) is desired, the substrate(s) can be added to the crystallization solution and the cryoprotectant solution. One of skill in the art will appreciate that the substrate(s) should be included at a concentration that is at, near or above the concentration required for saturation of the substrate binding site of the enzyme. As used herein, a “substrate” refers to a molecule that is capable of binding to the enzyme and being acted upon by the enzyme. The term substrate comprises metabolites, cofactors, coenzymes, and prosthetic groups (e.g., heme) that are required for enzymatic catalysis. Thus, in some embodiments, acetyl CoA is added to the crystallization and cryoprotectant solution. In some of these embodiments, the concentration of acetyl CoA in the crystallization and cryoprotectant solution ranges from about 0.1 mM to about 20 mM, including but not limited to about 0.1 mM, 0.2 mM, 0.3 mM, 0.4 mM, 0.5 mM, 1 mM, 2 mM, 3 mM, 4 mM, 5 mM, 6 mM, 7 mM, 8 mM, 9 mM, 10 mM, 11 mM, 12 mM, 13 mM, 14 mM, 15 mM, 16 mM, 17 mM, 18 mM, 19 mM, or 20 mM. In certain embodiments, the concentration of acetyl CoA in the crystallization and cryoprotectant solutions is about 2 mM.


In some embodiments, glyphosate is added to the crystallization and cryoprotectant solution. In some of these embodiments, the concentration of glyphosate in the crystallization and cryoprotectant solution ranges from about 2 mM to about 50 mM, including, but not limited to about 2 mM, 5 mM, 10 mM, 15 mM, 20 mM, 25 mM, 30 mM, 35 mM, 40 mM, 45 mM and 50 mM. In certain embodiments, the concentration of glyphosate in the crystallization and cryoprotectant solution is about 20 mM.


In particular embodiments, both glyphosate and acetyl CoA are added to the crystallization and cryoprotectant solutions and the three-dimensional molecular structures of the GLYAT polypeptide and candidate polypeptide are determined in complex with both glyphosate and acetyl CoA. In some of these embodiments, the concentration of glyphosate is about 20 mM and the concentration of acetyl coA is about 2 mM in the crystallization and cryoprotectant solutions.


As used herein, the term “glyphosate” refers to the molecule whose chemical structure is depicted in FIG. 2A and any active metabolite, or salt thereof. An “active” metabolite or salt of glyphosate is one that is capable of inhibiting a 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase or of otherwise injuring a plant. Non-limiting examples of active metabolites or salts of glyphosate include N-(phosphonomethyl)glycine (C3H8NO2P), glyphosate ammonium salt (C3H11N2O5P), glyphosate isopropylamine salt (C6H 17N2O5P), glyphosate potassium salt (C3H7KNO5P), and aminomethylphosphonate (CH6NO3P). One of skill in the art will also appreciate that the GLYAT polypeptide and/or candidate polypeptide can be crystallized in the presence of an analog of glyphosate (e.g., D-2-amino-3-phosphonopropionic acid, 3-phosphoglycerate) and the structural model derived therefrom can be modified using any of the computational methods known in the art and described elsewhere herein to replace the glyphosate analog with glyphosate in the molecular model of the polypeptide.


The flash-frozen crystals are maintained at a temperature of less than about −110° C. in some embodiments and in other embodiments, less than about −150° C. during the collection of the crystallographic data by X-ray diffraction. The diffraction data is generally obtained by placing a crystal in an X-ray beam. The incident X-rays interact with the electron cloud of the molecules that make up the crystal, resulting in X-ray scatter. The combination of X-ray scatter with the lattice of the crystal gives rise to non-uniformity of the scatter; areas of high intensity are called diffracted X-rays. The angle at which diffracted beams emerge from the crystal can be computed by treating diffraction as if it were reflection from sets of equivalent, parallel planes of atoms in a crystal (Bragg's Law). The most obvious sets of planes in a crystal lattice are those that are parallel to the faces of the unit cell. These and other sets of planes can be drawn through the lattice points. Each set of planes is identified by three indices, hkl. The h index gives the number of parts into which the a edge of the unit cell is cut, the k index gives the number of parts into which the b edge of the unit cell is cut, and the l index gives the number of parts into which the c edge of the unit cell is cut by the set of hkl planes.


When a detector is placed in the path of the diffracted X-rays, in effect cutting into the sphere of diffraction, a series of spots, or reflections, are recorded to produce a “still” diffraction pattern. Each reflection is the result of X-rays reflecting off one set of parallel planes, and is characterized by an intensity, which is related to the distribution of molecules in the unit cell, and hkl indices, which correspond to the parallel planes from which the beam producing that spot was reflected. If the crystal is rotated about an axis perpendicular to the X-ray beam, a large number of reflections are recorded on the detector, resulting in a diffraction pattern.


Sources of X-rays include, but are not limited to, a rotating anode X-ray generator such as a Rigaku RU-200 or a beamline at a synchrotron light source. Suitable detectors for recording diffraction patterns include, but are not limited to, X-ray sensitive film, multiwire area detectors, image plates coated with phosphorus, and CCD cameras. Typically, the detector and the X-ray beam remain stationary, so that, in order to record diffraction from different parts of the crystal's sphere of diffraction, the crystal itself is moved via an automated system of moveable circles called a goniostat.


The unit cell dimensions and space group of a crystal can be determined from its diffraction pattern. The “unit cell” is the crystal's repeating unit. The spacing of reflections is inversely proportional to the lengths of the edges of the unit cell. Therefore, if a diffraction pattern is recorded when the X-ray beam is perpendicular to a face of the unit cell, two of the unit cell dimensions may be deduced from the spacing of the reflections in the x and y directions of the detector, the crystal-to-detector distance, and the wavelength of the X-rays. Those of skill in the art will appreciate that, in order to obtain all three unit cell dimensions, the crystal must be rotated such that the X-ray beam is perpendicular to another face of the unit cell. Second, the angles of a unit cell can be determined by the angles between lines of spots on the diffraction pattern. Third, the absence of certain reflections and the repetitive nature of the diffraction pattern, which may be evident by visual inspection, indicate the internal symmetry, or space group, of the crystal. Therefore, a crystal may be characterized by its unit cell and space group, as well as by its diffraction pattern.


Once the dimensions of the unit cell are determined, the likely number of polypeptides in the asymmetric unit can be deduced from the size of the polypeptide, the density of the average protein, and the typical solvent content of a protein crystal, which is usually in the range of 30-70% of the unit cell volume.


The sphere of diffraction has symmetry that depends on the internal symmetry of the crystal, which means that certain orientations of the crystal will produce the same set of reflections. Thus, a crystal with high symmetry has a more repetitive diffraction pattern, and there are fewer unique reflections that need to be recorded in order to have a complete representation of the diffraction. The goal of data collection, a dataset, is a set of consistently measured, indexed intensities for as many reflections as possible. A complete dataset is collected if at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or greater of unique reflections are recorded. In some embodiments, a complete dataset is collected using one crystal. In another embodiment, a complete dataset is collected using more than one crystal of the same type.


Once a dataset of intensities for the reflections is collected, the information is used to determine the three-dimensional structure of the molecule in the crystal. However, in the absence of a suitable molecular model, this cannot be done from a single measurement of reflection intensities because certain information, known as phase information, is lost between the three-dimensional shape of the molecule and its Fourier transform, the diffraction pattern. This phase information must be acquired by methods described below in order to perform a Fourier transform on the diffraction pattern to obtain the three-dimensional structure of the molecule in the crystal. It is the determination of phase information that in effect refocuses X-rays to produce the image of the molecule.


In one approach, if the polypeptide for which the structure is to be solved forms crystals that are isomorphous, i.e., that have the same unit cell dimensions and space group as a related molecule whose structure has been determined, then the phases and/or co-ordinates for the related molecule can be combined directly with newly observed amplitudes to obtain electron density maps and, consequently, atomic co-ordinates of the polypeptide with unknown structure.


In another approach, if the polypeptide of unknown structure is related to another molecule of known three-dimensional structure, but crystallizes in a different unit cell with different symmetry, the skilled artisan may use a technique known as molecular replacement to obtain useful phases from the co-ordinates of the molecule whose structure is known (M. G. Rossmann, ed. “The Molecular Replacement Methods,” Sci. Rev. J. No. 13, Gordon & Breach, New York, N.Y. (1972); Eaton Lattman, “Use of Rotation and Translation Functions,” H. W Wyckoff C. H. W. Hist. (S, N. Timasheff, ed.) Methods in Enzmmology, 115: 55-77 (1985)). For an example of the application of molecular replacement, see, for example, Rice & Steitz (1994) EMBO J. 13:1514-24). Specifically, molecular replacement is a method of calculating initial phases for a new crystal of a polypeptide or polypeptide co-complex whose structure coordinates are unknown by orienting and positioning a related polypeptide whose structure coordinates are known within the unit cell of the new crystal so as to best account for the observed diffraction pattern of the new crystal. To enable this, the related molecule must have a similar three dimensional structure. Briefly, the principle behind the method of molecular replacement is as follows. The three-dimensional structure of the known molecule is positioned within the unit cell of the new crystal by finding the orientation and position that provides the best agreement between observed diffraction amplitudes and those calculated from the co-ordinates of the positioned polypeptide. From this modeling, approximate phases for the unknown crystal can be derived. Once the orientation of a test molecule is known, the position of the molecule must be found using a translational search. X-PLOR (Brunger et al. (1987) Science 235:458-460; CNS (Crystallography & NMR System), Brunger et al., (1998) Acta Cryst. Sect. D 54: 905-921), and AMORE: an Automatic Package for Molecular Replacement (Navaza, J. (1994) Acta Cryst. Sect. A, 50: 157-163) are computer programs that can execute rotation and translation function searches. Once the known structure has been positioned in the unit cell of the unknown molecules, phases for the observed diffraction data can be calculated from the atomic co-ordinates of the structurally related atoms of the known molecules. By using the calculated phases and X-ray diffraction data for the unknown molecule, the skilled artisan can generate an electron density map and/or atomic co-ordinates of the GLYAT polypeptide of candidate polypeptide.


In general, the success of molecular replacement for solving structures depends on the fraction of the structures that are related and their degree of identity. For example, if about 50% or more of the structure shows a root mean square (RMS) deviation between corresponding atoms in the range of about 2 Å or less, the known structure can be successfully used to solve the unknown structure.


The term “root mean square deviation” means the square root of the arithmetic mean of the squares of the deviations from the mean. It is a way to express the deviation or variation from a trend or object. For example, the “root mean square deviation” can define the variation in the backbone of a polypeptide from the relevant portion of the backbone of a GLYAT polypeptide or a portion thereof as defined by the structure coordinates described herein.


A third method of phase determination is multi-wavelength anomalous dispersion or MAD. In this method, X-ray diffraction data are collected at several different wavelengths from a single crystal containing at least one heavy atom with absorption edges near the energy of incoming X-ray radiation. The resonance between X-rays and electron orbitals leads to differences in X-ray scattering that permits the locations of the heavy atoms to be identified, which in turn provides phase information for a crystal of a polypeptide. A detailed discussion of MAD analysis can be found in Hendrickson (1985) Trans. Am. Crystallogr. Assoc., 21:11; Hendrickson et al. (1990) EMBO J. 9:1665; and Hendrickson (1991) Science 4:91.


A fourth method of determining phase information is single wavelength anomalous dispersion or SAD. In this technique, X-ray diffraction data are collected at a single wavelength from a single native or heavy-atom derivative crystal, and phase information is extracted using anomalous scattering information from atoms such as sulfur or chlorine in the native crystal or from the heavy atoms in the heavy-atom derivative crystal. A detailed discussion of SAD analysis can be found in Brodersen et al. (2000) Acta Cryst. D56:431-441.


A fifth method of determining phase information is single isomorphous replacement with anomalous scattering or SIRAS. This technique combines isomorphous replacement and anomalous scattering techniques to provide phase information for a crystal of a polypeptide. X-ray diffraction data are collected at a single wavelength, usually from a single heavy-atom derivative crystal. Phase information obtained only from the location of the heavy atoms in a single heavy-atom derivative crystal leads to an ambiguity in the phase angle, which is resolved using anomalous scattering from the heavy atoms. Phase information is therefore extracted from both the location of the heavy atoms and from anomalous scattering of the heavy atoms. A detailed discussion of SIRAS analysis can be found in North (1965) Acta Cryst. 18:212-216; Matthews (1966) Acta Cryst. 20:82-86.


To generate a heavy atom derivative of a polypeptide, the crystals of the polypeptide may be soaked in heavy-atoms. As used herein, heavy atom derivative or derivatization refers to the method of producing a chemically modified form of a protein or protein complex crystal wherein said protein is specifically bound to a heavy atom within the crystal. In practice, a crystal is soaked in a solution containing heavy metal atoms or salts, or organometallic compounds (e.g., lead chloride, gold cyanide, thimerosal, lead acetate, uranyl acetate, mercury chloride, gold chloride) which can diffuse through the crystal and bind specifically to the protein. The location(s) of the bound heavy metal atom(s) or salts can be determined by X-ray diffraction analysis of the soaked crystal. This information is used to generate phase information which is used to construct the three-dimensional structure of the crystallized polypeptide.


In another approach, if no crystals are available for the candidate polypeptide, but it is homologous to another molecule whose three-dimensional structure is known, the skilled artisan may use a process known as homology modeling to produce a three-dimensional model of the candidate polypeptide. Accordingly, information concerning the crystals and/or atomic co-ordinates of one molecule can greatly facilitate the determination of the structures of related molecules.


As used herein, the term “homology modeling” refers to the practice of deriving models for three-dimensional structures of macromolecules from existing three-dimensional structures for their homologues. In general, the procedure may comprise one or more of the following steps: aligning the amino acid sequence of an unknown molecule against the amino acid sequence of a molecule whose structure has previously been determined; identifying structurally conserved and structurally variable regions; generating atomic co-ordinates for core (structurally conserved) residues of the unknown structure from those of the known structure(s); generating conformations for the other (structurally variable) residues in the unknown structure; building side chain conformations; and refining structure through energy minimization and molecular dynamics, and/or evaluating the unknown structure. Homology models are obtained using computer programs that make it possible to alter the identity of residues at positions where the sequence of the molecule of interest is not the same as that of the molecule of known structure. For example, homology modeling was used to generate the R11 and YVII revertant mutant described elsewhere herein (see Experimental section).


Once phase information is obtained, it is combined with the diffraction data to produce an electron density map, an image of the electron clouds that surround the molecules in the unit cell. For basic concepts and procedures of collecting, analyzing, and utilizing X-ray diffraction data for the construction of electron densities see, for example, Campbell et al. (1984) Biological Spectroscopy, The Benjamin/Cummings Publishing Co., Inc., (Menlo Park, Calif.); Cantor et al. (1980) Biophysical Chemistry, Part II: Techniques for the study of biological structure and function, W. H. Freeman and Co., San Francisco, Calif.; A. T. Brunger (1993) X-PLOR Version 3.1: A system for X-ray crystallography and NMR, Yale Univ. Pr., (New Haven, Conn.); M. M. Woolfson (1997) An Introduction to X-ray Crystallography, Cambridge Univ. Pr., (Cambridge, UK); J. Drenth (1999) Principles of Protein X-ray Crystallography (Springer Advanced Texts in Chemistry), Springer Verlag; Berlin; Tsirelson et al. (1996) Electron Density and Bonding in Crystals: Principles, Theory and X-ray Diffraction Experiments in Solid State Physics and Chemistry, Inst. of Physics Pub.; U.S. Pat. No. 5,942,428; U.S. Pat. No. 6,037,117; U.S. Pat. No. 5,200,910 and U.S. Pat. No. 5,365,456 (“Method for Modeling the Electron Density of a Crystal”).


The higher the resolution of the data, the more distinguishable are the features of the electron density map, e.g., amino acid side chains and the positions of carbonyl oxygen atoms in the peptide backbones, because atoms that are closer together are resolvable. In certain embodiments, the protein crystals and protein-substrate complex crystals of the GLYAT polypeptide or candidate polypeptide diffract to a high resolution limit. As used herein, the term “resolution” in relation to electron density is a measure of the resolvability in the electron density map of a molecule. In X-ray crystallography, resolution is the highest resolvable peak in the diffraction pattern. Resolution is expressed in terms of the lowest resolvable distance between two atoms, measured in angstroms (Å). In some embodiments, the maximal resolution of crystals of the GLYAT polypeptide or candidate polypeptide, alone or complexed with one or more substrate (e.g., glyphosate) is less than or equal to about 3.5 Å, including, but not limited to about 3.5 Å, 3.4 Å, 3.3 Å, 3.2 Å, 3.1 Å, 3.0 Å, 2.9 Å, 2.8 Å, 2.7 Å, 2.6 Å, 2.5 Å, 2.4 Å, 2.3 Å, 2.2 Å, 2.1 Å, 2.0 Å, 1.9 Å, 1.8 Å, 1.7 Å, 1.6 Å, 1.5 Å, 1.4 Å, 1.3 Å, 1.2, Å, 1.1 Å, 1.0 Å, or less than 1.0 Å. In particular embodiments, the polypeptide or polypeptide-substrate complex crystal have a resolution limit of about 1.6 Å.


The electron density maps generated from the diffraction and phase data are used to establish the positions of the individual atoms within a single polypeptide, which are expressed as atomic coordinates. As used herein, the term “atomic coordinates” refers to mathematical co-ordinates (represented as “X,” “Y” and “Z” values) that describe the positions of atoms in a crystal of a polypeptide with respect to a chosen crystallographic origin. As used herein, the term “crystallographic origin” refers to a reference point in the crystal unit cell with respect to the crystallographic symmetry operation. These atomic coordinates can be used to generate a three-dimensional representation of the molecular structure of the polypeptide.


A model of the macromolecule is then built into the electron density map with the aid of a computer, using as a guide all available information, such as the polypeptide sequence and the established rules of molecular structure and stereochemistry. Interpreting the electron density map is a process of finding the chemically realistic conformation that fits the map precisely. The atomic co-ordinates are entered into one or more computer programs for molecular modeling, as known in the art. By way of illustration, a list of computer programs useful for viewing or manipulating three-dimensional structures include: Midas (University of California, San Francisco); MidasPlus (University of California, San Francisco); MOIL (University of Illinois); Yumrnie (Yale University); Sybyl (Tripos, Inc.); Insight/Discover (Biosym Technologies); MacroModel (Columbia University); Quanta (Molecular Simulations, Inc.); Cerius (Molecular Simulations, Inc.); Alchemy (Tripos, Inc.); LabVision (Tripos, Inc,); Rasmol (Glaxo Research and Development); Ribbon (University of Alabama); NAOMI (Oxford University); Explorer Eyecbem (Silicon Graphics, Inc.); Univision (Cray Research); Molscript (Uppsala University); Chem-3D (Cambridge Scientific); Chain (Baylor College of Medicine); 0 (Uppsala University); GRASP (Columbia University); X-Plor (Molecular Simulations, Inc.; Yale University); Spartan (Wavefunction, Inc.); Catalyst (Molecular Simulations, Inc.); Molcadd (Tripos, Inc.); VMD (University of Illinois/Beckman Institute); Sculpt (Interactive Simulations, Inc.); Procheck (Brookhaven National Library); DGEOM (QCPE); REVIEW (Brunell University); Modeller (Birbeck College, University of London); Xmol (Minnesota Supercomputing Center); Protein Expert (Cambridge Scientific); HyperChcm (Hypercube); MD Display (University of Washington); PKB (National Center for Biotechnology Information, NIH); ChemX (Chemical Design, Ltd.); Cameleon (Oxford Molecular, Inc.); and Iditis (Oxford Molecular, Inc.).


After a model is generated, the structure is refined. Refinement is the process of minimizing the function Φ, which is the difference between observed and calculated intensity values (measured by an R-factor), and which is a function of the position, temperature factor, and occupancy of each non-hydrogen atom in the model. This usually involves alternate cycles of real space refinement, i.e., calculation of electron density maps and model building, and reciprocal space refinement, i.e., computational attempts to improve the agreement between the original intensity data and intensity data generated from each successive model. Refinement ends when the function Φ converges on a minimum wherein the model fits the electron density map and is stereochemically and conformationally reasonable. During refinement, ordered solvent molecules are added to the structure.


While Cartesian coordinates are important and convenient representations of the three-dimensional molecular structure of a polypeptide, those of skill in the art will readily recognize that other representations of the structure are also useful. Therefore, the three-dimensional molecular structure of a polypeptide, as discussed herein, includes not only the Cartesian coordinate representation, but also all alternative representations of the three-dimensional distribution of atoms. For example, atomic coordinates may be represented as a Z-matrix, wherein a first atom of the protein is chosen, a second atom is placed at a defined distance from the first atom, a third atom is placed at a defined distance from the second atom so that it makes a defined angle with the first atom. Each subsequent atom is placed at a defined distance from a previously placed atom with a specified angle with respect to the third atom, and at a specified torsion angle with respect to a fourth atom. Atomic coordinates may also be represented as a Patterson function, wherein all interatomic vectors are drawn and are then placed with their tails at the origin. This representation is particularly useful for locating heavy atoms in a unit cell. In addition, atomic coordinates may be represented as a series of vectors having magnitude and direction and drawn from a chosen origin to each atom in the polypeptide structure. Furthermore, the positions of atoms in a three-dimensional structure may be represented as fractions of the unit cell (fractional coordinates), or in spherical polar coordinates.


Additional information, such as thermal parameters, which measure the motion of each atom in the structure, chain identifiers, which identify the particular chain of a multi-chain protein or protein co-complex in which an atom is located, and connectivity information, which indicates to which atoms a particular atom is bonded, is also useful for representing a three-dimensional molecular structure.


The three-dimensional molecular structures for the GLYAT R7 variant polypeptide was determined with the GLYAT variant in complex with oxidized coA (a binary complex) and in complex with acetyl coA and 3PG (ternary complex) (Siehl et al. (2007) J Biol Chem 282:I′1446-11455). The atomic coordinates and structural information for the binary and ternary complexes can be found in the Protein Data Bank (Berman et al. (2000) Nucleic Acids Research 28, 235-242; see also, the web page at the URL resb.org/pdb/) with the accession numbers PDB ID: 2JDC and PDB ID: 2JDD, respectively, which are herein incorporated by reference in their entireties (Siehl et al. (2007) J Biol Chem 282:11446-11455). The GLYAT R7 variant exhibits enhanced catalytic activity for glyphosate over the native GLYAT polypeptide. The optimized GLYAT polypeptide was generated through iterative DNA shuffling of a native GLYAT polypeptide.


As will be apparent to those of ordinary skill in the art, the atomic structures presented herein are independent of their orientation, and the atomic co-ordinates identified herein merely represent one possible orientation of a particular GLYAT polypeptide. The atomic coordinates are a relative set of points that define a shape in three dimensions. Thus, it is possible that a different set of coordinates could define a similar or identical shape. Therefore, slight variations in the individual coordinates will have little effect on overall shape. It is apparent, therefore, that the atomic co-ordinates identified herein may be mathematically rotated, translated, scaled, or a combination thereof, without changing the relative positions of atoms or features of the respective structure. The variations in coordinates discussed may bc generated because of mathematical manipulations of the structure coordinates. For example, the structure coordinates could bc manipulated by crystallographic permutations of the structure coordinates, fractionalization of the structure coordinates, integer additions or subtractions to sets of the structure coordinates, inversion of the structure coordinates or any combination of the above.


Alternatively, modifications in the crystal structure due to mutations, additions, substitutions and/or deletions of amino acids, or other changes in any of the components that make up the crystal could also account for variations in the structure coordinates. If such variations are within an acceptable standard of error as compared to the original coordinates, the resulting three-dimensional shape is considered to be the same. Thus, in one aspect of the present invention, any molecule or molecular complex that has a RMSD of conserved residue backbone atoms (N, Calpha, C, O) of less than about 4 Å, 2 Å, 1.5 Å, 1 Å, or 0.5 Å when superimposed on the relevant backbone atoms described by the coordinates listed in any one of Tables 1-10 are considered identical.


Using the methods of the invention, candidate polypeptides are evaluated for the potential of having an improved enzymatic activity in comparison to native GLYAT enzymes based on three-dimensional structural similarities with an optimized GLYAT. Enzymatic activity can be characterized using the conventional kinetic parameters kcat, KM, and kcat/KM. The catalytic constant, kcat, can be thought of as a measure of the maximum rate of acetylation, particularly at high substrate concentrations; KM is a measure of the affinity of an enzyme for its substrate (e.g., glyphosate) and cofactor (e.g., acetyl CoA); and kcat/KM is a measure of catalytic efficiency that takes both substrate affinity and catalytic rate into account. kcat/Km is particularly important in the situation where the concentration of a substrate is at least partially rate-limiting. In general, an enzyme with a higher kcat or kcat/KM is a more efficient catalyst than another enzyme with a lower kcat, or kcat/KM. An enzyme with a lower KM binds its substrate with a higher affinity and is a more efficient catalyst than another enzyme with a higher KM. Thus, to determine whether one GLYAT is more effective than another, one can compare kinetic parameters for the two enzymes. The relative importance of kcat, kcat/KM and KM will vary depending upon the context in which the GLYAT will be expected to function, e.g., the anticipated effective concentration of glyphosate relative to the KM for glyphosate.


Thus, the GLYAT polypeptide used to evaluate the candidate polypeptide or the candidate polypeptide itself may have a higher affinity, and thus, a lower KM, for glyphosate than native GLYAT enzymes. For example, in some embodiments, the KM of the GLYAT polypeptide or candidate polypeptide is less than about 1 mM, including but not limited to, about 0.9 mM, 0.8 mM, 0.7 mM, 0.6 mM, 0.5 mM, 0.4 mM, 0.3 mM, 0.2 mM, 0.1 mM, 0.05 mM, or less.


The GLYAT polypeptide or candidate polypeptide may have a higher kca, for a substrate (e.g., glyphosate) than native GLYAT polypeptides. For example, in some embodiments, the GLYAT polypeptide or candidate polypeptide has a kcat of at least about 20 min−1, including but not limited to, about 50 min−1, 100 min−1, 200 min−1, 500 min−1, 1000 min−1, 1100 min−1, 1200 min−1, 1250 min−1, 1300 min−1, 1400 min−1, 1500 min−1, 1600 min−1, 1700 min−1, 1800 min−1, 1900 min−1, 2000 min−1 or higher. GLYAT polypeptides or the candidate polypeptides may have a higher kcat/KM for a substrate (e.g., glyphosate) than native GLYAT enzymes. In some embodiments, the GLYAT polypeptide or candidate polypeptide has a kcat/KM of at least about 100 mM−1 min−1, 500 mM−1 min−1, 1000 mM−1 min−1, 2000 mM−1 min−1, 3000 mM−1 min−1, 4000 mM−1 min−1, 5000 mM−1 min−1, 6000 mM−1 min−1, 7000 mM−1 min−1, or 8000 mM−1 min−1, or higher. The activity of GLYAT enzymes is affected by, for example, pH and salt concentration; appropriate assay methods and conditions are known in the art (see, e.g., WO2005012515, which is herein incorporated by reference in its entirety). Such improved enzymes identified using the presently disclosed methods may find particular use in methods of growing a crop in a field where the use of a particular herbicide or combination of herbicides and/or other agricultural chemicals would result in damage to the plant if the enzymatic activity (i.e., kcat, KM, or kcat/KM) were lower.


In some embodiments, the GLYAT polypeptide for which a molecular structure is provided for comparison to a candidate polypeptide or the candidate polypeptide itself exhibits a greater specificity for glyphosate than native GLYAT polypeptides., As used herein, “specificity” refers to the preference of a polypeptide to bind and/or catalyze one substrate over another. For example, a polypeptide with a greater specificity for glyphosate over other potential GLYAT substrates binds to glyphosate with an affinity that is at least two times greater than its affinity for another substrate (e.g., D-AP3). In some embodiments, the affinity, kcat, and/or kcat/KM is about 2 times, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 11, about 12, about 13, about 14, about 15, about 16, about 17, about 18, about 19, about 20, about 25, about 30, about 40, about 50, about 100, about 200, about 500, about 1000, or greater times that of the native GLYAT polypeptide for glyphosate over another substrate (e.g, D-AP3). In those embodiments wherein the affinity is greater, the KM of the GLYAT polypeptide or candidate polypeptide for glyphosate is equivalently lower than the KM of the polypeptide for the other substrate.


In some embodiments, the specificity of the GLYAT polypeptide for which the molecular structure is constructed and/or the candidate polypeptide exhibit a greater specificity for glyphosate than native GLYAT polypeptides. In certain embodiments, the GLYAT polypeptide or candidate polypeptide is able to bind compounds with at least five main chain atoms with a higher affinity than native GLYAT polypeptides. Kinetic data has demonstrated that optimizing GLYAT for activity with glyphosate shifted the binding preference to ligands with a main-chain length of 5-atoms from those of 4-atoms in the wild-type enzyme (Siehl et al. (2007) J Biol Chem 282:11446-11455). For example, the R7 and R11 variants of GLYAT have a higher binding affinity and higher catalytic activity on compounds with five main chain atoms (e.g., glyphosate) than native GLYAT polypeptides, which exhibit a preference for smaller compounds with three to four main chain atoms (e.g., D-AP3). Thus, in some embodiments, the GLYAT polypeptide or candidate polypeptide bind compounds with at least five main chain atoms with an affinity that is at least about 2 fold greater than native GLYAT polypeptides, including but not limited to at least about 2-fold, 3-fold, 4-fold, 5-fold, 10-fold, 20-fold, 30-fold, 40-fold, 50-fold, 100-fold, or greater.


The analysis of the molecular structure of the GLYAT R7 variant polypeptide complexed with acetyl CoA and glyphosate provided herein has provided the identity and location of the residues important for the binding of substrates to GLYAT polypeptides. Importantly, the analysis has provided a molecular basis for the enhanced affinity and specificity exhibited by the GLYAT variant polypeptides over that of the native GLYAT polypeptide.


The atomic coordinates of the GLYAT R7 variant polypeptide that comprise the substrate binding cavity are presented in Table 1, wherein the GLYAT R7 variant polypeptide is bound to glyphosate and acetyl coA. Table 2 provides the atomic coordinates of the substrate binding cavity of GLYAT R11 variant polypeptide when bound to glyphosate and acetyl coA. As used herein, a “substrate binding cavity” refers to the atoms of a polypeptide that directly contact (e.g., through hydrogen bonds, van der Waals interactions) the substrate (e.g., glyphosate) or are within about 4 Å of the substrate (e.g., glyphosate). A “substrate binding cavity” can also include residues that contribute to the structure or flexibility of the residues directly contacting or within 4 Å of the substrate. In some embodiments, the substrate binding cavity comprises at least the atomic coordinates of Table 1.









TABLE 1







Contacts between the R7 GLYAT variant polypeptide


and AcCoA and glyphosate when the polypeptide


is bound to AcCoA and glyphosate.




















Glyph-



Residue
Amino
GLYAT



osate
Distance


ID
Acid
Atoma
Xb
Yb
Zb
Atomc
(A)

















20
LEU
CD1
24.54
6.61
10.65
C1
3.96








N
3.65




CD2
22.35
7.82
11.09
N
3.76


21
ARG
CZ
26.49
8.65
16.97
C1
3.95








OC2
3.65








OP2
3.60








OP3
3.63




NE
27.54
8.59
16.10
OC2
3.65




NH1
25.95
9.81
17.39
OP2
3.60








OP3
3.85




NH2
25.95
7.49
17.41
C
3.29








C1
3.41








OC2
2.76








OP2
3.52








OP3
2.73








P
3.61


31
PHE
CE1
29.68
5.11
14.89
OC2
3.44




CE2
28.57
3.11
14.11
C
3.87








OC2
3.54




CZ
28.66
4.50
14.15
C
3.54








C1
3.99








OC2
3.02


73
ARG
CA
24.84
0.27
13.99
OC1
3.90




CD
25.39
0.54
17.17
OC1
3.64




CZ
27.24
2.14
17.85
OC1
3.70








OC2
3.50




NE
26.07
1.88
17.20
C
3.48








OC1
2.79








OC2
3.41




NH2
27.81
3.35
17.70
C
3.58








OC1
3.70








OC2
2.69


74
GLY
N
25.02
2.30
12.66
C
3.85








OC1
3.37


111
ARG
CD
18.36
8.96
14.19
OP1
3.66




CG
17.90
7.82
15.11
OP1
3.43




CZ
20.53
10.16
13.77
OP1
3.52








OP2
3.57




NE
19.83
9.19
14.41
OP1
2.69








OP2
3.64








P
3.64




NH2
21.85
10.31
14.04
OP1
3.48








OP2
2.64








P
3.57


135
VAL
CB
21.83
11.15
17.99
OP1
3.76








OP2
3.99




CG1
23.02
11.69
17.18
OP2
3.66




CG2
22.29
10.19
19.11
OP1
3.82








OP3
3.67








P
3.91


138
HIS
CD2
18.74
6.23
18.66
OP1
3.66




CE1
19.31
8.24
19.29
OP1
3.45




NE2
19.49
7.33
18.35
OP1
2.61








OP3
3.88








P
3.73






aThe data are derived from a modeled structure based on PDB: 2JDD, in which 3PG was replaced by glyphoshate (FIG. 1). The structural model underwent a series of energy minimization with CHARMm, on newly added hydrogen (CONJ, 500 cycles), on hydrogen and glyphosate (500 cycles), on non-backbone atoms (200 cycles), and on whole system (200 cycles). The amino acid atom is the specific atom of the amino acid, as identified in Protein Data Bank file 2JDD;




bX, Y, and Z are the three-dimensional coordinates specifying the distance in Angstroms of the amino acid atom relative to the center of mass of the crystal defined by the PDB file 2JDD;




cAtoms of glyphosate are defined in FIG. 2A.














TABLE 2







Contacts between the R11 GLYAT variant polypeptide


and AcCoA and glyphosate when the polypeptide is bound


to AcCoA and glyphosatea.




















Glyph-



Residue
Amino
GLYAT



osate
Distance


ID
Acid
Atom
X
Y
Z
Atom
(Å)

















20
LEU
CB
24.59
8.95
11.21
N
3.95




CD1
24.62
6.63
10.14
N
3.62




CD2
22.41
7.72
10.69
N
3.59




CG
23.87
7.96
10.27
N
3.87


21
ARG
CZ
26.11
7.85
17.58
C1
3.95








OC2
3.38








OP3
3.84




NE
26.95
7.84
16.51
C
3.78








C1
3.53








OC2
3.09




NH2
25.52
6.69
17.93
C
3.41








C1
3.73








OC2
2.76








OP3
3.09


31
PHE
CD2
29.42
2.91
14.73
OC2
3.97




CE1
29.7
5.66
15.1
OC2
3.67




CE2
28.58
3.79
14.04
C
3.63








OC2
3.24




CZ
28.73
5.17
14.21
C
3.63








C1
3.92








OC2
3.08


73
ARG
C
24.34
0.9
12.48
OC1
3.77




CA
24.13
0.2
13.79
OC1
3.71




CB
25.52
0.11
14.48
OC1
3.7




CD
24.95
0.65
16.96
OC1
3.58




CZ
26.86
2.12
17.76
OC1
3.84




CZ
26.86
2.12
17.76
OC2
3.37




NE
25.8
1.88
16.94
C
3.41








OC1
2.85








OC2
3.19




NH2
27.53
3.28
17.62
C
3.66








OC1
3.91








OC2
2.67


74
GLY
CA
25.02
3.04
11.45
N
3.82








OC1
3.67




N
24.48
2.25
12.53
C
3.7








N
3.9








OC1
2.88


111
ARG
CD
17.91
8.99
14.2
OP1
3.57




CG
17.52
7.93
15.23
OP1
3.19




CZ
20.1
10.14
13.76
OP1
3.62








OP2
3.54




NE
19.4
9.08
14.21
OP1
2.71








OP2
3.56








P
3.64




NH2
21.44
10.2
13.97
OP1
3.64








OP2
2.64








P
3.64


135
VAL
CB
21.65
10.66
17.73
OP2
3.74




CG1
22.96
11.05
17.01
OP2
3.42


138
HSP
CD2
18.66
5.91
18.62
OP1
3.72




CE1
19.17
8.03
18.68
OP1
3.47




NE2
19.35
6.92
18
OP1
2.65








OP3
3.52








P
3.56






aThe atom naming convention is the same as in Table 1.







According to the methods of the invention, a candidate polypeptide is evaluated for its potential to associate with glyphosate with a higher binding affinity, higher binding specificity, or both when compared to a native GLYAT polypeptide. In these embodiments, a three-dimensional molecular structure of at least a substrate binding cavity of a GLYAT polypeptide is provided. The three-dimensional molecular structure is determined with the GLYAT polypeptide bound to glyphosate and an acetyl donor, such as acetyl coA. As used herein the terms “bind,” “binding,” “bound,” “bond,” or “bonded,” when used in reference to the association of atoms, molecules, or chemical groups, refer to any physical contact or association of two or more atoms, molecules, or chemical groups. Such contacts and associations include covalent and non-covalent types of interactions.


The three-dimensional molecular structure of the substrate binding cavity can comprise at least the atomic coordinates of Table 1. In other embodiments, the substrate binding cavity comprises at least the atomic coordinates of Table 2. Alternatively, the substrate binding cavity can comprise a structural variant of the substrate binding cavity defined by the atomic coordinates of Table 1 or Table 2. As used herein, a “structural variant” comprises a three-dimensional molecular structure that is similar to another three-dimensional molecular structure. In some embodiments, the structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 1 or Table 2 of not more than about 4 Å, including but not limited to about 3.5 Å, 3 Å, 2.5 Å, 2 Å, 1.9 Å, 1.8 Å, 1.7 Å, 1.6 Å, 1.5 Å, 1.4 Å, 1.3 Å, 1.2 Å, 1.1 Å, 1.0 Å, 0.9 Å, 0.8 Å, 0.7 Å, 0.6 Å, 0.5 Å, 0.4 Å, 0.3 Å, 0.2 Å, and 0.1 Å. In some of these embodiments, the structural variant substrate binding cavity comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 1 or Table 2 of not more than about 2.0 Å.


Two loops (loop20 and loop130, which is more specifically described as a β-hairpin) cover the bound substrate from opposite sides and join together at their tip points, creating the substrate binding cavity (FIG. 1B). Loop20 (residues 20-25) and its adjacent residues interact with the substrate's carboxyl group and main-chain atoms. Leu20's side-chain directly contacts the glyphosate/3PG's main-chain atoms, forming the back wall of the binding cavity. The Arg21 guanidinium group forms a salt bridge with the substrate's carboxyl group. Phe31 makes direct contact with glyphosate. In a homology model of wild type GLYAT (not shown), the phenol of the tyrosine residue at position 31 in the wild type GLYAT polypeptide hydrogen bonds with the carboxyl of glyphosate or D-AP3, which maintains the local conformation of the polypeptide. Without being bound by any theory or mechanism of action, it is believed that the abolishment of this hydrogen bond due to the mutation of Y31F of the R7 GLYAT variant polypeptide increased the local flexibility, allowing the polypeptide to adapt to binding a larger substrate (e.g., glyphosate). In some embodiments, the substrate binding cavity further comprises the atomic coordinates of loop 20 provided in Table 3 in addition to the atomic coordinates provided in Table 1 or a structural variant thereof. In other embodiments, the substrate binding cavity further comprises the atomic coordinates of loop 20 provided in Table 4 in addition to the atomic coordinates provided in Table 2 or a structural variant thereof. The minimum distances between loop20 residues and glyphosate are also shown in Tables 3 and 4.









TABLE 3







The minimum distance between the R7 GLYAT


variant loop20 residues and glyphosatea.
















Amino



Glyph-
Minimum


Residue
Amino
Acid



osate
Distance


ID
Acid
Atom
X
Y
Z
Atom
(Å)b

















16
ARG
CG
28.91
5.75
9.92
C1
6.08


17
HIS
N
29.37
10.24
9.01
C1
8.27


18
ARG
C
26.05
13.16
6.97
OP2
9.98


19
ILE
O
23.11
12.57
9.59
OP2
7.05


20
LEU
CD1
24.54
6.61
10.65
N
3.65


21
ARG
NH2
25.95
7.49
17.41
OP3
2.73


22
PRO
CD
25.3
14.83
11.68
OP2
7.58


23
ASN
N
27.54
16.84
13.46
OP2
9.54


24
GLN
OE1
26.93
12.63
17.1
OP2
5.77


25
PRO
O
33.23
12.71
14.76
OC2
10.28


26
ILE
O
34.98
9.77
13.04
OC2
10.19


27
GLU
O
35.17
8.21
16.66
OC2
9.25


28
ALA
O
31.2
7.9
16.13
OC2
5.5


29
CYS
CA
32.06
7.68
13.45
OC2
6.72


30
MET
N
33.89
6.31
14.28
OC2
7.74


31
PHE
CZ
28.66
4.5
14.15
OC2
3.02






aThe atom naming convention is the same as in the Table 1.




bThe minimum distance in Angstroms between the listed pairs of atoms in loop20 and glyphosate.














TABLE 4







The minimum distance between the R11 GLYAT variant loop20


residues and glyphosatea.














Resi-

Amino




Minimum


due
Amino
Acid



Glyphosate
Distance


ID
Acid
Atom
X
Y
Z
Atom
(Å)b

















16
ARG
CG
28.96
5.86
10.04
C1
5.91


17
HIS
N
29.39
10.43
9.22
C1
8.12


18
ARG
C
25.79
13.41
7.5
OP2
9.72


19
VAL
O
22.13
11.15
9.25
OP2
6.59


20
LEU
CD2
22.41
7.72
10.69
N
3.59


21
ARG
NH2
25.52
6.69
17.93
OC2
2.76


22
PRO
CD
25.27
14.48
12.31
OP2
7.32


23
ASN
OD1
24
16.65
15.29
OP2
8.53


24
GLN
OE1
27.22
11.43
18.3
OP2
6.37


25
PRO
O
33.11
12.43
14.5
OC2
10.32


26
ILE
O
35.28
10.04
12.63
OC2
10.94


27
GLU
O
36.02
8.4
16.25
OC2
10.42


28
ALA
O
31.54
8.43
16.16
OC2
6.4


29
CYS
O
32.43
5.63
12.88
OC2
6.97


30
MET
C
34.17
4.54
15.71
OC2
7.97


31
PHE
CZ
28.73
5.17
14.21
OC2
3.08






aThe atom naming convention is the same as in the Table 1.




bThe minimum distance in Angstroms between the listed pairs of atoms in loop20 and glyphosate.







The substrate-binding β-hairpin comprises residues 130-138 (FDTPPVGPH of the GLYAT R7 variant). The substrate-binding β-hairpin connects strands 6 and 7, with the four middle residues (TPPV) forming a typical Via β-turn (Richardson (1981) Adv Protein Chem. 1981; 34:167-339). As described elsewhere herein, the two consecutive prolines Pro133 and Pro 134 reduce the flexibility of the β-turn with Pro 133 adopting a trans- and Pro 134 a cis-conformation. The β-hairpin covers glyphosates phosphono group and harbors the putative catalytic base H is)38 (see FIG. 8). This β-turn is one of the least conserved motifs in the GLYAT family and thus it is exquisitely evolved to recognize the phosphono group of glyphosate or D-AP3. Val135 directly contacts either substrate's phosphono group through van der Waals interaction while Thr132's OG1 is ˜4.5 Å from the phosphono oxygen, a suitable distance for forming a water-bridged hydrogen bond, H is 138's NE2 strongly hydrogen bonds to 3PG's O2P with a short distance of ˜2.4 Å. The binding of substrate's phosphono group is also reinforced by a double salt-bridge to the side-chain of Arg111 at β5.


As described elsewhere herein, amino acid substitutions I132T and I135V, introduced by gene shuffling, had a significant impact on β-hairpin stability by reducing hydrophobic packing strength among the paired side chains (see FIG. 8). In the YVII or native enzyme, the side chains of I132, P133, cis-Pro 134, and I135 (and possibly H138 as well) form a hydrophobic cluster, stabilizing the type Vla β-turn and hairpin (FIG. 7). In optimized GLYATs, however, two strong hydrophobic isoleucines are replaced by a weaker valine at 135 and even a hydrophilic threonine at 132. As a consequence, the β-hairpin in the optimized GLYAT exhibits greater flexibility (FIG. 3A, FIG. 3B, and FIG. 4B) during the molecular dynamics (MD) simulation described elsewhere herein (see Experimental Example 1).


In some embodiments, the substrate binding cavity further comprises the full atomic coordinates of the substrate-binding β-hairpin (residues 130-138) defined by the atomic coordinates provided in Table 5 in addition to the atomic coordinates provided in Table 1, Table 3, or both or a structural variant thereof. In other embodiments, the substrate binding cavity further comprises the full atomic coordinates of the substrate-binding β-hairpin defined by the atomic coordinates provided in Table 6 in addition to the atomic coordinates provided in Table 2, Table 4, or both or a structural variant thereof. The minimum distances between β-hairpin residues and glyphosate are also shown in Tables 5 and 6.









TABLE 5







The minimum contact distance between the R7 GLYAT


variant beta-hairpin residues and glyphosatea.




















Gly-



Resi-

Amino



phos-
Minimum


due
Amino
Acid



ate
Distance


ID
Acid
Atom
X
Y
Z
Atom
(Å)b

















131
ASP
C
18.609
9.61
24.855
OP1
9.0278


132
THR
CG2
22.798
8.423
22.815
OP3
5.5732


133
PRO
O
24.323
12.02
22.781
OP3
7.368


134
PRO
C
22.024
14.283
19.783
OP1
7.359


135
VAL
CG1
23.022
11.685
17.176
OP2
3.6598


136
GLY
N
19.115
12.611
20.034
OP1
6.3429


137
PRO
O
15.28
8.747
19.112
OP1
6.4985


138
HSP
NE2
19.486
7.328
18.349
OP1
2.6087






aThe atom naming convention is the same as in Table 1.




bThe minimum distance in Angstroms between the listed pairs of atoms in beta-hairpin and glyphosate.














TABLE 6







The minimum contact distance between the R11 GLYAT variant


beta-hairpin residues and glyphosatea.














Resi-

Amino




Minimum


due
Amino
Acid



Glyphosate
Distance


ID
Acid
Atom
X
Y
Z
Atom
(Å)b

















131
ASP
C
18.59
9.66
24.82
OP3
9.52


132
THR
CG2
22.66
8.39
22.57
OP3
6.06


133
PRO
O
24.23
11.93
22.45
OP3
8.04


134
PRO
C
22.05
13.92
19.13
OP2
7.01


135
VAL
CG1
22.96
11.05
17.01
OP2
3.42


136
GLY
O
17.82
10.22
20.91
OP1
6.71


137
PRO
O
15.2
8.8
19.25
OP1
6.68


138
HIS
NE2
19.35
6.92
18
OP1
2.65






aThe atom naming convention is the same as in Table 1.




bThe minimum distance in Angstroms between the listed pairs of atoms in beta-hairpin and glyphosate.







Without being bound by any theory or mechanism of action, the mutated residues of the β-hairpin of the optimized GLYAT variants contribute to its reduced stability and greater flexibility, which might contribute to an acceleration of the opening of the active site and determine substrate specificity. In addition, the phenol of wild-type GLYAT residue Y130 hydrogen bonds with the side chain of Asn 109. The R7 GLYAT variant polypeptide has a Y130F mutation and without being bound by any theory or mechanism of action, we believe that the absence of this hydrogen bond might allow the optimized GLYAT variant to more easily adjust then β-hairpin conformation to accommodate new substrate (e.g., glyphosate).


In any of these embodiments, a structural variant of the substrate binding cavity can be used for comparison to a three-dimensional molecular structure of a candidate polypeptide comprising the provided atomic coordinates in Table 1, Table 1 and Table 3, Table 1 and Table 5, Tables 1, 3, and 5, Table 2, Table 2 and 4, Table 2 and 6, or Tables 2, 4, and 6, wherein the structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids for which the atomic coordinates are provided of not more than about 4 Å, and in some embodiments, not more than about 2 Å, including but not limited to about 4 Å, 3.5 Å, 3 Å, 2.5 Å, 2.0 Å, 1.9 Å, 1.8 Å, 1.7 Å, 1.6 Å, 1.5 Å, 1.4 Å, 1.3 Å, 1.2 Å, 1.1 Å, 1.0 Å, 0.9 Å, 0.8 Å, 0.7 Å, 0.6 Å, 0.5 Å, 0.4 Å, 0.3 Å, 0.2 Å, and 0.1 Å.


The three-dimensional molecular structures of the GLYAT polypeptide and the candidate polypeptide are compared to determine if the candidate polypeptide comprises the substrate binding cavity of the GLYAT polypeptide (comprising the atomic coordinates of Table 1, Table 1 and Table 3, Table 1 and Table 5, Tables 1, 3, and 5, Table 2, Table 2 and 4, Table 2 and 6, or Tables 2, 4, and 6). A candidate polypeptide is considered to comprise the substrate binding cavity of the GLYAT polypeptide if the candidate polypeptide comprises a region wherein the back-bone atoms of the amino acids of this region have no more than about 4 Å root mean square deviation from the backbone atoms of the amino acids provided in Table 1, and optionally Table 3, and Table 5, including but not limited to about 4 Å, 3.5 Å, 3 Å, 2.5 Å, 2.0 Å, 1.9 Å, 1.8 Å, 1.7 Å, 1.6 Å, 1.5 Å, 1.4 Å, 1.3 Å, 1.2 Å, 1.1 Å, 1.0 Å, 0.9 Å, 0.8 Å, 0.7 Å, 0.6 Å, 0.5 Å, 0.4 Å, 0.3 Å, 0.2 Å, and 0.1 Å. In other embodiments, a candidate polypeptide is considered to comprise the substrate binding cavity oldie GLYAT polypeptide if the candidate polypeptide comprises a region wherein the back-bone atoms of the amino acids of this region have no more than about 4 Å root mean square deviation from the backbone atoms of the amino acids provided in Table 2, and optionally Table 4, and Table 6, including but not limited to about 4 Å, 3.5 Å, 3 Å, 2.5 Å, 2.0 Å, 1.9 Å, 1.8 Å, 1.7 Å, 1.6 Å, 1.5 Å, 1.4 Å, 1.3 Å, 1.2 Å, 1.1 Å, 1.0 Å, 0.9 Å, 0.8 Å, 0.7 Å, 0.6 Å, 0.5 Å, 0.4 Å, 0.3 Å, 0.2 Å, and 0.1 Å. In some embodiments, the two molecular structures are considered the same if the root mean square deviation between the back-bone atoms of the amino acids of this region are not more than about 2 Å. Any method known in the art can be used to compare the two three-dimensional molecular structures to determine if the candidate polypeptide comprises the optimized substrate binding cavity. Such analyses may be carried out in current software applications, such as the Molecular Similarity application of QUANTA (Molecular Simulations Inc., San Diego, Calif.) and as described in the accompanying User's Guide. The Molecular Similarity application permits comparisons between different structures, different conformations of the same structure, and different parts of the same structure. The procedure used in Molecular Similarity to compare structures is divided into four steps: 1) load the structures to be compared; 2) define the atom equivalences in these structures; 3) perform a fitting operation; and 4) analyze the results. Each structure is identified by a name. One structure is identified as the target (i.e., the fixed structure); all remaining structures are working structures (i.e., moving structures). Since atom equivalency within QUANTA is defined by user input, for the purpose of this invention we will define equivalent atoms as protein backbone atoms (N, C.alpha., C and O) for all conserved residues between the two structures being compared. Many other structural comparison tools automatically identify equivalent atoms (usually the alpha carbons of equivalent residues). Since the geometrical distance between the alpha carbons of any two residues in a 3D structure does not directly reflect the position of the residues in the corresponding primary ID sequence, the identified equivalent residues of two proteins can be non-consecutive, not the same residue number, or even not in the same sequential order. The widely available software packages include, but are not limited to, Dali (Holm & Sander (1993) J Mol Biol. 233(1):123-138), SSM (Krissinel & Henrick (2004) Acta Cryst. D60:2256-2268), VAST (Gibrat et al. (1996) Curr Opin Struct Biol 6(3):377-385), and CE (Shindyalov & Bourne (1998) Protein Engineering 11(9):739-747). We will also consider only rigid fitting operations. When a rigid fitting method is used, the working structure is translated and rotated to obtain an optimum fit with the target structure. The fitting operation uses an algorithm that computes the optimum translation and rotation to be applied to the moving structure, such that the root mean square difference of the fit over the specified pairs of equivalent atom is an absolute minimum. This number, given in angstroms, is reported by QUANTA and others.


In embodiments, the present subject matter is directed to an electronic representation comprising the atomic coordinates of any glyphosate N-acetyltransferase (GLYAT) or variant thereof described herein. In a preferred embodiment, an electronic representation comprises the atomic coordinates of a glyphosate N-acetyltransferase (GLYAT) polypeptide crystal. In another preferred embodiment, an electronic representation comprises the atomic coordinates found in Tables 18 or 19.


In another embodiment, the present subject matter is directed to a data array comprising the atomic coordinates of a glyphosate N-acetyltransferase (GLYAT) polypeptide crystal said atomic coordinates comprising, a) a three-dimensional representation of at least one of a substrate binding cavity comprising atomic coordinates described herein; and b) a variant of the three-dimensional representation of part (a), wherein said variant comprises a root mean square deviation from the back-bone atoms of said amino acids of not more than 1.9 Å.


In another embodiment, the present subject matter is directed to an electronic representation comprising the atomic coordinates of a glyphosate N-acetyltransferase (GLYAT) polypeptide crystal said atomic coordinates comprising, a) a three-dimensional representation of at least one of a substrate binding cavity comprising atomic coordinates described herein; and b) a variant of the three-dimensional representation of part (a), wherein said variant comprises a root mean square deviation from the back-bone atoms of said amino acids of not more than 1.9 Å.


It is to be noted that the candidate polypeptide can be considered to comprise the GLYAT substrate binding cavity of Table 1, and in some embodiments, Table 3, Table 5, or both, or the GLYAT substrate binding cavity of Table 2, and in some embodiments, Table 4, Table 6, or both, even if the particular residue number between the GLYAT polypeptide and candidate polypeptide are dissimilar, so long as the atomic coordinates of the amino acid atoms that contact glyphosate are the same (or wherein the back-bone atoms of the amino acids of this region have no more than about 4 Å root mean square deviation from the backbone atoms of the amino acids provided in Table 1, Table 1 and Table 3, Table 1 and Table 5, Tables 1, 3, and 5, Table 2, Table 2 and 4, Table 2 and 6, or Tables 2, 4, and 6, as discussed above). For example, the leucine residue at position 20 in the substrate binding cavity of the GLYAT R7 variant polypeptide listed in Table 1 can correspond to a leucine residue in the substrate binding cavity of the candidate polypeptide that is not at the 20 position in the amino acid sequence of the candidate polypeptide. One of skill in the art will appreciate that the two molecular structures can still be considered the same or similar so long as the three-dimensional molecular structure of the candidate polypeptide comprises the atomic coordinates within Table 1, Table 1 and Table 3, Table 1 and Table 5, Tables 1, 3, and 5, Table 2, Table 2 and 4, Table 2 and 6, or Tables 2, 4, and 6 (or a variation thereof), regardless of the positioning of a given residue within the polypeptide chain.


In some embodiments, the methods of the invention further comprise altering the primary structure of the candidate polypeptide to maximize a similarity or relationship between the three-dimensional molecular structures of the candidate polypeptide and the substrate binding cavity of the GLYAT polypeptide (comprising the atomic coordinates of Table 1, Table 1 and Table 3, Table 1 and Table 5, Tables 1, 3, and 5, Table 2, Table 2 and 4, Table 2 and 6, or Tables 2, 4, and 6). Any method known in the art can be used to alter the primary structure of the candidate polypeptide, including any mutagenic or recombinogenic methods described elsewhere herein. One of skill in the art will appreciate that mutations introduced outside of the substrate binding cavity may influence the secondary or tertiary structure of the polypeptide and indirectly alter the three-dimensional structure of the substrate binding cavity. Candidate polypeptides, particularly those whose primary structure have been modified to provide a better fit with the substrate binding cavity of the GLYAT polypeptide, can be produced and assayed for the ability to bind to glyphosate with a higher binding affinity or specificity when compared to a native GLYAT polypeptide using any method known in the art. In this way, the methods of the invention provide for the identification of additional optimized GLYAT polypeptides that exhibit enhanced affinity or specificity for glyphosate over native GLYAT polypeptides.


As used herein, the term “maximize” includes enhance, increase, improve and the like. Thus, the term is not limited to a highest measure but is meant to also describe incremental enhancements, improvements and the like.


In some embodiments of the methods of the invention, the candidate polypeptide is evaluated for its potential to have N-acetyltransferase activity with a higher catalytic rate (kcat) for a substrate when compared to a native GLYAT polypeptide. In these embodiments, a three-dimensional molecular structure of at least a GNAT wedge joining region of a GLYAT polypeptide is provided and the three-dimensional molecular structure of a candidate polypeptide are compared to determine if the candidate polypeptide has the potential to have N-acetyltransferase activity with a higher kcat for a substrate when compared to a native GLYAT polypeptide. The molecular structure is determined from a GLYAT polypeptide bound to glyphosate and an acetyl donor (e.g., AcCoA). GLYAT polypeptides comprise the classic GNAT wedge shape that comprises a V-shaped wedge formed by two central parallel beta strands splaying apart at the middle point (for example, see beta strands β4 and β5 of GLYAT in FIG. 1). The GNAT wedge of GLYAT essentially separates the polypeptide into two subdomains, with β1-β4 in subdomain I and strands β5-β7 in subdomain II. As used herein, a “GNAT wedge joining region” refers to the region of the GNAT wedge where the two central parallel beta strands meet. For example, the wedge joining region of the R7 GLYAT variant polypeptide comprises the area where beta strands β4 and β5 meet. The unique wedge topology of GNAT proteins is responsible for the highly conserved AcCoA binding mode. The parting of the two parallel β4 and β5 allows the bound AcCoA to place its acetyl group in the wedge joining region, forming the reaction center. The acetyl and pantetheine moieties of AcCoA, mimicking a pseudo peptide β-strand, projects carbonyl and amide groups to both sides and hydrogen bonds to the backbone of the adjacent β4, allowing the main β sheet to extend to some degree.


Beyond substrate binding, two other residues, Try118 and Met75, are essential to catalysis. Try118 is about 3.6 Å from AcCoA SIP and is in position to serve as the general base protonating the thiolate anion of CoA (Sichl et al. (2007) J Biol Chem 282:11446-11455). A characteristic feature of GLYAT, the β-bulge at strand 4, formed by residues Gly74 and Met75, orients the amide of Met75 to the reaction center, forming a hydrogen bond to the carbonyl of the AcCoA's thioester (FIG. 8). This hydrogen bond both positions the thioester properly for the acylation reaction and further polarizes the carbonyl making the carbon atom more susceptible to nucleophilic attack by the glyphosate amine. In the GLYAT R11, Met75 was replaced by a valine. The side chain alteration fine-tunes this amide group to better fit glyphosate.


The wedge also contributes two residues that recognize glyphosate through their side-chains (Arg73 and Arg111). Atomic coordinates found within about 4 Å of the bound AcCoA, where the two beta strands meet are considered part of the wedge joining region. In some embodiments, the GNAT wedge joining region comprises the atomic coordinates provided in Table 7 or Table 8.









TABLE 7







Contacts between AcCoA and the R7 GLYAT variant polypeptidea


when the polypeptide is bound to AcCoA and glyphosatea.














Residue
Amino
GLYAT



AcCoAb
Distance


ID
Acid
Atom
X
Y
Z
Atom)
(A)

















20
LEU
CD2
22.35
7.82
11.09
C5P
3.91








C6P
3.62








N4P
3.64


72
LEU
O
22.80
−1.08
15.38
CH3
3.58


73
ARG
C
25.13
0.95
12.68
O
3.82


74
GLY
C
24.61
2.93
10.29
O
3.84




CA
25.45
3.10
11.53
O
3.68




N
25.02
2.30
12.66
O
3.06


75
MET
CB
21.10
1.81
9.75
O
3.99




N
23.28
2.75
10.44
O
3.07




O
21.43
4.75
9.44
C2P
3.26








C3P
3.60








N4P
2.99


76
ALA
C
21.81
5.16
5.32
O9P
3.82




CA
21.83
5.35
6.81
CDP
3.90








O9P
3.72


77
THR
C
20.99
7.49
2.84
O9P
3.80




CA
20.94
6.02
3.18
O9P
3.82




CB
19.68
5.40
2.60
O5A
3.41








O6A
3.55








P2A
3.90




CG2
19.63
5.55
1.07
O5A
3.47




N
21.01
5.98
4.63
C9P
3.96








CDP
3.84








O9P
2.97




O
20.31
8.31
3.44
C9P
4.00








O9P
3.01




OG1
19.64
4.01
2.89
O5A
2.85








O6A
3.17








P2A
3.58


82
ARG
C
14.96
6.74
−1.09
O4A
3.69




CA
16.21
7.16
−0.38
O4A
3.35




CB
15.84
8.18
0.72
O4A
3.36




CD
16.63
9.38
2.83
CAP
3.97








OAP
3.63




CG
17.01
8.47
1.67
O4A
3.65




CZ
18.00
10.62
4.55
C9P
3.68








O9P
3.50




NE
17.86
9.60
3.66
C9P
3.52








CAP
3.75








O9P
3.31








OAP
3.78




NH2
19.23
10.89
5.04
C7P
3.96








C9P
3.95








O9P
3.44


83
GLU
C
13.11
4.42
−2.20
O1A
3.59




CA
12.95
5.26
−0.95
O1A
3.35




CD
10.95
6.33
1.21
C2B
3.73








O2B
3.40




N
14.21
5.79
−0.47
O1A
3.51








O4A
3.03




OE1
9.85
5.77
0.98
C2B
3.27








O2B
2.64




OE2
11.59
6.21
2.29
C2B
3.43








C8A
3.21








N7A
3.74








N9A
3.78








O2B
3.40








O4A
3.99


84
GLN
N
14.29
3.78
−2.36
O1A
3.39


85
LYS
C
16.41
−0.29
−0.94
O2A
3.74




CA
14.94
−0.07
−1.21
O1A
3.43








O2A
3.49








P1A
4.00




CE
10.60
−1.73
−0.71
O7A
3.37




N
14.70
1.23
−1.81
O1A
3.00




NZ
10.00
−0.41
−0.99
O7A
2.72


86
ALA
C
18.92
0.13
0.79
O5A
3.83




CA
18.64
0.67
−0.59
O5A
3.92




CB
19.39
2.00
−0.77
O5A
3.73




N
17.22
0.79
−0.83
O5A
3.68


87
GLY
C
17.80
−1.14
3.38
O2A
3.84




CA
18.39
0.22
3.18
O2A
3.95








O5A
3.63




N
18.23
0.67
1.82
O2A
3.67








O5A
2.89


88
SER
CA
15.94
−2.69
2.84
O2A
3.60




CB
14.62
−2.71
2.03
O2A
3.30




N
16.62
−1.40
2.77
O2A
2.91




OG
13.66
−1.85
2.62
C5B
3.27








O2A
2.63








P1A
3.85


108
CYS
SG
18.71
0.07
14.80
CH3
3.60








S1P
3.86


109
ASN
O
18.88
3.13
17.87
CH3
3.82


111
ARG
CD
18.36
8.96
14.19
O5P
3.61


113
SER
C
12.36
8.02
12.16
N6A
4.00




O
12.12
8.30
10.99
C6A
3.61








N1A
3.54








N6A
2.92


114
ALA
CA
13.31
5.81
11.60
N6A
3.89




CB
14.84
5.62
11.54
C3P
3.86








O5P
3.54


116
GLY
C
9.33
2.36
9.53
C2A
3.63








N3A
3.45




CA
8.65
3.11
10.64
C2A
3.64








N3A
3.94




O
8.71
1.52
8.88
N3A
3.79


117
TYR
CA
11.47
1.90
8.36
C4A
3.73








N3A
3.91








N9A
3.84








O4B
3.60




CB
12.82
2.67
8.20
C4A
3.75








C5A
3.69








C8A
3.80








CEP
3.97








N7A
3.75








N9A
3.82




CD1
14.03
1.41
6.35
CCP
3.67








O3A
3.77








O4B
3.79








O5B
3.79




CD2
15.07
1.63
8.53
CEP
3.80




CE1
15.16
0.71
5.89
CCP
3.79








O2A
3.73








O3A
3.64




CG
13.99
1.88
7.67
CCP
3.95








CEP
3.81




N
10.64
2.62
9.30
C2A
3.58








C4A
3.66








N3A
3.41


118
TYR
OH
18.16
1.23
11.55
S1P
3.58


120
LYS
CB
8.38
−1.09
6.26
O4B
3.94




CD
5.94
−0.45
5.76
O8A
3.57




CE
4.89
0.66
5.64
O8A
3.57




CG
7.32
0.03
6.25
O3B
3.79








O4B
3.98




NZ
5.33
1.70
4.68
O3B
3.34








O8A
2.82








P3B
3.66






aThe naming convention of amino acid atoms and all the atomic coordinates is the same as Table 1 and the structure model used here is the same as that in Table 1.














TABLE 8







Contacts between AcCoA and the R11 GLYAT variant polypeptidea


when the polypeptide is bound to AcCoA and glyphosatea.














Resi-









due
Amino
GLYAT



AcCoA
Distance


ID
Acid
Atom
X
Y
Z
Atom
(Å)

















151
Bound
C2
22.35
5.74
14.33
C
3.4



Glyphosate




CH3
3.71








O
3.56








S1P
3.9


19
VAL
O
22.13
11.15
9.25
C6P
3.65


20
LEU
CD2
22.41
7.72
10.69
C5P
3.7








C6P
3.55








N4P
3.45


72
LEU
O
21.94
−1.07
15.05
CH3
3.87


73
ARG
C
24.34
0.9
12.48
O
3.67


74
GLY
C
24.27
3.04
10.14
O
3.99




N
24.48
2.25
12.53
O
3.32


75
VAL
CA
22.18
2.69
8.91
O
3.9




CB
20.9
1.88
9.06
O
3.75




CG2
21.21
0.6
9.86
O
3.58




N
22.93
2.85
10.14
O
3.07




O
21.24
4.89
8.94
C2P
3.28








C3P
3.72








C5P
3.98








N4P
3


76
ALA
C
21.99
5.21
4.86
CDP
3.86








O9P
3.79




CA
22.01
5.47
6.34
CDP
3.73








O9P
3.72


77
THR
C
21.41
7.44
2.27
O9P
3.77




CA
21.19
6.01
2.67
O9P
3.75




CB
19.88
5.47
2.1
O5A
3.49








O6A
3.54








P2A
3.93




CG2
19.81
5.6
0.57
O5A
3.55




N
21.23
6.04
4.11
C9P
3.89








CDP
3.72








O9P
2.91




O
20.88
8.37
2.87
O9P
3




OG1
19.77
4.08
2.41
CDP
3.99








O5A
2.88








O6A
3.11








P2A
3.57


82
ARG
C
15.1
7.11
−1.42
O4A
3.74




CA
16.4
7.47
−0.75
O4A
3.42




CB
16.13
8.5
0.37
O4A
3.48




CD
17.14
9.74
2.37
OAP
3.77




CG
17.37
8.73
1.24
O4A
3.81




CZ
18.78
10.95
3.86
C9P
3.87








O9P
3.51




NE
18.44
9.88
3.1
C9P
3.53








CAP
3.93








O9P
3.18




NH2
20.02
11
4.39
C7P
3.92








O9P
3.41


83
GLU
C
13.25
4.81
−2.54
O1A
3.8




CA
13.12
5.58
−1.25
O1A
3.46




CD
11.08
6.2
0.99
C2B
3.69








O2B
3.46




N
14.38
6.15
−0.8
O1A
3.75








O4A
3.04




OE1
11.69
6.12
2.09
C2B
3.3








C8A
3.16








N7A
3.74








N9A
3.74








O2B
3.35




OE2
10.1
5.46
0.68
C2B
3.27








O2B
2.86


84
GLN
N
14.41
4.16
−2.75
O1A
3.7


85
LYS
C
16.29
−0.04
−1.44
O2A
3.88




CA
14.84
0.36
−1.56
O1A
3.38








O2A
3.57




CD
11.97
−0.5
−0.65
O1A
3.89








O2A
3.95




CE
10.45
−0.49
−0.48
O7A
3.26








O9A
3.59




N
14.66
1.64
−2.2
O1A
3.13




NZ
9.84
0.7
−1.1
O7A
3.61








O9A
2.87








P3B
3.88


86
ALA
C
18.83
0.17
0.33
O5A
3.81




CA
18.59
0.72
−1.05
O5A
3.92




CB
19.43
2.01
−1.22
O5A
3.76




N
17.19
0.96
−1.28
O5A
3.64


87
GLY
C
17.84
−0.88
3.09
O2A
3.79




CA
18.46
0.45
2.76
O2A
3.93








O5A
3.51




N
18.25
0.82
1.37
O2A
3.68








O5A
2.82








P2A
3.98


88
SER
CA
15.98
−2.45
2.59
O2A
3.58




CB
14.64
−2.49
1.81
O2A
3.3




N
16.66
−1.17
2.48
O2A
2.88




OG
13.69
−1.64
2.41
C5B
3.24








O2A
2.64








O5B
4








P1A
3.85


108
CYS
SG
18.39
−0.26
14.64
CH3
3.56


109
ASN
C
18.03
2.04
17.94
CH3
3.95




O
18.85
2.91
17.67
CH3
3.23


111
ARG
CD
17.91
8.99
14.2
O5P
3.86


113
SER
O
11.71
8.62
11.64
N1A
3.6


114
ALA
CB
14.77
6.2
11.8
C3P
3.89


116
GLY
C
9.46
2.68
9.84
C2A
3.8








N3A
3.6




O
8.84
1.89
9.13
N3A
3.92


117
TYR
CA
11.62
2.3
8.65
C4A
3.69








N3A
3.67








N9A
3.93








O4B
3.76




CB
13.01
3.01
8.6
C4A
3.71








C5A
3.73








N9A
4




CD1
13.98
1.8
6.56
C8A
3.8








CCP
3.89








O4B
3.58








O5B
3.96




CD2
15.33
2.06
8.54
CEP
3.8




CE1
15.01
1.07
5.95
CCP
3.8








O3A
3.84




CG
14.12
2.28
7.87
CEP
3.88




N
10.77
2.95
9.63
C2A
3.51








C4A
3.87








N3A
3.37




O
11.61
−0.04
8.15
O4B
3.9


118
TYR
OH
18.18
1.37
11.23
C
3.64








C2P
3.66








O
3.65








S1P
3.52


120
LYS
CB
8.72
−0.78
6.24
C4B
3.78








O4B
3.75




CD
6.44
0.33
5.78
O3B
3.57








O8A
3.5








P3B
3.93




CE
5.61
1.63
5.81
O3B
3.83








O8A
3.61




CG
7.86
0.49
6.33
C4B
3.87








O3B
3.51








O4B
3.59




NZ
6.17
2.66
4.9
O2B
3.77








O3B
2.93








O8A
3.15








P3B
3.66






aThe naming convention of amino acid atoms and all the atomic coordinates is the same as Table 1 and the structure model used here is the same as that in Table 1.







In some embodiments, the three-dimensional molecular structure of the GNAT wedge joining region can be described as comprising the backbone atomic coordinates and the inter-strand C-alpha atom distance of Table 9, which are found in the GLYAT R7 variant polypeptide, and the GNAT wedge joining region further comprises the atomic coordinates of Table 9, in addition to those of Table 7. In other embodiments, the three-dimensional molecular structure of the GNAT wedge joining region can be described as comprising the backbone atomic coordinates and the inter-strand C-alpha atom distance of Table 10, which are found in the GLYAT R11 variant polypeptide, and the GNAT wedge joining region further comprises the atomic coordinates of Table 10, in addition to those of Table 8.









TABLE 9







The wedge of GLYAT R7 variant polypeptide defined by backbone atoms of beta 4 and beta 5.









Beta 4 Strand
Beta 5 Strand




















Residue
Amino
Atom



Residue
Amino
Atom



Distance


ID
Acid
namea
Xb
Y
Z
ID
Acid
name
X
Y
Z
(Å)c






















69
GLN
N
22.87
−13.02
19.2
105
LEU
N
18.38
−13.28
16.3





CA
22.11
−11.86
18.78


CA
17.69
−12.03
16.05
5.2




C
23.05
−10.9
18.12


C
18.68
−10.95
15.72




O
24.23
−10.82
18.48


O
19.87
−11.05
16.01


70
TYR
N
22.57
−10.13
17.11
106
LEU
N
18.16
−9.88
15.09




CA
23.39
−9.19
16.38


CA
18.87
−8.68
14.75
4.83




C
22.78
−7.83
16.5


C
18.15
−7.59
15.49




O
21.56
−7.68
16.52


O
16.92
−7.53
15.45


71
GLN
N
23.64
−6.79
16.57
107
TRP
N
18.89
−6.71
16.2




CA
23.22
−5.42
16.72


CA
18.29
−5.68
17.01
4.94




C
23.59
−4.66
15.47


C
18.97
−4.37
16.75




O
24.69
−4.8
14.94


O
20.06
−4.3
16.2


72
LEU
N
22.64
−3.83
14.98
108
CYS
N
18.27
−3.27
17.12




CA
22.8
−2.94
13.87


CA
18.7
−1.94
16.82
5.14




C
23.29
−1.6
14.37


C
18.17
−1.04
17.9




O
22.8
−1.08
15.38


O
17.03
−1.2
18.34


73
ARG
N
24.27
−1.01
13.67
109
ASN
N
18.96
−0.03
18.32




CA
24.84
0.27
13.98


CA
18.48
1.1
19.09
8.2




C
25.12
0.95
12.68


C
18.14
2.16
18.07




O
25.45
0.3
11.68


O
18.88
3.12
17.87


74
GLY
N
25.02
2.3
12.65
110
ALA
N
17
1.96
17.38




CA
25.45
3.1
11.53


CA
16.52
2.79
16.3
10.13




C
24.61
2.93
10.29


C
16.22
4.19
16.74




O
25.14
2.95
9.18


O
15.73
4.41
17.85


75
MET
N
23.28
2.75
10.44
111
ARG
N
16.45
5.19
15.86




CA
22.38
2.56
9.32


CA
15.88
6.51
16.02
10.13




C
21.98
3.9
8.75


C
14.37
6.42
15.9




O
21.43
4.75
9.44


O
13.85
5.6
15.15


76
ALA
N
22.25
4.13
7.45
112
THR
N
13.63
7.28
16.63




CA
21.83
5.35
6.81


CA
12.17
7.24
16.66
14.92




C
21.81
5.16
5.32


C
11.57
7.77
15.38




O
22.51
4.29
4.79


O
10.4
7.54
15.09






aThe amino acid atom is the specific atom of the amino acid, as identified in Protein Data Bank file 2JDD;




bX, Y, and Z are the three-dimensional coordinates specifying the distance in Angstroms of the amino acid atom relative to the center of mass of the crystal.




cThe distance is the interstrand (β4/β5) distance of the two corresponding C-alpha atoms.














TABLE 10







The wedge of GLYAT R11 variant polypeptide defined by backbone atoms of beta 4 and beta 5.









Beta 4 Strand
Beta 5 Strand




















Residue
Amino
Atom



Residue
Amino
Atom



Distance


ID
Acid
namea
Xb
Y
Z
ID
Acid
name
X
Y
Z
(Å)






















69
GLN
N
23.05
−13.02
19.14
105
MET
N
18.66
−13.46
16.04





CA
22.27
−11.82
18.98


CA
17.96
−12.21
15.92
5.3




C
23.16
−10.84
18.28


C
18.88
−11.1
15.5




O
24.33
−10.69
18.64


O
20.1
−11.17
15.66


70
TYR
N
22.63
−10.15
17.25
106
ILE
N
18.26
−10.03
14.96




CA
23.39
−9.19
16.48


CA
18.88
−8.77
14.65
4.88




C
22.64
−7.89
16.57


C
18.06
−7.76
15.41




O
21.42
−7.87
16.65


O
16.84
−7.8
15.41


71
GLN
N
23.38
−6.76
16.57
107
TRP
N
18.72
−6.84
16.15




CA
22.82
−5.44
16.69


CA
18.02
−5.88
16.97
4.83




C
23.17
−4.65
15.45


C
18.63
−4.53
16.75




O
24.28
−4.71
14.92


O
19.7
−4.41
16.17


72
LEU
N
22.16
−3.9
14.96
108
CYS
N
17.92
−3.46
17.15




CA
22.18
−3.08
13.78


CA
18.33
−2.13
16.79
4.98




C
22.55
−1.67
14.16


C
17.89
−1.18
17.87




O
21.94
−1.07
15.05


O
16.78
−1.3
18.39


73
ARG
N
23.58
−1.1
13.5
109
ASN
N
18.73
−0.18
18.2




CA
24.13
0.2
13.79


CA
18.32
0.98
18.97
7.82




C
24.34
0.9
12.48


C
18.03
2.04
17.94




O
24.4
0.28
11.42


O
18.85
2.91
17.67


74
GLY
N
24.48
2.25
12.53
110
ALA
N
16.84
1.95
17.31




CA
25.02
3.04
11.45


CA
16.36
2.86
16.31
9.93




C
24.27
3.04
10.14


C
16.08
4.23
16.88




O
24.89
3.19
9.09


O
15.73
4.36
18.05


75
VAL
N
22.93
2.85
10.14
111
ARG
N
16.22
5.3
16.06




CA
22.18
2.69
8.91


CA
15.63
6.59
16.35
10.65




C
21.85
4.03
8.3


C
14.13
6.48
16.35




O
21.24
4.89
8.93


O
13.57
5.66
15.62


76
ALA
N
22.26
4.24
7.03
112
THR
N
13.41
7.31
17.14




CA
22.01
5.47
6.34


CA
11.95
7.31
17.12
14.86




C
21.99
5.2
4.86


C
11.42
7.96
15.86




O
22.64
4.28
4.38


O
10.28
7.73
15.47






aThe amino acid atom is the specific atom of the amino acid, as identified in Protein Data Bank file 2JDD;




bX, Y, and Z are the three-dimensional coordinates specifying the distance in Angstroms of the amino acid atom relative to the center of mass of the crystal.




cThe distance is the interstrand (β4/β5) distance of the two corresponding C-alpha atoms.







Alternatively, the GNAT wedge joining region can comprise a structural variant of the GNAT wedge joining region defined by the atomic coordinates of Table 7, Tables 7 and 9, Table 8, or Tables 8 and 10, wherein the structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 7, Tables 7 and 9, Table 8, or Tables 8 and 10 of not more than about 4 Å, including but not limited to about 3.5 Å, 3 Å, 2.5 Å, 2 Å, 1.9 Å, 1.8 Å, 1.7 Å, 1.6 Å, 1.5 Å, 1.4 Å, 1.3 Å, 1.2 Å, 1.1 Å, 1.0 Å, 0.9 Å, 0.8 Å, 0.7 Å, 0.6 Å, 0.5 Å, 0.4 Å, 0.3 Å, 0.2 Å, and 0.1 Å. In some of these embodiments, the variant GNAT wedge joining region comprises a root mean square deviation from the back-bone atoms of the amino acids of the structure defined by the atomic coordinates of Table 7, Tables 7 and 9, Table 8, or Tables 8 and 10 of not more than about 2.0 Å.


The analysis described elsewhere herein (see Experimental Example 1) describes two independent structural inter-subdomain motion modes within the GLYAT polypeptide involving the GNAT wedge, wherein the wedge joining region serves as a hinge for both the observed wedge opening and wedge twisting motions. Without being bound by any theory or mechanism of action, it is believed that these motions play a role in controlling the access of AcCoA, determining bound AcCoA's conformation, facilitating the egress of CoA, and facilitating the binding of glyphosate and that the mutations in the wedge joining region found in the optimized GLYAT variants contribute to the enhanced catalytic activity (and perhaps the enhanced glyphosate binding affinity and specificity) associated with these optimized variants.


The three-dimensional molecular structure of the GLYAT wedge joining region is compared to the provided three-dimensional molecular structure of a candidate polypeptide to determine if the structure of the candidate polypeptide comprises the wedge joining region of the GLYAT polypeptide (comprising the atomic coordinates of Table 7, Tables 7 and 9, Table 8, or Tables 8 and 10). En some of these embodiments, the candidate polypeptide is known to comprise a GNAT wedge or is suspected of comprising a GNAT wedge based on sequence similarity to protein members of the GNAT superfamily (see Dyda et al. (2000) Annu Rev. Biophys. Biomol. Struct. 29:81-103, which is herein incorporated by reference in its entirety). A candidate polypeptide can be suspected of comprising a GNAT wedge if the candidate polypeptide exhibits at least 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or higher sequence similarity to a member of the GNAT superfamily of N-acetyltransferases. In some of these embodiments, the candidate polypeptide has been shown to exhibit N-acetyltransferase activity or is suspected of having N-acetyltransferase activity (based on sequence similarity with other N-acetyltransferases). The candidate polypeptide can be suspected of having N-acetyltransferase activity if the candidate polypeptide exhibits at least 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or higher sequence similarity to a known N-acetyltransferase. In certain embodiments, the candidate polypeptide comprises a GLYAT polypeptide and the substrate comprises glyphosate.


A candidate polypeptide is considered to comprise the GNAT wedge joining region of the GLYAT polypeptide if the candidate polypeptide comprises a region wherein the back-bone atoms of the amino acids of this region have no more than about 4 Å root mean square deviation from the backbone atoms of the amino acids provided in Table 7, Tables 7 and 9, Table 8, or Tables 8 and 10, including but not limited to about 4 Å, 3.5 Å, 3 Å, 2.5 Å, 2.0 Å, 1.9 Å, 1.8 Å, 1.7 Å, 1.6 Å, 1.5 Å, 1.4 Å, 1.3 Å, 1.2 Å, 1.1 Å, 1.0 Å, 0.9 Å, 0.8 Å, 0.7 Å, 0.6 Å, 0.5 Å, 0.4 Å, 0.3 Å, 0.2 Å, and 0.1 Å. In some embodiments, the two molecular structures are considered the same if the root mean square deviation between the back-bone atoms of the amino acids of this region are no more than about 2 Å. Any method known in the art can be used to compare the two three-dimensional molecular structures to determine if the candidate polypeptide comprises the GNAT wedge joining region, including those described elsewhere herein.


It is to be noted that the candidate polypeptide can be considered to comprise the GNAT wedge joining region of the GLYAT polypeptide (comprising the atomic coordinates of Table 7, Tables 7 and 9, Table 8, or Tables 8 and 10) even lithe particular residue number between the GLYAT polypeptide and candidate polypeptide are dissimilar as long as the atomic coordinates of the amino acid atoms are the same (or wherein the back-bone atoms of the amino acids of this region have no more than about 4 Å root mean square deviation from the backbone atoms of the amino acids provided in Table 7, Tables 7 and 9, Table 8, or Tables 8 and 10, as discussed above). For example, the arginine residue at position 73 in the GNAT wedge joining region of the GLYAT R7 variant polypeptide listed in Table 9 can correspond to an arginine residue in the substrate binding cavity of the candidate polypeptide that is not at the 73rd position in the amino acid sequence of the candidate polypeptide. One of skill in the art will appreciate that the two molecular structures can still be considered the same or similar as long as the three-dimensional molecular structure of the candidate polypeptide comprises the atomic coordinates within Table 9 (or a variation thereof), regardless of the positioning of a given residue with the polypeptide chain.


In some embodiments, the methods of the invention further comprise altering the primary structure of the candidate polypeptide to maximize a similarity or relationship between the three-dimensional molecular structures of the candidate polypeptide and the GNAT wedge joining region of the GLYAT polypeptide (comprising the atomic coordinates of Table 7, Tables 7 and 9, Table 8, or Tables 8 and 10). Any method known in the art can be used to alter the primary structure of the candidate polypeptide, including those described elsewhere herein. Candidate polypeptides whose primary structure have been modified to provide a better fit with the GNAT wedge joining region of the GLYAT polypeptide can be tested for the ability to acetylate its substrate at a higher catalytic rate when compared to a native GLYAT polypeptide using any method known in the art. In these embodiments, the catalytic rate will be determined under optimal conditions (e.g., non-limiting substrate). In this way, the methods of the invention provide for the identification of N-acetyltransferases that exhibit enhanced catalytic activity over native GLYAT polypeptides.


The methods can further comprise producing the candidate polypeptide having the GNAT wedge joining region described herein (comprising the atomic coordinates of Table 7, Tables 7 and 9, Table 8, or Tables 8 and 10). The candidate polypeptide can be synthesized using any method known in the art. The catalytic rate of the candidate polypeptide against a substrate (e.g., glyphosate) can then be assayed to determine if the candidate polypeptide has improved catalytic activity when compared to native GLYAT.


The presently disclosed subject matter further provides methods for evaluating the potential of a variant GLYAT polypeptide to associate with glyphosate with a higher binding affinity when compared to a native GLYAT polypeptide, higher binding specificity when compared to a native GLYAT polypeptide, or a combination thereof through the provision of a three-dimensional molecular structure of a variant GLYAT polypeptide. As described elsewhere herein, structural analysis of the altered amino acid residues between the optimized R11 and R7 variants compared with the native GLYAT identified three residue substitution trends associated with improved functionality; (1) increased positive charge through surface residue substitution, (2) expansion of the substrate binding cavity and (3) relaxation of the protein's interior packing density through downsizing amino acid substitution.


There are a total of 21 amino acid substitutions from the native GLYAT to the R7 variant, and 12 more from the R7 to R11 (FIG. 1, Tables 13-16). Based on structural location, the substitutions are divided into two groups, at the protein surface and in the interior. There are 10 surface substitutions from the native to R7 (G37R, R47G, K58Q, E65Q, E67Q, E68K, E92K, K 101R, E119K and K 144R) (Table 13) and 4 more from the R7 to R 11 (E14D, G38S, Q67K and K119R) (Table 15). The surface substitutions increase the protein's net positive charge by 7 from the native to R7 and by 1 more from the R7 to R11. Both the cofactor AcCoA and glyphosate are heavily negatively charged species, and therefore the enhanced positive charge in the optimized GLYAT variants may increase the attraction to its substrates, which in turn may accelerate catalysis. The surface substitutions might also result in part from pressure during shuffling to select variants with improved expression in E. coli and solubility in buffer.


Of the interior substitutions, only 4, Y31F-V114A-I132T-I135V, are at the active site and they are all downsizing changes, i.e. residues with larger side-chain are replaced by relatively smaller ones (Table 14). V114A makes a direct contact with the pantetheine motif of AcCoA. I132T and I135V are located at the β-hairpin and interact with glyphosate's phosphono group. Y31F directly contacts the substrate carboxyl group through a van der Waals attraction in R7 and/or a hydrogen bond in the native GLYAT. These four substitutions effectively increase the size of the substrate binding-site. As described earlier (Siehl et al. (2007) J Biol Chem 282:11446-11455), the substrate most active with native GLYAT is D-AP3 (FIG. 2B). Considering that glyphosate is longer than D-AP3, the resulting larger active site in the optimized GLYATs better accommodate glyphosate, thus increasing catalytic efficiency and specificity to glyphosate.


Besides the four substitutions at the active site, other interior substitutions show the same downsizing trend, totaling 7 from the native to R7 (Y31F, T33S, T89S, V 114A, Y130F, I132T and I135V, Table 14) and 6 more substitutions from the R7 to R11 (119V, L36T, Y45F, 153V, M75V and 191V, Table 16). As a consequence, the overall molecular weight of R7 was 90 units smaller, 16,600 Da (R7) vs. 16,690 Da (native). These downsizing substitutions systematically created numerous small cavities, as with T33S and M75V, or abolished some internal hydrogen bonds, such as Y45F and Y130F, in the protein core, relaxing the protein's packing density. It is well documented that structural flexibility is inversely related to packing density (Halle (2002) Proc. Natl. Acad. Sci. USA 99:1274-1279). Mutagenesis and theoretical approaches have shown that introducing new interior cavities in some instances may decrease a protein's thermal stability (Matsumura et al. (1988) Nature, 334, 406-410; Eriksson et al (1992) Science, 255, 17K-183; Xu et al. (1998) Protein Sci. 7(1):158-177). On the other hand, in some instances, filling cavities can inhibit the motion of functionally important regions of a protein, thereby diminishing its catalytic activity (Ogata et al., (1996). Nat. Struct. Biol., 3, 178-187). Thus, the greater flexibility of optimized GLYATs is important for its improved functionality.


The GLYANT variant's structural characteristics in the absence of both substrate and cofactor AcCoA can be studied by a molecular dynamics simulation of an unliganded apo-enzyme. Without the bound ligands, the protein undergoes a large and hinge-like subdomain motion along the V-shaped wedge, and consequently the binding cavities for both substrate and cofactor are wide open. The binding site openness can be measured by calculating the average wedge angle and by measuring an inter-loop distance of the substrate binding loops, the β-hairpin and loop20. As used herein, a “wedge angle” is defined by the formula α+β−180°, wherein a comprises the angle formed by the Cα carbons in the following amino acid residues: alanine at position 76, leucine at position 72 and cysteine at position 108; and wherein β comprises the angle formed by the Cα carbons in the following amino acid residues: leucine at position 72, cysteine at position 108, and arginine at position 111 (see FIG. 6A). In some embodiments, an average wedge angle of at least about 41″, including but not limited to about 42°, 43°, 44°, 45°, 46°, 47°, 48°, 49°, 50°, 51°, 52°, 53°, 54°, 55° or greater indicates the variant GLYAT polypeptide associates with glyphosate with a higher binding affinity, higher binding specificity or both when compared to a native GLYAT polypeptide. The distance between the substrate-binding beta hairpin and loop20 is determined by two alpha carbons of Gln24 and Pro134 (FIG. 4). A distance between the alpha carbons of Gln24 and Pro 134 of greater than about 14 Å indicates that the active site of the polypeptide is in an open state. Compared to D-AP3 with 4 main-chain atoms, glyphosate has 5 main-chain atoms and thus is a larger and longer molecule. Therefore, a variant GLYAT polypeptide capable of opening its substrate binding site wider is associated with a higher binding affinity or higher binding specificity to glyphosate when compared to a native GLYAT polypeptide (FIG. 4B). In some embodiments, an average interloop distance of about 14 Å, 15 Å, 16 Å, 17 Å, 18 Å, 19 Å, 20 Å, 21 Å, 22 Å, 23 Å, 24 Å, 25 Å, 26 Å, 27 Å, 28 Å, 29 Å, 30 Å, or greater indicates the variant GLYAT polypeptide associates with glyphosate with a higher binding affinity, specificity, or both when compared to a native GLYAT polypeptide.


As used herein, a “molecular dynamics simulation” refers to a simulation method devoted to the calculation of the time dependent behavior of a molecular system in order to investigate the structure, dynamics and thermodynamics of molecular systems by solving the equation of motion for a molecule. This equation of motion provides information about the time dependence and magnitude of fluctuations in both positions and velocities of a given molecule. The direct output of molecular dynamics simulations is a set of “snapshots” (coordinates and velocities) taken at equal time intervals, or sampling intervals. Depending on the desired level of accuracy, the equation of motion to be solved may be the classical (Newtonian) equation of motion, a stochastic equation of motion, a Brownian equation of motion, or even a combination (Becker et al. (2001) cds. Computational Biochemistry and Biophysics New York). There are a number of ways to implement molecular dynamics simulations and examples of suitable simulation packages include, but are not limited to, CHARMM 983) J Comp. Chem. 4:187-217), AMBER ((2005) J. Computat. Chem. 26:1668-1688), GROMACS (van der Spoel et al. (2005) J Comp. Chem. 26:1701-1718, TINKER (Ponder et al. (1987) J. Comput. Chem. 8:1016-1024), NAMD (Phillips et al. (2005) J. Comput. Chem. 26:1781-1802) and LAMMPS (Plimpton (1995) J. Comp. Phys. 117:1-19). Any method known in the art for performing a molecular dynamics simulation can be used, including the methods described elsewhere herein (see Experimental section). For example, CHARMM 27 (MacKerell et al. (2004) Journal of Computational Chemistry 25:1400-1415) or GROMACS simulations, OPLS-AA/L (Jorgensen et al. (1996) J. Am. Chem. Soc. 118: 11225-11236; Kaminski et al. (2001) J. Phys. Chem. 105:6474-6487) can be performed.


The sampling interval (that is, the duration of the molecular dynamics trajectory) is determined according to the time scale of the protein motion to be sampled. In some embodiments of the presently disclosed methods, the sampling interval of the molecular dynamics simulation is about 0.1, 1, 2, 4, 6, 8, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 500 nanoseconds or greater. In some of these embodiments, the molecular dynamics simulation occurs over an interval of about 10 nanoseconds. The average wedge angle of the GNAT wedge of the variant GLYAT polypeptide is determined over the specified sampling interval. In certain embodiments, the maximal wedge angle over an entire sampling interval of a molecular simulation of at least about 41°, including but not limited to about 42′, 43°, 44°, 45°, 46°, 47°, 48°, 49°, 50°, 51″, 52°, 53″, 54°, 55° or greater indicates the variant GLYAT polypeptide associates with glyphosate with a higher binding affinity, higher binding specificity or both when compared to a native GLYAT polypeptide.


The following terms are used to describe the sequence relationships between two or more polynucleotides or polypeptides: (a) “reference sequence”, (b) “comparison window”, (c) “sequence identity”, and, (d) “percentage of sequence identity.”


(a) As used herein, “reference sequence” is a defined sequence used as a basis for sequence comparison. A reference sequence may be a subset or the entirety of a specified sequence; for example, as a segment of a full-length cDNA or gene sequence, or the complete cDNA or gene sequence.


(b) As used herein, “comparison window” makes reference to a contiguous and specified segment of a polynucleotide sequence, wherein the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two polynucleotides. Generally, the comparison window is at least 20 contiguous nucleotides in length, and optionally can be 30, 40, 50, 100, or longer. Those of skill in the art understand that to avoid a high similarity to a reference sequence due to inclusion of gaps in the polynucleotide sequence a gap penalty is typically introduced and is subtracted from the number of matches.


Methods of alignment of sequences for comparison are well known in the art. Thus, the determination of percent sequence identity between any two sequences can be accomplished using a mathematical algorithm. Non-limiting examples of such mathematical algorithms are the algorithm of Myers and Miller (1988) CABIOS 4: 11-17; the local alignment algorithm of Smith et al., (1981) Adv. Appl. Math. 2:482; the global alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48: 443-453; the search-for-local alignment method of Pearson and Lipman (1988) Proc. Natl. Acad. Sci. 85: 2444-2448; the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87: 2264-2268, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90: 5873-5877.


Computer implementations of these mathematical algorithms can be utilized for comparison of sequences to determine sequence identity. Such implementations include, but are not limited to: CLUSTAL in the PC/Gene program (available from Intelligenctics, Mountain View, Calif.); the ALIGN program (Version 2.0) and GAP, BESTFIT, BLAST, FASTA, and TFASTA in the GCG Wisconsin Genetics Software Package, Version 10 (available from Accelrys Inc., 9685 Scranton Road, San Diego, Calif., USA). Alignments using these programs can be performed using the default parameters. The CLUSTAL program is well described by Higgins et al. (1988) Gene 73: 237-244 (1988); Higgins et al. (1989) CABIOS 5: 151-153; Corpct et al. (1988) Nucleic Acids Res. 16:10881-90; Huang et al. (1992) CABIOS 8: 155-65; and Pearson et al. (1994) Meth. Mol. Biol. 24: 307-331. The ALIGN program is based on the algorithm of Myers and Miller (1988) supra. A PAM 120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used with the ALIGN program when comparing amino acid sequences. The BLAST programs of Altschul et al (1990) J. Mol. Biol. 215:403 are based on the algorithm of Karlin and Altschul (1990) supra. BLAST nucleotide searches can be performed with the BLASTN program, score=100, wordlength=12, to obtain nucleotide sequences homologous to a nucleotide sequence encoding a protein of the invention. BLAST protein searches can be performed with the BLASTX program, score=50, wordlength=3, to obtain amino acid sequences homologous to a protein or polypeptide of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST (in BLAST 2.0) can be utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25:3389. Alternatively, PSI-BLAST (in BLAST 2.0) can be used to perform an iterated search that detects distant relationships between molecules. See Altschul et al. (1997) supra. When utilizing BLAST, Gapped BLAST, PSI-BLAST, the default parameters of the respective programs (e.g., BLASTN for nucleotide sequences. BLASTX for proteins) can be used. BLAST software is publicly available on the NCBI website. Alignment may also be performed manually by inspection.


In some embodiments in the present methods, some steps, preferably the determining step can be implemented by a machine whereas the evaluation or evaluating step is conducted by a person. Computer programs disclosed herein or known in the art for comparing three-dimensional molecular structures are suitable for the present methods. More specifically, the one or more steps are implemented by a machine-readable program code on a machine readable medium and configured for execution by a machine such as a computer. General purpose machines may be used with the programs described herein or other suitable programs for executing one or more steps of the presently described methods. However, preferably embodiments are implemented in one or more computer programs executing on programmable systems each comprising at least one processor, at least one data storage system (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device. The program is executed on the processor to perform the functions described herein.


Each such program may be implemented in any desired computer language (including machine, assembly, high level procedural, object oriented programming languages, or the like) to communicate with a computer system. In any case, the language may be a compiled or interpreted language. The computer program will typically be stored on a storage media or device (e.g., ROM, CD-ROM, or magnetic or optical media) readable by a general or special purpose programmable computer, for configuring and operating the computer when the storage media or device is read by the computer to perform the procedures described herein. The system may also be considered to be implemented as a computer-readable storage medium, configured with a computer program, where the storage medium so configured causes a computer to operate in a specific and predefined manner to perform the functions described herein.


As used herein, the phrase “computer-readable storage medium” refers to any medium or mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer). For example, a machine readable medium includes machine readable storage media (read only memory (“ROM”); random access memory (“RAM”); magnetic disk storage media; optical storage media; flash memory devices); machine readable transmission media (electrical, optical, acoustical or other form of propagated signals, e.g., carrier waves, infrared signals, digital signals, etc.); floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions.


Unless otherwise stated, sequence identity/similarity values provided herein refer to the value obtained using GAP Version 10 using the following parameters: % identity and % similarity for a nucleotide sequence using GAP Weight of 50 and Length Weight of 3, and the nwsgapdna.cmp scoring matrix; % identity and % similarity for an amino acid sequence using GAP Weight of 8 and Length Weight of 2, and the BLOSUM62 scoring matrix; or any equivalent program thereof. By “equivalent program” is intended any sequence comparison program that, for any two sequences in question, generates an alignment having identical nucleotide or amino acid residue matches and an identical percent sequence identity when compared to the corresponding alignment generated by GAP Version 10.


GAP uses the algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48: 443-453, to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps. GAP considers all possible alignments and gap positions and creates the alignment with the largest number of matched bases and the fewest gaps. It allows for the provision of a gap creation penalty and a gap extension penalty in units of matched bases. GAP must make a profit of gap creation penalty number of matches for each gap it inserts. If a gap extension penalty greater than zero is chosen, GAP must, in addition, make a profit for each gap inserted of the length of the gap times the gap extension penalty. Default gap creation penalty values and gap extension penalty values in Version 10 of the GCG Wisconsin Genetics Software Package for protein sequences are 8 and 2, respectively. For nucleotide sequences the default gap creation penalty is 50 while the default gap extension penalty is 3. The gap creation and gap extension penalties can be expressed as an integer selected from the group of integers consisting of from 0 to 200. Thus, for example, the gap creation and gap extension penalties can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 or greater.


GAP presents one member of the family of best alignments. There may be many members of this family, but no other member has a better quality. GAP displays four figures of merit for alignments: Quality, Ratio, Identity, and Similarity. The Quality is the metric maximized in order to align the sequences. Ratio is the quality divided by the number of bases in the shorter segment. Percent Identity is the percent of the symbols that actually match. Percent Similarity is the percent of the symbols that are similar. Symbols that are across from gaps are ignored. A similarity is scored when the scoring matrix value for a pair of symbols is greater than or equal to 0.50, the similarity threshold. The scoring matrix used in Version 10 of the GCG Wisconsin Genetics Software Package is BLOSUM62 (see Henikoff and Henikoff (1989) Proc. Natl. Acad. Sci. USA 89: 10915).


(c) As used herein, “sequence identity” or “identity” in the context of two polynucleotides or polypeptide sequences makes reference to the residues in the two sequences that are the same when aligned for maximum correspondence over a specified comparison window. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. When sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Sequences that differ by such conservative substitutions are said to have “sequence similarity” or “similarity”. Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated, e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, Calif.).


(d) As used herein, “percentage of sequence identity” means the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison, and multiplying the result by 100 to yield the percentage of sequence identity.


It is to be noted that the term “a” or “an” entity refers to one or more of that entity; for example, “a polypeptide” is understood to represent one or more polypeptides. As such the terms “a” (or “an”),“one or more,” and “at least one” can be used interchangeably herein.


Throughout this specification and the claims, the words “comprise,” “comprises,” and “comprising” are used in a non-exclusive sense, except where the context requires otherwise.


As used herein, the term “about,” when referring to a value is meant to encompass variations of, in some embodiments ±50%, in some embodiments ±40%, in some embodiments ±30%, in some embodiments ±20%, in some embodiments ±10%, in some embodiments ±5%, in some embodiments ±1%, in some embodiments ±0.5%, and in some embodiments ±0.1% from the specified amount, as such variations are appropriate to perform the disclosed methods or employ the disclosed compositions.


All publications and patent applications mentioned in the specification are indicative of the level of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.


The following examples are offered by way of illustration and not by way of limitation.


Example 1
Structural Analysis and Molecular Dynamics Simulation of glyphosate N-acetyltransferase

Optimized variants of glyphosate N-accetyltransferase (GLYAT) from B. licheniformis efficiently catalyze the acetylation of glyphosate, a broad-spectrum and non-selective herbicide, and confer resistance in transgenic plants. Structural modeling and molecular dynamics (MD) simulations were performed on the native enzyme, 7th (R7) and 11th (R11) round variants from DNA shuffling experiments (Keenan et al. (2005) Proc Natl Acad Sci USA 102(25):8887-8892), and a revertant form of R7 in which all four active site substitutions were changed back to the wild type form (YVII). Structural analysis revealed that the efficiency enhancement of the shuffling variants coincided with interior bulky residues being mutated to smaller ones. Substitutions that exemplify that trend in evolving native GLYAT to R7 include Y31F, T33S, T89S, V114A, I132T, Y130F and I135V; and from R7 to R11, 119V, L36T, Y45F, 153V, M75V, 191V. MD simulations showed that the more optimized GLYAT roughly had a larger amplitude of fluctuation and inter-subdomain motion, supporting the hypothesis that the interior downsizing mutations reduced the enzyme's core packing strength, resulting in more flexibility. Two major substrate binding elements, loop20 connecting the α1 and α2 helices and the β-hairpin connecting the β6 and β7 strands, were the most flexible. In the absence of ligand, loop20 and the β-hairpin drift more than 16 Å apart from their closed form when bound to ligand. The β-hairpin, containing a type Via β turn and two downsizing mutations I132V and I135T, apparently plays a role in regulating the active site conformation and determining substrate specificity. The Principal Component Analysis of a MD trajectory identified two novel, independent inter-subdomain motion modes involving the signature v-shaped wedge: wedge opening and wedge twisting. These long range motions might be a unique feature of the GCN5-related N-acetyltransferase (GNAT) superfamily fold and could be useful in understanding GNAT's structure-function relationship.


X-ray crystal structures of R7 GLYAT (from the 7th round of gene shuffling) complexed with AcCoA and 3-phosphoglycerate (3PG), a competitive inhibitor with respect to glyphosate, revealed the active site architecture. See PDB:2JDD for the atomic coordinates and structure factors of the X-ray crystal structure of the ternary complex of R7 GLYAT with AcCoA and 3PG and PDB:2JDC for the atomic coordinates and structure factors of the X-ray crystal structure of the binary complex of R7 GLYAT with oxidized CoA and sulfate bound in the glyphosate binding pocket. See Tables 11 and 12 for the atoms of the R7 GLYAT variant polypeptide and of AcCoA that contact 3PG (i.e., the substrate binding cavity) and the residues of R7 that contact AcCoA, respectively.









TABLE 11







Contacts between the R7 GLYAT variant polypeptide and 3PG and


AcCoA when the polypeptide is bound to AcCoA and 3PG.
















GLYAT









or


Residue
Amino
AcCoA



3PGc
Distance


ID
Acid
Atoma
Xb
Yb
Zb
Atom
(A)

















20
LEU
CB
24.62
9.03
11.645
O3
3.69




CD1
24.57
6.61
10.99
C2
3.46








C3
3.93








O3
3.86


21
ARG
CD
28.10
9.68
15.24
O3
3.85




CG
27.02
10.61
14.71
O3
3.90




CZ
27.41
8.40
17.27
O1
3.84








O3
3.54




NE
27.59
8.51
15.95
O1
3.88








O3
2.96




NH2
26.96
7.25
17.77
C1
3.97








O1
2.90








O3
3.46


31
PHE
CE1
29.29
5.50
15.09
O1
3.64




CE2
28.33
3.62
13.99
C1
3.58








O1
3.62








O2
3.56




CZ
28.33
4.97
14.26
C1
3.31








C2
3.80








O1
3.15








O2
3.76








O3
3.79


73
ARG
C
24.93
0.91
12.48
O2
3.66




CA
24.71
0.21
13.81
O2
3.57




CB
26.01
0.22
14.60
O2
3.55




CZ
27.35
2.30
17.81
O1
3.49








O2
3.95




NE
26.50
1.62
17.06
C1
3.86








O1
3.57








O2
3.26




NH2
27.36
3.61
17.80
C1
3.55








O1
2.58








O2
3.73


74
GLY
CA
25.28
3.01
11.31
O2
3.74




N
24.87
2.24
12.48
C1
3.76








O2
2.84


111
ARG
CD
18.73
8.66
14.12
O2P
3.59




CG
18.18
7.71
15.15
O2P
3.23




CZ
20.84
9.92
13.92
O2P
3.61








O3P
3.77




NE
20.13
8.92
14.42
O2P
2.76








O3P
3.79








P
3.80




NH2
22.10
10.05
14.28
O2P
3.60




NH2
22.10
10.05
14.28
O3P
2.86




NH2
22.10
10.05
14.28
P
3.80


135
VAL
CB
22.07
11.45
17.93
O3P
3.75




CG1
23.25
12.06
17.19
O3P
3.78




CG2
22.54
10.38
18.90
O2P
3.97








O3P
3.46








O4P
3.37








P
3.78


138
HIS
CD2
18.83
6.13
18.81
O2P
3.43




CE1
19.22
8.25
19.22
O2P
3.28








O4P
3.98




NE2
19.56
7.23
18.44
O2P
2.39








O4P
3.35








P
3.43


*
AcCoA
CH3
20.65
3.43
15.29
O1P
3.47








C3
3.65




C
20.37
3.37
13.84
C3
3.90




O
21.28
2.95
13.05
C3
3.91






aThe amino acid atom is the specific atom of the amino acid, as identified in Protein Data Bank file 2JDD;




bX, Y, and Z are the three-dimensional coordinates specifying the distance in Angstroms of the amino acid atom relative to the center of mass of the crystal;




cAtoms of 3PG or AcCoA are defined in PDB:2JDD and FIG. 2.














TABLE 12







Contacts between the R7 GLYAT variant polypeptide and AcCoA


when the polypeptide is bound to AcCoA and 3PG.














Residue
Amino
GLYAT



AcCoA
Distance


ID
Acid
Atom
X
Y
Z
Atom
(A)

















19
ILE
CG2
22.17
10.01
7.13
C6P
3.82








C7P
3.97


20
LEU
CD2
22.43
7.90
11.10
C6P
3.71








N4P
3.95


74
GLY
N
24.87
2.24
12.48
O
3.70


75
MET
C
21.88
3.82
8.56
N4P
3.99




CB
20.92
1.81
9.66
O
3.59




CG
19.81
1.60
8.65
CDP
3.97




N
23.15
2.62
10.25
O
3.38




O
21.33
4.67
9.24
C2P
3.68








C3P
3.27








C5P
4.00








N4P
2.86


76
ALA
C
21.95
5.23
5.15
O9P
3.61




CA
22.02
5.34
6.66
O9P
3.41


77
THR
CA
21.01
6.18
3.10
O9P
3.84




CB
19.73
5.56
2.52
O5A
3.53








O6A
3.69




CG2
19.68
5.75
1.02
O5A
3.61




N
21.07
6.03
4.55
C9P
3.88








CDP
3.89








O9P
2.85




O
20.43
8.45
3.43
O9P
3.35




OG1
19.70
4.16
2.82
CDP
3.96








O5A
2.94








O6A
3.25








P2A
3.71


82
ARG
C
14.99
6.70
−1.05
O4A
3.58




CA
16.21
7.12
−0.26
O4A
3.28




CB
15.80
8.04
0.89
O4A
3.23




CD
16.66
9.38
2.84
OAP
3.59




CG
16.98
8.42
1.74
O4A
3.74




CZ
18.06
10.62
4.46
C7P
3.98








C9P
3.84








N8P
3.79




NE
17.90
9.67
3.55
C9P
3.74








CAP
3.87








O9P
3.91








OAP
3.79




NH2
19.23
10.77
5.06
C7P
3.57








C9P
3.88








N8P
3.81








O9P
3.73


83
GLU
C
13.15
4.46
−2.27
O1A
3.60




CA
12.95
5.32
−1.03
O1A
3.38








O4A
3.94




CD
11.34
7.10
1.00
O2B
3.81




N
14.20
5.81
−0.44
O1A
3.45








O4A
2.88




OE1
10.53
6.16
1.02
C2B
3.26




OE1
10.53
6.16
1.02
O2B
2.72


84
GLN
N
14.33
3.85
−2.38
O1A
3.38


85
LYS
C
16.43
−0.32
−0.95
O2A
3.68




CA
14.92
−0.07
−1.18
O1A
3.41








O2A
3.32








P1A
3.85




CD
12.16
−1.38
−0.55
O2A
3.94




CE
10.64
−1.33
−0.46
O7A
3.32




N
14.62
1.24
−1.80
O1A
2.94








O2A
3.96








P1A
3.92




NZ
10.04
−0.22
−1.23
O7A
3.07




NZ
10.04
−0.22
−1.23
O9A
3.91


86
ALA
C
18.81
−0.004
0.80
O5A
3.90




CB
19.40
1.83
−0.78
O5A
3.76




N
17.23
0.74
−0.94
O5A
3.76


87
GLY
C
17.79
−1.18
3.35
O2A
3.92




CA
18.38
0.20
3.16
O5A
3.69




N
18.24
0.68
1.78
O2A
3.80








O5A
2.92


88
SER
CA
15.92
−2.72
2.95
O2A
3.58




CB
14.56
−2.71
2.24
O2A
3.15




N
16.59
−1.41
2.82
O2A
2.91




OG
13.62
−1.90
2.92
C5B
3.31








O2A
2.62








P1A
3.89


109
ASN
C
18.24
2.21
18.08
CH3
3.88




O
19.06
3.04
17.65
CH3
2.87


110
ALA
CA
16.52
2.87
16.46
S1P
3.98


111
ARG
CD
18.73
8.66
14.12
C2P
3.93








O5P
3.62




CG
18.18
7.71
15.15
C2P
3.97




N
16.68
5.25
16.01
S1P
3.63


113
SER
C
12.37
7.99
12.27
N6A
3.85




O
11.81
8.18
11.20
C6A
3.59








N1A
3.49








N6A
2.90


114
ALA
CA
13.18
5.76
11.62
N6A
3.63




CB
14.67
5.37
11.48
C3P
3.93








O5P
3.96


116
GLY
C
9.20
2.31
9.59
C2A
3.62








N3A
3.59




CA
8.48
3.11
10.65
C2A
3.58




O
8.62
1.42
8.96
N3A
3.99


117
TYR
CA
11.32
1.88
8.44
C4A
3.81








N3A
3.94








O4B
3.82




CB
12.63
2.63
8.24
C4A
3.76








C5A
3.66








C8A
3.93








N7A
3.80








N9A
3.93




CD1
13.82
1.53
6.28
C5B
3.79








C8A
3.93








CCP
3.73








O3A
3.70








O4B
3.72








O5B
3.69




CD2
14.90
1.52
8.41
CEP
3.91




CE1
14.90
0.87
5.73
CCP
3.72








O2A
3.71








O3A
3.33








O5B
3.87








P1A
3.94




N
10.47
2.64
9.36
C2A
3.50








C4A
3.76








N1A
3.87








N3A
3.44


118
TYR
CE2
15.86
1.53
12.30
S1P
3.87




OH
18.10
1.23
11.51
C
3.89








O
3.93








S1P
3.31


120
LYS
CD
6.24
−0.19
5.34
O8A
3.67




CE
5.18
0.92
5.37
O8A
3.50




NZ
5.57
2.18
4.66
O3B
3.42








O8A
2.82








P3B
3.83






aThe name convention and structure are the same as in Table 11.







In the ternary complex, 3PG sits on a platform defined by the pseudo-β sheet of the two splaying β4 and β5 strands and the pantetheine moiety of the cofactor, with the main-chain of 3PG perpendicular to the β-strands. The inhibitor is covered by two tip-joining loops, loop20 connecting α1/α2 and loop130 (or n-hairpin) spanning β6/β7. Surprisingly, the 21 amino-acid differences between the R7 and wild-type GLYAT are almost evenly distributed across the entire structure; none of the 3PG ligation residues—L20, Arg21, Gly74, Arg73, Arg111, and His138—are altered; and only four amino acid differences are in the perimeter of the active site, with Y31F, I132T, and I135V near 3PG and V114A close to AcCoA (Siehl et al. (2007) J Biol Chem 282:11446-11455). On the other hand, it has been documented that mutations distal to the active site can affect protein functions such as drug resistance (Perryman et al. (2004) Protein Sci 13:1108-1123), allosteric regulation (Taly et al. (2006) Proc. Natl. Acad. Sci. USA 103(45):16965-16970; Berendsen & Hayward (2000) Curr Opin Struct Biol 10(2):165-169), and ligand binding specificity (Ma et al. (2005) Biophysical Journal 89:1183-1193), often through long range correlated motion or conformational changes (Ma et al. (2002) Protein Sci 11:184-197). Thus, investigating GLYAT's dynamic characteristics and conformational flexibility is crucial to understanding the mechanism of its functional evolution and to further facilitate new herbicide tolerant gene development. Provided herein is a structural modeling and/or molecular dynamics (MD) study on the 7th round (R7), the 11th round (R11), YVII, and wild type GLYAT in various ligation states. YVII is a revertant mutant in which the four substitutions near the active site of R7 (Y31, V114, I132 and I135) were mutated back to wild-type. In fully liganded complex MD simulations, glyphosate, 3PG, or D-AP3 were modeled separately to examine the intimate details of the interaction between ligand and the enzymatic active site. To verify the findings, some simulations were carried out on two independent platforms, CHARMm 31b1 with CHARMM 27 force field and Gromacs with OPL-AA. All the simulations were performed in explicit solvent for multiple nanoseconds. This study characterized a novel open conformation, a transition mechanism between an open and closed active site, and inter-subdomain hinge motions around the wedge, and showed that the activity enhancement resulting from shuffling correlated with decreased protein core packing density or increased structural fluctuation. This is the first major simulation study applied to a member of the GNAT superfamily.


Analysis of Shuffling Changes through Structure Modeling:


Structure models of R11 and native GLYAT with bound ligands were built based on the crystal structure of R7 GLYAT complexed with AcCoA and 3PG (Siehl et al. (2007) J Biol Chem 282:11446-11455). After a series of energy minimizations under various constraints, the resulting models were similar to the R7 structure with RMSDs of <0.9 Å over all Cα atoms. MD simulations in explicit solvent were applied to further relax any outstanding strains. Harmonic constraints on heavy atoms in the protein were applied for the first 300 ps, followed by free simulation for the next >500 ps. In the presence of ligands, the models remained stable over the course of the simulations and the trajectory RMSDs of heavy atoms over the initial structures were comparable to those observed in R7 GLYAT, suggesting that the models were reasonably accurate.


The complete atomic coordinates of the GLYAT R7 variant bound to acetyl coA and glyphosate can be found in Table 18, whereas the complete atomic coordinates of the GLYAT R11 variant bound to acetyl coA and glyphosate are provided in Table 19.


Between the native GLYAT and the R7 variant, there are a total of 21 amino acid substitutions (FIG. 1A, Tables 13 and 14). Based on the solvent accessibility, hydrophobicity, and interactions with other residues, these amino acid changes were divided into two categories: ten surface mutations: G37R, R47G, K58Q, E65Q, E67Q, E68K, E92K, K101R, E119K and K144R (Table 13); and 11 interior mutations: 115L, L261, Y31F, T33S, T89S, L971, V114A, Y130F, I132T, I135V and L14.51 (Table 14). All ten surface mutations were hydrophilic substitutions including 3 R/K, 3 E/K, 2 E/Q, and 2 G/R switches. None of these mutations were close to the active site and seven of them were clustered at the vertex of the V-shaped wedge, the farthest location from bound glyphosate in the structure. These cluster mutations mainly occurred in loops, including G37R at the α2/β2 loop, K58Q, E65Q, E67Q and E68K at the β3/β4 loop, E92K at the α3/β4 loop, and K144R near the C-terminus. These localized mutations increased the cluster's net positive charge by four and therefore altered the protein's electric dipole. In total, R7 GLYAT gained 7 net positive charges compared to the native GLYAT. Considering that both the cofactor AcCoA and glyphosate are heavily negatively charged species, the enhanced positive charge of R7 GLYAT may increase the attraction to its substrates. Overall, the mutations improved the protein's surface physical characteristics and allowed the R7 GLYAT in the presence of ligands to be easily crystallized to diffraction-quality, which was difficult to achieve with native protein (Keenan et al. (2005) Proc. Natl. Acad. Sci. USA 102(25):8887-8892). Thus, the surface substitutions might result in part from pressure during shuffling to select variants with improved expression in E. coli and solubility in buffer.









TABLE 13







Substitution of surface residues from native GLYAT to the R7 GLYAT variant polypeptide.









Substitution



















G37R
R47G
K58Q
E65Q
E67Q
E68K
E92K
K101R
E119K
K144R
Total






















Δcharge
+1
−1
−1
+1
+1
+2
+2
0
+2
0
+7









Regarding the 11 interior mutations, four of them were simply isomer switches between Leu and Ile (I15L, L261, L97I, and L145I) that are unlikely to alter catalytic efficiency in a significant way. Strikingly, the other 7 buried or partially buried substitutions all showed a clear trend that the larger residues of the native protein were replaced by smaller ones in R7: Y31F, T33S, T89S, V114A, Y130F, I132T, and I135V (Table 14). As a consequence, the overall molecular weight of R7 was 90 units smaller, 16,600 Da (R7) vs. 16,690 Da (native). Of these downsizing substitutions, Y31F, V114A, I132T and I135V are at the active site. V114A makes direct contact with the pantetheine motif of AcCoA. I132T and I135V are located at the glyphosate binding β-hairpin while Y31F directly contacts the substrate through either a hydrogen bond in the native or a van der Waals attraction in R7. These four substitutions effectively increase the size of the enzyme's substrate binding site. As described earlier (Siehl et al. (2007) J Biol Chem 282: 11446-11455), the substrate most active with native GLYAT is D-AP3 (FIG. 2B). Considering that glyphosate is longer than D-AP3, the resulting larger active site of R7 GLYAT could better accommodate glyphosate. Indeed, in vitro assays demonstrated that YVII GLYAT has substrate specificity similar to that of the native enzyme, preferring D-AP3 over glyphosate (data not shown). T33S, in helix 2a near F32(R7), hydrogen bonds to the side chain of Arg73 which, in turn, directly interacts with glyphosate. Based on the model, the methyl group of T33 in the native enzyme stacks against the imidazole ring of H57, and the lack of this methyl group in R7 attenuated the contact strength, presumably fine tuning the active site conformation. The T89S substitution occurred in the helix α3 and the methyl group in native GLYAT was well buried, making hydrophobic interactions with the side chains of L90, V4, and L2. Residue Y130V is part of the substrate binding β-hairpin and its phenol in the native enzyme hydrogen bonds with the side chain of Asn 109. Loss of it in optimized GLYAT variants allows the β-hairpin to easier adjust its conformation to accommodate glyphosate. Interestingly, other homologous sequences all have phenylanine at this position, suggesting that native GLYAT might be uniquely selected for its native substrate (Siehl et al. (2007) J Biol Chem 282:11446-11455).









TABLE 14





Substitution of interior residues from native GLYAT to the R7 GLYAT polypeptide.









embedded image







* The shaded rows are residues in the active site;


ph: phenol













TABLE 15







Substitution of surface residues from the R7 GLYAT


variant polypeptide to the R11 variant polypeptide.














Substitution
E14D
G38S
Q67K
K119R
Total







Δcharge
0
0
+ 1
0
+1

















TABLE 16







Substitution of interior residues from the R7 GLYAT


variant polypeptide to the R11 variant polypeptide.













Structure


Substitution
Residue side-chain in R7
Residue side-chain in R11
change





I19V
—CH(CH3)—CH2—CH3
—CH—(CH3)2
—CH2


L36T
—CH2—CH—(CH3)2
—CH(CH3)—OH
—2CH2, +O


Y35F
—CH2—ph—OH
—CH2—ph—H
—O


I53V
—CH(CH3)—CH2—CH3
—CH—(CH3)2
—CH2


M75V
—(CH2)2—S—CH3
—CH—(CH3)2
—CH2, −S


I91V
—CH(CH3)—CH2—CH3
—CH—(CH3)2
—CH2


L105M
—CH2—CH—(CH3)2
—(CH2)2—S—CH3
—CH2, +S


L106I
—CH2—CH—(CH3)2
— CH(CH3)—CH2—CH3
None


Total


—7CH2









A total of 12 more substitutions were observed between R7 and R11 with only four mutations (E14D, G38S, Q67K and K119R) on the surface and eight mutations (I119V, L36T, Y45F, 153V, M75V, I191V, L105M and L1061) being fully or partially buried in the liganded structure (FIG. 1B, Tables 15 and 16). The relatively few changes on the surface might indicate that by the 7th round of shuffling, a plateau had been reached in terms of optimization of the surface structure. Two of the surface mutations (G38S and Q67K) again occurred in the cluster identified above and deposited one more extra positive charge on the area (Table 15). The same downsizing trend was also clear from the interior mutations between R7 and R11. In addition to preserving all the size-reduction substitutions observed in R7, R11 had 6 more substitutions, 119V, L36T, Y45F, I53V, M75V, and I91V, wherein larger residues are replaced with smaller ones (Table 16). The only exception of interior substitution increasing the molecular weight was L105M, where the branched Leu was replaced with a linear Met. This residue, at the N-terminus of β4, packs against the folded-over loop β3/β4. The L105M mutation reduces the hydrophobicity of the side chain at this position from 97 to 74 (hydrophobic indices, Monera et al. (1995) J Pept Sci 1(5):319-329), thereby reducing structural stiffness. I19V is located in the substrate binding loop20 and its side chain hydrophobically interacts with L15, L20, L78, and AcCoA's pantetheine moiety. L20 defines one wall of the substrate binding site, holding the substrate in a favorable position for acetylation. The I19V mutation presumably allowed the secondary amine of glyphosate to align better with the acetyl group. L36T, at the C-terminal end of helix 2b and near the substitution T33S observed in R7, seemed to further loosen this helix. G38S, at the N-terminal end of β2, apparently increases the protein rigidity though exposed to solvent. The effect of the loss of the phenol group in the Y45F mutation is less clear, but Keenan et al. (2005) Proc. Natl. Acad. Sci. USA 102(25):8887-8892 showed that this mutation might alter protein-protein interaction in the crystal packing. I53V was at the packing interface between the core 13 sheet and helix al. The M75V at the β-bulge orients its amide to the reaction center, hydrogen bonding to the carbonyl of the AcCoA's thioester (FIG. 8). This hydrogen bond both positions the thioester properly for the acylation reaction and also further polarizes the carbonyl, making the carbon atom more susceptible to nucleophilic attack by the glyphosate amine. The replacement of Met75 by a valine might fine-tune this amide group to better fit glyphosate. Similarly, I91V was also at the protein core, sandwiched by the packing interface of the β sheet and helix α3.


Gene shuffling has reshaped the protein surface properties such as increasing the net positive charge and altering the dipole. It also directly increased the volume of the substrate binding site to accommodate the larger glyphosate. Other systematically downsizing substitutions created numerous small cavities and/or abolished some internal hydrogen bonds in the protein core. Structural flexibility is inversely related to protein packing density (Halle (2002) Proc. Natl. Acad. Sci. USA 99:1274-1279). On the other hand, filling cavities can inhibit the motion of functionally important regions of a protein, thereby diminishing its catalytic activity (Ogata et al., (1996). Nat. Struct. Biol., 3, 178-187). Thus, the greater flexibility of optimized GLYATs may be needed for its functional improvement.


Unliganded Protein MD Simulations:

The improvement of GLYAT catalytic efficiency by gene shuffling was contributed in part through an enhancement of substrate recognition, as the glyphosate KM decreased from 1.27 mM for native GLYAT, to 0.24 mM for R7, and to 0.055 mM for R11 (Siehl et al. (2007) J Biol Chem 282:11446-11455). The crystal structures in complex with ligands showed that the glyphosate binding site is located near the center of the enzyme and buried by the two binding loops, loop20 and loop130, or β-hairpin (FIG. 1A and FIG. 1B). Because of the requirement for ammonium sulfate for crystal formation, an apoenzyme structure was not obtained. Instead, part of the glyphosate binding site was occupied by sulfate, resulting in an even more closed active site than observed with 3PG (Keenan et al. (2005) Proc. Natl. Acad. Sci. USA 102(25):8887-8892; Siehl et al. (2007) J Biol Chem 282:11446-11455). A similar active site architecture was observed in the enzyme arylalkylamine N-acetyltransferase (AANAT), where two loops corresponding to those covering the GLYAT active site cover serotonin. However, these recognition loops in AANAT adopted substantially altered conformations in the apoenzyme, suggesting a catalytic mechanism involving conformational transition (Vetting et al. (2003) Protein Sci. 12:1954-1959; Hickman et al. (1999) Mol. Cell 3(1):23-32; Hickman et al. (1999) Cell 97(3):361-369).


To gain insights into the conformational transition of GLYAT's active site, molecular dynamics simulations were performed for the apoenzyme. The 3PG structure (PDB:2J DD) was used as the starting coordinates with all the crystal waters kept, but ligands deleted. The empty space left by the removal of the ligands was filled with waters and brought to equilibrium by >200 ps MD simulations with protein heavy atoms under harmonic constraints. A ˜3 ns MD simulation of the R7 GLYAT variant was first run using CHARMm in CHARMm 27 force field and TIP3P waters. The simulation produced a stable trajectory and most significantly, the two binding loops started opening up at ˜200 ps. To confirm the findings, simulations with GROMACS were carried out in OPLS-AA force field and SPC waters up to ˜11 ns including ˜1 ns equilibration phase. The results from the two methods were very similar, consistent with a recent literature report that most of the detected major conformational dynamics behaviors with MD are force field independent (Rueda et al. (2007) Proc. Natl. Acad. Sci. USA 104(3):796-801). In comparing the trajectories between 1.8 and 3.0 ns, we noticed CHARMm produced relatively larger fluctuations and underwent a faster conformational evolution. For CHARMm and Gromacs, respectively, the RMSF of all the protein heavy atoms were 1.01±0.52 and 0.89±0.45, while the average RMSD of heavy atoms compared to their initial structures were 2.68±0.18 and 2.06±0.13. Due to the longer simulation periods enabled by its higher computing speed, only the Gromacs results are reported herein. R11 and YVII GLYATs in the absence of ligand were also simulated (Table 17).


Overall Structure Evolution

All three trajectory RMSDs of heavy atoms to the initial structures were stabilized after ˜400 ps and the overall values in the 10 ns production phase were less than 3.3, 2.5, and 2.2 Å for R11, R7, and YVII, respectively (FIG. 3A). If the flexible loops were taken away, the backbone RMSDs of the core secondary structure elements for the three variants were all less than 1.0 Å. R11's profile experienced the largest fluctuations, which peaked at ˜5 ns with 3.3 Å and dropped down to ˜0.9 Å at 3.0 and 8.6 ns. A similar fluctuation was also observed for core backbone atoms, suggesting that R11 possessed a relatively higher flexibility. Interestingly, YVII's RMDS was substantially lower and more stable than that of R7 and R11 GLYAT. Further analysis revealed that YVII's active site was stuck in the closed conformation for most of the simulations. The B factors of Cα atoms derived from root means square fluctuations (RMSF) of the trajectory between 3 and 5 ns were calculated (FIG. 3B). The B factor profiles were well correlated with the secondary structure elements and evolutionary sequence conservation within the GNAT superfamily. The loops possessed the higher B factors and the well-known conserved D and A sequence motifs displayed the highest stability. Without the bound ligand, β hairpin and loop20 had the highest value. The helix α2, broken in the middle by Phe31 in the crystal structure, was also highly mobile. The fluctuations observed at helix α4 and the P-loop connecting β4 and α3 were apparently caused by the absence of AcCoA. Overall, the B factors of R11 and R7 were slightly higher than those of YVII.


Open Active Site Conformations

An overlay of the α-carbon traces of snapshots of the open and closed conformations of R7 GLYAT shows that the β hairpin and loop20 underwent the biggest conformational changes (FIG. 4A and FIG. 4B). Helix α1, moving as a rigid body, also drifted away from the glyphosate site along its own axis and adopted a slightly tighter helix while helices 2a and 2b gradually uncoiled. In concert, the n-hairpin connecting the β6 and β7 untwisted and swayed away from the binding site, allowing the active site to become wide open. Another area experiencing a large displacement was helix α4 and its connecting loops, which comprise the binding elements of the pantetheine moiety of AcCoA. To monitor the conformational transition of the active site, a distance between the alpha carbons of Gln24 and Pro134 was calculated (FIG. 4A). In the liganded crystal structures, the loops closely interact with each other through their tips and the distance is ˜9.0 Å (FIG. 4A). FIG. 4B shows the distance variation over a 10 nanosecond simulation time. The state was defined as open when the distance was >14 Å, the point at which the direct interloop contact disappears. R7's active site gradually opened up in the first 2 ns and remained open until ˜7.3 ns, with a peak inter-loop distance of ˜21 Å at around 5 ns. The closed conformation was revisited for a short period between 7800 and 8300 ps. R11 exhibited a similar conformational transition but with a slightly larger amplitude of ˜24 Å to ˜6.5 Å. Complementary to X-ray data, these MD results provide insights into the catalytic cycle, from substrate intake to product release. The inter-conversion of enzyme active sites between closed and open conformations has been observed in many dynamic simulations (Scott et al. (2000) Structure 8(12):1259-1265; Gunasekaran et al. (2003) J Mol Biol 332(1):143-159; Gunasekaran et al (2007) J Mol Biol 365(0:257-273). For example, Hornak et al (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 915-920 showed that unliganded HIV-1 protease flaps could spontaneously open and reclose within a 30 ns MD simulation.


Structural Inter-Subdomain Motions:

Principal Component Analysis (PCA) of MD trajectory is an efficient way to filter high frequency motion and capture low frequency but highly correlated motions that often have biological significance (Kitao & Go (1999) Curr. Opin. Struc. Biol. 9:164-169; Ota & Agard (2001) Protein Sci 10(7):1403-1414). Covariance matrices were built from backbone atoms of 7,000 frames (<7 ns). The resultant eigenvalues showed that the first two eigenvectors predominated. Their projected motions are delineated in FIG. 5. The motion along the first eigenvector was most pronounced at the glyphosate binding elements, with the β-hairpin and the opposite loop20 moving outward in a concerted way, allowing the active site to open up like a clamshell (FIG. 5A). It also divided the overall structure into two subdomains along the V-shaped wedge. Subdomain I, with residues 1-102, is composed of β1α1α2aαbβ2β3β4α3 and subdomain I1, with residues 103-146, consists of β5α4β7β6. The two subdomains butt together at the N-termini of the parallel β4 and β5 strands, forming an integrated β-sheet. The joint is further secured by a long loop between β4 and β5 which packs against the integrated β sheet. The wedge joint exhibits the least motion, while the AcCoA binding end has a relatively large displacement. As described above, most surface mutations introduced by DNA shuffling were concentrated at the wedge joining end (FIG. 1A), possibly modulating the structure's overall motion. The second eigenvector projection showed a wedge twisting with the β-hairpin and the opposite helix loop20 sliding against one another (FIG. 5B). This motion also used the wedge joint as the hinge, but its direction was perpendicular to the first mode and its amplitude was much smaller. The R11 trajectory PCA analysis revealed identical motion modes, whereas YVII only showed the wedge twisting motion. YVII's active site remained closed, with an inter-loop distance of −12 Å for much of its simulation course. A few more MD simulations were performed on YVII with different parameters such as random seed number, solvent box shape, and size to check the active site conformational transition. Those experiments generally confirmed that the active site of YVII remained in the closed form for relatively longer periods of time.


To probe the stability of the wedge over the MD simulation, we defined a dihedral angle with four Ca atoms, Ala76, Leu72, Cys108 and Argil 1, (FIG. 6A). The wedge opening angle was defined as α+β−180, with 0° being where the two strands (β4 and β5) are ideally parallel, while the wedge twisting angle is dihedral θ, again with θ=0° being the untwisted flat sheet. The crystal structure of the 3PG complex showed α=98.42° and β=114.62°, resulting in a wedge opening angle of 33.04° while the angle for the SO42− structure was 31.58°. As the glyphosate binding site was located right on the top of the open wedge, the smaller wedge opening angle of the SO42− complex reflected the smaller size of SO42−, compared to 3PG. In simulations, average wedge angles were observed over the entire 10 ns trajectory of 40.8±3.1, 47.3±4.8, and 45.9±5.1° for YVII, R7, and R11, respectively (FIG. 6B-FIG. 6G), demonstrating that the wedge opened significantly wider in the absence of bound ligands. For the wedge dihedral angle θ, the two crystal structures give roughly the same value with −16.34° for the 3PG complex and −16.61° for the SO42− complex. The average wedge twisting angles from MD trajectories were −21.8±5.2°, −9.2±6.2°, and −10.2±6.1° for YVII, R7, and R11, respectively.


Structural Basis for Inter-Subdomain Motion and Active Site Flexibility:

As hinge-like, broad-range motions are usually determined by a protein's overall structure (Sinha and Nussinov (2001) Proc. Natl. Acad. Sci. USA 98:3139-3144), GLYAT's inter-subdomain motions involving wedge opening and twisting were apparently a feature of its unique topology. In the GLYAT structure, the most stable elements were the helix α3 and the surrounding seven stranded β sheet, which is split by the wedge at one end. The first four strands (β1-β4 in the subdomain I) wrap against helix α3 while the strands β5-β7 in subdomain II interact with α3 only at the wedge joining end. On the other end, helix α4 acts like a spring inserted between the subdomains, enabling the inter-subdomain movements. Conceivably, this inter-subdomain motion involving the well conserved structural elements plays a role in controlling the access of AcCoA, determining bound AcCoA's conformation, and facilitating the egress of CoA.


The motion associated with the active site conformational change is enacted by the 0 hairpin and loop20, the least conserved motifs in the GNAT family. The β-hairpin, comprised of residues 130 to 138 (FDTPPVGPH in R7), connect β6 and β7, with the four middle residues (TPPV) forming a typical Vla β-turn (Richardson (1981) Adv Protein Chem. 1981; 34:167-339). The two consecutive prolines Pro133 and Pro134 reduce its flexibility, with Pro133 adopting a trans- and Pro134 a cis-conformation. Such structural motifs often are associated with molecular recognition and function, including type VI β-turns in HIV-11IIB (Tugarinov et al. (1999) Nat. Struct. Biol. 6(4): 331-335), Bowman-Birk proteinase inhibitor (Brauer et al. (2002) Biochemistry 41(34):10608-10615), and disulfide oxidoreductase (DsbA) (Charbonnier et al. (1999) Protein Sci 8:96-105). Here, the β-hairpin covers glyphosate's phosphono group and also harbors the putative catalytic base His138 (FIG. 8). Amino acid substitutions I132T and I135V, introduced by gene shuffling, had a significant impact on the stability of the β-hairpin by reducing hydrophobic packing strength among the paired side chains (FIG. 7). In the YVII or native enzyme, the side chains of I132, P133, cis-Pro134, and I135 (and possibly H138 as well) form a hydrophobic cluster, stabilizing the type Vla β-turn and hairpin (FIG. 7). In optimized GLYATs, however, two strong hydrophobic isoleucines are replaced by a weaker valine at 135 and even a hydrophilic threonine at 132. As a consequence, the O-hairpin in the optimized GLYAT exhibits greater flexibility (FIG. 3A, FIG. 3B, and FIG. 4B) during the MD simulation. As judged by their bond lengths, the average inter-strand hydrogen bonds in R7 GLYAT were weaker than those in YVII. In YVII GLYAT, the hydrogen bond distances of Ile132N-Gly136O, Ile132O-Ile135N, and Ile132O-Gly136N were 3.1±0.3 Å, 3.1±0.2 Å and 2.9±0.1 Å, respectively, while for R7 GLYAT the corresponding distances (Thr132N-Gly136O, Thr132O-Val135N and Thr132O-Gly136N) were 3.3±0.4 Å, 3.4±0.2 Å and 3.0±0.2 Å; respectively. Similarly, compared to the YVII, the β-hairpin in R7 had slightly less well-defined secondary structure elements on average as measured by DSSP (Holm & Sander (1993) J Mol Biol. 233(1):123-138).


The MD simulations also suggested that the reduced stability of the β-hairpin in optimized GLYAT variants might also be responsible for accelerating the active site opening. In the crystal structure of the R7-3PG complex, both the n-hairpin and the loop20 cover 3PG and make direct van der Waals contacts through their tip regions, including the side chains of Val135 with Arg21 and Pro134 with Gln24. The aliphatic side chain of Arg111 and the β-hairpin also align with each other. The interloop van der Waals contacts of YVII GLYAT were well maintained whereas these same contacts were lost quickly as a consequence of a large conformational adjustment of the β-hairpin in the R7 and R11 simulations. Indeed, revertant mutations at the β-hairpin of R7 significantly elevated the KM for glyphosate by 3.2- and 6.4-fold for T132I and V135I, respectively, reflecting the fact that the enhanced β-hairpin flexibility partially enables optimized GLYAT variants to better associate with glyphosate. In summary, the more optimized GLYAT apparently showed a larger amplitude of fluctuation and inter-subdomain motion in the simulation, associated with and probably a consequence of the selection of an ensemble or downsizing substitutions.


Liganded System Simulation and Ligand-Protein Interaction:

The partially or fully liganded simulations were carried out in CHARMm 27 force field. The ligand topology and parameters of AcCoA, glyphosate and D-AP3 were generated by InsightI1 (Accelrys, San Diego). The partial charge values were calculated with vcharge (FIG. 2A and FIG. 2B). The simulations were first carried out under harmonic constraints allowing side chain atoms and waters to equilibrate (˜0.3 ns), followed by ˜2.5 ns production phase. The average heavy atom RMSDs over the entire trajectory were 2.01±0.3, 1.65±0.10, and 1.40±0.13 Å for AcCoA+R7, glyphosate+AcCoA+R7, and D-AP3+AcCoA+YVII, respectively.


(1). Binary complex of R7+AcCoA: The recognition mode of the cofactor in all the known structures is extremely similar despite high divergence in their primary sequence and, in Fact, the GNAT fold seems to have been optimized around the binding of the phosphopantetheine motif (Dyda et al. (2000) Annu. Rev. Biophys Biomol. Struct. 29:81-103). The pantetheine arm and β4 form a pseudo β-sheet and the interacting inter-strand hydrogen bonds were well preserved in the simulation. In R7 GLYAT, the average bond length spanning N4P of AcCoA and C═O of Gly75 was 2.91±0.18 Å and that spanning C═O of AcCoA and the amide N of Thr77 was 2.91±0.14 Å. The pyrophosphate moiety of AcCoA also maintained stable interactions with the protein but its 3′ phosphate and ribosyl groups were solvent accessible and fluctuated widely. The kinetic mechanism of well-studied GNAT family members was shown to be ordered with a preference for AcCoA first binding to the free enzyme, followed by the binding of acceptor substrates (Vetting et al. (2005) Protein Sci 12:1954-1959; De Angelis et al. (998) J. Biol. Chem. 273 3045-3050), suggesting a structural role of the cofactor in organizing the active site (Dyda et al. (2000) Annu. Rev. Biophys. Biomol. Struct. 29:81-103). With AcCoA bound in the wedge, the overall fluctuations across the entire protein core decreased but the glyphosate binding loops remained mobile. The flexibility of the β-bulge was reduced apparently due to interaction with the acetyl carbonyl group of AcCoA. Regarding the subdomain motion, the angles of the V-shaped wedge opening and twisting were 36.3±2.8°, and −14.6±6.8°, significantly different from the unliganded values (45.9±5.1° and −9.2±6.2°) but similar to the fully liganded crystal structure (33.04° and −16.34°). Conceivably, AcCoA binding severely restricts inter-subdomain fluctuation around the wedge.


(2) Ternary complexes of R7+AcCoA+glyphosate and YVII+AcCoA+D-AP3: The initial conformations of the substrates were modeled as follows. The atoms of glyphosate were mapped onto the corresponding positions of 3PG, since the two molecules have a similar main chain structure. D-AP3, a primary amine, has a shorter main chain and branched structure. Its phosphono and carboxyl groups were placed in the equivalent positions of 3PG and its amine was directed toward the acetyl of AcCoA. When the docked complex structures were carefully relaxed with energy minimizations in the presence of crystal waters, the initial substrate conformations were well retained. During the subsequent simulations, glyphosate remained in its initial conformation as did the phosphono and carboxyl groups of D-AP3. However, the D-AP3 amine started to sway away from AcCoA after ˜1.5 ns, resulting in an unproductive conformation. Compared with the binding site of glyphosate in R7, the D-AP3 binding site of YVII exhibited much less fluctuation and was more compact. As a consequence, the average trajectory RMSDs against the X-ray structure of backbone atoms were significantly different. The RMSD of D-AP3+AcCoA+YVII was 0.8±0.13 Å, much smaller than the 1.15±0.15 Å observed for glyphosate+AcCoA+R7. The higher stability of D-AP3+AcCoA+YVII apparently resulted from (a) the smaller and more rigid D-AP3 structure, (b) the hydrogen bond of the Y31 phenol to D-AP3's carboxyl, and (c) the increased hydrophobic packing of I132 and I135 in YVII compared to T132 and V135 in R7. These findings again demonstrate the effect of downsizing substitutions in increasing the protein flexibility.


Although glyphosate shares many similar features with 3PG, a difference in their binding mode was observed. During the simulation, the glyphosate structure adjusted at ˜100 ps, responding to the absence of an equivalent of the intramolecular hydrogen bond seen with 3PG between the 2-hydroxyl and a phosphate oxygen (FIG. 8). Consequently, glyphosate adopted a more extended conformation with its phosphono group displaced out and down by about 1.4 Å toward the acetyl group of AcCoA, and the dihedral angle around the O3P—CH2 bond rotated ˜15° to allow the phosphono oxygen atoms to avoid close contact with CA. The molecular dimension measured by the distance between the two farthest atoms was ˜8 Å for bound glyphosate and ˜6 Å for bound 3PG. During the adjustment, the carboxyl group, its binding residues (Gly74 and Arg73) and F31 remained in the same place but the phosphono group and β-hairpin moved outward. The average interloop distances between Gln24Cα and Pro 134Cα were 0.57±0.88 Å and 10.29±0.75 Å for R7+glyphosate and YVII+D-AP3 MD simulations, respectively, compared to 9.0 Å in the R7+3PG crystal structure. The side chain of Arg111 and its main chain in the β5 also showed appreciable movement. In the stabilized conformation, the Gln110 amide and/or Gln109 carbonyl groups formed water-mediated hydrogen bonds to the phosphono group of glyphosate. Another stable water molecule at the splaying point between β4 and β5 (also observed in two independent crystal structures) mediated interaction between the 108 amide and 72 carbonyl atoms. The amine group of glyphosate remained accessible to bulk solvent from the direction opposite to the bound AcCoA for the entire simulation. It is possible that a water wire, as previously suggested, serves as the catalytic base ferrying the protons away. The amine group of glyphosate maintained close contact with the acetyl carbon of AcCoA (within 3.8 Å) in position for the nucleophilic attack. The largest structural adjustment was observed at the side chain of Arg21. Its guanidinium, interacting with the hydroxyl and carboxylate groups in the 3PG structure, moved toward the β-hairpin in the glyphosate MD simulation, and formed a salt-bridge with the phosphonyl group of glyphosate.


Materials and Methods

The starting coordinates of the complex of R7 GLYAT from the 7th round gene shuffling with bound 3-phosphoglycerate (3PG) and AcCoA were taken from the x-ray structure, PDB:2JDD at 1.60-Å resolution. The initial structural coordinates of other GLYAT variants were constructed using InsightII's MODELER module but without invoking its auto energy minimization procedure (Accelrys, San Diego) and/or CHARMm IC facility (Brooks et al. (1983) J. Comput. Chem. 4:187-217). The in silico mutations based on R7-GLYAT included (1) F31Y, A114V, V132I and T135I for YVII GLYAT; (2) E14D, I19V, L36T, G38S, Y45F, I53V, Q67K, M75V, 191V, L105M, L1061 and K119R for the R11-GLYAT; and (3) L15I, V19I, V132I, I26L, F31Y, S33T, R37G, G47R, Q58E, Q65E, Q67E, Q68E, S89T, K82R, I97L, R101K, A114V, K119E, F130Y, T132I, R144K and I145L for the native GLYAT, respectively (FIG. 1A and FIG. 1B). To avoid instability caused by atomic conflict, all the residue side-chains neighboring the mutation points were carefully inspected and their rotamers were manually adjusted to a local minimal with BIOPOLYMER (Accelrys, San Diego) prior to energy minimization. The energy minimizations were carried out on CHARMm under various constraints to relax the structure gradually, first in vacuum with the crystal waters and then in solvent TIP3 water boxes. The topology in a CHARMm force field of cofactor AcCoA, substrate glyphosate and its analogs 3PG and D-2-amino-3-phosphonopropionate (D-AP3) was constructed with InsightII of Accelyres. The charge was calculated with Vcharge (Gilson et al. (2003) J. Chem. Inf. Comput. Sci. 43(6):1982-1997) (FIG. 2A and FIG. 2B). The initial conformations of substrate and analogs were manually docked into the GLYAT active site using PDB:2JDD as reference. The histidine protonation state, either on NE2 or ND 1, was determined based on the hydrogen bonding pattern of the crystal structure. His138 ND1 hydrogen bonded the 137 carbonyl oxygen in the absence of substrate, but in the presence of glyphosate its NE2 was also protonated to provide a key hydrogen bond to the substrate's phosphono group (Sichl et al. (2007) J Biol Chem 282:11446-11455). Periodic boundary conditions were used to perform all the MD simulations, and were defined by using truncated octahedron boxes of dimensions ˜63 Å. All the boxes were first filled with modeled waters (T1P3P (Mahoney et al. (2000) J Chem Phys 112:8910-8922) for CHARMm and SPC (Berendsen et al. (1981) in Intermolecular Forces. Pullman, B. (ed). Rieidel, Dordrecht, The Netherlands, p. 331) for GROMACS (Berendsen et al. (1995) Comp. Phys. Commun. 91:43-56)), followed with energy minimization and equilibration, at >200 ps. The overall charges of all the systems were neutralized with either Na+ or Cl ions by randomly replacing bulk water molecules.


Molecular Dynamics (MD) simulations of all the liganded and unliganded systems (see Table 17 for a list of all the MD simulations that were performed) were carried out for >2,000 picoseconds (ps) by CHAR Mm 31b1 while, as a comparison, GROMACS 3.3.1 was also employed for the unliganded systems, R7-GLYAT, YVII-GLYAT, and R11-GLYAT for longer simulation times (−11,000 ps). For CHARMm simulations, the residue topology and parameter files as generated by CHARM M 27 (MacKerell et al. (2004) Journal of Computational Chemistry 25:1400-1415) were used for protein atoms and ligands. The Verlet-Leapfrog algorithm was used to integrate the equations of motion by using a time step of 2.0 fs. The SHAKE algorithm was used to constrain the bonds containing hydrogen to their equilibrium length. Electrostatic interactions were treated with a cutoff switch of 14 Å. A harmonic constraint of force of 10 kcal·mol−1·Å−2 was applied to heavy atoms in the heating phase, from 240 to 300 K for ˜200 ps. Then the constraints were only applied to heavy non-water atoms in equilibrium phase lasting >600 ps. Finally, all the constraints were released for the production phase at 300 K. For the GROMACS simulations, an OPLS-AA/L all-atom force field (Jorgensen et al. (1996) J. Am. Chem. Soc. 118:11225-11236; Kaminski et al. (2001) J. Phys. Chem. 105:6474-6487) was used and the NPT ensemble was computed at 300 K using the Berendsen thermostat. Electrostatics was treated as the particle mesh Ewald method with a short range cut-off of 10 Å. The time step for integration was 2 fs, calculated with the leap-frog algorithm. The LINCS algorithm was performed to restrain bond lengths. Each system was subjected to a 600-ps dynamics run with the protein restrained at 4.8 kcal·mol−1·Å−2 on all heavy atoms, followed by a 10 its free simulation. All of the simulations were performed on a Linux cluster.









TABLE 17







Summary of simulations.











GLYAT



Duration


variant
Ligands
Method
Atoms
(ns)














R7
Empty
Gromacs
19,203
11




(OPLS-AA/L)


R7
Empty
CHARMm
19,105
2.3


R7
AcCoA
CHARMm
18,860
2.5


R7
AcCoA,
CHARMm
19,238
2.6



glyphosate


YVII
Empty
Gromacs
20,171
11




(OPLS-AA/L)


YVII
AcCoA,
CHARMm
19,334
2.5



D-AP3


R11
Empty
Gromacs
22,268
11




(OPLS-AA/L)









Covariance analysis and principal component analysis (PCA, Tai et al., (2001) Biophys. J. 81:715-724) were performed on trajectories computed by either CHARMm or GROMACS to reduce the data complexity. The backbone atomic average displacements over trajectories were used as covariance variables. The covariance matrix and eigenvector analysis were obtained by applying the g_covar program of the GROMACS package. To capture the large amplitude, slow frequency, and dominant motions, the trajectories were projected into the top two eigenvectors. All the graphs were prepared with Pymol (http://pymol.sourceforge.net/), InsightII, and Gnuplot (http://www.gnuplot.info/).









TABLE 18







The atomic coordinates in Angstroms of the GLYAT R7 variant bound


to glyphosate and acetyl coA, along with surrounding water molecules.















ResIa
ResNb
AtomIc
AtomNd
Xc
Y
Z
ElemNf
SegNg


















2
ILE
1
N
19.658
−1.102
−7.005
N
PRO




2
HT1
19.144
−0.191
−7.071
H
PRO




3
HT2
18.95
−1.85
−6.813
H
PRO




4
HT3
20.124
−1.291
−7.914
H
PRO




5
CA
20.67
−1.067
−5.913
C
PRO




6
HA
21.302
−0.211
−6.099
H
PRO




7
CB
20.012
−0.957
−4.529
C
PRO




8
HB
19.454
−1.901
−4.319
H
PRO




9
CG2
21.1
−0.805
−3.436
C
PRO




10
HG21
20.631
−0.641
−2.446
H
PRO




11
HG22
21.723
−1.719
−3.357
H
PRO




12
HG23
21.763
0.058
−3.655
H
PRO




13
CG1
18.969
0.191
−4.445
C
PRO




14
HG11
18.143
0.001
−5.164
H
PRO




15
HG12
18.507
0.164
−3.434
H
PRO




16
CD1
19.53
1.598
−4.681
C
PRO




17
HD1
18.72
2.352
−4.587
H
PRO




18
HD2
20.316
1.843
−3.937
H
PRO




19
HD3
19.962
1.689
−5.699
H
PRO




20
C
21.511
−2.316
−5.995
C
PRO




21
O
20.994
−3.403
−6.245
O
PRO


3
GLU
22
N
22.837
−2.181
−5.779
N
PRO




23
HN
23.249
−1.281
−5.63
H
PRO




24
CA
23.744
−3.298
−5.672
C
PRO




25
HA
23.255
−4.228
−5.928
H
PRO




26
CB
25.029
−3.117
−6.508
C
PRO




27
HB1
25.506
−2.155
−6.219
H
PRO




28
HB2
25.736
−3.941
−6.26
H
PRO




29
CG
24.828
−3.116
−8.032
C
PRO




30
HG1
24.408
−4.091
−8.359
H
PRO




31
HG2
24.141
−2.304
−8.34
H
PRO




32
CD
26.186
−2.902
−8.695
C
PRO




33
OE1
26.733
−1.769
−8.589
O
PRO




34
OE2
26.727
−3.882
−9.269
O
PRO




35
C
24.185
−3.342
−4.235
C
PRO




36
O
24.465
−2.301
−3.647
O
PRO


4
VAL
37
N
24.263
−4.553
−3.64
N
PRO




38
HN
24.032
−5.391
−4.138
H
PRO




39
CA
24.694
−4.737
−2.269
C
PRO




40
HA
24.81
−3.778
−1.783
H
PRO




41
CB
23.749
−5.595
−1.437
C
PRO




42
HB
23.723
−6.639
−1.827
H
PRO




43
CG1
24.218
−5.622
0.035
C
PRO




44
HG11
23.468
−6.147
0.663
H
PRO




45
HG12
25.187
−6.154
0.138
H
PRO




46
HG13
24.339
−4.588
0.423
H
PRO




47
CG2
22.327
−5.013
−1.55
C
PRO




48
HG21
21.646
−5.552
−0.858
H
PRO




49
HG22
22.326
−3.936
−1.283
H
PRO




50
HG23
21.93
−5.12
−2.581
H
PRO




51
C
26.036
−5.409
−2.351
C
PRO




52
O
26.199
−6.397
−3.069
O
PRO


5
LYS
53
N
27.048
−4.857
−1.643
N
PRO




54
HN
26.898
−4.055
−1.061
H
PRO




55
CA
28.413
−5.32
−1.741
C
PRO




56
HA
28.41
−6.337
−2.104
H
PRO




57
CB
29.28
−4.417
−2.665
C
PRO




58
HB1
29.428
−3.425
−2.186
H
PRO




59
HB2
30.279
−4.882
−2.808
H
PRO




60
CG
28.627
−4.191
−4.036
C
PRO




61
HG1
28.344
−5.177
−4.469
H
PRO




62
HG2
27.687
−3.612
−3.88
H
PRO




63
CD
29.471
−3.433
−5.071
C
PRO




64
HD1
29.927
−2.533
−4.603
H
PRO




65
HD2
30.288
−4.098
−5.429
H
PRO




66
CE
28.569
−3.005
−6.234
C
PRO




67
HE1
27.98
−3.881
−6.583
H
PRO




68
HE2
27.865
−2.217
−5.893
H
PRO




69
NZ
29.299
−2.484
−7.408
N
PRO




70
HZ1
28.576
−2.164
−8.1
H
PRO




71
HZ2
29.915
−1.695
−7.134
H
PRO




72
HZ3
29.858
−3.266
−7.83
H
PRO




73
C
28.996
−5.277
−0.348
C
PRO




74
O
28.545
−4.464
0.461
O
PRO


6
PRO
75
N
29.981
−6.102
0
N
PRO




76
CD
30.452
−7.237
−0.799
C
PRO




77
HD1
29.665
−8.021
−0.798
H
PRO




78
HD2
30.692
−6.929
−1.84
H
PRO




79
CA
30.698
−5.981
1.258
C
PRO




80
HA
30.004
−5.833
2.073
H
PRO




81
CB
31.48
−7.299
1.367
C
PRO




82
HB1
30.838
−8.055
1.87
H
PRO




83
HB2
32.426
−7.203
1.937
H
PRO




84
CG
31.706
−7.739
−0.083
C
PRO




85
HG1
31.844
−8.834
−0.177
H
PRO




86
HG2
32.6
−7.218
−0.493
H
PRO




87
C
31.633
−4.798
1.185
C
PRO




88
O
32.233
−4.561
0.137
O
PRO


7
ILE
89
N
31.755
−4.033
2.288
N
PRO




90
HN
31.264
−4.256
3.132
H
PRO




91
CA
32.584
−2.849
2.337
C
PRO




92
HA
33.306
−2.879
1.535
H
PRO




93
CB
31.825
−1.528
2.228
C
PRO




94
HB
32.558
−0.693
2.279
H
PRO




95
CG2
31.177
−1.46
0.827
C
PRO




96
HG21
30.75
−0.454
0.637
H
PRO




97
HG22
31.937
−1.661
0.041
H
PRO




98
HG23
30.365
−2.212
0.732
H
PRO




99
CG1
30.801
−1.323
3.368
C
PRO




100
HG11
30.02
−2.108
3.29
H
PRO




101
HG12
31.307
−1.446
4.35
H
PRO




102
CD1
30.141
0.059
3.355
C
PRO




103
HD1
29.361
0.111
4.145
H
PRO




104
HD2
30.896
0.851
3.544
H
PRO




105
HD3
29.653
0.266
2.381
H
PRO




106
C
33.367
−2.924
3.618
C
PRO




107
O
33.124
−3.787
4.46
O
PRO


8
ASN
108
N
34.377
−2.046
3.772
N
PRO




109
HN
34.578
−1.363
3.061
H
PRO




110
CA
35.227
−1.999
4.943
C
PRO




111
HA
35.289
−2.989
5.376
H
PRO




112
CB
36.655
−1.505
4.608
C
PRO




113
HB1
36.64
−0.439
4.299
H
PRO




114
HB2
37.314
−1.603
5.496
H
PRO




115
CG
37.239
−2.367
3.486
C
PRO




116
OD1
37.488
−3.564
3.674
O
PRO




117
ND2
37.435
−1.757
2.285
N
PRO




118
HD21
37.806
−2.284
1.523
H
PRO




119
HD22
37.109
−0.817
2.148
H
PRO




120
C
34.612
−1.073
5.969
C
PRO




121
O
33.657
−0.352
5.683
O
PRO


9
ALA
122
N
35.156
−1.064
7.211
N
PRO




123
HN
35.912
−1.677
7.454
H
PRO




124
CA
34.749
−0.151
8.261
C
PRO




125
HA
33.684
−0.263
8.408
H
PRO




126
CB
35.489
−0.441
9.578
C
PRO




127
HB1
35.282
−1.48
9.906
H
PRO




128
HB2
36.589
−0.336
9.445
H
PRO




129
HB3
35.162
0.25
10.385
H
PRO




130
C
35.03
1.281
7.873
C
PRO




131
O
34.186
2.159
8.037
O
PRO


10
GLU
132
N
36.216
1.516
7.269
N
PRO




133
HN
36.885
0.77
7.167
H
PRO




134
CA
36.713
2.78
6.776
C
PRO




135
HA
36.767
3.461
7.609
H
PRO




136
CB
38.118
2.628
6.139
C
PRO




137
HB1
38.085
1.889
5.309
H
PRO




138
HB2
38.411
3.61
5.699
H
PRO




139
CG
39.246
2.248
7.13
C
PRO




140
HG1
40.228
2.453
6.65
H
PRO




141
HG2
39.166
2.888
8.034
H
PRO




142
CD
39.259
0.78
7.569
C
PRO




143
OE1
38.48
−0.044
7.024
O
PRO




144
OE2
40.065
0.476
8.489
O
PRO




145
C
35.797
3.385
5.744
C
PRO




146
O
35.645
4.604
5.666
O
PRO


11
ASP
147
N
35.145
2.521
4.938
N
PRO




148
HN
35.275
1.538
5.044
H
PRO




149
CA
34.295
2.908
3.839
C
PRO




150
HA
34.806
3.667
3.263
H
PRO




151
CB
33.952
1.704
2.92
C
PRO




152
HB1
33.386
0.948
3.507
H
PRO




153
HB2
33.314
2.035
2.072
H
PRO




154
CG
35.178
1.004
2.331
C
PRO




155
OD1
36.318
1.526
2.44
O
PRO




156
OD2
34.979
−0.105
1.765
O
PRO




157
C
32.979
3.48
4.325
C
PRO




158
O
32.299
4.167
3.568
O
PRO


12
THR
159
N
32.593
3.227
5.601
N
PRO




160
HN
33.173
2.677
6.202
H
PRO




161
CA
31.331
3.695
6.153
C
PRO




162
HA
30.608
3.735
5.352
H
PRO




163
CB
30.754
2.778
7.236
C
PRO




164
HB
29.763
3.175
7.56
H
PRO




165
OG1
31.567
2.691
8.403
O
PRO




166
HG1
32.443
2.384
8.132
H
PRO




167
CG2
30.527
1.363
6.684
C
PRO




168
HG21
30.073
0.715
7.465
H
PRO




169
HG22
29.831
1.404
5.822
H
PRO




170
HG23
31.479
0.898
6.355
H
PRO




171
C
31.428
5.088
6.739
C
PRO




172
O
30.407
5.74
6.944
O
PRO


13
TYR
173
N
32.657
5.579
7.028
N
PRO




174
HN
33.478
5.059
6.801
H
PRO




175
CA
32.88
6.77
7.832
C
PRO




176
HA
32.332
6.631
8.754
H
PRO




177
CB
34.376
6.999
8.186
C
PRO




178
HB1
34.966
7.093
7.248
H
PRO




179
HB2
34.49
7.938
8.77
H
PRO




180
CG
35.007
5.9
9.02
C
PRO




181
CD1
34.273
4.961
9.774
C
PRO




182
HD1
33.196
4.972
9.795
H
PRO




183
CE1
34.925
3.963
10.508
C
PRO




184
HE1
34.345
3.234
11.054
H
PRO




185
CZ
36.32
3.888
10.504
C
PRO




186
OH
36.947
2.844
11.21
O
PRO




187
HH
37.881
2.806
10.959
H
PRO




188
CD2
36.413
5.836
9.067
C
PRO




189
HD2
36.997
6.558
8.515
H
PRO




190
CE2
37.069
4.837
9.799
C
PRO




191
HE2
38.148
4.793
9.8
H
PRO




192
C
32.322
8.039
7.227
C
PRO




193
O
31.792
8.876
7.958
O
PRO


14
GLU
194
N
32.407
8.211
5.884
N
PRO




195
HN
32.852
7.526
5.303
H
PRO




196
CA
31.902
9.389
5.205
C
PRO




197
HA
32.393
10.251
5.638
H
PRO




198
CB
32.2
9.353
3.685
C
PRO




199
HB1
33.297
9.239
3.54
H
PRO




200
HB2
31.717
8.451
3.251
H
PRO




201
CG
31.727
10.607
2.906
C
PRO




202
HG1
30.652
10.804
3.107
H
PRO




203
HG2
32.313
11.493
3.225
H
PRO




204
CD
31.867
10.445
1.394
C
PRO




205
OE1
32.45
9.429
0.933
O
PRO




206
OE2
31.355
11.337
0.665
O
PRO




207
C
30.408
9.569
5.373
C
PRO




208
O
29.964
10.658
5.728
O
PRO


15
LEU
209
N
29.595
8.507
5.157
N
PRO




210
HN
29.958
7.622
4.854
H
PRO




211
CA
28.152
8.612
5.245
C
PRO




212
HA
27.855
9.576
4.863
H
PRO




213
CB
27.429
7.519
4.425
C
PRO




214
HB1
27.847
6.529
4.707
H
PRO




215
HB2
26.344
7.514
4.672
H
PRO




216
CG
27.554
7.683
2.892
C
PRO




217
HG
28.637
7.73
2.633
H
PRO




218
CD1
26.963
6.456
2.179
C
PRO




219
HD11
27.055
6.569
1.081
H
PRO




220
HD12
27.507
5.538
2.483
H
PRO




221
HD13
25.889
6.337
2.435
H
PRO




222
CD2
26.899
8.975
2.372
C
PRO




223
HD21
26.96
9.016
1.264
H
PRO




224
HD22
25.829
9.004
2.663
H
PRO




225
HD23
27.406
9.874
2.779
H
PRO




226
C
27.668
8.559
6.672
C
PRO




227
O
26.607
9.101
6.98
O
PRO


16
ARG
228
N
28.456
7.975
7.608
N
PRO




229
HN
29.286
7.478
7.351
H
PRO




230
CA
28.187
8.097
9.029
C
PRO




231
HA
27.172
7.78
9.214
H
PRO




232
CB
29.16
7.269
9.903
C
PRO




233
HB1
30.2
7.461
9.558
H
PRO




234
HB2
29.087
7.605
10.964
H
PRO




235
CG
28.913
5.75
9.917
C
PRO




236
HG1
27.917
5.553
10.37
H
PRO




237
HG2
28.903
5.361
8.878
H
PRO




238
CD
30.004
5.024
10.715
C
PRO




239
HD1
30.985
5.129
10.202
H
PRO




240
HD2
30.071
5.443
11.742
H
PRO




241
NE
29.665
3.571
10.815
N
PRO




242
HE
28.901
3.2
10.276
H
PRO




243
CZ
30.467
2.673
11.443
C
PRO




244
NH1
31.635
3.022
12.021
N
PRO




245
HH11
32.184
2.305
12.486
H
PRO




246
HH12
31.92
3.983
12.062
H
PRO




247
NH2
30.068
1.383
11.521
N
PRO




248
HH21
30.666
0.72
12.003
H
PRO




249
HH22
29.14
1.164
11.235
H
PRO




250
C
28.31
9.542
9.465
C
PRO




251
O
27.462
10.053
10.19
O
PRO


17
HIS
252
N
29.368
10.245
9.006
N
PRO




253
HN
30.062
9.813
8.427
H
PRO




254
CA
29.583
11.638
9.333
C
PRO




255
HA
29.46
11.754
10.402
H
PRO




256
CB
31.011
12.077
8.943
C
PRO




257
HB1
31.729
11.355
9.386
H
PRO




258
HB2
31.14
12.03
7.841
H
PRO




259
ND1
31.472
13.792
10.762
N
PRO




260
HD1
31.299
13.188
11.548
H
PRO




261
CG
31.384
13.449
9.432
C
PRO




262
CE1
31.805
15.106
10.809
C
PRO




263
HE1
31.937
15.648
11.745
H
PRO




264
NE2
31.938
15.628
9.604
N
PRO




265
CD2
31.671
14.583
8.736
C
PRO




266
HD2
31.706
14.744
7.667
H
PRO




267
C
28.59
12.547
8.659
C
PRO




268
O
28.031
13.438
9.288
O
PRO


18
ARG
269
N
28.334
12.326
7.353
N
PRO




270
HN
28.799
11.586
6.865
H
PRO




271
CA
27.496
13.175
6.539
C
PRO




272
HA
27.864
14.187
6.648
H
PRO




273
CB
27.602
12.765
5.049
C
PRO




274
HB1
28.683
12.697
4.796
H
PRO




275
HB2
27.16
11.757
4.897
H
PRO




276
CG
26.968
13.768
4.074
C
PRO




277
HG1
25.865
13.773
4.223
H
PRO




278
HG2
27.353
14.783
4.326
H
PRO




279
CD
27.282
13.473
2.603
C
PRO




280
HD1
28.378
13.503
2.413
H
PRO




281
HD2
26.872
12.482
2.308
H
PRO




282
NE
26.621
14.552
1.804
N
PRO




283
HE
26.223
15.321
2.3
H
PRO




284
CZ
26.408
14.483
0.466
C
PRO




285
NH1
26.898
13.481
−0.297
N
PRO




286
HH11
26.621
13.45
−1.259
H
PRO




287
HH12
27.496
12.773
0.088
H
PRO




288
NH2
25.655
15.435
−0.135
N
PRO




289
HH21
25.433
15.319
−1.105
H
PRO




290
HH22
25.254
16.172
0.401
H
PRO




291
C
26.047
13.162
6.972
C
PRO




292
O
25.398
14.207
7.02
O
PRO


19
ILE
293
N
25.513
11.964
7.297
N
PRO




294
HN
26.065
11.131
7.275
H
PRO




295
CA
24.104
11.785
7.564
C
PRO




296
HA
23.547
12.617
7.154
H
PRO




297
CB
23.568
10.498
6.933
C
PRO




298
HB
24.079
9.619
7.389
H
PRO




299
CG2
22.049
10.379
7.207
C
PRO




300
HG21
21.622
9.493
6.694
H
PRO




301
HG22
21.84
10.269
8.291
H
PRO




302
HG23
21.525
11.283
6.835
H
PRO




303
CG1
23.885
10.465
5.414
C
PRO




304
HG11
23.28
11.243
4.902
H
PRO




305
HG12
24.955
10.706
5.242
H
PRO




306
CD1
23.631
9.102
4.769
C
PRO




307
HD1
23.918
9.123
3.698
H
PRO




308
HD2
24.234
8.318
5.274
H
PRO




309
HD3
22.56
8.824
4.836
H
PRO




310
C
23.872
11.762
9.056
C
PRO




311
O
23.114
12.573
9.587
O
PRO


20
LEU
312
N
24.502
10.801
9.77
N
PRO




313
HN
25.185
10.209
9.348
H
PRO




314
CA
24.15
10.474
11.135
C
PRO




315
HA
23.075
10.549
11.227
H
PRO




316
CB
24.558
9.025
11.492
C
PRO




317
HB1
25.65
8.903
11.333
H
PRO




318
HB2
24.35
8.822
12.566
H
PRO




319
CG
23.813
7.97
10.646
C
PRO




320
HG
23.808
8.312
9.584
H
PRO




321
CD1
24.536
6.614
10.651
C
PRO




322
HD11
23.986
5.881
10.023
H
PRO




323
HD12
25.563
6.719
10.246
H
PRO




324
HD13
24.604
6.213
11.678
H
PRO




325
CD2
22.347
7.823
11.092
C
PRO




326
HD21
21.84
7.05
10.479
H
PRO




327
HD22
22.284
7.527
12.158
H
PRO




328
HD23
21.8
8.78
10.965
H
PRO




329
C
24.733
11.419
12.154
C
PRO




330
O
24.031
11.823
13.079
O
PRO


21
ARG
331
N
26.021
11.804
12.012
N
PRO




332
HN
26.576
11.476
11.247
H
PRO




333
CA
26.711
12.554
13.043
C
PRO




334
HA
26.007
12.89
13.789
H
PRO




335
CB
27.767
11.672
13.761
C
PRO




336
HB1
28.562
11.372
13.044
H
PRO




337
HB2
28.237
12.274
14.57
H
PRO




338
CG
27.198
10.398
14.409
C
PRO




339
HG1
26.24
10.667
14.906
H
PRO




340
HG2
26.97
9.649
13.619
H
PRO




341
CD
28.161
9.788
15.444
C
PRO




342
HD1
29.097
9.457
14.94
H
PRO




343
HD2
28.426
10.53
16.227
H
PRO




344
NE
27.535
8.589
16.102
N
PRO




345
HE
27.874
7.681
15.863
H
PRO




346
CZ
26.489
8.646
16.97
C
PRO




347
NH1
25.954
9.814
17.387
N
PRO




348
HH11
25.13
9.789
17.946
H
PRO




349
HH12
26.32
10.684
17.05
H
PRO




350
NH2
25.945
7.487
17.411
N
PRO




351
HH21
24.971
7.491
17.687
H
PRO




352
HH22
26.283
6.612
17.031
H
PRO




353
C
27.41
13.798
12.506
C
PRO




354
O
28.622
13.923
12.696
O
PRO


22
PRO
355
N
26.755
14.766
11.857
N
PRO




356
CD
25.3
14.834
11.678
C
PRO




357
HD1
24.989
14.028
10.978
H
PRO




358
HD2
24.772
14.731
12.652
H
PRO




359
CA
27.431
15.873
11.192
C
PRO




360
HA
28.293
15.502
10.657
H
PRO




361
CB
26.344
16.45
10.271
C
PRO




362
HB1
26.334
15.863
9.325
H
PRO




363
HB2
26.492
17.52
10.026
H
PRO




364
CG
25.037
16.191
11.026
C
PRO




365
HG1
24.154
16.179
10.357
H
PRO




366
HG2
24.901
16.963
11.813
H
PRO




367
C
27.911
16.925
12.164
C
PRO




368
O
28.608
17.84
11.731
O
PRO


23
ASN
369
N
27.54
16.845
13.461
N
PRO




370
HN
26.966
16.093
13.786
H
PRO




371
CA
27.847
17.874
14.432
C
PRO




372
HA
28.286
18.733
13.943
H
PRO




373
CB
26.584
18.312
15.217
C
PRO




374
HB1
26.193
17.466
15.82
H
PRO




375
HB2
26.821
19.152
15.903
H
PRO




376
CG
25.478
18.752
14.256
C
PRO




377
OD1
24.424
18.114
14.176
O
PRO




378
ND2
25.723
19.868
13.513
N
PRO




379
HD21
25.024
20.182
12.874
H
PRO




380
HD22
26.595
20.346
13.598
H
PRO




381
C
28.859
17.355
15.425
C
PRO




382
O
29.045
17.945
16.488
O
PRO


24
GLN
383
N
29.54
16.233
15.102
N
PRO




384
HN
29.408
15.796
14.214
H
PRO




385
CA
30.461
15.575
16.002
C
PRO




386
HA
30.633
16.21
16.857
H
PRO




387
CB
29.902
14.207
16.475
C
PRO




388
HB1
29.679
13.587
15.58
H
PRO




389
HB2
30.671
13.675
17.077
H
PRO




390
CG
28.618
14.349
17.322
C
PRO




391
HG1
28.845
14.879
18.27
H
PRO




392
HG2
27.869
14.951
16.767
H
PRO




393
CD
27.988
12.988
17.634
C
PRO




394
OE1
26.93
12.635
17.098
O
PRO




395
NE2
28.653
12.209
18.532
N
PRO




396
HE21
28.271
11.323
18.789
H
PRO




397
HE22
29.501
12.539
18.941
H
PRO




398
C
31.764
15.349
15.252
C
PRO




399
O
31.732
15.275
14.023
O
PRO


25
PRO
400
N
32.923
15.238
15.918
N
PRO




401
CD
33.074
15.594
17.333
C
PRO




402
HD1
32.627
16.589
17.551
H
PRO




403
HD2
32.598
14.806
17.957
H
PRO




404
CA
34.197
14.789
15.349
C
PRO




405
HA
34.541
15.577
14.693
H
PRO




406
CB
35.093
14.586
16.579
C
PRO




407
HB1
36.167
14.733
16.348
H
PRO




408
HB2
34.946
13.569
17.007
H
PRO




409
CG
34.581
15.623
17.576
C
PRO




410
HG1
34.985
16.624
17.307
H
PRO




411
HG2
34.854
15.385
18.622
H
PRO




412
C
34.126
13.52
14.522
C
PRO




413
O
33.234
12.71
14.762
O
PRO


26
ILE
414
N
35.063
13.304
13.566
N
PRO




415
HN
35.806
13.959
13.425
H
PRO




416
CA
35.06
12.146
12.679
C
PRO




417
HA
34.049
12.053
12.308
H
PRO




418
CB
36.003
12.33
11.483
C
PRO




419
HB
35.742
13.309
11.012
H
PRO




420
CG2
37.478
12.417
11.939
C
PRO




421
HG21
38.13
12.668
11.076
H
PRO




422
HG22
37.616
13.198
12.71
H
PRO




423
HG23
37.823
11.449
12.356
H
PRO




424
CG1
35.847
11.247
10.382
C
PRO




425
HG11
36.57
11.482
9.569
H
PRO




426
HG12
36.133
10.256
10.793
H
PRO




427
CD1
34.447
11.161
9.77
C
PRO




428
HD1
34.44
10.446
8.92
H
PRO




429
HD2
33.709
10.807
10.521
H
PRO




430
HD3
34.126
12.157
9.397
H
PRO




431
C
35.377
10.866
13.433
C
PRO




432
O
34.981
9.771
13.036
O
PRO


27
GLU
433
N
36.038
10.987
14.605
N
PRO




434
HN
36.404
11.877
14.895
H
PRO




435
CA
36.382
9.9
15.491
C
PRO




436
HA
36.826
9.112
14.901
H
PRO




437
CB
37.393
10.356
16.574
C
PRO




438
HB1
36.957
11.171
17.19
H
PRO




439
HB2
37.588
9.491
17.251
H
PRO




440
CG
38.77
10.808
16.021
C
PRO




441
HG1
39.509
10.799
16.851
H
PRO




442
HG2
39.108
10.082
15.252
H
PRO




443
CD
38.797
12.214
15.411
C
PRO




444
OE1
37.789
12.961
15.519
O
PRO




445
OE2
39.85
12.561
14.813
O
PRO




446
C
35.152
9.336
16.177
C
PRO




447
O
35.169
8.208
16.665
O
PRO


28
ALA
448
N
34.022
10.085
16.171
N
PRO




449
HN
34.015
10.996
15.76
H
PRO




450
CA
32.752
9.623
16.684
C
PRO




451
HA
32.929
9.119
17.624
H
PRO




452
CB
31.775
10.792
16.915
C
PRO




453
HB1
32.241
11.545
17.587
H
PRO




454
HB2
31.517
11.292
15.958
H
PRO




455
HB3
30.837
10.433
17.39
H
PRO




456
C
32.095
8.645
15.732
C
PRO




457
O
31.199
7.903
16.13
O
PRO


29
CYS
458
N
32.562
8.588
14.462
N
PRO




459
HN
33.295
9.199
14.159
H
PRO




460
CA
32.058
7.683
13.45
C
PRO




461
HA
31.041
7.406
13.682
H
PRO




462
CB
32.105
8.307
12.04
C
PRO




463
HB1
33.144
8.616
11.797
H
PRO




464
HB2
31.795
7.559
11.279
H
PRO




465
SG
30.998
9.728
11.948
S
PRO




466
HG1
31.186
9.948
10.654
H
PRO




467
C
32.888
6.432
13.391
C
PRO




468
O
32.624
5.55
12.578
O
PRO


30
MET
469
N
33.891
6.31
14.28
N
PRO




470
HN
34.093
7.038
14.933
H
PRO




471
CA
34.723
5.143
14.388
C
PRO




472
HA
34.586
4.488
13.537
H
PRO




473
CB
36.216
5.523
14.52
C
PRO




474
HB1
36.38
6.082
15.468
H
PRO




475
HB2
36.833
4.599
14.554
H
PRO




476
CG
36.699
6.412
13.36
C
PRO




477
HG1
36.515
5.876
12.405
H
PRO




478
HG2
36.078
7.333
13.338
H
PRO




479
SD
38.446
6.892
13.465
S
PRO




480
CE
38.358
8.066
12.082
C
PRO




481
HE1
39.346
8.539
11.898
H
PRO




482
HE2
38.043
7.556
11.146
H
PRO




483
HE3
37.627
8.876
12.295
H
PRO




484
C
34.239
4.457
15.635
C
PRO




485
O
34.336
5.008
16.732
O
PRO


31
PHE
486
N
33.641
3.255
15.493
N
PRO




487
HN
33.596
2.77
14.62
H
PRO




488
CA
32.928
2.631
16.584
C
PRO




489
HA
32.75
3.342
17.379
H
PRO




490
CB
31.566
2.001
16.174
C
PRO




491
HB1
31.747
1.154
15.477
H
PRO




492
HB2
31.055
1.609
17.079
H
PRO




493
CG
30.578
2.923
15.496
C
PRO




494
CD1
30.627
4.329
15.559
C
PRO




495
HD1
31.398
4.831
16.116
H
PRO




496
CE1
29.676
5.11
14.889
C
PRO




497
HE1
29.722
6.185
14.945
H
PRO




498
CZ
28.662
4.498
14.149
C
PRO




499
HZ
27.934
5.1
13.627
H
PRO




500
CD2
29.524
2.326
14.78
C
PRO




501
HD2
29.456
1.25
14.733
H
PRO




502
CE2
28.573
3.105
14.111
C
PRO




503
HE2
27.788
2.63
13.544
H
PRO




504
C
33.771
1.51
17.127
C
PRO




505
O
34.5
0.836
16.399
O
PRO


32
GLU
506
N
33.652
1.247
18.445
N
PRO




507
HN
33.11
1.839
19.046
H
PRO




508
CA
34.278
0.112
19.093
C
PRO




509
HA
35.318
0.065
18.796
H
PRO




510
CB
34.18
0.222
20.63
C
PRO




511
HB1
33.107
0.316
20.914
H
PRO




512
HB2
34.578
−0.706
21.1
H
PRO




513
CG
34.957
1.423
21.21
C
PRO




514
HG1
36.047
1.286
21.044
H
PRO




515
HG2
34.646
2.361
20.705
H
PRO




516
CD
34.709
1.59
22.71
C
PRO




517
OE1
33.99
0.744
23.307
O
PRO




518
OE2
35.238
2.584
23.273
O
PRO




519
C
33.598
−1.174
18.675
C
PRO




520
O
34.19
−2.249
18.737
O
PRO


33
SER
521
N
32.341
−1.073
18.184
N
PRO




522
HN
31.882
−0.187
18.161
H
PRO




523
CA
31.548
−2.176
17.697
C
PRO




524
HA
31.654
−2.991
18.397
H
PRO




525
CB
30.05
−1.798
17.616
C
PRO




526
HB1
29.463
−2.657
17.236
H
PRO




527
HB2
29.69
−1.556
18.64
H
PRO




528
OG
29.818
−0.672
16.774
O
PRO




529
HG1
28.99
−0.278
17.067
H
PRO




530
C
32.008
−2.68
16.348
C
PRO




531
O
31.748
−3.83
16
O
PRO


34
ASP
532
N
32.763
−1.857
15.576
N
PRO




533
HN
32.971
−0.922
15.858
H
PRO




534
CA
33.366
−2.294
14.33
C
PRO




535
HA
32.639
−2.869
13.77
H
PRO




536
CB
33.9
−1.122
13.46
C
PRO




537
HB1
34.727
−0.605
13.995
H
PRO




538
HB2
34.299
−1.522
12.502
H
PRO




539
CG
32.829
−0.092
13.118
C
PRO




540
OD1
31.709
−0.486
12.693
O
PRO




541
OD2
33.129
1.127
13.249
O
PRO




542
C
34.565
−3.175
14.623
C
PRO




543
O
34.999
−3.958
13.779
O
PRO


35
LEU
544
N
35.112
−3.067
15.854
N
PRO




545
HN
34.717
−2.442
16.525
H
PRO




546
CA
36.306
−3.75
16.29
C
PRO




547
HA
36.843
−4.136
15.434
H
PRO




548
CB
37.226
−2.793
17.088
C
PRO




549
HB1
36.696
−2.466
18.009
H
PRO




550
HB2
38.147
−3.334
17.401
H
PRO




551
CG
37.653
−1.516
16.327
C
PRO




552
HG
36.733
−0.984
15.99
H
PRO




553
CD1
38.402
−0.558
17.271
C
PRO




554
HD11
38.684
0.372
16.734
H
PRO




555
HD12
37.758
−0.285
18.134
H
PRO




556
HD13
39.326
−1.039
17.655
H
PRO




557
CD2
38.498
−1.824
15.078
C
PRO




558
HD21
38.807
−0.877
14.585
H
PRO




559
HD22
39.414
−2.385
15.36
H
PRO




560
HD23
37.922
−2.424
14.343
H
PRO




561
C
35.949
−4.921
17.181
C
PRO




562
O
36.834
−5.581
17.722
O
PRO


36
LEU
563
N
34.639
−5.228
17.349
N
PRO




564
HN
33.925
−4.675
16.925
H
PRO




565
CA
34.193
−6.411
18.059
C
PRO




566
HA
34.919
−6.647
18.822
H
PRO




567
CB
32.808
−6.247
18.735
C
PRO




568
HB1
32.093
−5.836
17.988
H
PRO




569
HB2
32.423
−7.236
19.065
H
PRO




570
CG
32.829
−5.321
19.977
C
PRO




571
HG
33.283
−4.352
19.671
H
PRO




572
CD1
31.409
−5.017
20.482
C
PRO




573
HD11
31.45
−4.322
21.348
H
PRO




574
HD12
30.806
−4.541
19.683
H
PRO




575
HD13
30.903
−5.952
20.803
H
PRO




576
CD2
33.677
−5.887
21.133
C
PRO




577
HD21
33.638
−5.196
22.002
H
PRO




578
HD22
33.283
−6.875
21.452
H
PRO




579
HD23
34.739
−6.002
20.837
H
PRO




580
C
34.176
−7.581
17.105
C
PRO




581
O
34.098
−7.415
15.888
O
PRO


37
ARG
582
N
34.315
−8.807
17.66
N
PRO




583
HN
34.323
−8.913
18.651
H
PRO




584
CA
34.56
−10.024
16.914
C
PRO




585
HA
35.486
−9.877
16.376
H
PRO




586
CB
34.735
−11.227
17.876
C
PRO




587
HB1
35.495
−10.941
18.635
H
PRO




588
HB2
33.779
−11.402
18.417
H
PRO




589
CG
35.183
−12.539
17.201
C
PRO




590
HG1
34.423
−12.831
16.442
H
PRO




591
HG2
36.142
−12.37
16.664
H
PRO




592
CD
35.335
−13.722
18.169
C
PRO




593
HD1
34.393
−13.873
18.742
H
PRO




594
HD2
35.587
−14.648
17.606
H
PRO




595
NE
36.452
−13.42
19.123
N
PRO




596
HE
36.965
−12.574
19.003
H
PRO




597
CZ
36.799
−14.242
20.148
C
PRO




598
NH1
36.155
−15.411
20.36
N
PRO




599
HH11
36.428
−16.001
21.115
H
PRO




600
HH12
35.414
−15.678
19.75
H
PRO




601
NH2
37.812
−13.885
20.972
N
PRO




602
HH21
38.072
−14.483
21.725
H
PRO




603
HH22
38.293
−13.025
20.824
H
PRO




604
C
33.475
−10.349
15.91
C
PRO




605
O
32.287
−10.374
16.231
O
PRO


38
GLY
606
N
33.885
−10.626
14.648
N
PRO




607
HN
34.851
−10.587
14.388
H
PRO




608
CA
32.989
−11.086
13.612
C
PRO




609
HA1
32.325
−11.827
14.034
H
PRO




610
HA2
33.611
−11.495
12.831
H
PRO




611
C
32.164
−9.991
12.996
C
PRO




612
O
31.191
−10.28
12.302
O
PRO


39
ALA
613
N
32.491
−8.705
13.258
N
PRO




614
HN
33.24
−8.485
13.881
H
PRO




615
CA
31.814
−7.569
12.668
C
PRO




616
HA
30.767
−7.684
12.906
H
PRO




617
CB
32.294
−6.223
13.243
C
PRO




618
HB1
32.208
−6.229
14.351
H
PRO




619
HB2
33.355
−6.036
12.977
H
PRO




620
HB3
31.677
−5.385
12.853
H
PRO




621
C
31.942
−7.538
11.157
C
PRO




622
O
32.925
−8.027
10.598
O
PRO


40
PHE
623
N
30.925
−6.982
10.465
N
PRO




624
HN
30.123
−6.599
10.931
H
PRO




625
CA
30.942
−6.865
9.026
C
PRO




626
HA
31.96
−6.648
8.727
H
PRO




627
CB
30.473
−8.135
8.252
C
PRO




628
HB1
30.603
−7.978
7.161
H
PRO




629
HB2
31.119
−8.988
8.543
H
PRO




630
CG
29.04
−8.542
8.504
C
PRO




631
CD1
28.7
−9.324
9.621
C
PRO




632
HD1
29.466
−9.601
10.328
H
PRO




633
CE1
27.382
−9.758
9.815
C
PRO




634
HE1
27.133
−10.362
10.675
H
PRO




635
CZ
26.387
−9.402
8.895
C
PRO




636
HZ
25.369
−9.73
9.042
H
PRO




637
CD2
28.032
−8.194
7.586
C
PRO




638
HD2
28.28
−7.602
6.717
H
PRO




639
CE2
26.712
−8.618
7.781
C
PRO




640
HE2
25.944
−8.341
7.074
H
PRO




641
C
30.126
−5.662
8.64
C
PRO




642
O
29.352
−5.135
9.438
O
PRO


41
HIS
643
N
30.326
−5.187
7.393
N
PRO




644
HN
30.946
−5.646
6.759
H
PRO




645
CA
29.796
−3.929
6.933
C
PRO




646
HA
28.953
−3.639
7.544
H
PRO




647
CB
30.876
−2.82
6.942
C
PRO




648
HB1
31.593
−2.983
6.114
H
PRO




649
HB2
30.403
−1.824
6.795
H
PRO




650
ND1
31.24
−2.354
9.409
N
PRO




651
HD1
30.34
−1.934
9.56
H
PRO




652
CG
31.695
−2.824
8.202
C
PRO




653
CE1
32.2
−2.612
10.328
C
PRO




654
HE1
32.104
−2.336
11.379
H
PRO




655
NE2
33.239
−3.225
9.797
N
PRO




656
CD2
32.922
−3.355
8.455
C
PRO




657
HD2
33.612
−3.843
7.78
H
PRO




658
C
29.324
−4.139
5.52
C
PRO




659
O
30.021
−4.752
4.711
O
PRO


42
LEU
660
N
28.112
−3.637
5.196
N
PRO




661
HN
27.582
−3.103
5.857
H
PRO




662
CA
27.504
−3.798
3.893
C
PRO




663
HA
28.185
−4.304
3.223
H
PRO




664
CB
26.151
−4.548
3.925
C
PRO




665
HB1
25.441
−3.987
4.573
H
PRO




666
HB2
25.724
−4.574
2.897
H
PRO




667
CG
26.222
−6.005
4.437
C
PRO




668
HG
26.608
−5.984
5.483
H
PRO




669
CD1
24.813
−6.622
4.475
C
PRO




670
HD11
24.851
−7.655
4.88
H
PRO




671
HD12
24.144
−6.014
5.119
H
PRO




672
HD13
24.378
−6.654
3.454
H
PRO




673
CD2
27.173
−6.887
3.606
C
PRO




674
HD21
27.156
−7.93
3.988
H
PRO




675
HD22
26.863
−6.894
2.54
H
PRO




676
HD23
28.217
−6.517
3.67
H
PRO




677
C
27.257
−2.426
3.335
C
PRO




678
O
26.919
−1.495
4.066
O
PRO


43
GLY
679
N
27.454
−2.277
2.007
N
PRO




680
HN
27.743
−3.05
1.437
H
PRO




681
CA
27.289
−1.02
1.318
C
PRO




682
HA1
28.244
−0.775
0.877
H
PRO




683
HA2
26.921
−0.262
1.996
H
PRO




684
C
26.308
−1.181
0.207
C
PRO




685
O
26.282
−2.207
−0.471
O
PRO


44
GLY
686
N
25.481
−0.135
−0.01
N
PRO




687
HN
25.54
0.679
0.572
H
PRO




688
CA
24.504
−0.083
−1.074
C
PRO




689
HA1
23.579
0.278
−0.652
H
PRO




690
HA2
24.406
−1.053
−1.54
H
PRO




691
C
24.974
0.907
−2.081
C
PRO




692
O
25.326
2.031
−1.733
O
PRO


45
TYR
693
N
24.988
0.504
−3.365
N
PRO




694
HN
24.692
−0.421
−3.61
H
PRO




695
CA
25.54
1.296
−4.437
C
PRO




696
HA
25.886
2.243
−4.055
H
PRO




697
CB
26.692
0.588
−5.196
C
PRO




698
HB1
26.399
−0.447
−5.464
H
PRO




699
HB2
26.941
1.136
−6.132
H
PRO




700
CG
27.937
0.521
−4.354
C
PRO




701
CD1
28.065
−0.415
−3.311
C
PRO




702
HD1
27.259
−1.104
−3.1
H
PRO




703
CE1
29.229
−0.463
−2.534
C
PRO




704
HE1
29.309
−1.174
−1.726
H
PRO




705
CZ
30.286
0.415
−2.804
C
PRO




706
OH
31.454
0.368
−2.014
O
PRO




707
HH
32.074
1.016
−2.354
H
PRO




708
CD2
29.007
1.393
−4.616
C
PRO




709
HD2
28.927
2.114
−5.416
H
PRO




710
CE2
30.177
1.342
−3.847
C
PRO




711
HE2
30.984
2.028
−4.06
H
PRO




712
C
24.45
1.572
−5.432
C
PRO




713
O
23.644
0.7
−5.755
O
PRO


46
TYR
714
N
24.418
2.821
−5.943
N
PRO




715
HN
25.058
3.526
−5.631
H
PRO




716
CA
23.544
3.205
−7.021
C
PRO




717
HA
23.345
2.338
−7.637
H
PRO




718
CB
22.224
3.846
−6.519
C
PRO




719
HB1
21.752
3.171
−5.773
H
PRO




720
HB2
22.421
4.821
−6.025
H
PRO




721
CG
21.234
4.044
−7.638
C
PRO




722
CD1
20.956
5.331
−8.129
C
PRO




723
HD1
21.461
6.187
−7.709
H
PRO




724
CE1
20.029
5.515
−9.163
C
PRO




725
HE1
19.816
6.511
−9.525
H
PRO




726
CZ
19.371
4.411
−9.717
C
PRO




727
OH
18.415
4.599
−10.737
O
PRO




728
HH
17.973
3.76
−10.883
H
PRO




729
CD2
20.581
2.941
−8.213
C
PRO




730
HD2
20.792
1.946
−7.854
H
PRO




731
CE2
19.654
3.122
−9.248
C
PRO




732
HE2
19.156
2.265
−9.674
H
PRO




733
C
24.326
4.201
−7.834
C
PRO




734
O
24.921
5.135
−7.294
O
PRO


47
GLY
735
N
24.364
4
−9.173
N
PRO




736
HN
23.852
3.243
−9.591
H
PRO




737
CA
25.085
4.848
−10.102
C
PRO




738
HA1
24.72
5.858
−9.983
H
PRO




739
HA2
24.906
4.454
−11.092
H
PRO




740
C
26.573
4.851
−9.876
C
PRO




741
O
27.241
5.843
−10.163
O
PRO


48
GLY
742
N
27.12
3.742
−9.323
N
PRO




743
HN
26.536
2.968
−9.087
H
PRO




744
CA
28.537
3.585
−9.062
C
PRO




745
HA1
29.088
4.005
−9.892
H
PRO




746
HA2
28.713
2.526
−8.943
H
PRO




747
C
29.014
4.262
−7.802
C
PRO




748
O
30.214
4.295
−7.545
O
PRO


49
LYS
749
N
28.092
4.819
−6.985
N
PRO




750
HN
27.118
4.769
−7.201
H
PRO




751
CA
28.431
5.573
−5.799
C
PRO




752
HA
29.504
5.631
−5.68
H
PRO




753
CB
27.84
7.006
−5.849
C
PRO




754
HB1
28.199
7.498
−6.781
H
PRO




755
HB2
26.731
6.939
−5.919
H
PRO




756
CG
28.202
7.912
−4.658
C
PRO




757
HG1
27.872
7.418
−3.718
H
PRO




758
HG2
29.306
8.036
−4.612
H
PRO




759
CD
27.517
9.287
−4.728
C
PRO




760
HD1
27.941
9.878
−5.569
H
PRO




761
HD2
26.439
9.116
−4.955
H
PRO




762
CE
27.588
10.082
−3.417
C
PRO




763
HE1
26.979
11.009
−3.495
H
PRO




764
HE2
27.201
9.464
−2.578
H
PRO




765
NZ
28.975
10.482
−3.081
N
PRO




766
HZ1
28.98
10.947
−2.144
H
PRO




767
HZ2
29.589
9.634
−3.035
H
PRO




768
HZ3
29.34
11.133
−3.803
H
PRO




769
C
27.847
4.853
−4.613
C
PRO




770
O
26.706
4.397
−4.66
O
PRO


50
LEU
771
N
28.632
4.737
−3.512
N
PRO




772
HN
29.573
5.089
−3.524
H
PRO




773
CA
28.185
4.231
−2.229
C
PRO




774
HA
27.686
3.287
−2.4
H
PRO




775
CB
29.374
4.035
−1.251
C
PRO




776
HB1
30.105
3.343
−1.724
H
PRO




777
HB2
29.891
5.012
−1.118
H
PRO




778
CG
29.018
3.477
0.149
C
PRO




779
HG
28.256
4.146
0.611
H
PRO




780
CD1
28.429
2.062
0.091
C
PRO




781
HD11
28.172
1.726
1.118
H
PRO




782
HD12
27.51
2.032
−0.527
H
PRO




783
HD13
29.169
1.353
−0.334
H
PRO




784
CD2
30.244
3.484
1.076
C
PRO




785
HD21
29.969
3.116
2.087
H
PRO




786
HD22
31.044
2.831
0.668
H
PRO




787
HD23
30.643
4.514
1.175
H
PRO




788
C
27.208
5.212
−1.622
C
PRO




789
O
27.545
6.376
−1.404
O
PRO


51
ILE
790
N
25.959
4.765
−1.366
N
PRO




791
HN
25.705
3.813
−1.558
H
PRO




792
CA
24.88
5.654
−0.991
C
PRO




793
HA
25.29
6.576
−0.602
H
PRO




794
CB
23.968
6.003
−2.17
C
PRO




795
HB
23.072
6.554
−1.801
H
PRO




796
CG2
24.745
6.986
−3.072
C
PRO




797
HG21
24.097
7.356
−3.891
H
PRO




798
HG22
25.104
7.855
−2.484
H
PRO




799
HG23
25.62
6.485
−3.534
H
PRO




800
CG1
23.477
4.797
−3.017
C
PRO




801
HG11
23.009
5.223
−3.933
H
PRO




802
HG12
24.347
4.195
−3.354
H
PRO




803
CD1
22.436
3.877
−2.367
C
PRO




804
HD1
22.033
3.167
−3.121
H
PRO




805
HD2
22.889
3.28
−1.55
H
PRO




806
HD3
21.594
4.47
−1.951
H
PRO




807
C
24.064
5.078
0.137
C
PRO




808
O
23.087
5.692
0.558
O
PRO


52
SER
809
N
24.45
3.911
0.693
N
PRO




810
HN
25.245
3.403
0.365
H
PRO




811
CA
23.771
3.357
1.841
C
PRO




812
HA
23.474
4.165
2.492
H
PRO




813
CB
22.541
2.482
1.473
C
PRO




814
HB1
21.88
3.06
0.792
H
PRO




815
HB2
22.867
1.566
0.939
H
PRO




816
OG
21.776
2.104
2.615
O
PRO




817
HG1
21.153
2.827
2.792
H
PRO




818
C
24.797
2.538
2.567
C
PRO




819
O
25.711
2.001
1.945
O
PRO


53
ILE
820
N
24.675
2.451
3.907
N
PRO




821
HN
23.895
2.872
4.376
H
PRO




822
CA
25.652
1.814
4.76
C
PRO




823
HA
26.171
1.045
4.204
H
PRO




824
CB
26.664
2.78
5.383
C
PRO




825
HB
27.198
2.267
6.217
H
PRO




826
CG2
27.728
3.129
4.321
C
PRO




827
HG21
28.497
3.807
4.745
H
PRO




828
HG22
28.229
2.209
3.957
H
PRO




829
HG23
27.259
3.637
3.455
H
PRO




830
CG1
25.982
4.048
5.96
C
PRO




831
HG11
25.659
4.702
5.121
H
PRO




832
HG12
25.071
3.759
6.528
H
PRO




833
CD1
26.88
4.841
6.912
C
PRO




834
HD1
26.35
5.746
7.276
H
PRO




835
HD2
27.149
4.219
7.792
H
PRO




836
HD3
27.818
5.156
6.41
H
PRO




837
C
24.903
1.134
5.876
C
PRO




838
O
23.851
1.595
6.317
O
PRO


54
ALA
839
N
25.448
−0.007
6.346
N
PRO




840
HN
26.255
−0.417
5.92
H
PRO




841
CA
24.943
−0.709
7.494
C
PRO




842
HA
24.604
0.006
8.233
H
PRO




843
CB
23.825
−1.704
7.129
C
PRO




844
HB1
22.995
−1.168
6.624
H
PRO




845
HB2
24.199
−2.48
6.428
H
PRO




846
HB3
23.421
−2.2
8.036
H
PRO




847
C
26.109
−1.476
8.052
C
PRO




848
O
27.004
−1.87
7.305
O
PRO


55
SER
849
N
26.129
−1.707
9.384
N
PRO




850
HN
25.41
−1.373
9.992
H
PRO




851
CA
27.231
−2.385
10.031
C
PRO




852
HA
27.72
−3.041
9.326
H
PRO




853
CB
28.267
−1.428
10.665
C
PRO




854
HB1
27.769
−0.745
11.388
H
PRO




855
HB2
29.045
−2.011
11.207
H
PRO




856
OG
28.9
−0.654
9.65
O
PRO




857
HG1
29.638
−0.184
10.057
H
PRO




858
C
26.666
−3.235
11.127
C
PRO




859
O
25.742
−2.833
11.832
O
PRO


56
PHE
860
N
27.22
−4.455
11.283
N
PRO




861
HN
28.015
−4.736
10.741
H
PRO




862
CA
26.624
−5.503
12.08
C
PRO




863
HA
25.875
−5.094
12.743
H
PRO




864
CB
26.027
−6.638
11.208
C
PRO




865
HB1
26.829
−7.123
10.609
H
PRO




866
HB2
25.534
−7.408
11.839
H
PRO




867
CG
25.013
−6.089
10.244
C
PRO




868
CD1
25.407
−5.658
8.964
C
PRO




869
HD1
26.443
−5.734
8.669
H
PRO




870
CE1
24.476
−5.102
8.081
C
PRO




871
HE1
24.793
−4.762
7.107
H
PRO




872
CZ
23.134
−4.989
8.465
C
PRO




873
HZ
22.414
−4.57
7.778
H
PRO




874
CD2
23.664
−5.977
10.616
C
PRO




875
HD2
23.353
−6.302
11.597
H
PRO




876
CE2
22.725
−5.439
9.727
C
PRO




877
HE2
21.689
−5.357
10.018
H
PRO




878
C
27.716
−6.127
12.902
C
PRO




879
O
28.834
−6.299
12.42
O
PRO


57
HIS
880
N
27.413
−6.49
14.165
N
PRO




881
HN
26.519
−6.302
14.571
H
PRO




882
CA
28.348
−7.192
15.014
C
PRO




883
HA
28.908
−7.895
14.411
H
PRO




884
CB
29.314
−6.26
15.792
C
PRO




885
HB1
30.112
−6.875
16.261
H
PRO




886
HB2
29.805
−5.568
15.073
H
PRO




887
ND1
27.72
−4.465
16.677
N
PRO




888
HD1
27.415
−4.113
15.781
H
PRO




889
CG
28.666
−5.443
16.882
C
PRO




890
CE1
27.369
−3.992
17.896
C
PRO




891
HE1
26.633
−3.2
18.032
H
PRO




892
NE2
28.021
−4.597
18.869
N
PRO




893
CD2
28.829
−5.519
18.229
C
PRO




894
HD2
29.459
−6.183
18.804
H
PRO




895
C
27.53
−7.969
16.005
C
PRO




896
O
26.395
−7.594
16.3
O
PRO


58
GLN
897
N
28.074
−9.092
16.535
N
PRO




898
HN
28.976
−9.42
16.267
H
PRO




899
CA
27.412
−9.861
17.566
C
PRO




900
HA
26.39
−10.002
17.245
H
PRO




901
CB
28.027
−11.27
17.769
C
PRO




902
HB1
28.23
−11.702
16.766
H
PRO




903
HB2
28.999
−11.189
18.302
H
PRO




904
CG
27.077
−12.231
18.51
C
PRO




905
HG1
26.83
−11.806
19.505
H
PRO




906
HG2
26.134
−12.337
17.934
H
PRO




907
CD
27.679
−13.625
18.688
C
PRO




908
OE1
28.264
−14.197
17.761
O
PRO




909
NE2
27.481
−14.205
19.904
N
PRO




910
HE21
27.86
−15.11
20.087
H
PRO




911
HE22
26.883
−13.747
20.57
H
PRO




912
C
27.398
−9.102
18.877
C
PRO




913
O
28.382
−8.455
19.234
O
PRO


59
ALA
914
N
26.278
−9.184
19.62
N
PRO




915
HN
25.5
−9.742
19.317
H
PRO




916
CA
26.093
−8.463
20.851
C
PRO




917
HA
26.875
−8.748
21.541
H
PRO




918
CB
26.042
−6.93
20.68
C
PRO




919
HB1
27.026
−6.56
20.324
H
PRO




920
HB2
25.273
−6.639
19.933
H
PRO




921
HB3
25.817
−6.43
21.645
H
PRO




922
C
24.768
−8.898
21.4
C
PRO




923
O
23.725
−8.683
20.787
O
PRO


60
GLU
924
N
24.79
−9.549
22.58
N
PRO




925
HN
25.649
−9.707
23.068
H
PRO




926
CA
23.619
−10.099
23.217
C
PRO




927
HA
22.874
−10.339
22.476
H
PRO




928
CB
23.933
−11.38
24.033
C
PRO




929
HB1
24.832
−11.202
24.662
H
PRO




930
HB2
23.081
−11.591
24.718
H
PRO




931
CG
24.135
−12.665
23.19
C
PRO




932
HG1
24.327
−13.519
23.876
H
PRO




933
HG2
23.203
−12.885
22.627
H
PRO




934
CD
25.299
−12.589
22.204
C
PRO




935
OE1
26.458
−12.351
22.64
O
PRO




936
OE2
25.048
−12.779
20.985
O
PRO




937
C
23.056
−9.043
24.131
C
PRO




938
O
23.737
−8.548
25.027
O
PRO


61
HIS
939
N
21.778
−8.661
23.907
N
PRO




940
HN
21.227
−9.077
23.18
H
PRO




941
CA
21.113
−7.658
24.703
C
PRO




942
HA
21.853
−6.958
25.066
H
PRO




943
CB
20.055
−6.878
23.89
C
PRO




944
HB1
20.488
−6.659
22.889
H
PRO




945
HB2
19.157
−7.506
23.717
H
PRO




946
ND1
18.409
−5.214
24.928
N
PRO




947
HD1
17.599
−5.801
24.911
H
PRO




948
CG
19.67
−5.549
24.486
C
PRO




949
CE1
18.46
−3.913
25.312
C
PRO




950
HE1
17.598
−3.376
25.704
H
PRO




951
NE2
19.66
−3.389
25.143
N
PRO




952
CD2
20.422
−4.424
24.629
C
PRO




953
HD2
21.47
−4.266
24.407
H
PRO




954
C
20.46
−8.337
25.88
C
PRO




955
O
19.998
−9.472
25.78
O
PRO


62
SER
956
N
20.428
−7.651
27.043
N
PRO




957
HN
20.798
−6.727
27.109
H
PRO




958
CA
19.879
−8.157
28.286
C
PRO




959
HA
20.337
−9.117
28.481
H
PRO




960
CB
20.201
−7.211
29.474
C
PRO




961
HB1
19.668
−7.539
30.392
H
PRO




962
HB2
21.294
−7.254
29.675
H
PRO




963
OG
19.863
−5.858
29.172
O
PRO




964
HG1
20.043
−5.341
29.963
H
PRO




965
C
18.383
−8.385
28.219
C
PRO




966
O
17.87
−9.366
28.753
O
PRO


63
GLU
967
N
17.656
−7.471
27.54
N
PRO




968
HN
18.11
−6.689
27.123
H
PRO




969
CA
16.212
−7.43
27.559
C
PRO




970
HA
15.85
−7.851
28.487
H
PRO




971
CB
15.71
−5.975
27.422
C
PRO




972
HB1
15.934
−5.607
26.394
H
PRO




973
HB2
14.604
−5.957
27.555
H
PRO




974
CG
16.335
−4.988
28.43
C
PRO




975
HG1
16.096
−5.288
29.471
H
PRO




976
HG2
17.437
−4.953
28.309
H
PRO




977
CD
15.786
−3.592
28.162
C
PRO




978
OE1
15.897
−3.136
26.992
O
PRO




979
OE2
15.221
−2.966
29.096
O
PRO




980
C
15.619
−8.2
26.401
C
PRO




981
O
14.399
−8.293
26.276
O
PRO


64
LEU
982
N
16.471
−8.789
25.535
N
PRO




983
HN
17.457
−8.756
25.688
H
PRO




984
CA
16.047
−9.544
24.378
C
PRO




985
HA
14.97
−9.591
24.328
H
PRO




986
CB
16.604
−8.998
23.046
C
PRO




987
HB1
17.715
−9.01
23.086
H
PRO




988
HB2
16.291
−9.659
22.207
H
PRO




989
CG
16.139
−7.561
22.728
C
PRO




990
HG
16.398
−6.913
23.596
H
PRO




991
CD1
16.89
−7.011
21.509
C
PRO




992
HD11
16.568
−5.97
21.294
H
PRO




993
HD12
17.986
−7.013
21.688
H
PRO




994
HD13
16.679
−7.638
20.618
H
PRO




995
CD2
14.618
−7.469
22.513
C
PRO




996
HD21
14.325
−6.425
22.274
H
PRO




997
HD22
14.309
−8.124
21.672
H
PRO




998
HD23
14.066
−7.782
23.424
H
PRO




999
C
16.555
−10.934
24.58
C
PRO




1000
O
17.606
−11.134
25.184
O
PRO


65
GLN
1001
N
15.791
−11.943
24.115
N
PRO




1002
HN
14.96
−11.769
23.584
H
PRO




1003
CA
16.065
−13.319
24.452
C
PRO




1004
HA
16.902
−13.371
25.13
H
PRO




1005
CB
14.864
−14.018
25.134
C
PRO




1006
HB1
14.007
−14.064
24.425
H
PRO




1007
HB2
15.148
−15.064
25.39
H
PRO




1008
CG
14.383
−13.308
26.42
C
PRO




1009
HG1
13.95
−12.32
26.158
H
PRO




1010
HG2
13.59
−13.917
26.902
H
PRO




1011
CD
15.536
−13.134
27.418
C
PRO




1012
OE1
16.239
−14.096
27.747
O
PRO




1013
NE2
15.744
−11.874
27.895
N
PRO




1014
HE21
16.512
−11.706
28.513
H
PRO




1015
HE22
15.156
−11.123
27.604
H
PRO




1016
C
16.461
−14.066
23.213
C
PRO




1017
O
15.833
−13.949
22.162
O
PRO


66
GLY
1018
N
17.557
−14.841
23.322
N
PRO




1019
HN
18.04
−14.93
24.196
H
PRO




1020
CA
18.153
−15.527
22.203
C
PRO




1021
HA1
18.069
−14.919
21.313
H
PRO




1022
HA2
17.699
−16.504
22.127
H
PRO




1023
C
19.605
−15.678
22.523
C
PRO




1024
O
20.224
−14.768
23.07
O
PRO


67
GLN
1025
N
20.181
−16.853
22.2
N
PRO




1026
HN
19.655
−17.564
21.729
H
PRO




1027
CA
21.557
−17.193
22.488
C
PRO




1028
HA
21.715
−17.024
23.544
H
PRO




1029
CB
21.823
−18.687
22.178
C
PRO




1030
HB1
21.04
−19.282
22.702
H
PRO




1031
HB2
21.701
−18.868
21.087
H
PRO




1032
CG
23.207
−19.184
22.643
C
PRO




1033
HG1
24.008
−18.645
22.092
H
PRO




1034
HG2
23.325
−18.986
23.729
H
PRO




1035
CD
23.362
−20.687
22.39
C
PRO




1036
OE1
22.457
−21.367
21.898
O
PRO




1037
NE2
24.566
−21.221
22.745
N
PRO




1038
HE21
24.718
−22.197
22.602
H
PRO




1039
HE22
25.273
−20.639
23.142
H
PRO




1040
C
22.556
−16.343
21.73
C
PRO




1041
O
23.563
−15.918
22.293
O
PRO


68
LYS
1042
N
22.294
−16.087
20.43
N
PRO




1043
HN
21.448
−16.427
19.997
H
PRO




1044
CA
23.226
−15.419
19.554
C
PRO




1045
HA
24.062
−15.024
20.116
H
PRO




1046
CB
23.722
−16.424
18.489
C
PRO




1047
HB1
23.979
−17.368
19.024
H
PRO




1048
HB2
22.896
−16.676
17.789
H
PRO




1049
CG
24.974
−16.006
17.704
C
PRO




1050
HG1
24.81
−15.033
17.194
H
PRO




1051
HG2
25.803
−15.882
18.437
H
PRO




1052
CD
25.369
−17.084
16.678
C
PRO




1053
HD1
25.109
−18.078
17.111
H
PRO




1054
HD2
24.753
−16.962
15.76
H
PRO




1055
CE
26.861
−17.141
16.32
C
PRO




1056
HE1
27.474
−17.33
17.227
H
PRO




1057
HE2
27.038
−17.96
15.589
H
PRO




1058
NZ
27.332
−15.881
15.707
N
PRO




1059
HZ1
28.243
−16.045
15.237
H
PRO




1060
HZ2
26.634
−15.547
15.015
H
PRO




1061
HZ3
27.469
−15.162
16.458
H
PRO




1062
C
22.488
−14.279
18.901
C
PRO




1063
O
21.556
−14.496
18.132
O
PRO


69
GLN
1064
N
22.867
−13.019
19.205
N
PRO




1065
HN
23.653
−12.839
19.812
H
PRO




1066
CA
22.11
−11.859
18.778
C
PRO




1067
HA
21.356
−12.142
18.057
H
PRO




1068
CB
21.439
−11.121
19.961
C
PRO




1069
HB1
22.236
−10.657
20.579
H
PRO




1070
HB2
20.797
−10.305
19.562
H
PRO




1071
CG
20.597
−12.027
20.882
C
PRO




1072
HG1
19.76
−12.482
20.315
H
PRO




1073
HG2
21.231
−12.844
21.29
H
PRO




1074
CD
20.032
−11.208
22.047
C
PRO




1075
OE1
19.94
−9.977
21.992
O
PRO




1076
NE2
19.654
−11.919
23.144
N
PRO




1077
HE21
19.252
−11.44
23.925
H
PRO




1078
HE22
19.798
−12.913
23.169
H
PRO




1079
C
23.055
−10.896
18.116
C
PRO




1080
O
24.225
−10.821
18.476
O
PRO


70
TYR
1081
N
22.57
−10.133
17.112
N
PRO




1082
HN
21.617
−10.206
16.817
H
PRO




1083
CA
23.39
−9.192
16.378
C
PRO




1084
HA
24.373
−9.119
16.822
H
PRO




1085
CB
23.504
−9.536
14.872
C
PRO




1086
HB1
22.564
−10.004
14.509
H
PRO




1087
HB2
23.71
−8.631
14.26
H
PRO




1088
CG
24.64
−10.496
14.661
C
PRO




1089
CD1
24.557
−11.834
15.08
C
PRO




1090
HD1
23.655
−12.195
15.551
H
PRO




1091
CE1
25.642
−12.703
14.91
C
PRO




1092
HE1
25.567
−13.717
15.269
H
PRO




1093
CZ
26.826
−12.237
14.325
C
PRO




1094
OH
27.963
−13.069
14.252
O
PRO




1095
HH
28.729
−12.508
14.458
H
PRO




1096
CD2
25.821
−10.051
14.043
C
PRO




1097
HD2
25.896
−9.027
13.708
H
PRO




1098
CE2
26.908
−10.914
13.875
C
PRO




1099
HE2
27.814
−10.54
13.422
H
PRO




1100
C
22.779
−7.83
16.498
C
PRO




1101
O
21.561
−7.683
16.522
O
PRO


71
GLN
1102
N
23.637
−6.791
16.567
N
PRO




1103
HN
24.627
−6.939
16.525
H
PRO




1104
CA
23.217
−5.421
16.722
C
PRO




1105
HA
22.147
−5.377
16.854
H
PRO




1106
CB
23.884
−4.744
17.943
C
PRO




1107
HB1
23.659
−5.369
18.837
H
PRO




1108
HB2
24.985
−4.752
17.805
H
PRO




1109
CG
23.385
−3.309
18.21
C
PRO




1110
HG1
23.596
−2.66
17.334
H
PRO




1111
HG2
22.287
−3.329
18.382
H
PRO




1112
CD
24.075
−2.694
19.428
C
PRO




1113
OE1
25.037
−3.235
19.984
O
PRO




1114
NE2
23.574
−1.5
19.851
N
PRO




1115
HE21
23.956
−1.075
20.67
H
PRO




1116
HE22
22.804
−1.086
19.361
H
PRO




1117
C
23.586
−4.662
15.473
C
PRO




1118
O
24.686
−4.802
14.94
O
PRO


72
LEU
1119
N
22.636
−3.833
14.985
N
PRO




1120
HN
21.735
−3.802
15.423
H
PRO




1121
CA
22.799
−2.939
13.866
C
PRO




1122
HA
23.531
−3.35
13.183
H
PRO




1123
CB
21.444
−2.743
13.142
C
PRO




1124
HB1
21.125
−3.727
12.737
H
PRO




1125
HB2
20.687
−2.445
13.902
H
PRO




1126
CG
21.392
−1.708
11.992
C
PRO




1127
HG
21.646
−0.705
12.408
H
PRO




1128
CD1
22.372
−2.004
10.844
C
PRO




1129
HD11
22.305
−1.212
10.069
H
PRO




1130
HD12
23.418
−2.046
11.205
H
PRO




1131
HD13
22.118
−2.971
10.369
H
PRO




1132
CD2
19.957
−1.628
11.452
C
PRO




1133
HD21
19.888
−0.88
10.635
H
PRO




1134
HD22
19.64
−2.616
11.057
H
PRO




1135
HD23
19.256
−1.333
12.261
H
PRO




1136
C
23.287
−1.603
14.374
C
PRO




1137
O
22.799
−1.082
15.378
O
PRO


73
ARG
1138
N
24.275
−1.015
13.666
N
PRO




1139
HN
24.672
−1.468
12.866
H
PRO




1140
CA
24.838
0.273
13.985
C
PRO




1141
HA
24.124
0.874
14.529
H
PRO




1142
CB
26.192
0.176
14.732
C
PRO




1143
HB1
26.876
−0.477
14.146
H
PRO




1144
HB2
26.666
1.179
14.785
H
PRO




1145
CG
26.105
−0.382
16.165
C
PRO




1146
HG1
25.588
−1.366
16.142
H
PRO




1147
HG2
27.138
−0.569
16.528
H
PRO




1148
CD
25.389
0.539
17.166
C
PRO




1149
HD1
24.338
0.704
16.845
H
PRO




1150
HD2
25.381
0.1
18.186
H
PRO




1151
NE
26.068
1.879
17.199
N
PRO




1152
HE
25.684
2.624
16.63
H
PRO




1153
CZ
27.236
2.135
17.848
C
PRO




1154
NH1
27.833
1.213
18.634
N
PRO




1155
HH11
28.729
1.406
19.057
H
PRO




1156
HH12
27.38
0.337
18.84
H
PRO




1157
NH2
27.81
3.351
17.699
N
PRO




1158
HH21
28.653
3.592
18.189
H
PRO




1159
HH22
27.358
4.032
17.096
H
PRO




1160
C
25.125
0.949
12.676
C
PRO




1161
O
25.445
0.298
11.683
O
PRO


74
GLY
1162
N
25.021
2.297
12.655
N
PRO




1163
HN
24.717
2.791
13.47
H
PRO




1164
CA
25.447
3.1
11.526
C
PRO




1165
HA1
26.461
2.818
11.287
H
PRO




1166
HA2
25.369
4.13
11.833
H
PRO




1167
C
24.608
2.933
10.287
C
PRO




1168
O
25.142
2.947
9.18
O
PRO


75
MET
1169
N
23.278
2.754
10.44
N
PRO




1170
HN
22.863
2.75
11.349
H
PRO




1171
CA
22.378
2.562
9.322
C
PRO




1172
HA
22.885
1.986
8.561
H
PRO




1173
CB
21.098
1.805
9.746
C
PRO




1174
HB1
21.403
0.849
10.222
H
PRO




1175
HB2
20.566
2.393
10.524
H
PRO




1176
CG
20.102
1.49
8.611
C
PRO




1177
HG1
19.178
1.101
9.089
H
PRO




1178
HG2
19.816
2.43
8.093
H
PRO




1179
SD
20.693
0.255
7.416
S
PRO




1180
CE
20.527
1.269
5.919
C
PRO




1181
HE1
20.844
0.695
5.023
H
PRO




1182
HE2
19.478
1.6
5.766
H
PRO




1183
HE3
21.167
2.174
5.971
H
PRO




1184
C
21.982
3.901
8.746
C
PRO




1185
O
21.429
4.751
9.443
O
PRO


76
ALA
1186
N
22.252
4.128
7.445
N
PRO




1187
HN
22.723
3.458
6.87
H
PRO




1188
CA
21.833
5.351
6.811
C
PRO




1189
HA
20.826
5.587
7.126
H
PRO




1190
CB
22.774
6.527
7.131
C
PRO




1191
HB1
22.799
6.699
8.226
H
PRO




1192
HB2
23.81
6.316
6.79
H
PRO




1193
HB3
22.416
7.458
6.65
H
PRO




1194
C
21.813
5.155
5.324
C
PRO




1195
O
22.506
4.289
4.795
O
PRO


77
THR
1196
N
21.007
5.984
4.626
N
PRO




1197
HN
20.421
6.647
5.096
H
PRO




1198
CA
20.936
6.024
3.182
C
PRO




1199
HA
21.809
5.548
2.764
H
PRO




1200
CB
19.677
5.398
2.597
C
PRO




1201
HB
18.776
5.871
3.046
H
PRO




1202
OG1
19.637
4.006
2.889
O
PRO




1203
HG1
18.742
3.718
2.64
H
PRO




1204
CG2
19.629
5.545
1.065
C
PRO




1205
HG21
18.74
5.019
0.659
H
PRO




1206
HG22
19.556
6.608
0.761
H
PRO




1207
HG23
20.536
5.103
0.602
H
PRO




1208
C
20.99
7.488
2.836
C
PRO




1209
O
20.308
8.311
3.442
O
PRO


78
LEU
1210
N
21.856
7.858
1.869
N
PRO




1211
HN
22.393
7.159
1.39
H
PRO




1212
CA
22.063
9.21
1.403
C
PRO




1213
HA
22.295
9.806
2.272
H
PRO




1214
CB
23.261
9.233
0.42
C
PRO




1215
HB1
24.11
8.704
0.907
H
PRO




1216
HB2
22.989
8.644
−0.484
H
PRO




1217
CG
23.762
10.624
−0.022
C
PRO




1218
HG
22.914
11.156
−0.511
H
PRO




1219
CD1
24.247
11.481
1.158
C
PRO




1220
HD11
24.488
12.506
0.81
H
PRO




1221
HD12
23.47
11.56
1.941
H
PRO




1222
HD13
25.156
11.037
1.612
H
PRO




1223
CD2
24.882
10.487
−1.065
C
PRO




1224
HD21
25.196
11.488
−1.424
H
PRO




1225
HD22
25.762
9.977
−0.621
H
PRO




1226
HD23
24.53
9.896
−1.934
H
PRO




1227
C
20.821
9.793
0.756
C
PRO




1228
O
20.092
9.099
0.05
O
PRO


79
GLU
1229
N
20.543
11.101
0.991
N
PRO




1230
HN
21.119
11.651
1.594
H
PRO




1231
CA
19.423
11.805
0.396
C
PRO




1232
HA
18.524
11.273
0.675
H
PRO




1233
CB
19.308
13.256
0.905
C
PRO




1234
HB1
20.297
13.744
0.77
H
PRO




1235
HB2
18.562
13.829
0.31
H
PRO




1236
CG
18.879
13.324
2.384
C
PRO




1237
HG1
17.802
13.071
2.473
H
PRO




1238
HG2
19.46
12.58
2.967
H
PRO




1239
CD
19.127
14.692
3.015
C
PRO




1240
OE1
19.696
15.588
2.338
O
PRO




1241
OE2
18.796
14.829
4.225
O
PRO




1242
C
19.5
11.834
−1.114
C
PRO




1243
O
20.57
12.011
−1.696
O
PRO


80
GLY
1244
N
18.333
11.64
−1.769
N
PRO




1245
HN
17.481
11.558
−1.258
H
PRO




1246
CA
18.2
11.502
−3.206
C
PRO




1247
HA1
18.936
12.129
−3.69
H
PRO




1248
HA2
17.186
11.773
−3.459
H
PRO




1249
C
18.418
10.087
−3.669
C
PRO




1250
O
18.277
9.797
−4.854
O
PRO


81
TYR
1251
N
18.736
9.165
−2.734
N
PRO




1252
HN
18.927
9.441
−1.793
H
PRO




1253
CA
18.907
7.754
−3.012
C
PRO




1254
HA
18.568
7.525
−4.014
H
PRO




1255
CB
20.375
7.291
−2.829
C
PRO




1256
HB1
20.704
7.42
−1.776
H
PRO




1257
HB2
20.487
6.221
−3.107
H
PRO




1258
CG
21.288
8.105
−3.707
C
PRO




1259
CD1
21.564
7.709
−5.027
C
PRO




1260
HD1
21.12
6.804
−5.413
H
PRO




1261
CE1
22.411
8.478
−5.839
C
PRO




1262
HE1
22.625
8.162
−6.849
H
PRO




1263
CZ
22.975
9.661
−5.343
C
PRO




1264
OH
23.818
10.443
−6.161
O
PRO




1265
HH
23.954
11.294
−5.723
H
PRO




1266
CD2
21.87
9.288
−3.22
C
PRO




1267
HD2
21.657
9.609
−2.212
H
PRO




1268
CE2
22.697
10.069
−4.034
C
PRO




1269
HE2
23.124
10.978
−3.639
H
PRO




1270
C
18.037
6.986
−2.045
C
PRO




1271
O
18.131
5.764
−1.934
O
PRO


82
ARG
1272
N
17.149
7.708
−1.326
N
PRO




1273
HN
17.082
8.69
−1.468
H
PRO




1274
CA
16.211
7.161
−0.379
C
PRO




1275
HA
16.646
6.289
0.089
H
PRO




1276
CB
15.841
8.18
0.718
C
PRO




1277
HB1
15.496
9.128
0.253
H
PRO




1278
HB2
15.003
7.78
1.327
H
PRO




1279
CG
17.012
8.465
1.669
C
PRO




1280
HG1
17.372
7.495
2.079
H
PRO




1281
HG2
17.843
8.923
1.092
H
PRO




1282
CD
16.629
9.382
2.834
C
PRO




1283
HD1
16.258
10.359
2.453
H
PRO




1284
HD2
15.854
8.9
3.466
H
PRO




1285
NE
17.859
9.601
3.657
N
PRO




1286
HE
18.681
9.054
3.465
H
PRO




1287
CZ
17.995
10.615
4.549
C
PRO




1288
NH1
16.938
11.361
4.933
N
PRO




1289
HH11
17.076
12.161
5.531
H
PRO




1290
HH12
16.008
11.05
4.713
H
PRO




1291
NH2
19.228
10.885
5.037
N
PRO




1292
HH21
19.385
11.716
5.575
H
PRO




1293
HH22
19.994
10.319
4.738
H
PRO




1294
C
14.954
6.739
−1.092
C
PRO




1295
O
14.655
7.227
−2.183
O
PRO


83
GLU
1296
N
14.21
5.789
−0.472
N
PRO




1297
HN
14.509
5.427
0.414
H
PRO




1298
CA
12.946
5.26
−0.949
C
PRO




1299
HA
12.603
4.59
−0.175
H
PRO




1300
CB
11.844
6.338
−1.156
C
PRO




1301
HB1
12.156
7.024
−1.973
H
PRO




1302
HB2
10.897
5.849
−1.48
H
PRO




1303
CG
11.549
7.19
0.098
C
PRO




1304
HG1
12.478
7.675
0.463
H
PRO




1305
HG2
10.816
7.985
−0.158
H
PRO




1306
CD
10.954
6.33
1.205
C
PRO




1307
OE1
9.847
5.768
0.982
O
PRO




1308
OE2
11.59
6.213
2.286
O
PRO




1309
C
13.112
4.419
−2.2
C
PRO




1310
O
12.202
4.318
−3.02
O
PRO


84
GLN
1311
N
14.29
3.775
−2.362
N
PRO




1312
HN
15.022
3.867
−1.68
H
PRO




1313
CA
14.619
2.977
−3.523
C
PRO




1314
HA
13.794
2.97
−4.222
H
PRO




1315
CB
15.906
3.481
−4.233
C
PRO




1316
HB1
16.783
3.308
−3.567
H
PRO




1317
HB2
16.068
2.891
−5.163
H
PRO




1318
CG
15.913
4.979
−4.6
C
PRO




1319
HG1
15.914
5.585
−3.671
H
PRO




1320
HG2
16.842
5.215
−5.162
H
PRO




1321
CD
14.711
5.344
−5.475
C
PRO




1322
OE1
14.493
4.748
−6.536
O
PRO




1323
NE2
13.915
6.35
−5.016
N
PRO




1324
HE21
13.109
6.611
−5.543
H
PRO




1325
HE22
14.108
6.772
−4.127
H
PRO




1326
C
14.891
1.552
−3.109
C
PRO




1327
O
15.29
0.745
−3.947
O
PRO


85
LYS
1328
N
14.704
1.227
−1.806
N
PRO




1329
HN
14.376
1.921
−1.16
H
PRO




1330
CA
14.937
−0.074
−1.208
C
PRO




1331
HA
14.473
−0.023
−0.237
H
PRO




1332
CB
14.319
−1.304
−1.94
C
PRO




1333
HB1
14.73
−1.366
−2.969
H
PRO




1334
HB2
14.61
−2.241
−1.416
H
PRO




1335
CG
12.784
−1.29
−2.013
C
PRO




1336
HG1
12.438
−0.299
−2.38
H
PRO




1337
HG2
12.464
−2.058
−2.754
H
PRO




1338
CD
12.13
−1.627
−0.663
C
PRO




1339
HD1
12.528
−2.61
−0.321
H
PRO




1340
HD2
12.428
−0.869
0.095
H
PRO




1341
CE
10.603
−1.73
−0.712
C
PRO




1342
HE1
10.27
−2.443
−1.494
H
PRO




1343
HE2
10.223
−2.071
0.275
H
PRO




1344
NZ
9.998
−0.412
−0.993
N
PRO




1345
HZ1
9.216
−0.25
−0.31
H
PRO




1346
HZ2
10.712
0.347
−0.855
H
PRO




1347
HZ3
9.627
−0.362
−1.963
H
PRO




1348
C
16.405
−0.293
−0.942
C
PRO




1349
O
16.844
−1.433
−0.814
O
PRO


86
ALA
1350
N
17.218
0.788
−0.833
N
PRO




1351
HN
16.865
1.722
−0.92
H
PRO




1352
CA
18.64
0.666
−0.585
C
PRO




1353
HA
19.028
−0.049
−1.292
H
PRO




1354
CB
19.39
1.999
−0.771
C
PRO




1355
HB1
19.17
2.422
−1.774
H
PRO




1356
HB2
19.081
2.741
−0.005
H
PRO




1357
HB3
20.488
1.845
−0.693
H
PRO




1358
C
18.923
0.13
0.791
C
PRO




1359
O
19.7
−0.81
0.948
O
PRO


87
GLY
1360
N
18.227
0.671
1.816
N
PRO




1361
HN
17.613
1.454
1.676
H
PRO




1362
CA
18.391
0.221
3.178
C
PRO




1363
HA1
17.857
0.915
3.811
H
PRO




1364
HA2
19.448
0.168
3.394
H
PRO




1365
C
17.801
−1.142
3.379
C
PRO




1366
O
18.408
−1.993
4.025
O
PRO


88
SER
1367
N
16.619
−1.404
2.773
N
PRO




1368
HN
16.122
−0.671
2.302
H
PRO




1369
CA
15.942
−2.687
2.835
C
PRO




1370
HA
15.742
−2.908
3.874
H
PRO




1371
CB
14.624
−2.708
2.027
C
PRO




1372
HB1
14.805
−2.387
0.979
H
PRO




1373
HB2
14.192
−3.733
2.014
H
PRO




1374
OG
13.658
−1.847
2.616
O
PRO




1375
HG1
13.99
−0.935
2.493
H
PRO




1376
C
16.785
−3.801
2.278
C
PRO




1377
O
16.852
−4.878
2.86
O
PRO


89
SER
1378
N
17.475
−3.55
1.143
N
PRO




1379
HN
17.401
−2.66
0.691
H
PRO




1380
CA
18.335
−4.518
0.493
C
PRO




1381
HA
17.741
−5.406
0.334
H
PRO




1382
CB
18.874
−4.03
−0.871
C
PRO




1383
HB1
19.464
−3.096
−0.751
H
PRO




1384
HB2
19.525
−4.809
−1.322
H
PRO




1385
OG
17.801
−3.798
−1.778
O
PRO




1386
HG1
17.434
−2.93
−1.543
H
PRO




1387
C
19.506
−4.922
1.354
C
PRO




1388
O
19.862
−6.098
1.4
O
PRO


90
LEU
1389
N
20.116
−3.95
2.074
N
PRO




1390
HN
19.816
−2.999
2.005
H
PRO




1391
CA
21.204
−4.191
3.002
C
PRO




1392
HA
21.961
−4.767
2.487
H
PRO




1393
CB
21.84
−2.869
3.502
C
PRO




1394
HB1
21.066
−2.072
3.525
H
PRO




1395
HB2
22.219
−2.989
4.542
H
PRO




1396
CG
23.043
−2.402
2.65
C
PRO




1397
HG
23.814
−3.206
2.711
H
PRO




1398
CD1
22.722
−2.205
1.16
C
PRO




1399
HD11
22.083
−1.311
1.015
H
PRO




1400
HD12
23.664
−2.064
0.596
H
PRO




1401
HD13
22.213
−3.089
0.73
H
PRO




1402
CD2
23.662
−1.125
3.239
C
PRO




1403
HD21
24.546
−0.81
2.648
H
PRO




1404
HD22
22.921
−0.297
3.234
H
PRO




1405
HD23
23.986
−1.303
4.284
H
PRO




1406
C
20.77
−5.016
4.188
C
PRO




1407
O
21.466
−5.955
4.567
O
PRO


91
ILE
1408
N
19.595
−4.707
4.79
N
PRO




1409
HN
19.051
−3.926
4.48
H
PRO




1410
CA
19.062
−5.458
5.914
C
PRO




1411
HA
19.852
−5.549
6.645
H
PRO




1412
CB
17.87
−4.763
6.573
C
PRO




1413
HB
17.093
−4.581
5.793
H
PRO




1414
CG2
17.234
−5.651
7.671
C
PRO




1415
HG21
16.461
−5.076
8.221
H
PRO




1416
HG22
16.743
−6.545
7.235
H
PRO




1417
HG23
18.004
−5.988
8.396
H
PRO




1418
CG1
18.277
−3.378
7.143
C
PRO




1419
HG11
18.671
−2.742
6.324
H
PRO




1420
HG12
17.358
−2.879
7.524
H
PRO




1421
CD1
19.313
−3.407
8.273
C
PRO




1422
HD1
19.512
−2.374
8.63
H
PRO




1423
HD2
18.951
−4.006
9.134
H
PRO




1424
HD3
20.274
−3.834
7.921
H
PRO




1425
C
18.705
−6.87
5.508
C
PRO




1426
O
19.065
−7.816
6.2
O
PRO


92
LYS
1427
N
18.035
−7.059
4.349
N
PRO




1428
HN
17.739
−6.279
3.793
H
PRO




1429
CA
17.654
−8.367
3.853
C
PRO




1430
HA
17.127
−8.875
4.65
H
PRO




1431
CB
16.702
−8.267
2.645
C
PRO




1432
HB1
17.148
−7.591
1.882
H
PRO




1433
HB2
16.564
−9.269
2.181
H
PRO




1434
CG
15.315
−7.742
3.045
C
PRO




1435
HG1
14.837
−8.472
3.736
H
PRO




1436
HG2
15.426
−6.784
3.6
H
PRO




1437
CD
14.4
−7.504
1.837
C
PRO




1438
HD1
14.919
−6.807
1.138
H
PRO




1439
HD2
14.252
−8.473
1.31
H
PRO




1440
CE
13.045
−6.91
2.235
C
PRO




1441
HE1
12.51
−7.59
2.932
H
PRO




1442
HE2
13.183
−5.921
2.724
H
PRO




1443
NZ
12.195
−6.715
1.041
N
PRO




1444
HZ1
11.274
−6.306
1.338
H
PRO




1445
HZ2
12.677
−6.063
0.374
H
PRO




1446
HZ3
12.033
−7.629
0.577
H
PRO




1447
C
18.842
−9.233
3.5
C
PRO




1448
O
18.85
−10.422
3.806
O
PRO


93
HIS
1449
N
19.9
−8.656
2.882
N
PRO




1450
HN
19.874
−7.694
2.604
H
PRO




1451
CA
21.141
−9.362
2.62
C
PRO




1452
HA
20.887
−10.281
2.106
H
PRO




1453
CB
22.099
−8.558
1.714
C
PRO




1454
HB1
21.557
−8.282
0.783
H
PRO




1455
HB2
22.402
−7.614
2.218
H
PRO




1456
ND1
24.584
−9.146
1.812
N
PRO




1457
HD1
24.857
−8.439
2.466
H
PRO




1458
CG
23.316
−9.349
1.311
C
PRO




1459
CE1
25.376
−10.105
1.272
C
PRO




1460
HE1
26.435
−10.198
1.501
H
PRO




1461
NE2
24.71
−10.91
0.469
N
PRO




1462
CD2
23.411
−10.433
0.492
C
PRO




1463
HD2
22.64
−10.935
−0.08
H
PRO




1464
C
21.854
−9.74
3.901
C
PRO




1465
O
22.405
−10.832
4.018
O
PRO


94
ALA
1466
N
21.831
−8.846
4.917
N
PRO




1467
HN
21.414
−7.944
4.8
H
PRO




1468
CA
22.365
−9.11
6.233
C
PRO




1469
HA
23.401
−9.397
6.11
H
PRO




1470
CB
22.305
−7.877
7.144
C
PRO




1471
HB1
22.825
−7.028
6.652
H
PRO




1472
HB2
21.258
−7.567
7.343
H
PRO




1473
HB3
22.807
−8.075
8.115
H
PRO




1474
C
21.655
−10.248
6.919
C
PRO




1475
O
22.303
−11.079
7.543
O
PRO


95
GLU
1476
N
20.312
−10.353
6.78
N
PRO




1477
HN
19.796
−9.645
6.295
H
PRO




1478
CA
19.522
−11.439
7.328
C
PRO




1479
HA
19.645
−11.431
8.402
H
PRO




1480
CB
18.017
−11.34
6.986
C
PRO




1481
HB1
17.902
−11.233
5.886
H
PRO




1482
HB2
17.527
−12.291
7.288
H
PRO




1483
CG
17.24
−10.218
7.697
C
PRO




1484
HG1
17.175
−10.431
8.784
H
PRO




1485
HG2
17.736
−9.239
7.56
H
PRO




1486
CD
15.827
−10.148
7.12
C
PRO




1487
OE1
15.138
−11.205
7.097
O
PRO




1488
OE2
15.406
−9.039
6.697
O
PRO




1489
C
19.981
−12.789
6.82
C
PRO




1490
O
20.022
−13.745
7.587
O
PRO


96
GLU
1491
N
20.365
−12.897
5.523
N
PRO




1492
HN
20.311
−12.113
4.907
H
PRO




1493
CA
20.911
−14.114
4.944
C
PRO




1494
HA
20.183
−14.904
5.065
H
PRO




1495
CB
21.26
−13.942
3.447
C
PRO




1496
HB1
22.067
−13.18
3.355
H
PRO




1497
HB2
21.659
−14.902
3.047
H
PRO




1498
CG
20.089
−13.493
2.551
C
PRO




1499
HG1
19.314
−14.285
2.495
H
PRO




1500
HG2
19.626
−12.574
2.962
H
PRO




1501
CD
20.58
−13.174
1.138
C
PRO




1502
OE1
21.764
−13.466
0.817
O
PRO




1503
OE2
19.771
−12.609
0.353
O
PRO




1504
C
22.2
−14.529
5.622
C
PRO




1505
O
22.384
−15.695
5.969
O
PRO


97
ILE
1506
N
23.108
−13.551
5.858
N
PRO




1507
HN
22.914
−12.615
5.568
H
PRO




1508
CA
24.386
−13.743
6.517
C
PRO




1509
HA
24.907
−14.535
5.999
H
PRO




1510
CB
25.234
−12.465
6.47
C
PRO




1511
HB
24.642
−11.626
6.9
H
PRO




1512
CG2
26.524
−12.613
7.314
C
PRO




1513
HG21
27.15
−11.701
7.232
H
PRO




1514
HG22
26.297
−12.754
8.39
H
PRO




1515
HG23
27.122
−13.475
6.957
H
PRO




1516
CG1
25.561
−12.098
4.999
C
PRO




1517
HG11
26.258
−12.861
4.587
H
PRO




1518
HG12
24.634
−12.132
4.387
H
PRO




1519
CD1
26.178
−10.706
4.831
C
PRO




1520
HD1
26.368
−10.499
3.758
H
PRO




1521
HD2
25.488
−9.929
5.223
H
PRO




1522
HD3
27.144
−10.627
5.371
H
PRO




1523
C
24.18
−14.184
7.948
C
PRO




1524
O
24.786
−15.151
8.399
O
PRO


98
LEU
1525
N
23.277
−13.5
8.684
N
PRO




1526
HN
22.795
−12.717
8.283
H
PRO




1527
CA
22.98
−13.769
10.072
C
PRO




1528
HA
23.924
−13.834
10.594
H
PRO




1529
CB
22.139
−12.639
10.704
C
PRO




1530
HB1
21.184
−12.533
10.143
H
PRO




1531
HB2
21.888
−12.912
11.752
H
PRO




1532
CG
22.841
−11.262
10.748
C
PRO




1533
HG
22.991
−10.899
9.71
H
PRO




1534
CD1
21.947
−10.227
11.451
C
PRO




1535
HD11
22.441
−9.233
11.457
H
PRO




1536
HD12
20.975
−10.135
10.922
H
PRO




1537
HD13
21.75
−10.537
12.499
H
PRO




1538
CD2
24.241
−11.328
11.377
C
PRO




1539
HD21
24.645
−10.302
11.514
H
PRO




1540
HD22
24.188
−11.834
12.362
H
PRO




1541
HD23
24.944
−11.888
10.727
H
PRO




1542
C
22.305
−15.101
10.292
C
PRO




1543
O
22.651
−15.814
11.232
O
PRO


99
ARG
1544
N
21.356
−15.495
9.407
N
PRO




1545
HN
21.054
−14.881
8.673
H
PRO




1546
CA
20.72
−16.801
9.422
C
PRO




1547
HA
20.305
−16.951
10.407
H
PRO




1548
CB
19.581
−16.931
8.378
C
PRO




1549
HB1
19.931
−16.527
7.403
H
PRO




1550
HB2
19.33
−18.007
8.231
H
PRO




1551
CG
18.274
−16.229
8.797
C
PRO




1552
HG1
17.931
−16.686
9.754
H
PRO




1553
HG2
18.472
−15.153
8.99
H
PRO




1554
CD
17.164
−16.356
7.743
C
PRO




1555
HD1
17.443
−15.818
6.813
H
PRO




1556
HD2
16.997
−17.428
7.499
H
PRO




1557
NE
15.883
−15.822
8.325
N
PRO




1558
HE
15.55
−16.235
9.182
H
PRO




1559
CZ
15.217
−14.719
7.895
C
PRO




1560
NH1
15.682
−13.952
6.888
N
PRO




1561
HH11
15.312
−13.018
6.781
H
PRO




1562
HH12
16.547
−14.189
6.459
H
PRO




1563
NH2
14.061
−14.362
8.503
N
PRO




1564
HH21
13.531
−13.592
8.126
H
PRO




1565
HH22
13.629
−14.978
9.177
H
PRO




1566
C
21.721
−17.911
9.185
C
PRO




1567
O
21.656
−18.961
9.821
O
PRO


100
LYS
1568
N
22.707
−17.683
8.286
N
PRO




1569
HN
22.738
−16.83
7.764
H
PRO




1570
CA
23.745
−18.646
7.975
C
PRO




1571
HA
23.269
−19.606
7.825
H
PRO




1572
CB
24.477
−18.243
6.672
C
PRO




1573
HB1
23.706
−17.931
5.931
H
PRO




1574
HB2
25.128
−17.362
6.859
H
PRO




1575
CG
25.291
−19.376
6.026
C
PRO




1576
HG1
26.085
−19.716
6.727
H
PRO




1577
HG2
24.601
−20.229
5.849
H
PRO




1578
CD
25.943
−18.959
4.697
C
PRO




1579
HD1
25.165
−18.542
4.02
H
PRO




1580
HD2
26.665
−18.14
4.912
H
PRO




1581
CE
26.701
−20.087
3.984
C
PRO




1582
HE1
27.235
−19.681
3.097
H
PRO




1583
HE2
27.438
−20.557
4.668
H
PRO




1584
NZ
25.777
−21.142
3.504
N
PRO




1585
HZ1
26.31
−21.847
2.957
H
PRO




1586
HZ2
25.319
−21.62
4.32
H
PRO




1587
HZ3
25.046
−20.712
2.905
H
PRO




1588
C
24.749
−18.784
9.109
C
PRO




1589
O
25.434
−19.799
9.225
O
PRO


101
ARG
1590
N
24.813
−17.777
10.012
N
PRO




1591
HN
24.264
−16.953
9.884
H
PRO




1592
CA
25.648
−17.801
11.194
C
PRO




1593
HA
26.481
−18.472
11.046
H
PRO




1594
CB
26.177
−16.389
11.542
C
PRO




1595
HB1
25.317
−15.684
11.594
H
PRO




1596
HB2
26.666
−16.403
12.543
H
PRO




1597
CG
27.213
−15.839
10.548
C
PRO




1598
HG1
28.113
−16.495
10.572
H
PRO




1599
HG2
26.802
−15.869
9.517
H
PRO




1600
CD
27.61
−14.403
10.904
C
PRO




1601
HD1
26.733
−13.723
10.833
H
PRO




1602
HD2
28.016
−14.39
11.939
H
PRO




1603
NE
28.66
−13.933
9.945
N
PRO




1604
HE
28.761
−14.388
9.05
H
PRO




1605
CZ
29.526
−12.925
10.225
C
PRO




1606
NH1
29.489
−12.282
11.411
N
PRO




1607
HH11
30.152
−11.55
11.606
H
PRO




1608
HH12
28.814
−12.555
12.091
H
PRO




1609
NH2
30.445
−12.575
9.297
N
PRO




1610
HH21
31.14
−11.878
9.507
H
PRO




1611
HH22
30.448
−13.064
8.424
H
PRO




1612
C
24.858
−18.283
12.393
C
PRO




1613
O
25.4
−18.364
13.494
O
PRO


102
GLY
1614
N
23.562
−18.639
12.213
N
PRO




1615
HN
23.128
−18.563
11.315
H
PRO




1616
CA
22.752
−19.234
13.257
C
PRO




1617
HA1
23.357
−19.947
13.799
H
PRO




1618
HA2
21.909
−19.697
12.764
H
PRO




1619
C
22.196
−18.249
14.248
C
PRO




1620
O
21.72
−18.654
15.306
O
PRO


103
ALA
1621
N
22.264
−16.929
13.957
N
PRO




1622
HN
22.624
−16.618
13.077
H
PRO




1623
CA
21.767
−15.892
14.837
C
PRO




1624
HA
22.237
−16.044
15.798
H
PRO




1625
CB
22.148
−14.486
14.343
C
PRO




1626
HB1
23.25
−14.411
14.227
H
PRO




1627
HB2
21.683
−14.288
13.357
H
PRO




1628
HB3
21.816
−13.705
15.061
H
PRO




1629
C
20.268
−15.954
15.045
C
PRO




1630
O
19.502
−16.216
14.118
O
PRO


104
ASP
1631
N
19.831
−15.716
16.3
N
PRO




1632
HN
20.482
−15.522
17.038
H
PRO




1633
CA
18.447
−15.683
16.709
C
PRO




1634
HA
17.949
−16.553
16.305
H
PRO




1635
CB
18.329
−15.666
18.252
C
PRO




1636
HB1
18.964
−14.863
18.68
H
PRO




1637
HB2
17.279
−15.491
18.567
H
PRO




1638
CG
18.773
−17.007
18.819
C
PRO




1639
OD1
17.913
−17.927
18.895
O
PRO




1640
OD2
19.962
−17.125
19.214
O
PRO




1641
C
17.733
−14.459
16.192
C
PRO




1642
O
16.609
−14.548
15.697
O
PRO


105
LEU
1643
N
18.376
−13.275
16.3
N
PRO




1644
HN
19.313
−13.209
16.636
H
PRO




1645
CA
17.69
−12.033
16.052
C
PRO




1646
HA
17.074
−12.16
15.171
H
PRO




1647
CB
16.775
−11.602
17.238
C
PRO




1648
HB1
16.189
−10.7
16.964
H
PRO




1649
HB2
16.039
−12.426
17.38
H
PRO




1650
CG
17.463
−11.356
18.601
C
PRO




1651
HG
18.393
−11.968
18.637
H
PRO




1652
CD1
17.845
−9.881
18.808
C
PRO




1653
HD11
18.335
−9.743
19.795
H
PRO




1654
HD12
18.543
−9.538
18.018
H
PRO




1655
HD13
16.937
−9.243
18.776
H
PRO




1656
CD2
16.567
−11.827
19.759
C
PRO




1657
HD21
17.079
−11.675
20.733
H
PRO




1658
HD22
15.613
−11.258
19.768
H
PRO




1659
HD23
16.335
−12.908
19.65
H
PRO




1660
C
18.679
−10.952
15.721
C
PRO




1661
O
19.874
−11.052
16.006
O
PRO


106
LEU
1662
N
18.155
−9.88
15.093
N
PRO




1663
HN
17.178
−9.862
14.869
H
PRO




1664
CA
18.87
−8.68
14.746
C
PRO




1665
HA
19.891
−8.738
15.093
H
PRO




1666
CB
18.817
−8.416
13.22
C
PRO




1667
HB1
19.359
−9.245
12.715
H
PRO




1668
HB2
17.756
−8.47
12.887
H
PRO




1669
CG
19.409
−7.073
12.723
C
PRO




1670
HG
18.801
−6.246
13.16
H
PRO




1671
CD1
20.87
−6.853
13.154
C
PRO




1672
HD11
21.264
−5.919
12.703
H
PRO




1673
HD12
20.95
−6.759
14.255
H
PRO




1674
HD13
21.506
−7.697
12.821
H
PRO




1675
CD2
19.275
−6.969
11.192
C
PRO




1676
HD21
19.605
−5.969
10.842
H
PRO




1677
HD22
19.9
−7.742
10.696
H
PRO




1678
HD23
18.219
−7.119
10.884
H
PRO




1679
C
18.148
−7.588
15.486
C
PRO




1680
O
16.921
−7.525
15.448
O
PRO


107
TRP
1681
N
18.887
−6.714
16.203
N
PRO




1682
HN
19.885
−6.792
16.252
H
PRO




1683
CA
18.29
−5.68
17.012
C
PRO




1684
HA
17.264
−5.54
16.707
H
PRO




1685
CB
18.29
−6.007
18.529
C
PRO




1686
HB1
17.736
−5.213
19.075
H
PRO




1687
HB2
17.713
−6.948
18.657
H
PRO




1688
CG
19.637
−6.215
19.211
C
PRO




1689
CD1
20.407
−7.342
19.273
C
PRO




1690
HD1
20.201
−8.259
18.746
H
PRO




1691
NE1
21.511
−7.125
20.063
N
PRO




1692
HE1
22.229
−7.77
20.259
H
PRO




1693
CE2
21.461
−5.842
20.546
C
PRO




1694
CD2
20.299
−5.232
20.025
C
PRO




1695
CE3
19.977
−3.918
20.342
C
PRO




1696
HE3
19.104
−3.428
19.94
H
PRO




1697
CZ3
20.822
−3.228
21.22
C
PRO




1698
HZ3
20.577
−2.216
21.501
H
PRO




1699
CZ2
22.312
−5.151
21.4
C
PRO




1700
HZ2
23.202
−5.609
21.803
H
PRO




1701
CH2
21.974
−3.834
21.742
C
PRO




1702
HH2
22.613
−3.273
22.409
H
PRO




1703
C
18.967
−4.367
16.755
C
PRO




1704
O
20.059
−4.297
16.197
O
PRO


108
CYS
1705
N
18.273
−3.275
17.124
N
PRO




1706
HN
17.379
−3.356
17.571
H
PRO




1707
CA
18.704
−1.942
16.816
C
PRO




1708
HA
19.786
−1.893
16.823
H
PRO




1709
CB
18.122
−1.526
15.435
C
PRO




1710
HB1
18.405
−2.319
14.707
H
PRO




1711
HB2
17.011
−1.531
15.492
H
PRO




1712
SG
18.71
0.072
14.799
S
PRO




1713
HG1
18.091
−0.02
13.629
H
PRO




1714
C
18.168
−1.039
17.897
C
PRO




1715
O
17.033
−1.201
18.338
O
PRO


109
ASN
1716
N
18.963
−0.031
18.322
N
PRO




1717
HN
19.924
0.017
18.038
H
PRO




1718
CA
18.479
1.098
19.09
C
PRO




1719
HA
17.571
0.831
19.618
H
PRO




1720
CB
19.521
1.674
20.079
C
PRO




1721
HB1
20.459
1.919
19.538
H
PRO




1722
HB2
19.129
2.602
20.547
H
PRO




1723
CG
19.801
0.67
21.199
C
PRO




1724
OD1
18.88
0.12
21.812
O
PRO




1725
ND2
21.112
0.452
21.497
N
PRO




1726
HD21
21.332
−0.152
22.267
H
PRO




1727
HD22
21.825
0.92
20.975
H
PRO




1728
C
18.143
2.162
18.075
C
PRO




1729
O
18.883
3.125
17.874
O
PRO


110
ALA
1730
N
17.004
1.962
17.38
N
PRO




1731
HN
16.415
1.189
17.609
H
PRO




1732
CA
16.52
2.785
16.303
C
PRO




1733
HA
17.284
2.815
15.542
H
PRO




1734
CB
15.227
2.197
15.714
C
PRO




1735
HB1
15.413
1.166
15.345
H
PRO




1736
HB2
14.435
2.147
16.493
H
PRO




1737
HB3
14.852
2.813
14.868
H
PRO




1738
C
16.216
4.19
16.741
C
PRO




1739
O
15.734
4.41
17.847
O
PRO


111
ARG
1740
N
16.454
5.187
15.86
N
PRO




1741
HN
16.911
5.016
14.994
H
PRO




1742
CA
15.878
6.507
16.015
C
PRO




1743
HA
16.123
6.863
17.007
H
PRO




1744
CB
16.397
7.528
14.977
C
PRO




1745
HB1
16.184
7.162
13.949
H
PRO




1746
HB2
15.855
8.493
15.113
H
PRO




1747
CG
17.902
7.819
15.109
C
PRO




1748
HG1
18.107
8.112
16.163
H
PRO




1749
HG2
18.484
6.899
14.887
H
PRO




1750
CD
18.364
8.959
14.194
C
PRO




1751
HD1
18.195
8.696
13.128
H
PRO




1752
HD2
17.814
9.893
14.445
H
PRO




1753
NE
19.827
9.185
14.409
N
PRO




1754
HE
20.315
8.658
15.135
H
PRO




1755
CZ
20.527
10.16
13.774
C
PRO




1756
NH1
19.943
10.991
12.881
N
PRO




1757
HH11
20.489
11.729
12.461
H
PRO




1758
HH12
18.954
10.937
12.696
H
PRO




1759
NH2
21.845
10.311
14.038
N
PRO




1760
HH21
22.383
11.033
13.599
H
PRO




1761
HH22
22.332
9.634
14.635
H
PRO




1762
C
14.371
6.421
15.897
C
PRO




1763
O
13.845
5.598
15.15
O
PRO


112
THR
1764
N
13.628
7.278
16.633
N
PRO




1765
HN
14.046
7.946
17.248
H
PRO




1766
CA
12.173
7.241
16.659
C
PRO




1767
HA
11.867
6.208
16.747
H
PRO




1768
CB
11.578
8.006
17.831
C
PRO




1769
HB
10.468
8.059
17.742
H
PRO




1770
OG1
12.101
9.329
17.905
O
PRO




1771
HG1
11.594
9.768
18.593
H
PRO




1772
CG2
11.922
7.261
19.133
C
PRO




1773
HG21
11.492
7.788
20.01
H
PRO




1774
HG22
11.507
6.232
19.11
H
PRO




1775
HG23
13.02
7.191
19.273
H
PRO




1776
C
11.571
7.771
15.375
C
PRO




1777
O
10.4
7.536
15.09
O
PRO


113
SER
1778
N
12.379
8.471
14.55
N
PRO




1779
HN
13.314
8.69
14.821
H
PRO




1780
CA
11.982
8.987
13.26
C
PRO




1781
HA
10.91
9.124
13.234
H
PRO




1782
CB
12.679
10.344
12.987
C
PRO




1783
HB1
12.379
10.747
11.995
H
PRO




1784
HB2
12.355
11.068
13.767
H
PRO




1785
OG
14.101
10.219
13.043
O
PRO




1786
HG1
14.444
11.073
13.351
H
PRO




1787
C
12.363
8.021
12.16
C
PRO




1788
O
12.123
8.296
10.986
O
PRO


114
ALA
1789
N
12.96
6.864
12.524
N
PRO




1790
HN
13.173
6.681
13.483
H
PRO




1791
CA
13.311
5.813
11.601
C
PRO




1792
HA
12.935
6.035
10.613
H
PRO




1793
CB
14.837
5.615
11.544
C
PRO




1794
HB1
15.322
6.557
11.214
H
PRO




1795
HB2
15.237
5.349
12.546
H
PRO




1796
HB3
15.111
4.816
10.823
H
PRO




1797
C
12.679
4.519
12.05
C
PRO




1798
O
12.985
3.458
11.513
O
PRO


115
SER
1799
N
11.757
4.558
13.042
N
PRO




1800
HN
11.466
5.424
13.445
H
PRO




1801
CA
11.099
3.375
13.563
C
PRO




1802
HA
11.877
2.66
13.783
H
PRO




1803
CB
10.331
3.616
14.889
C
PRO




1804
HB1
9.91
2.657
15.266
H
PRO




1805
HB2
11.049
3.993
15.649
H
PRO




1806
OG
9.276
4.564
14.76
O
PRO




1807
HG1
8.911
4.673
15.656
H
PRO




1808
C
10.202
2.731
12.533
C
PRO




1809
O
10.111
1.508
12.459
O
PRO


116
GLY
1810
N
9.543
3.556
11.687
N
PRO




1811
HN
9.631
4.551
11.794
H
PRO




1812
CA
8.649
3.106
10.642
C
PRO




1813
HA1
8.203
3.989
10.21
H
PRO




1814
HA2
7.918
2.451
11.092
H
PRO




1815
C
9.333
2.355
9.533
C
PRO




1816
O
8.712
1.52
8.881
O
PRO


117
TYR
1817
N
10.639
2.622
9.301
N
PRO




1818
HN
11.107
3.321
9.838
H
PRO




1819
CA
11.472
1.899
8.36
C
PRO




1820
HA
10.966
1.859
7.407
H
PRO




1821
CB
12.818
2.669
8.204
C
PRO




1822
HB1
12.67
3.534
7.53
H
PRO




1823
HB2
13.114
3.079
9.189
H
PRO




1824
CG
13.986
1.884
7.671
C
PRO




1825
CD1
14.03
1.412
6.349
C
PRO




1826
HD1
13.204
1.603
5.68
H
PRO




1827
CE1
15.155
0.713
5.887
C
PRO




1828
HE1
15.19
0.361
4.867
H
PRO




1829
CZ
16.236
0.485
6.75
C
PRO




1830
OH
17.376
−0.208
6.313
O
PRO




1831
HH
18.018
−0.213
7.026
H
PRO




1832
CD2
15.071
1.632
8.527
C
PRO




1833
HD2
15.043
1.987
9.546
H
PRO




1834
CE2
16.193
0.942
8.068
C
PRO




1835
HE2
17.02
0.766
8.737
H
PRO




1836
C
11.676
0.473
8.826
C
PRO




1837
O
11.494
−0.479
8.069
O
PRO


118
TYR
1838
N
12.016
0.305
10.121
N
PRO




1839
HN
12.156
1.097
10.711
H
PRO




1840
CA
12.211
−0.981
10.751
C
PRO




1841
HA
12.855
−1.568
10.11
H
PRO




1842
CB
12.86
−0.829
12.143
C
PRO




1843
HB1
12.263
−0.133
12.769
H
PRO




1844
HB2
12.946
−1.802
12.661
H
PRO




1845
CG
14.256
−0.295
12.007
C
PRO




1846
CD1
15.246
−1.057
11.365
C
PRO




1847
HD1
15.007
−2.037
10.976
H
PRO




1848
CE1
16.542
−0.553
11.215
C
PRO




1849
HE1
17.287
−1.143
10.704
H
PRO




1850
CZ
16.861
0.718
11.71
C
PRO




1851
OH
18.162
1.233
11.554
O
PRO




1852
HH
18.194
2.087
11.989
H
PRO




1853
CD2
14.591
0.969
12.514
C
PRO




1854
HD2
13.84
1.557
13.019
H
PRO




1855
CE2
15.886
1.48
12.361
C
PRO




1856
HE2
16.12
2.462
12.746
H
PRO




1857
C
10.91
−1.741
10.864
C
PRO




1858
O
10.876
−2.957
10.706
O
PRO


119
LYS
1859
N
9.788
−1.025
11.096
N
PRO




1860
HN
9.855
−0.042
11.278
H
PRO




1861
CA
8.446
−1.567
11.143
C
PRO




1862
HA
8.425
−2.308
11.93
H
PRO




1863
CB
7.441
−0.443
11.467
C
PRO




1864
HB1
7.829
0.119
12.348
H
PRO




1865
HB2
7.393
0.272
10.617
H
PRO




1866
CG
6.015
−0.902
11.802
C
PRO




1867
HG1
5.579
−1.462
10.946
H
PRO




1868
HG2
6.057
−1.585
12.679
H
PRO




1869
CD
5.118
0.3
12.136
C
PRO




1870
HD1
5.648
0.918
12.896
H
PRO




1871
HD2
4.999
0.921
11.22
H
PRO




1872
CE
3.747
−0.095
12.69
C
PRO




1873
HE1
3.155
−0.641
11.925
H
PRO




1874
HE2
3.863
−0.735
13.59
H
PRO




1875
NZ
2.992
1.115
13.087
N
PRO




1876
HZ1
2.068
0.839
13.475
H
PRO




1877
HZ2
3.538
1.631
13.807
H
PRO




1878
HZ3
2.858
1.723
12.254
H
PRO




1879
C
8.045
−2.233
9.84
C
PRO




1880
O
7.451
−3.311
9.849
O
PRO


120
LYS
1881
N
8.419
−1.626
8.686
N
PRO




1882
HN
8.898
−0.749
8.708
H
PRO




1883
CA
8.163
−2.158
7.36
C
PRO




1884
HA
7.144
−2.516
7.327
H
PRO




1885
CB
8.381
−1.086
6.264
C
PRO




1886
HB1
9.382
−0.623
6.412
H
PRO




1887
HB2
8.374
−1.557
5.255
H
PRO




1888
CG
7.322
0.029
6.247
C
PRO




1889
HG1
7.218
0.46
7.263
H
PRO




1890
HG2
7.695
0.831
5.572
H
PRO




1891
CD
5.943
−0.445
5.757
C
PRO




1892
HD1
6.07
−0.93
4.765
H
PRO




1893
HD2
5.555
−1.218
6.456
H
PRO




1894
CE
4.888
0.664
5.637
C
PRO




1895
HE1
3.932
0.24
5.261
H
PRO




1896
HE2
4.712
1.149
6.619
H
PRO




1897
NZ
5.328
1.704
4.683
N
PRO




1898
HZ1
4.555
2.387
4.498
H
PRO




1899
HZ2
6.136
2.226
5.091
H
PRO




1900
HZ3
5.618
1.252
3.781
H
PRO




1901
C
9.061
−3.333
7.032
C
PRO




1902
O
8.768
−4.102
6.117
O
PRO


121
LEU
1903
N
10.153
−3.52
7.806
N
PRO




1904
HN
10.38
−2.862
8.523
H
PRO




1905
CA
11.049
−4.649
7.698
C
PRO




1906
HA
10.953
−5.101
6.721
H
PRO




1907
CB
12.518
−4.221
7.936
C
PRO




1908
HB1
12.57
−3.646
8.886
H
PRO




1909
HB2
13.173
−5.113
8.044
H
PRO




1910
CG
13.102
−3.349
6.804
C
PRO




1911
HG
12.358
−2.558
6.55
H
PRO




1912
CD1
14.381
−2.633
7.27
C
PRO




1913
HD11
14.811
−2.038
6.437
H
PRO




1914
HD12
14.156
−1.946
8.114
H
PRO




1915
HD13
15.135
−3.373
7.604
H
PRO




1916
CD2
13.374
−4.173
5.533
C
PRO




1917
HD21
13.759
−3.51
4.733
H
PRO




1918
HD22
14.134
−4.958
5.735
H
PRO




1919
HD23
12.446
−4.656
5.163
H
PRO




1920
C
10.677
−5.7
8.723
C
PRO




1921
O
11.382
−6.693
8.882
O
PRO


122
GLY
1922
N
9.53
−5.533
9.424
N
PRO




1923
HN
8.975
−4.711
9.294
H
PRO




1924
CA
8.979
−6.54
10.307
C
PRO




1925
HA1
9.159
−7.515
9.876
H
PRO




1926
HA2
7.925
−6.322
10.394
H
PRO




1927
C
9.546
−6.54
11.699
C
PRO




1928
O
9.289
−7.471
12.46
O
PRO


123
PHE
1929
N
10.335
−5.509
12.079
N
PRO




1930
HN
10.547
−4.765
11.444
H
PRO




1931
CA
10.834
−5.334
13.431
C
PRO




1932
HA
11.232
−6.282
13.765
H
PRO




1933
CB
11.93
−4.242
13.588
C
PRO




1934
HB1
11.57
−3.301
13.127
H
PRO




1935
HB2
12.105
−4.046
14.669
H
PRO




1936
CG
13.277
−4.57
12.978
C
PRO




1937
CD1
13.448
−4.826
11.603
C
PRO




1938
HD1
12.6
−4.83
10.941
H
PRO




1939
CE1
14.719
−5.068
11.067
C
PRO




1940
HE1
14.831
−5.265
10.011
H
PRO




1941
CZ
15.844
−5.052
11.9
C
PRO




1942
HZ
16.825
−5.234
11.486
H
PRO




1943
CD2
14.425
−4.542
13.794
C
PRO




1944
HD2
14.327
−4.319
14.845
H
PRO




1945
CE2
15.697
−4.787
13.266
C
PRO




1946
HE2
16.564
−4.769
13.911
H
PRO




1947
C
9.705
−4.945
14.371
C
PRO




1948
O
8.735
−4.295
13.977
O
PRO


124
SER
1949
N
9.84
−5.333
15.656
N
PRO




1950
HN
10.643
−5.866
15.936
H
PRO




1951
CA
8.905
−5.028
16.718
C
PRO




1952
HA
8.065
−4.466
16.333
H
PRO




1953
CB
8.401
−6.283
17.471
C
PRO




1954
HB1
9.269
−6.869
17.845
H
PRO




1955
HB2
7.77
−5.994
18.341
H
PRO




1956
OG
7.638
−7.12
16.608
O
PRO




1957
HG1
6.765
−6.719
16.542
H
PRO




1958
C
9.637
−4.181
17.722
C
PRO




1959
O
10.815
−4.409
17.988
O
PRO


125
GLU
1960
N
8.95
−3.166
18.294
N
PRO




1961
HN
7.984
−3.007
18.072
H
PRO




1962
CA
9.488
−2.309
19.329
C
PRO




1963
HA
10.517
−2.089
19.089
H
PRO




1964
CB
8.717
−0.973
19.481
C
PRO




1965
HB1
7.663
−1.189
19.768
H
PRO




1966
HB2
9.18
−0.377
20.3
H
PRO




1967
CG
8.716
−0.115
18.202
C
PRO




1968
HG1
9.761
0.095
17.893
H
PRO




1969
HG2
8.203
−0.663
17.385
H
PRO




1970
CD
8.011
1.226
18.392
C
PRO




1971
OE1
7.597
1.557
19.532
O
PRO




1972
OE2
7.89
1.949
17.364
O
PRO




1973
C
9.445
−3.008
20.665
C
PRO




1974
O
8.646
−3.918
20.879
O
PRO


126
GLN
1975
N
10.314
−2.58
21.603
N
PRO




1976
HN
11.009
−1.886
21.405
H
PRO




1977
CA
10.261
−3.059
22.958
C
PRO




1978
HA
9.232
−3.278
23.21
H
PRO




1979
CB
11.135
−4.318
23.181
C
PRO




1980
HB1
10.998
−4.988
22.302
H
PRO




1981
HB2
12.208
−4.029
23.209
H
PRO




1982
CG
10.743
−5.111
24.441
C
PRO




1983
HG1
10.764
−4.458
25.339
H
PRO




1984
HG2
9.713
−5.51
24.322
H
PRO




1985
CD
11.7
−6.282
24.654
C
PRO




1986
OE1
11.421
−7.421
24.267
O
PRO




1987
NE2
12.858
−5.987
25.307
N
PRO




1988
HE21
13.486
−6.73
25.541
H
PRO




1989
HE22
13.033
−5.042
25.605
H
PRO




1990
C
10.737
−1.944
23.855
C
PRO




1991
O
11.608
−1.156
23.485
O
PRO


127
GLY
1992
N
10.158
−1.849
25.074
N
PRO




1993
HN
9.398
−2.45
25.319
H
PRO




1994
CA
10.553
−0.885
26.079
C
PRO




1995
HA1
11.632
−0.899
26.155
H
PRO




1996
HA2
10.066
−1.177
26.997
H
PRO




1997
C
10.126
0.519
25.763
C
PRO




1998
O
9.445
0.785
24.774
O
PRO


128
GLU
1999
N
10.517
1.459
26.646
N
PRO




2000
HN
11.06
1.219
27.446
H
PRO




2001
CA
10.186
2.858
26.521
C
PRO




2002
HA
9.21
2.945
26.062
H
PRO




2003
CB
10.169
3.578
27.892
C
PRO




2004
HB1
11.176
3.5
28.357
H
PRO




2005
HB2
9.951
4.661
27.747
H
PRO




2006
CG
9.132
3.012
28.886
C
PRO




2007
HG1
9.346
1.946
29.106
H
PRO




2008
HG2
9.179
3.584
29.837
H
PRO




2009
CD
7.718
3.133
28.324
C
PRO




2010
OE1
7.304
4.282
28.01
O
PRO




2011
OE2
7.039
2.081
28.191
O
PRO




2012
C
11.184
3.561
25.635
C
PRO




2013
O
12.298
3.085
25.415
O
PRO


129
VAL
2014
N
10.781
4.735
25.098
N
PRO




2015
HN
9.847
5.064
25.257
H
PRO




2016
CA
11.645
5.672
24.406
C
PRO




2017
HA
12.17
5.12
23.64
H
PRO




2018
CB
10.831
6.785
23.744
C
PRO




2019
HB
10.224
7.305
24.521
H
PRO




2020
CG1
11.722
7.832
23.043
C
PRO




2021
HG11
11.086
8.568
22.506
H
PRO




2022
HG12
12.345
8.391
23.771
H
PRO




2023
HG13
12.387
7.342
22.302
H
PRO




2024
CG2
9.866
6.144
22.723
C
PRO




2025
HG21
9.278
6.934
22.21
H
PRO




2026
HG22
10.439
5.579
21.958
H
PRO




2027
HG23
9.154
5.451
23.216
H
PRO




2028
C
12.673
6.233
25.376
C
PRO




2029
O
12.37
6.469
26.545
O
PRO


130
PHE
2030
N
13.923
6.45
24.909
N
PRO




2031
HN
14.165
6.239
23.96
H
PRO




2032
CA
14.997
6.95
25.737
C
PRO




2033
HA
14.577
7.546
26.536
H
PRO




2034
CB
15.882
5.826
26.36
C
PRO




2035
HB1
16.689
6.274
26.979
H
PRO




2036
HB2
15.249
5.199
27.024
H
PRO




2037
CG
16.514
4.912
25.331
C
PRO




2038
CD1
15.818
3.795
24.834
C
PRO




2039
HD1
14.821
3.585
25.191
H
PRO




2040
CE1
16.402
2.954
23.88
C
PRO




2041
HE1
15.859
2.097
23.509
H
PRO




2042
CZ
17.696
3.217
23.417
C
PRO




2043
HZ
18.147
2.563
22.689
H
PRO




2044
CD2
17.815
5.163
24.857
C
PRO




2045
HD2
18.363
6.019
25.225
H
PRO




2046
CE2
18.404
4.321
23.905
C
PRO




2047
HE2
19.404
4.526
23.55
H
PRO




2048
C
15.832
7.875
24.889
C
PRO




2049
O
15.999
7.648
23.695
O
PRO


131
ASP
2050
N
16.369
8.958
25.488
N
PRO




2051
HN
16.236
9.131
26.467
H
PRO




2052
CA
17.144
9.947
24.773
C
PRO




2053
HA
16.867
9.94
23.729
H
PRO




2054
CB
16.946
11.376
25.33
C
PRO




2055
HB1
17.115
11.387
26.427
H
PRO




2056
HB2
17.651
12.09
24.854
H
PRO




2057
CG
15.529
11.843
25.026
C
PRO




2058
OD1
14.744
12.033
25.992
O
PRO




2059
OD2
15.219
12.023
23.819
O
PRO




2060
C
18.609
9.61
24.855
C
PRO




2061
O
19.124
9.255
25.914
O
PRO


132
THR
2062
N
19.315
9.739
23.71
N
PRO




2063
HN
18.865
9.996
22.853
H
PRO




2064
CA
20.757
9.62
23.654
C
PRO




2065
HA
21.161
9.44
24.638
H
PRO




2066
CB
21.263
8.53
22.714
C
PRO




2067
HB
20.968
8.741
21.662
H
PRO




2068
OG1
20.707
7.268
23.058
O
PRO




2069
HG1
20.972
6.675
22.35
H
PRO




2070
CG2
22.798
8.423
22.815
C
PRO




2071
HG21
23.172
7.604
22.164
H
PRO




2072
HG22
23.287
9.365
22.491
H
PRO




2073
HG23
23.106
8.205
23.859
H
PRO




2074
C
21.217
10.948
23.105
C
PRO




2075
O
20.971
11.193
21.926
O
PRO


133
PRO
2076
N
21.865
11.852
23.831
N
PRO




2077
CD
22.031
11.796
25.284
C
PRO




2078
HD1
21.034
11.923
25.759
H
PRO




2079
HD2
22.492
10.836
25.6
H
PRO




2080
CA
22.306
13.123
23.275
C
PRO




2081
HA
21.512
13.544
22.674
H
PRO




2082
CB
22.619
13.986
24.51
C
PRO




2083
HB1
21.699
14.543
24.797
H
PRO




2084
HB2
23.439
14.712
24.34
H
PRO




2085
CG
22.944
12.978
25.617
C
PRO




2086
HG1
22.765
13.385
26.631
H
PRO




2087
HG2
24.005
12.659
25.527
H
PRO




2088
C
23.542
12.9
22.418
C
PRO




2089
O
24.323
12.02
22.781
O
PRO


134
PRO
2090
N
23.779
13.584
21.303
N
PRO




2091
CD
25.085
13.457
20.649
C
PRO




2092
HD1
25.888
13.634
21.399
H
PRO




2093
HD2
25.199
12.446
20.202
H
PRO




2094
CA
23.033
14.738
20.815
C
PRO




2095
HA
22.523
15.256
21.615
H
PRO




2096
CB
24.126
15.585
20.144
C
PRO




2097
HB1
24.642
16.186
20.926
H
PRO




2098
HB2
23.74
16.273
19.366
H
PRO




2099
CG
25.112
14.554
19.585
C
PRO




2100
HG1
26.126
14.975
19.433
H
PRO




2101
HG2
24.73
14.152
18.622
H
PRO




2102
C
22.024
14.283
19.783
C
PRO




2103
O
21.441
15.13
19.108
O
PRO


135
VAL
2104
N
21.797
12.959
19.653
N
PRO




2105
HN
22.219
12.314
20.287
H
PRO




2106
CA
21.067
12.34
18.567
C
PRO




2107
HA
20.948
13.063
17.771
H
PRO




2108
CB
21.825
11.148
17.99
C
PRO




2109
HB
21.177
10.584
17.279
H
PRO




2110
CG1
23.022
11.685
17.176
C
PRO




2111
HG11
23.53
10.845
16.656
H
PRO




2112
HG12
22.678
12.406
16.405
H
PRO




2113
HG13
23.756
12.191
17.836
H
PRO




2114
CG2
22.288
10.194
19.112
C
PRO




2115
HG21
22.781
9.304
18.672
H
PRO




2116
HG22
23.019
10.683
19.788
H
PRO




2117
HG23
21.426
9.846
19.715
H
PRO




2118
C
19.661
11.946
18.986
C
PRO




2119
O
19.032
11.096
18.356
O
PRO


136
GLY
2120
N
19.115
12.611
20.034
N
PRO




2121
HN
19.675
13.253
20.553
H
PRO




2122
CA
17.713
12.581
20.415
C
PRO




2123
HA1
17.195
12.987
19.561
H
PRO




2124
HA2
17.625
13.203
21.293
H
PRO




2125
C
17.116
11.231
20.766
C
PRO




2126
O
17.833
10.33
21.202
O
PRO


137
PRO
2127
N
15.796
11.068
20.642
N
PRO




2128
CD
14.877
12.168
20.341
C
PRO




2129
HD1
14.89
12.889
21.189
H
PRO




2130
HD2
15.138
12.674
19.386
H
PRO




2131
CA
15.085
9.916
21.182
C
PRO




2132
HA
15.452
9.706
22.175
H
PRO




2133
CB
13.61
10.351
21.225
C
PRO




2134
HB1
13.391
10.74
22.246
H
PRO




2135
HB2
12.899
9.533
20.997
H
PRO




2136
CG
13.507
11.507
20.23
C
PRO




2137
HG1
12.677
12.202
20.466
H
PRO




2138
HG2
13.385
11.11
19.201
H
PRO




2139
C
15.267
8.673
20.341
C
PRO




2140
O
15.28
8.747
19.112
O
PRO


138
HIS
2141
N
15.427
7.514
21.011
N
PRO




2142
HN
15.432
7.508
22.016
H
PRO




2143
CA
15.634
6.227
20.399
C
PRO




2144
HA
15.379
6.284
19.351
H
PRO




2145
CB
17.08
5.696
20.575
C
PRO




2146
HB1
17.35
5.697
21.654
H
PRO




2147
HB2
17.15
4.652
20.199
H
PRO




2148
CD2
18.74
6.225
18.658
C
PRO




2149
HD2
18.711
5.335
18.04
H
PRO




2150
CG
18.099
6.499
19.818
C
PRO




2151
NE2
19.486
7.328
18.349
N
PRO




2152
HE2
20.115
7.455
17.546
H
PRO




2153
ND1
18.473
7.76
20.191
N
PRO




2154
HD1
18.12
8.29
20.968
H
PRO




2155
CE1
19.306
8.241
19.285
C
PRO




2156
HE1
19.735
9.226
19.29
H
PRO




2157
C
14.696
5.247
21.049
C
PRO




2158
O
14.151
5.502
22.12
O
PRO


139
ILE
2159
N
14.489
4.091
20.389
N
PRO




2160
HN
14.935
3.916
19.507
H
PRO




2161
CA
13.593
3.053
20.835
C
PRO




2162
HA
13.523
3.088
21.914
H
PRO




2163
CB
12.195
3.194
20.212
C
PRO




2164
HB
11.777
4.162
20.58
H
PRO




2165
CG2
12.261
3.304
18.668
C
PRO




2166
HG21
11.241
3.486
18.265
H
PRO




2167
HG22
12.91
4.143
18.345
H
PRO




2168
HG23
12.64
2.363
18.22
H
PRO




2169
CG1
11.201
2.088
20.641
C
PRO




2170
HG11
10.258
2.229
20.064
H
PRO




2171
HG12
11.602
1.091
20.362
H
PRO




2172
CD1
10.847
2.104
22.129
C
PRO




2173
HD1
10.13
1.286
22.354
H
PRO




2174
HD2
11.746
1.959
22.758
H
PRO




2175
HD3
10.374
3.069
22.408
H
PRO




2176
C
14.261
1.749
20.462
C
PRO




2177
O
14.773
1.595
19.354
O
PRO


140
LEU
2178
N
14.31
0.771
21.401
N
PRO




2179
HN
13.948
0.907
22.325
H
PRO




2180
CA
14.796
−0.566
21.123
C
PRO




2181
HA
15.755
−0.47
20.631
H
PRO




2182
CB
14.968
−1.408
22.412
C
PRO




2183
HB1
15.636
−0.851
23.104
H
PRO




2184
HB2
13.981
−1.493
22.915
H
PRO




2185
CG
15.539
−2.834
22.231
C
PRO




2186
HG
14.905
−3.382
21.497
H
PRO




2187
CD1
16.98
−2.829
21.697
C
PRO




2188
HD11
17.354
−3.869
21.598
H
PRO




2189
HD12
17.035
−2.341
20.703
H
PRO




2190
HD13
17.649
−2.285
22.396
H
PRO




2191
CD2
15.458
−3.613
23.553
C
PRO




2192
HD21
15.877
−4.632
23.43
H
PRO




2193
HD22
16.029
−3.084
24.345
H
PRO




2194
HD23
14.402
−3.703
23.881
H
PRO




2195
C
13.842
−1.278
20.196
C
PRO




2196
O
12.628
−1.249
20.394
O
PRO


141
MET
2197
N
14.382
−1.938
19.153
N
PRO




2198
HN
15.369
−1.923
18.981
H
PRO




2199
CA
13.596
−2.664
18.193
C
PRO




2200
HA
12.653
−2.945
18.636
H
PRO




2201
CB
13.365
−1.881
16.876
C
PRO




2202
HB1
14.341
−1.663
16.39
H
PRO




2203
HB2
12.767
−2.511
16.184
H
PRO




2204
CG
12.629
−0.547
17.107
C
PRO




2205
HG1
11.751
−0.749
17.756
H
PRO




2206
HG2
13.305
0.121
17.685
H
PRO




2207
SD
12.08
0.324
15.612
S
PRO




2208
CE
10.773
−0.834
15.119
C
PRO




2209
HE1
10.142
−0.402
14.312
H
PRO




2210
HE2
11.203
−1.782
14.741
H
PRO




2211
HE3
10.114
−1.08
15.975
H
PRO




2212
C
14.359
−3.917
17.885
C
PRO




2213
O
15.584
−3.948
17.986
O
PRO


142
TYR
2214
N
13.64
−4.996
17.515
N
PRO




2215
HN
12.639
−4.971
17.471
H
PRO




2216
CA
14.258
−6.271
17.247
C
PRO




2217
HA
15.229
−6.089
16.81
H
PRO




2218
CB
14.441
−7.156
18.52
C
PRO




2219
HB1
15.081
−8.031
18.279
H
PRO




2220
HB2
14.952
−6.561
19.307
H
PRO




2221
CG
13.133
−7.659
19.087
C
PRO




2222
CD1
12.31
−6.837
19.877
C
PRO




2223
HD1
12.633
−5.84
20.136
H
PRO




2224
CE1
11.048
−7.286
20.292
C
PRO




2225
HE1
10.405
−6.636
20.867
H
PRO




2226
CZ
10.599
−8.557
19.913
C
PRO




2227
OH
9.296
−8.976
20.255
O
PRO




2228
HH
9.027
−9.648
19.612
H
PRO




2229
CD2
12.687
−8.949
18.75
C
PRO




2230
HD2
13.303
−9.584
18.129
H
PRO




2231
CE2
11.423
−9.393
19.151
C
PRO




2232
HE2
11.081
−10.372
18.849
H
PRO




2233
C
13.446
−6.991
16.203
C
PRO




2234
O
12.239
−6.788
16.085
O
PRO


143
LYS
2235
N
14.114
−7.861
15.424
N
PRO




2236
HN
15.112
−7.943
15.489
H
PRO




2237
CA
13.484
−8.736
14.472
C
PRO




2238
HA
12.415
−8.773
14.633
H
PRO




2239
CB
13.811
−8.312
13.025
C
PRO




2240
HB1
13.446
−7.273
12.879
H
PRO




2241
HB2
14.915
−8.292
12.884
H
PRO




2242
CG
13.179
−9.19
11.937
C
PRO




2243
HG1
13.451
−10.257
12.101
H
PRO




2244
HG2
12.074
−9.099
12.01
H
PRO




2245
CD
13.649
−8.788
10.533
C
PRO




2246
HD1
13.398
−7.72
10.349
H
PRO




2247
HD2
14.759
−8.876
10.503
H
PRO




2248
CE
13.075
−9.659
9.412
C
PRO




2249
HE1
13.558
−9.386
8.449
H
PRO




2250
HE2
13.247
−10.737
9.614
H
PRO




2251
NZ
11.622
−9.439
9.243
N
PRO




2252
HZ1
11.302
−9.912
8.367
H
PRO




2253
HZ2
11.085
−9.8
10.068
H
PRO




2254
HZ3
11.46
−8.409
9.145
H
PRO




2255
C
14.071
−10.097
14.705
C
PRO




2256
O
15.282
−10.278
14.592
O
PRO


144
ARG
2257
N
13.222
−11.099
15.026
N
PRO




2258
HN
12.243
−10.941
15.157
H
PRO




2259
CA
13.655
−12.47
15.172
C
PRO




2260
HA
14.658
−12.478
15.571
H
PRO




2261
CB
12.749
−13.262
16.143
C
PRO




2262
HB1
12.63
−12.636
17.056
H
PRO




2263
HB2
11.739
−13.396
15.701
H
PRO




2264
CG
13.324
−14.628
16.56
C
PRO




2265
HG1
13.365
−15.288
15.666
H
PRO




2266
HG2
14.367
−14.485
16.92
H
PRO




2267
CD
12.524
−15.354
17.656
C
PRO




2268
HD1
11.479
−15.523
17.315
H
PRO




2269
HD2
12.978
−16.338
17.903
H
PRO




2270
NE
12.481
−14.489
18.885
N
PRO




2271
HE
11.703
−13.875
18.997
H
PRO




2272
CZ
13.482
−14.397
19.797
C
PRO




2273
NH1
14.578
−15.186
19.769
N
PRO




2274
HH11
15.262
−15.074
20.491
H
PRO




2275
HH12
14.677
−15.93
19.093
H
PRO




2276
NH2
13.393
−13.477
20.788
N
PRO




2277
HH21
14.153
−13.41
21.441
H
PRO




2278
HH22
12.615
−12.86
20.858
H
PRO




2279
C
13.678
−13.106
13.805
C
PRO




2280
O
12.722
−12.982
13.04
O
PRO


145
ILE
2281
N
14.809
−13.759
13.455
N
PRO




2282
HN
15.555
−13.888
14.11
H
PRO




2283
CA
15.068
−14.223
12.106
C
PRO




2284
HA
14.261
−13.916
11.456
H
PRO




2285
CB
16.361
−13.65
11.532
C
PRO




2286
HB
16.528
−14.075
10.515
H
PRO




2287
CG2
16.167
−12.126
11.357
C
PRO




2288
HG21
17.038
−11.679
10.833
H
PRO




2289
HG22
15.258
−11.921
10.752
H
PRO




2290
HG23
16.057
−11.626
12.342
H
PRO




2291
CG1
17.594
−14
12.399
C
PRO




2292
HG11
17.474
−13.556
13.409
H
PRO




2293
HG12
17.655
−15.104
12.521
H
PRO




2294
CD1
18.919
−13.513
11.809
C
PRO




2295
HD1
19.763
−13.884
12.427
H
PRO




2296
HD2
19.05
−13.894
10.775
H
PRO




2297
HD3
18.964
−12.403
11.79
H
PRO




2298
C
15.093
−15.732
12.061
C
PRO




2299
O
15.38
−16.324
11.022
O
PRO


146
THR
2300
N
14.741
−16.398
13.179
N
PRO




2301
HN
14.533
−15.921
14.026
H
PRO




2302
CA
14.501
−17.828
13.204
C
PRO




2303
HA
15.079
−18.303
12.424
H
PRO




2304
CB
14.896
−18.479
14.525
C
PRO




2305
HB
14.625
−19.56
14.523
H
PRO




2306
OG1
14.266
−17.852
15.639
O
PRO




2307
HG1
13.34
−18.143
15.617
H
PRO




2308
CG2
16.422
−18.367
14.687
C
PRO




2309
HG21
16.747
−18.827
15.643
H
PRO




2310
HG22
16.93
−18.894
13.853
H
PRO




2311
HG23
16.743
−17.305
14.677
H
PRO




2312
C
13.01
−18.11
12.908
C
PRO




2313
OT1
12.251
−17.162
12.577
O
PRO




2314
OT2
12.607
−19.298
13.03
O
PRO


150
ACO
2315
N1A
10.178
6.578
8.578
N
LIG




2316
C2A
9.23
5.72
8.179
C
LIG




2317
H2
8.322
5.723
8.783
H
LIG




2318
N3A
9.225
4.857
7.155
N
LIG




2319
C4A
10.381
4.933
6.479
C
LIG




2320
C5A
11.445
5.775
6.768
C
LIG




2321
C6A
11.349
6.641
7.871
C
LIG




2322
N6A
12.387
7.458
8.201
N
LIG




2323
H61
12.394
7.921
9.091
H
LIG




2324
H62
13.197
7.534
7.62
H
LIG




2325
N7A
12.459
5.58
5.867
N
LIG




2326
C8A
12.022
4.649
5.06
C
LIG




2327
H8
12.579
4.246
4.212
H
LIG




2328
N9A
10.76
4.208
5.378
N
LIG




2329
C1B
9.974
3.167
4.717
C
LIG




2330
H1′
8.962
3.079
5.169
H
LIG




2331
C4B
10.461
1.143
3.639
C
LIG




2332
H4′
9.95
0.181
3.859
H
LIG




2333
O4B
10.565
1.891
4.881
O
LIG




2334
C2B
9.852
3.411
3.245
C
LIG




2335
H2′
10.813
3.76
2.805
H
LIG




2336
O2B
8.829
4.338
2.953
O
LIG




2337
HO2′
9.158
4.922
2.24
H
LIG




2338
C3B
9.547
2.005
2.752
C
LIG




2339
H3′
9.895
1.912
1.696
H
LIG




2340
O3B
8.166
1.638
2.925
O
LIG




2341
P3B
7.401
0.898
1.77
P
LIG




2342
O7A
8.295
−0.076
1.107
O
LIG




2343
O8A
6.105
0.41
2.295
O
LIG




2344
O9A
7.081
2.021
0.705
O
LIG




2345
C5B
11.847
0.843
3.036
C
LIG




2346
H5′1
12.365
0.141
3.729
H
LIG




2347
H5′2
11.696
0.325
2.06
H
LIG




2348
O5B
12.642
2.027
2.874
O
LIG




2349
P1A
14.022
1.952
2.113
P
LIG




2350
O1A
13.841
2.518
0.756
O
LIG




2351
O2A
14.579
0.584
2.202
O
LIG




2352
O3A
14.907
2.911
3.003
O
LIG




2353
P2A
16.058
3.949
2.708
P
LIG




2354
O4A
15.45
5.211
2.235
O
LIG




2355
O5A
17.078
3.324
1.834
O
LIG




2356
O6A
16.716
4.174
4.12
O
LIG




2357
CBP
16.666
5.235
6.316
C
LIG




2358
CCP
15.925
4.372
5.298
C
LIG




2359
H121
14.928
4.819
5.082
H
LIG




2360
H122
15.756
3.382
5.766
H
LIG




2361
CDP
18.025
4.54
6.574
C
LIG




2362
H131
17.86
3.475
6.842
H
LIG




2363
H132
18.668
4.577
5.67
H
LIG




2364
H133
18.562
5.027
7.414
H
LIG




2365
CEP
15.786
5.24
7.588
C
LIG




2366
H141
15.66
4.204
7.96
H
LIG




2367
H142
16.26
5.832
8.397
H
LIG




2368
H143
14.78
5.657
7.379
H
LIG




2369
CAP
16.829
6.638
5.703
C
LIG




2370
H10
17.244
6.52
4.676
H
LIG




2371
OAP
15.573
7.32
5.626
O
LIG




2372
HO10
15.073
6.936
4.888
H
LIG




2373
C9P
17.83
7.476
6.468
C
LIG




2374
O9P
18.983
7.613
6.057
O
LIG




2375
N8P
17.408
8.075
7.6
N
LIG




2376
HN8
16.461
7.972
7.896
H
LIG




2377
C7P
18.239
8.966
8.357
C
LIG




2378
H71
18.811
9.624
7.662
H
LIG




2379
H72
17.585
9.638
8.957
H
LIG




2380
C6P
19.236
8.255
9.286
C
LIG




2381
HC1
19.856
7.61
8.682
H
LIG




2382
HC2
19.795
9.013
9.811
H
LIG




2383
C5P
18.534
7.422
10.307
C
LIG




2384
O5P
17.518
7.823
10.871
O
LIG




2385
N4P
19.106
6.241
10.598
N
LIG




2386
H4
19.912
5.917
10.1
H
LIG




2387
C3P
18.687
5.399
11.681
C
LIG




2388
H31
18.025
4.599
11.281
H
LIG




2389
H32
18.114
5.979
12.441
H
LIG




2390
C2P
19.926
4.782
12.338
C
LIG




2391
H151
20.535
5.606
12.677
H
LIG




2392
H152
20.433
4.221
11.573
H
LIG




2393
S1P
19.609
3.671
13.738
S
LIG




2394
C
21.28
3.079
14.029
C
LIG




2395
O
22.204
3.338
13.259
O
LIG




2396
CH3
21.525
2.265
15.257
C
LIG




2397
HB21
20.948
2.648
16.126
H
LIG




2398
HB22
21.254
1.203
15.08
H
LIG




2399
HB23
22.605
2.303
15.518
H
LIG


151
GLF
2400
C
25.417
4.856
15.508
C
LIG




2401
OC2
26.476
5.094
16.147
O
LIG




2402
OC1
24.753
3.796
15.664
O
LIG




2403
C1
24.961
5.944
14.532
C
LIG




2404
H11
25.601
5.877
13.629
H
LIG




2405
H12
25.127
6.939
14.986
H
LIG




2406
N
23.529
5.878
14.08
N
LIG




2407
HN1
23.361
4.963
13.6
H
LIG




2408
HN2
23.381
6.66
13.407
H
LIG




2409
C2
22.472
6.018
15.147
C
LIG




2410
H21
21.496
6
14.624
H
LIG




2411
H22
22.522
5.125
15.795
H
LIG




2412
P
22.542
7.577
16.221
P
LIG




2413
OP2
23.276
8.52
15.356
O
LIG




2414
OP1
21.096
7.835
16.36
O
LIG




2415
OP3
23.247
7.075
17.426
O
LIG


161
HOH
2416
OH2
16.688
3.703
−0.773
O
WAT




2417
H1
16.855
3.626
0.186
H
WAT




2418
H2
17.295
4.397
−1.067
H
WAT


162
HOH
2419
OH2
32.978
−6
6.008
O
WAT




2420
H1
32.414
−6.632
5.53
H
WAT




2421
H2
32.941
−5.209
5.447
H
WAT


163
HOH
2422
OH2
27.781
2.001
9.24
O
WAT




2423
H1
27.852
1.062
9.032
H
WAT




2424
H2
26.858
2.214
9.043
H
WAT


164
HOH
2425
OH2
35.002
−4.151
0.093
O
WAT




2426
H1
35.229
−4.611
0.916
H
WAT




2427
H2
34.063
−4.354
−0.022
H
WAT


165
HOH
2428
OH2
35.028
−1.375
−0.596
O
WAT




2429
H1
35.015
−0.9
0.256
H
WAT




2430
H2
35.087
−2.306
−0.344
H
WAT


166
HOH
2431
OH2
27.311
−3.014
14.273
O
WAT




2432
H1
26.749
−2.922
13.496
H
WAT




2433
H2
28.089
−2.469
14.073
H
WAT


167
HOH
2434
OH2
30.494
6.157
3.588
O
WAT




2435
H1
30.583
6.493
2.685
H
WAT




2436
H2
31.116
5.416
3.611
H
WAT


168
HOH
2437
OH2
34.413
6.632
4.262
O
WAT




2438
H1
34.761
5.886
4.771
H
WAT




2439
H2
34.779
6.471
3.378
H
WAT


169
HOH
2440
OH2
37.779
6.46
5.881
O
WAT




2441
H1
37.308
7.29
5.723
H
WAT




2442
H2
37.095
5.788
5.792
H
WAT


170
HOH
2443
OH2
35.344
−4.638
11.125
O
WAT




2444
H1
34.622
−4.181
10.66
H
WAT




2445
H2
35.182
−4.414
12.052
H
WAT


171
HOH
2446
OH2
11.585
1.867
−0.537
O
WAT




2447
H1
12.37
2.188
−0.053
H
WAT




2448
H2
10.972
2.617
−0.508
H
WAT


172
HOH
2449
OH2
21.801
−0.15
17.783
O
WAT




2450
H1
22.157
−0.415
16.922
H
WAT




2451
H2
22.287
0.654
18.017
H
WAT


173
HOH
2452
OH2
13.884
6.976
3.402
O
WAT




2453
H1
14.439
6.325
2.93
H
WAT




2454
H2
12.989
6.75
3.08
H
WAT


174
HOH
2455
OH2
35.759
−6.639
13.873
O
WAT




2456
H1
35.64
−5.68
13.859
H
WAT




2457
H2
35.244
−6.912
14.647
H
WAT


175
HOH
2458
OH2
35.513
−5.257
2.634
O
WAT




2459
H1
36.269
−4.756
2.973
H
WAT




2460
H2
34.944
−5.35
3.4
H
WAT


176
HOH
2461
OH2
29.563
−1.39
13.98
O
WAT




2462
H1
30.373
−1.125
13.505
H
WAT




2463
H2
29.779
−1.191
14.901
H
WAT


177
HOH
2464
OH2
13.445
0.83
24.322
O
WAT




2465
H1
12.992
1.579
24.741
H
WAT




2466
H2
12.734
0.2
24.134
H
WAT


178
HOH
2467
OH2
31.282
6.009
−3.628
O
WAT




2468
H1
32.211
5.925
−3.848
H
WAT




2469
H2
31.216
6.899
−3.247
H
WAT


179
HOH
2470
OH2
37.572
3.836
2.66
O
WAT




2471
H1
38.462
3.571
2.895
H
WAT




2472
H2
37.107
2.978
2.565
H
WAT


180
HOH
2473
OH2
22.042
12.937
3.359
O
WAT




2474
H1
21.609
13.169
4.192
H
WAT




2475
H2
22.142
13.782
2.903
H
WAT


181
HOH
2476
OH2
42.316
1.171
9.782
O
WAT




2477
H1
41.798
1.576
10.481
H
WAT




2478
H2
41.63
0.816
9.19
H
WAT


182
HOH
2479
OH2
31.118
7.143
0.968
O
WAT




2480
H1
31.818
6.477
0.861
H
WAT




2481
H2
31.631
7.977
0.982
H
WAT


183
HOH
2482
OH2
31.371
−7.826
4.7
O
WAT




2483
H1
32.091
−8.459
4.561
H
WAT




2484
H2
30.591
−8.318
4.402
H
WAT


184
HOH
2485
OH2
10.19
−11.045
15.686
O
WAT




2486
H1
9.975
−10.129
15.432
H
WAT




2487
H2
10.033
−11.536
14.866
H
WAT


185
HOH
2488
OH2
9.384
6.489
11.965
O
WAT




2489
H1
8.925
6.749
12.776
H
WAT




2490
H2
8.692
6.59
11.297
H
WAT


186
HOH
2491
OH2
29.964
−11.206
14.913
O
WAT




2492
H1
30.233
−10.664
14.165
H
WAT




2493
H2
30.68
−11.064
15.55
H
WAT


187
HOH
2494
OH2
29.037
8.42
−0.375
O
WAT




2495
H1
28.457
7.709
−0.693
H
WAT




2496
H2
29.643
7.951
0.223
H
WAT


188
HOH
2497
OH2
25.717
14.863
15.366
O
WAT




2498
H1
24.813
15.111
15.57
H
WAT




2499
H2
25.899
14.12
15.951
H
WAT


189
HOH
2500
OH2
21.453
13.063
11.708
O
WAT




2501
H1
22.034
12.928
10.943
H
WAT




2502
H2
21.595
13.984
11.934
H
WAT


190
HOH
2503
OH2
23.479
−6.943
−5.335
O
WAT




2504
H1
23.341
−7.758
−4.844
H
WAT




2505
H2
22.723
−6.903
−5.925
H
WAT


191
HOH
2506
OH2
9.321
3.572
−0.408
O
WAT




2507
H1
8.562
3.256
0.099
H
WAT




2508
H2
9.521
4.431
0.013
H
WAT


192
HOH
2509
OH2
35.776
1.748
13.506
O
WAT




2510
H1
36.074
2.082
12.648
H
WAT




2511
H2
34.853
1.483
13.351
H
WAT


193
HOH
2512
OH2
32.702
−10.744
9.66
O
WAT




2513
H1
32.735
−9.837
9.998
H
WAT




2514
H2
33.516
−11.138
10.025
H
WAT


194
HOH
2515
OH2
9.446
−8.532
14.963
O
WAT




2516
H1
9.361
−8.103
14.099
H
WAT




2517
H2
8.875
−7.994
15.534
H
WAT


195
HOH
2518
OH2
37.042
−3.285
7.927
O
WAT




2519
H1
37.869
−3.382
7.443
H
WAT




2520
H2
36.524
−4.042
7.621
H
WAT


196
HOH
2521
OH2
13.082
−7.981
6.013
O
WAT




2522
H1
13.944
−8.405
6.212
H
WAT




2523
H2
13.237
−7.066
6.25
H
WAT


197
HOH
2524
OH2
6.784
3.448
13.598
O
WAT




2525
H1
6.92
2.59
14.029
H
WAT




2526
H2
7.593
3.926
13.814
H
WAT


198
HOH
2527
OH2
7.557
−1.843
15.045
O
WAT




2528
H1
7.689
−2.605
14.469
H
WAT




2529
H2
8.228
−1.965
15.719
H
WAT


199
HOH
2530
OH2
35.83
5.872
1.955
O
WAT




2531
H1
36.378
6.435
1.403
H
WAT




2532
H2
36.444
5.159
2.213
H
WAT


200
HOH
2533
OH2
25.278
0.465
−8.774
O
WAT




2534
H1
25.333
0.608
−9.72
H
WAT




2535
H2
25.84
−0.323
−8.638
H
WAT


201
HOH
2536
OH2
33.194
5.301
1.14
O
WAT




2537
H1
32.933
4.771
1.904
H
WAT




2538
H2
34.133
5.48
1.302
H
WAT


202
HOH
2539
OH2
12.371
−16.012
10.149
O
WAT




2540
H1
12.411
−16.37
11.057
H
WAT




2541
H2
11.628
−16.487
9.775
H
WAT


203
HOH
2542
OH2
7.929
5.484
25.736
O
WAT




2543
H1
7.742
5.073
26.605
H
WAT




2544
H2
7.055
5.578
25.357
H
WAT


204
HOH
2545
OH2
25.376
16.465
5.367
O
WAT




2546
H1
25.653
17.174
5.948
H
WAT




2547
H2
25.304
15.7
5.955
H
WAT


205
HOH
2548
OH2
27.433
−10.197
23.868
O
WAT




2549
H1
28.309
−10.205
23.479
H
WAT




2550
H2
27.05
−11.039
23.562
H
WAT


206
HOH
2551
OH2
16.635
10.274
17.324
O
WAT




2552
H1
16.319
9.725
18.057
H
WAT




2553
H2
17.506
10.576
17.625
H
WAT


207
HOH
2554
OH2
24.264
−13.52
1.79
O
WAT




2555
H1
23.341
−13.592
1.476
H
WAT




2556
H2
24.541
−12.682
1.393
H
WAT


208
HOH
2557
OH2
15.363
−17.412
18.219
O
WAT




2558
H1
15.205
−17.701
17.309
H
WAT




2559
H2
16.279
−17.695
18.404
H
WAT


209
HOH
2560
OH2
28.683
−3.045
21.234
O
WAT




2561
H1
27.968
−3.307
21.837
H
WAT




2562
H2
28.598
−3.692
20.516
H
WAT


212
HOH
2563
OH2
25.665
7.713
−8.322
O
WAT




2564
H1
25.29
6.967
−7.838
H
WAT




2565
H2
26.347
7.31
−8.865
H
WAT


213
HOH
2566
OH2
35.951
−6.691
9.319
O
WAT




2567
H1
36.016
−7.445
9.916
H
WAT




2568
H2
35.798
−5.953
9.929
H
WAT


214
HOH
2569
OH2
24.966
13.876
−2.593
O
WAT




2570
H1
24.122
13.837
−2.114
H
WAT




2571
H2
24.721
13.624
−3.496
H
WAT


215
HOH
2572
OH2
18.582
−14.829
26.317
O
WAT




2573
H1
17.832
−14.68
26.907
H
WAT




2574
H2
19.133
−14.046
26.467
H
WAT


216
HOH
2575
OH2
5.994
2.382
8.65
O
WAT




2576
H1
6.094
2.941
7.868
H
WAT




2577
H2
6.872
1.999
8.759
H
WAT


217
HOH
2578
OH2
19.593
−12.204
26.715
O
WAT




2579
H1
18.819
−11.816
26.281
H
WAT




2580
H2
20.219
−11.475
26.695
H
WAT


218
HOH
2581
OH2
18.099
−19.071
21.325
O
WAT




2582
H1
18.247
−19.998
21.125
H
WAT




2583
H2
18.042
−18.659
20.443
H
WAT


219
HOH
2584
OH2
7.822
7.293
14.187
O
WAT




2585
H1
7.311
6.795
14.826
H
WAT




2586
H2
8.673
7.429
14.633
H
WAT


220
HOH
2587
OH2
14.122
10.792
16.291
O
WAT




2588
H1
14.967
10.584
16.722
H
WAT




2589
H2
13.462
10.367
16.854
H
WAT


221
HOH
2590
OH2
33.532
−9.621
4.655
O
WAT




2591
H1
34.4
−9.305
4.918
H
WAT




2592
H2
33.25
−10.164
5.409
H
WAT


222
HOH
2593
OH2
15.826
9.21
28.401
O
WAT




2594
H1
15.377
10.068
28.478
H
WAT




2595
H2
15.826
8.878
29.299
H
WAT


223
HOH
2596
OH2
30.427
1.161
19.704
O
WAT




2597
H1
31.065
1.821
20.018
H
WAT




2598
H2
30.571
0.402
20.298
H
WAT


224
HOH
2599
OH2
11.568
−18.798
15.527
O
WAT




2600
H1
11.811
−18.956
14.596
H
WAT




2601
H2
10.652
−19.073
15.563
H
WAT


225
HOH
2602
OH2
31.025
8.545
−2.451
O
WAT




2603
H1
30.595
8.432
−1.592
H
WAT




2604
H2
31.868
8.975
−2.218
H
WAT


226
HOH
2605
OH2
13.286
−10.982
22.6
O
WAT




2606
H1
13.027
−10.263
22.02
H
WAT




2607
H2
12.925
−10.709
23.46
H
WAT


227
HOH
2608
OH2
30.931
12.546
13.362
O
WAT




2609
H1
31.678
12.832
13.906
H
WAT




2610
H2
30.315
13.288
13.37
H
WAT


228
HOH
2611
OH2
12.693
−12.17
7.239
O
WAT




2612
H1
12.076
−11.558
6.816
H
WAT




2613
H2
13.555
−11.72
7.13
H
WAT


229
HOH
2614
OH2
22.665
13.98
−0.903
O
WAT




2615
H1
21.987
13.296
−0.897
H
WAT




2616
H2
22.541
14.434
−0.055
H
WAT


230
HOH
2617
OH2
22.85
1.886
−10.526
O
WAT




2618
H1
22.545
1.163
−9.962
H
WAT




2619
H2
22.181
1.943
−11.211
H
WAT


231
HOH
2620
OH2
6.134
−2.864
17.498
O
WAT




2621
H1
6.027
−2.346
16.694
H
WAT




2622
H2
5.402
−2.592
18.056
H
WAT


233
HOH
2623
OH2
11.364
−3.517
2.756
O
WAT




2624
H1
12.124
−2.917
2.805
H
WAT




2625
H2
10.599
−2.925
2.845
H
WAT


234
HOH
2626
OH2
18.203
−10.485
0.168
O
WAT




2627
H1
17.378
−10.958
0.287
H
WAT




2628
H2
18.863
−11.205
0.227
H
WAT


235
HOH
2629
OH2
17.958
−0.548
24.412
O
WAT




2630
H1
18.282
−0.295
23.536
H
WAT




2631
H2
18.457
−1.342
24.619
H
WAT


236
HOH
2632
OH2
30.555
−9.784
20.327
O
WAT




2633
H1
29.89
−9.199
19.939
H
WAT




2634
H2
30.017
−10.43
20.807
H
WAT


237
HOH
2635
OH2
13.841
−0.932
27.954
O
WAT




2636
H1
14.338
−1.623
28.433
H
WAT




2637
H2
14.516
−0.558
27.368
H
WAT


238
HOH
2638
OH2
21.565
−12.958
−1.84
O
WAT




2639
H1
20.67
−12.696
−1.603
H
WAT




2640
H2
21.897
−13.235
−0.97
H
WAT


239
HOH
2641
OH2
8.931
−2.198
2.659
O
WAT




2642
H1
8.841
−1.41
2.1
H
WAT




2643
H2
8.009
−2.466
2.772
H
WAT


240
HOH
2644
OH2
14.301
10.09
5.163
O
WAT




2645
H1
14.4
9.963
6.119
H
WAT




2646
H2
14.04
9.217
4.854
H
WAT


241
HOH
2647
OH2
13.332
−3.184
26.211
O
WAT




2648
H1
13.081
−2.427
26.753
H
WAT




2649
H2
14.292
−3.223
26.381
H
WAT


242
HOH
2650
OH2
37.52
−2.858
10.71
O
WAT




2651
H1
36.888
−3.554
10.934
H
WAT




2652
H2
37.497
−2.862
9.742
H
WAT


243
HOH
2653
OH2
36.128
−3.562
20.347
O
WAT




2654
H1
36.451
−4.204
19.711
H
WAT




2655
H2
35.409
−3.114
19.884
H
WAT


244
HOH
2656
OH2
11.146
−9.952
6.389
O
WAT




2657
H1
11.788
−9.256
6.157
H
WAT




2658
H2
10.475
−9.872
5.708
H
WAT


245
HOH
2659
OH2
36.842
4.433
17.867
O
WAT




2660
H1
36.997
3.698
17.256
H
WAT




2661
H2
35.979
4.768
17.598
H
WAT


246
HOH
2662
OH2
23.911
13.122
−5.157
O
WAT




2663
H1
23.944
13.713
−5.913
H
WAT




2664
H2
23.019
13.272
−4.793
H
WAT


247
HOH
2665
OH2
29.462
−9.725
3.912
O
WAT




2666
H1
29.706
−10.371
3.233
H
WAT




2667
H2
29.496
−10.243
4.733
H
WAT


248
HOH
2668
OH2
22.451
−0.276
−8.706
O
WAT




2669
H1
23.315
0.017
−8.38
H
WAT




2670
H2
22.656
−1.102
−9.15
H
WAT


249
HOH
2671
OH2
27.073
−1.35
19.609
O
WAT




2672
H1
27.764
−1.722
20.175
H
WAT




2673
H2
26.344
−1.972
19.745
H
WAT


250
HOH
2674
OH2
32.451
−1.391
23.391
O
WAT




2675
H1
32.999
−0.579
23.34
H
WAT




2676
H2
32.787
−1.82
24.178
H
WAT


251
HOH
2677
OH2
28.836
11.223
−0.168
O
WAT




2678
H1
29.749
11.399
0.144
H
WAT




2679
H2
28.784
10.258
−0.077
H
WAT


252
HOH
2680
OH2
6.548
−4.529
12.243
O
WAT




2681
H1
7.344
−4.524
12.789
H
WAT




2682
H2
6.832
−4.157
11.399
H
WAT


253
HOH
2683
OH2
9.812
−10.094
11.365
O
WAT




2684
H1
9.795
−10.83
11.996
H
WAT




2685
H2
9.441
−9.357
11.865
H
WAT


254
HOH
2686
OH2
31.281
13.143
5.46
O
WAT




2687
H1
30.831
12.291
5.515
H
WAT




2688
H2
31.569
13.201
4.549
H
WAT


255
HOH
2689
OH2
28.349
−9.09
1.325
O
WAT




2690
H1
28.931
−9.84
1.149
H
WAT




2691
H2
28.52
−8.907
2.255
H
WAT


256
HOH
2692
OH2
15.617
0.091
25.98
O
WAT




2693
H1
16.409
−0.135
25.47
H
WAT




2694
H2
14.967
0.342
25.307
H
WAT


257
HOH
2695
OH2
7.953
1.553
−1.997
O
WAT




2696
H1
8.498
2.346
−1.933
H
WAT




2697
H2
7.405
1.614
−1.204
H
WAT


258
HOH
2698
OH2
34.707
−9.477
0.268
O
WAT




2699
H1
34.401
−9.52
−0.654
H
WAT




2700
H2
35.415
−8.831
0.24
H
WAT


259
HOH
2701
OH2
33.287
9.864
−1.548
O
WAT




2702
H1
33.015
9.728
−0.618
H
WAT




2703
H2
33.809
10.665
−1.503
H
WAT


260
HOH
2704
OH2
35.644
−5.562
6.812
O
WAT




2705
H1
34.734
−5.771
6.548
H
WAT




2706
H2
35.748
−6.066
7.64
H
WAT


261
HOH
2707
OH2
15.372
9.534
10.595
O
WAT




2708
H1
14.829
9.569
11.396
H
WAT




2709
H2
16.042
8.863
10.798
H
WAT


262
HOH
2710
OH2
22.236
15.324
1.629
O
WAT




2711
H1
21.279
15.436
1.813
H
WAT




2712
H2
22.607
16.128
1.998
H
WAT


263
HOH
2713
OH2
28.82
−11.654
21.572
O
WAT




2714
H1
27.911
−11.866
21.861
H
WAT




2715
H2
29.249
−12.511
21.589
H
WAT


264
HOH
2716
OH2
38.266
−5.063
5.843
O
WAT




2717
H1
37.385
−5.392
6.068
H
WAT




2718
H2
38.121
−4.57
5.023
H
WAT


265
HOH
2719
OH2
35.499
−8.296
11.666
O
WAT




2720
H1
35.621
−7.639
12.374
H
WAT




2721
H2
34.595
−8.138
11.36
H
WAT


266
HOH
2722
OH2
21.563
13.587
−3.757
O
WAT




2723
H1
21.164
12.913
−3.189
H
WAT




2724
H2
21.571
14.365
−3.193
H
WAT


267
HOH
2725
OH2
19.033
−18.174
12.239
O
WAT




2726
H1
19.187
−17.452
12.865
H
WAT




2727
H2
19.01
−18.955
12.791
H
WAT


268
HOH
2728
OH2
20.56
13.513
5.733
O
WAT




2729
H1
20.766
14.072
6.485
H
WAT




2730
H2
19.931
4.055
5.218
H
WAT


270
HOH
2731
OH2
36.858
2.284
16.02
O
WAT




2732
H1
36.698
2.196
15.068
H
WAT




2733
H2
36.182
1.697
16.38
H
WAT


271
HOH
2734
OH2
14.459
9.903
7.985
O
WAT




2735
H1
14.832
9.776
8.872
H
WAT




2736
H2
13.669
10.42
8.156
H
WAT


272
HOH
2737
OH2
17.177
11.277
12.177
O
WAT




2738
H1
16.553
10.979
11.506
H
WAT




2739
H2
16.614
11.696
12.845
H
WAT


273
HOH
2740
OH2
36.421
−10.62
12.859
O
WAT




2741
H1
37.356
−10.514
13.049
H
WAT




2742
H2
36.179
−9.776
12.441
H
WAT


274
HOH
2743
OH2
15.389
−0.063
−6.538
O
WAT




2744
H1
15.352
0.13
−5.587
H
WAT




2745
H2
14.753
0.574
−6.901
H
WAT


275
HOH
2746
OH2
32.693
−11.162
6.884
O
WAT




2747
H1
33.22
−11.963
6.83
H
WAT




2748
H2
32.761
−10.917
7.822
H
WAT


276
HOH
2749
OH2
6.66
3.811
6.272
O
WAT




2750
H1
6.297
4.598
5.858
H
WAT




2751
H2
7.555
4.092
6.523
H
WAT


277
HOH
2752
OH2
9.753
−5.674
2.078
O
WAT




2753
H1
10.212
−4.881
2.404
H
WAT




2754
H2
8.886
−5.612
2.483
H
WAT


278
HOH
2755
OH2
35.062
−11.832
10.66
O
WAT




2756
H1
35.538
−11.484
11.428
H
WAT




2757
H2
35.682
−12.456
10.279
H
WAT


279
HOH
2758
OH2
26.25
−3.776
22.399
O
WAT




2759
H1
25.652
−4.223
22.998
H
WAT




2760
H2
25.746
−3.701
21.574
H
WAT


280
HOH
2761
OH2
16.165
−6.177
−1.585
O
WAT




2762
H1
16.809
−6.851
−1.318
H
WAT




2763
H2
16.728
−5.42
−1.8
H
WAT


281
HOH
2764
OH2
7.151
−2.396
24.719
O
WAT




2765
H1
6.4
−2.041
25.195
H
WAT




2766
H2
7.301
−1.746
24.014
H
WAT


282
HOH
2767
OH2
21.329
−1.188
24.048
O
WAT




2768
H1
21.433
−0.649
24.834
H
WAT




2769
H2
20.803
−1.938
24.359
H
WAT


283
HOH
2770
OH2
33.77
−9.563
−2.367
O
WAT




2771
H1
33.913
−8.965
−3.102
H
WAT




2772
H2
33.243
−10.271
−2.744
H
WAT


284
HOH
2773
OH2
6.055
4.112
2.421
O
WAT




2774
H1
6.961
4.288
2.717
H
WAT




2775
H2
6.202
3.493
1.691
H
WAT


285
HOH
2776
OH2
10.076
−12.294
13.147
O
WAT




2777
H1
11.004
−12.564
13.046
H
WAT




2778
H2
9.592
−13.099
12.947
H
WAT


286
HOH
2779
OH2
12.463
−9.839
25.005
O
WAT




2780
H1
11.913
−9.085
24.741
H
WAT




2781
H2
13.096
−9.43
25.61
H
WAT


287
HOH
2782
OH2
14.529
11.669
28.581
O
WAT




2783
H1
14.6
11.801
27.611
H
WAT




2784
H2
14
12.417
28.857
H
WAT


288
HOH
2785
OH2
17.766
0.927
−7.652
O
WAT




2786
H1
17.445
1.772
−8.007
H
WAT




2787
H2
16.952
0.527
−7.31
H
WAT


289
HOH
2788
OH2
38.047
−0.382
11.944
O
WAT




2789
H1
37.937
−1.248
11.516
H
WAT




2790
H2
37.317
−0.339
12.563
H
WAT


290
HOH
2791
OH2
23.562
4.513
18.038
O
WAT




2792
H1
23.447
5.465
17.84
H
WAT




2793
H2
24.017
4.198
17.239
H
WAT


291
HOH
2794
OH2
7.705
−0.3
22.901
O
WAT




2795
H1
8.319
0.167
23.489
H
WAT




2796
H2
7.63
0.281
22.139
H
WAT


292
HOH
2797
OH2
32.203
6.182
18.147
O
WAT




2798
H1
33.054
5.866
17.812
H
WAT




2799
H2
31.919
6.815
17.475
H
WAT


293
HOH
2800
OH2
16.263
3.137
−8.473
O
WAT




2801
H1
16.163
4.056
−8.21
H
WAT




2802
H2
15.4
2.756
−8.266
H
WAT


294
HOH
2803
OH2
29.439
−14.942
7.353
O
WAT




2804
H1
30.134
−15.535
7.063
H
WAT




2805
H2
28.729
−15.113
6.711
H
WAT


297
HOH
2806
OH2
26.244
−6.523
−5.871
O
WAT




2807
H1
26.439
−6.549
−4.924
H
WAT




2808
H2
25.295
−6.71
−5.888
H
WAT


298
HOH
2809
OH2
9.693
9.144
9.908
O
WAT




2810
H1
9.66
8.362
9.343
H
WAT




2811
H2
10.487
8.98
10.43
H
WAT


299
HOH
2812
OH2
39.483
1.707
10.782
O
WAT




2813
H1
39.665
1.28
9.924
H
WAT




2814
H2
39.062
0.987
11.281
H
WAT


301
HOH
2815
OH2
32.86
−10.558
2.066
O
WAT




2816
H1
33.529
−10.215
1.449
H
WAT




2817
H2
33.163
−10.232
2.926
H
WAT


302
HOH
2818
OH2
15.511
12.298
14.276
O
WAT




2819
H1
15.105
11.873
15.048
H
WAT




2820
H2
15.711
13.183
14.59
H
WAT


305
HOH
2821
OH2
32.183
3.255
20.168
O
WAT




2822
H1
31.512
3.889
19.879
H
WAT




2823
H2
32.667
3.723
20.854
H
WAT


307
HOH
2824
OH2
37.511
15.247
14.152
O
WAT




2825
H1
38.39
15.307
13.751
H
WAT




2826
H2
37.605
14.464
14.726
H
WAT


308
HOH
2827
OH2
18.289
−7.798
−0.578
O
WAT




2828
H1
18.269
−8.752
−0.389
H
WAT




2829
H2
18.976
−7.471
0.01
H
WAT


310
HOH
2830
OH2
17.1
−2.35
−6.549
O
WAT




2831
H1
16.425
−1.655
−6.588
H
WAT




2832
H2
16.592
−3.15
−6.4
H
WAT


311
HOH
2833
OH2
29.902
−11.011
6.346
O
WAT




2834
H1
30.86
−11.067
6.483
H
WAT




2835
H2
29.581
−10.564
7.133
H
WAT


314
HOH
2836
OH2
30.698
−1.107
21.254
O
WAT




2837
H1
31.295
−1.249
22.01
H
WAT




2838
H2
30.049
−1.821
21.346
H
WAT


316
HOH
2839
OH2
27.351
−15.684
5.615
O
WAT




2840
H1
26.592
−15.936
6.143
H
WAT




2841
H2
26.959
−15.49
4.748
H
WAT


317
HOH
2842
OH2
29.998
4.776
19.097
O
WAT




2843
H1
30.709
5.289
18.674
H
WAT




2844
H2
29.61
5.404
19.711
H
WAT


318
HOH
2845
OH2
30.223
−11.221
1.618
O
WAT




2846
H1
31.167
−10.999
1.725
H
WAT




2847
H2
30.248
−12.087
1.206
H
WAT


319
HOH
2848
OH2
8.497
−10.393
17.914
O
WAT




2849
H1
7.946
−9.763
17.443
H
WAT




2850
H2
9.069
−10.755
17.223
H
WAT


323
HOH
2851
OH2
36.061
8.648
5.326
O
WAT




2852
H1
35.382
8.092
4.915
H
WAT




2853
H2
35.902
9.518
4.958
H
WAT


324
HOH
2854
OH2
13.807
2.188
−7.28
O
WAT




2855
H1
12.877
2.163
−7.518
H
WAT




2856
H2
13.919
3.081
−6.914
H
WAT


326
HOH
2857
OH2
25.932
−15.265
3.212
O
WAT




2858
H1
25.286
−14.623
2.868
H
WAT




2859
H2
26.295
−15.639
2.408
H
WAT


327
HOH
2860
OH2
6.898
6.459
10.638
O
WAT




2861
H1
6.36
5.99
11.28
H
WAT




2862
H2
6.46
7.308
10.543
H
WAT


329
HOH
2863
OH2
17.344
13.854
6.224
O
WAT




2864
H1
17.01
14.599
6.727
H
WAT




2865
H2
17.815
14.282
5.48
H
WAT


335
HOH
2866
OH2
15.43
−16.736
27.936
O
WAT




2867
H1
16.224
−17.157
28.264
H
WAT




2868
H2
15.663
−15.798
27.901
H
WAT


341
HOH
2869
OH2
28.641
19.245
9.343
O
WAT




2870
H1
29.495
18.953
8.988
H
WAT




2871
H2
28.609
18.814
10.207
H
WAT


342
HOH
2872
OH2
13.654
−5.185
−0.895
O
WAT




2873
H1
13.462
−4.66
−1.674
H
WAT




2874
H2
14.525
−5.567
−1.102
H
WAT


343
HOH
2875
OH2
24.424
−22.806
5.414
O
WAT




2876
H1
24.677
−23.037
6.312
H
WAT




2877
H2
23.594
−23.274
5.289
H
WAT


346
HOH
2878
OH2
40.157
14.707
13.3
O
WAT




2879
H1
40.036
13.911
13.858
H
WAT




2880
H2
41.093
14.69
13.102
H
WAT


348
HOH
2881
OH2
6.162
−3.979
4.99
O
WAT




2882
H1
6.205
−3.432
4.196
H
WAT




2883
H2
7.08
−4.064
5.278
H
WAT


349
HOH
2884
OH2
3.727
3.95
3.919
O
WAT




2885
H1
3.067
4.605
3.685
H
WAT




2886
H2
4.472
4.155
3.327
H
WAT


350
HOH
2887
OH2
30.424
−4.927
−8.429
O
WAT




2888
H1
30.993
−5.526
−8.915
H
WAT




2889
H2
29.583
−5.413
−8.372
H
WAT


351
HOH
2890
OH2
26.352
7.545
−12.195
O
WAT




2891
H1
26.295
8.393
−11.755
H
WAT




2892
H2
26.777
6.971
−11.545
H
WAT


370
HOH
2893
OH2
31.137
18.223
8.592
O
WAT




2894
H1
31.987
18.533
8.28
H
WAT




2895
H2
31.339
17.347
8.956
H
WAT


378
HOH
2896
OH2
14.005
−21.458
12.25
O
WAT




2897
H1
13.732
−21.521
11.336
H
WAT




2898
H2
13.489
−20.704
12.586
H
WAT


386
HOH
2899
OH2
6.092
−2.362
2.613
O
WAT




2900
H1
5.99
−1.405
2.483
H
WAT




2901
H2
5.408
−2.734
2.051
H
WAT


400
HOH
2902
OH2
27.875
−6.022
−8.158
O
WAT




2903
H1
27.283
−6.258
−7.427
H
WAT




2904
H2
27.389
−5.312
−8.623
H
WAT


414
HOH
2905
OH2
23.119
1.999
19.149
O
WAT




2906
H1
23.978
1.965
19.573
H
WAT




2907
H2
23.092
2.908
18.804
H
WAT


416
HOH
2908
OH2
7.28
1.041
14.93
O
WAT




2909
H1
7.503
1.347
15.832
H
WAT




2910
H2
7.371
0.08
14.985
H
WAT


417
HOH
2911
OH2
22.231
6.596
19.839
O
WAT




2912
H1
22.499
5.676
19.798
H
WAT




2913
H2
22.531
6.938
18.974
H
WAT


418
HOH
2914
OH2
8.236
4.576
17.373
O
WAT




2915
H1
8.09
3.607
17.378
H
WAT




2916
H2
7.972
4.828
18.259
H
WAT


419
HOH
2917
OH2
19.508
15.547
21.289
O
WAT




2918
H1
19.997
15.68
20.469
H
WAT




2919
H2
18.984
16.344
21.382
H
WAT






aResI: The residue ids in the structure




bResN: The residue names; the common amino acid residue with three letter representation; GLF representing Glyphosate; ACO representing Acetyl Co-enzyme A; and HOH representing water.




cAtomI: The atom ids in structure.




dAtomN: The atom name.




eX, Y, Z: The atom coordinates of X, Y, and Z axes in angstroms.




fElemN: The corresponding element symbol for each atom.




gSegN: The segment names in the complex, Pro representing peptide, LIG representing the bound ligands, and WAT representing surrounding waters.














TABLE 19







The atomic coordinates in Angstroms of the GLYATR11 variant bound to


glyphosate and acetyl coA, along with surrounding water molecules.















ResIa
ResNb
AtomIc
AtomNd
Xe
Y
Z
ElemNf
SegNg


















2
ILE
1
N
19.62
−2.278
−6.619
N
PRO




2
HT1
18.996
−2.869
−6.033
H
PRO




3
HT2
20.042
−2.853
−7.375
H
PRO




4
HT3
19.061
−1.518
−7.057
H
PRO




5
CA
20.712
−1.723
−5.771
C
PRO




6
HA
21.31
−1.082
−6.402
H
PRO




7
CB
20.182
−0.939
−4.563
C
PRO




8
HB
19.677
−1.642
−3.866
H
PRO




9
CG2
21.379
−0.312
−3.808
C
PRO




10
HG21
21.996
0.307
−4.494
H
PRO




11
HG22
22.028
−1.095
−3.362
H
PRO




12
HG23
21.014
0.338
−2.984
H
PRO




13
CG1
19.118
0.129
−4.943
C
PRO




14
HG11
18.743
0.593
−4.006
H
PRO




15
HG12
18.244
−0.369
−5.415
H
PRO




16
CD1
19.614
1.251
−5.862
C
PRO




17
HD1
19.974
0.846
−6.832
H
PRO




18
HD2
20.438
1.821
−5.382
H
PRO




19
HD3
18.786
1.961
−6.074
H
PRO




20
C
21.552
−2.884
−5.314
C
PRO




21
O
21.053
−3.81
−4.677
O
PRO


3
GLU
22
N
22.856
−2.877
−5.668
N
PRO




23
HN
23.261
−2.11
−6.161
H
PRO




24
CA
23.798
−3.916
−5.319
C
PRO




25
HA
23.357
−4.873
−5.556
H
PRO




26
CB
25.122
−3.742
−6.092
C
PRO




27
HB1
25.844
−4.534
−5.801
H
PRO




28
HB2
25.553
−2.758
−5.808
H
PRO




29
CG
24.934
−3.768
−7.622
C
PRO




30
HG1
24.121
−3.074
−7.923
H
PRO




31
HG2
24.654
−4.794
−7.943
H
PRO




32
CD
26.192
−3.338
−8.369
C
PRO




33
OE1
27.197
−2.935
−7.726
O
PRO




34
OE2
26.163
−3.388
−9.632
O
PRO




35
C
24.111
−3.871
−3.846
C
PRO




36
O
24.141
−2.793
−3.259
O
PRO


4
VAL
37
N
24.365
−5.041
−3.221
N
PRO




38
HN
24.303
−5.913
−3.701
H
PRO




39
CA
24.784
−5.119
−1.838
C
PRO




40
HA
24.972
−4.127
−1.453
H
PRO




41
CB
23.8
−5.823
−0.916
C
PRO




42
HB
23.684
−6.888
−1.207
H
PRO




43
CG1
24.315
−5.747
0.537
C
PRO




44
HG11
24.528
−4.693
0.817
H
PRO




45
HG12
25.24
−6.348
0.671
H
PRO




46
HG13
23.546
−6.145
1.233
H
PRO




47
CG2
22.427
−5.141
−1.038
C
PRO




48
HG21
22.014
−5.251
−2.064
H
PRO




49
HG22
22.508
−4.059
−0.8
H
PRO




50
HG23
21.714
−5.611
−0.328
H
PRO




51
C
26.078
−5.878
−1.847
C
PRO




52
O
26.141
−7.02
−2.304
O
PRO


5
LYS
53
N
27.153
−5.234
−1.349
N
PRO




54
HN
27.075
−4.315
−0.97
H
PRO




55
CA
28.488
−5.774
−1.386
C
PRO




56
HA
28.444
−6.846
−1.516
H
PRO




57
CB
29.333
−5.147
−2.524
C
PRO




58
HB1
30.41
−5.378
−2.376
H
PRO




59
HB2
29.212
−4.043
−2.49
H
PRO




60
CG
28.929
−5.655
−3.921
C
PRO




61
HG1
27.821
−5.663
−4.005
H
PRO




62
HG2
29.281
−6.703
−4.028
H
PRO




63
CD
29.474
−4.799
−5.077
C
PRO




64
HD1
30.572
−4.679
−4.96
H
PRO




65
HD2
29.008
−3.793
−5.003
H
PRO




66
CE
29.171
−5.415
−6.451
C
PRO




67
HE1
28.101
−5.704
−6.518
H
PRO




68
HE2
29.803
−6.314
−6.619
H
PRO




69
NZ
29.437
−4.451
−7.542
N
PRO




70
HZ1
30.369
−4.004
−7.425
H
PRO




71
HZ2
28.694
−3.724
−7.526
H
PRO




72
HZ3
29.383
−4.927
−8.465
H
PRO




73
C
29.105
−5.415
−0.052
C
PRO




74
O
28.886
−4.291
0.402
O
PRO


6
PRO
75
N
29.844
−6.292
0.639
N
PRO




76
CD
29.943
−7.717
0.318
C
PRO




77
HD1
30.568
−7.834
−0.593
H
PRO




78
HD2
28.938
−8.163
0.16
H
PRO




79
CA
30.699
−5.95
1.772
C
PRO




80
HA
30.038
−5.713
2.592
H
PRO




81
CB
31.531
−7.214
2.027
C
PRO




82
HB1
31.8
−7.326
3.099
H
PRO




83
HB2
32.458
−7.206
1.415
H
PRO




84
CG
30.63
−8.345
1.529
C
PRO




85
HG1
31.2
−9.263
1.267
H
PRO




86
HG2
29.868
−8.586
2.301
H
PRO




87
C
31.583
−4.745
1.557
C
PRO




88
O
32.11
−4.58
0.457
O
PRO


7
ILE
89
N
31.765
−3.911
2.599
N
PRO




90
HN
31.332
−4.08
3.481
H
PRO




91
CA
32.655
−2.775
2.547
C
PRO




92
HA
33.367
−2.913
1.747
H
PRO




93
CB
31.983
−1.412
2.378
C
PRO




94
HB
32.769
−0.627
2.374
H
PRO




95
CG2
31.317
−1.372
0.987
C
PRO




96
HG21
30.464
−2.083
0.941
H
PRO




97
HG22
32.052
−1.651
0.202
H
PRO




98
HG23
30.94
−0.352
0.762
H
PRO




99
CG1
30.997
−1.082
3.524
C
PRO




100
HG11
31.539
−1.123
4.493
H
PRO




101
HG12
30.191
−1.847
3.55
H
PRO




102
CD1
30.37
0.308
3.406
C
PRO




103
HD1
29.696
0.37
2.526
H
PRO




104
HD2
31.154
1.089
3.309
H
PRO




105
HD3
29.777
0.529
4.319
H
PRO




106
C
33.432
−2.807
3.829
C
PRO




107
O
33.123
−3.577
4.739
O
PRO


8
ASN
108
N
34.496
−1.986
3.915
N
PRO




109
HN
34.729
−1.355
3.179
H
PRO




110
CA
35.337
−1.902
5.082
C
PRO




111
HA
35.216
−2.792
5.682
H
PRO




112
CB
36.831
−1.741
4.72
C
PRO




113
HB1
37.458
−1.762
5.638
H
PRO




114
HB2
36.995
−0.776
4.195
H
PRO




115
CG
37.251
−2.912
3.826
C
PRO




116
OD1
37.015
−4.081
4.155
O
PRO




117
ND2
37.878
−2.593
2.661
N
PRO




118
HD21
38.015
−1.634
2.411
H
PRO




119
HD22
38.169
−3.328
2.049
H
PRO




120
C
34.874
−0.728
5.905
C
PRO




121
O
34.068
0.085
5.455
O
PRO


9
ALA
122
N
35.367
−0.623
7.161
N
PRO




123
HN
36.013
−1.299
7.508
H
PRO




124
CA
35.001
0.411
8.108
C
PRO




125
HA
33.93
0.362
8.235
H
PRO




126
CB
35.661
0.18
9.479
C
PRO




127
HB1
36.767
0.245
9.403
H
PRO




128
HB2
35.397
−0.83
9.859
H
PRO




129
HB3
35.309
0.93
10.219
H
PRO




130
C
35.346
1.801
7.617
C
PRO




131
O
34.615
2.754
7.872
O
PRO


10
GLU
132
N
36.449
1.932
6.845
N
PRO




133
HN
37.033
1.143
6.674
H
PRO




134
CA
36.931
3.151
6.228
C
PRO




135
HA
37.18
3.858
7.006
H
PRO




136
CB
38.186
2.872
5.359
C
PRO




137
HB1
38.422
3.782
4.766
H
PRO




138
HB2
37.963
2.056
4.638
H
PRO




139
CG
39.485
2.543
6.14
C
PRO




140
HG1
39.735
3.402
6.798
H
PRO




141
HG2
40.311
2.417
5.408
H
PRO




142
CD
39.427
1.276
6.99
C
PRO




143
OE1
38.811
0.27
6.547
O
PRO




144
OE2
40.008
1.291
8.109
O
PRO




145
C
35.891
3.789
5.332
C
PRO




146
O
35.734
5.009
5.309
O
PRO


11
ASP
147
N
35.132
2.955
4.589
N
PRO




148
HN
35.254
1.967
4.656
H
PRO




149
CA
34.138
3.385
3.633
C
PRO




150
HA
34.553
4.182
3.034
H
PRO




151
CB
33.734
2.199
2.726
C
PRO




152
HB1
32.974
2.517
1.981
H
PRO




153
HB2
33.31
1.381
3.347
H
PRO




154
CG
34.942
1.661
1.974
C
PRO




155
OD1
35.483
2.403
1.111
O
PRO




156
OD2
35.341
0.496
2.243
O
PRO




157
C
32.877
3.903
4.298
C
PRO




158
O
32.101
4.638
3.689
O
PRO


12
THR
159
N
32.645
3.543
5.583
N
PRO




160
HN
33.315
2.997
6.08
H
PRO




161
CA
31.402
3.838
6.276
C
PRO




162
HA
30.594
3.659
5.582
H
PRO




163
CB
31.164
2.944
7.498
C
PRO




164
HB
30.142
3.137
7.886
H
PRO




165
OG1
32.069
3.187
8.569
O
PRO




166
HG1
32.953
2.983
8.253
H
PRO




167
CG2
31.253
1.457
7.111
C
PRO




168
HG21
32.278
1.19
6.773
H
PRO




169
HG22
30.543
1.223
6.29
H
PRO




170
HG23
31.003
0.82
7.985
H
PRO




171
C
31.304
5.284
6.715
C
PRO




172
O
30.213
5.79
6.972
O
PRO


13
TYR
173
N
32.455
5.99
6.807
N
PRO




174
HN
33.323
5.579
6.537
H
PRO




175
CA
32.554
7.266
7.482
C
PRO




176
HA
31.971
7.202
8.389
H
PRO




177
CB
34.021
7.608
7.871
C
PRO




178
HB1
34.054
8.546
8.465
H
PRO




179
HB2
34.629
7.741
6.951
H
PRO




180
CG
34.665
6.524
8.718
C
PRO




181
CD1
33.966
5.879
9.756
C
PRO




182
HD1
32.946
6.149
9.985
H
PRO




183
CE1
34.568
4.862
10.504
C
PRO




184
HE1
34.007
4.353
11.275
H
PRO




185
CZ
35.89
4.491
10.251
C
PRO




186
OH
36.465
3.459
11.021
O
PRO




187
HH
37.303
3.203
10.627
H
PRO




188
CD2
36.004
6.155
8.489
C
PRO




189
HD2
36.568
6.643
7.707
H
PRO




190
CE2
36.618
5.152
9.255
C
PRO




191
HE2
37.645
4.88
9.062
H
PRO




192
C
31.96
8.407
6.681
C
PRO




193
O
31.649
9.453
7.249
O
PRO


14
ASP
194
N
31.738
8.209
5.354
N
PRO




195
HN
32.003
7.349
4.926
H
PRO




196
CA
31.115
9.178
4.47
C
PRO




197
HA
31.694
10.088
4.535
H
PRO




198
CB
31.138
8.659
2.996
C
PRO




199
HB1
30.588
7.695
2.934
H
PRO




200
HB2
32.193
8.463
2.709
H
PRO




201
CG
30.549
9.619
1.957
C
PRO




202
OD1
29.71
9.15
1.139
O
PRO




203
OD2
30.941
10.818
1.934
O
PRO




204
C
29.695
9.501
4.909
C
PRO




205
O
29.338
10.673
5.017
O
PRO


15
LEU
206
N
28.872
8.474
5.229
N
PRO




207
HN
29.16
7.525
5.129
H
PRO




208
CA
27.496
8.698
5.62
C
PRO




209
HA
27.156
9.652
5.245
H
PRO




210
CB
26.569
7.584
5.078
C
PRO




211
HB1
25.57
7.647
5.56
H
PRO




212
HB2
27.014
6.599
5.336
H
PRO




213
CG
26.349
7.643
3.55
C
PRO




214
HG
27.347
7.683
3.063
H
PRO




215
CD1
25.639
6.379
3.036
C
PRO




216
HD11
24.644
6.27
3.518
H
PRO




217
HD12
26.248
5.477
3.261
H
PRO




218
HD13
25.498
6.437
1.935
H
PRO




219
CD2
25.568
8.898
3.128
C
PRO




220
HD21
26.127
9.826
3.374
H
PRO




221
HD22
24.578
8.927
3.631
H
PRO




222
HD23
25.404
8.873
2.029
H
PRO




223
C
27.34
8.74
7.119
C
PRO




224
O
26.386
9.339
7.614
O
PRO


16
ARG
225
N
28.289
8.16
7.894
N
PRO




226
HN
29.045
7.649
7.493
H
PRO




227
CA
28.258
8.249
9.342
C
PRO




228
HA
27.277
7.941
9.673
H
PRO




229
CB
29.3
7.357
10.046
C
PRO




230
HB1
29.384
7.651
11.114
H
PRO




231
HB2
30.293
7.52
9.576
H
PRO




232
CG
28.961
5.857
10.035
C
PRO




233
HG1
28.85
5.5
8.988
H
PRO




234
HG2
27.992
5.699
10.554
H
PRO




235
CD
30.059
5.058
10.744
C
PRO




236
HD1
30.163
5.422
11.788
H
PRO




237
HD2
31.024
5.177
10.207
H
PRO




238
NE
29.714
3.604
10.77
N
PRO




239
HE
28.967
3.26
10.202
H
PRO




240
CZ
30.5
2.707
11.419
C
PRO




241
NH1
31.559
3.099
12.162
N
PRO




242
HH11
31.761
4.07
12.295
H
PRO




243
HH12
32.11
2.412
12.634
H
PRO




244
NH2
30.228
1.387
11.356
N
PRO




245
HH21
29.473
1.036
10.802
H
PRO




246
HH22
30.774
0.772
11.926
H
PRO




247
C
28.452
9.663
9.828
C
PRO




248
O
27.763
10.102
10.744
O
PRO


17
HIS
249
N
29.389
10.427
9.222
N
PRO




250
HN
29.976
10.075
8.496
H
PRO




251
CA
29.56
11.811
9.599
C
PRO




252
HA
29.515
11.868
10.676
H
PRO




253
CB
30.922
12.388
9.152
C
PRO




254
HB1
30.928
12.59
8.059
H
PRO




255
HB2
31.713
11.633
9.347
H
PRO




256
ND1
31.528
13.656
11.275
N
PRO




257
HD1
31.508
12.87
11.893
H
PRO




258
CG
31.286
13.632
9.916
C
PRO




259
CE1
31.756
14.949
11.613
C
PRO




260
HE1
31.969
15.266
12.634
H
PRO




261
NE2
31.677
15.755
10.571
N
PRO




262
CD2
31.38
14.926
9.504
C
PRO




263
HD2
31.243
15.344
8.514
H
PRO




264
C
28.459
12.685
9.05
C
PRO




265
O
27.925
13.533
9.755
O
PRO


18
ARG
266
N
28.096
12.5
7.762
N
PRO




267
HN
28.496
11.773
7.21
H
PRO




268
CA
27.237
13.429
7.064
C
PRO




269
HA
27.615
14.423
7.253
H
PRO




270
CB
27.325
13.174
5.543
C
PRO




271
HB1
26.944
12.156
5.316
H
PRO




272
HB2
28.399
13.195
5.261
H
PRO




273
CG
26.59
14.195
4.657
C
PRO




274
HG1
26.93
15.224
4.904
H
PRO




275
HG2
25.502
14.141
4.873
H
PRO




276
CD
26.841
13.923
3.17
C
PRO




277
HD1
26.727
12.839
2.958
H
PRO




278
HD2
27.862
14.257
2.883
H
PRO




279
NE
25.823
14.668
2.365
N
PRO




280
HE
25.105
15.177
2.84
H
PRO




281
CZ
25.736
14.544
1.016
C
PRO




282
NH1
26.746
14.006
0.296
N
PRO




283
HH11
27.587
13.708
0.747
H
PRO




284
HH12
26.65
13.899
−0.694
H
PRO




285
NH2
24.61
14.938
0.378
N
PRO




286
HH21
23.819
15.233
0.914
H
PRO




287
HH22
24.501
14.71
−0.589
H
PRO




288
C
25.785
13.415
7.497
C
PRO




289
O
25.214
14.478
7.731
O
PRO


19
VAL
290
N
25.148
12.222
7.613
N
PRO




291
HN
25.622
11.356
7.477
H
PRO




292
CA
23.702
12.152
7.777
C
PRO




293
HA
23.298
13.147
7.893
H
PRO




294
CB
22.987
11.531
6.573
C
PRO




295
HB
21.893
11.514
6.77
H
PRO




296
CG1
23.217
12.414
5.33
C
PRO




297
HG11
24.283
12.372
5.02
H
PRO




298
HG12
22.945
13.47
5.544
H
PRO




299
HG13
22.6
12.055
4.48
H
PRO




300
CG2
23.46
10.09
6.307
C
PRO




301
HG21
23.296
9.443
7.195
H
PRO




302
HG22
24.539
10.074
6.043
H
PRO




303
HG23
22.893
9.661
5.454
H
PRO




304
C
23.311
11.413
9.036
C
PRO




305
O
22.128
11.152
9.251
O
PRO


20
LEU
306
N
24.281
11.077
9.917
N
PRO




307
HN
25.236
11.295
9.733
H
PRO




308
CA
23.996
10.383
11.158
C
PRO




309
HA
22.929
10.32
11.308
H
PRO




310
CB
24.585
8.952
11.213
C
PRO




311
HB1
24.516
8.556
12.248
H
PRO




312
HB2
25.659
8.985
10.93
H
PRO




313
CG
23.866
7.963
10.269
C
PRO




314
HG
23.846
8.416
9.254
H
PRO




315
CD1
24.625
6.631
10.144
C
PRO




316
HD11
24.023
5.902
9.561
H
PRO




317
HD12
24.837
6.202
11.146
H
PRO




318
HD13
25.588
6.779
9.611
H
PRO




319
CD2
22.408
7.721
10.691
C
PRO




320
HD21
21.815
8.659
10.633
H
PRO




321
HD22
22.342
7.336
11.732
H
PRO




322
HD23
21.94
6.978
10.01
H
PRO




323
C
24.497
11.212
12.304
C
PRO




324
O
23.691
11.797
13.026
O
PRO


21
ARG
325
N
25.832
11.284
12.511
N
PRO




326
HN
26.476
10.819
11.909
H
PRO




327
CA
26.425
12.011
13.614
C
PRO




328
HA
25.656
12.386
14.274
H
PRO




329
CB
27.349
11.085
14.446
C
PRO




330
HB1
27.818
11.674
15.264
H
PRO




331
HB2
28.157
10.699
13.789
H
PRO




332
CG
26.659
9.868
15.091
C
PRO




333
HG1
26.231
9.222
14.295
H
PRO




334
HG2
25.822
10.226
15.728
H
PRO




335
CD
27.643
9.043
15.941
C
PRO




336
HD1
28.076
9.646
16.767
H
PRO




337
HD2
28.479
8.687
15.301
H
PRO




338
NE
26.951
7.838
16.508
N
PRO




339
HE
27.102
6.943
16.088
H
PRO




340
CZ
26.11
7.854
17.576
C
PRO




341
NH1
25.841
8.973
18.282
N
PRO




342
HH11
26.319
9.826
18.074
H
PRO




343
HH12
25.204
8.923
19.051
H
PRO




344
NH2
25.52
6.69
17.933
N
PRO




345
HH21
25.661
5.898
17.339
H
PRO




346
HH22
24.78
6.683
18.606
H
PRO




347
C
27.249
13.205
13.131
C
PRO




348
O
28.476
13.144
13.226
O
PRO


22
PRO
349
N
26.688
14.319
12.636
N
PRO




350
CD
25.268
14.478
12.311
C
PRO




351
HD1
24.63
14.284
13.2
H
PRO




352
HD2
25.015
13.781
11.483
H
PRO




353
CA
27.469
15.471
12.193
C
PRO




354
HA
28.381
15.149
11.714
H
PRO




355
CB
26.51
16.217
11.251
C
PRO




356
HB1
26.586
15.769
10.237
H
PRO




357
HB2
26.719
17.305
11.175
H
PRO




358
CG
25.119
15.918
11.816
C
PRO




359
HG1
24.907
16.59
12.675
H
PRO




360
HG2
24.318
16.023
11.053
H
PRO




361
C
27.819
16.35
13.368
C
PRO




362
O
28.587
17.294
13.198
O
PRO


23
ASN
363
N
27.243
16.071
14.556
N
PRO




364
HN
26.623
15.294
14.63
H
PRO




365
CA
27.365
16.895
15.738
C
PRO




366
HA
27.654
17.897
15.456
H
PRO




367
CB
26.036
16.923
16.535
C
PRO




368
HB1
26.122
17.581
17.426
H
PRO




369
HB2
25.777
15.898
16.874
H
PRO




370
CG
24.893
17.422
15.649
C
PRO




371
OD1
23.995
16.653
15.293
O
PRO




372
ND2
24.93
18.733
15.285
N
PRO




373
HD21
24.201
19.092
14.702
H
PRO




374
HD22
25.68
19.319
15.594
H
PRO




375
C
28.435
16.337
16.644
C
PRO




376
O
28.567
16.758
17.792
O
PRO


24
GLN
377
N
29.23
15.37
16.137
N
PRO




378
HN
29.134
15.077
15.189
H
PRO




379
CA
30.294
14.733
16.867
C
PRO




380
HA
30.561
15.354
17.71
H
PRO




381
CB
29.898
13.308
17.334
C
PRO




382
HB1
30.782
12.805
17.781
H
PRO




383
HB2
29.582
12.723
16.444
H
PRO




384
CG
28.747
13.286
18.358
C
PRO




385
HG1
27.866
13.817
17.939
H
PRO




386
HG2
29.051
13.795
19.297
H
PRO




387
CD
28.321
11.848
18.663
C
PRO




388
OE1
27.217
11.429
18.3
O
PRO




389
NE2
29.216
11.078
19.343
N
PRO




390
HE21
28.978
10.132
19.563
H
PRO




391
HE22
30.098
11.46
19.619
H
PRO




392
C
31.454
14.643
15.892
C
PRO




393
O
31.206
14.688
14.687
O
PRO


25
PRO
394
N
32.713
14.534
16.333
N
PRO




395
CD
33.094
14.714
17.739
C
PRO




396
HD1
32.877
13.774
18.29
H
PRO




397
HD2
32.564
15.571
18.207
H
PRO




398
CA
33.896
14.456
15.474
C
PRO




399
HA
33.964
15.401
14.955
H
PRO




400
CB
35.048
14.238
16.464
C
PRO




401
HB1
36.009
14.635
16.075
H
PRO




402
HB2
35.163
13.16
16.711
H
PRO




403
CG
34.597
14.984
17.717
C
PRO




404
HG1
35.114
14.631
18.635
H
PRO




405
HG2
34.777
16.072
17.582
H
PRO




406
C
33.901
13.365
14.422
C
PRO




407
O
33.107
12.43
14.498
O
PRO


26
ILE
408
N
34.824
13.449
13.436
N
PRO




409
HN
35.45
14.224
13.393
H
PRO




410
CA
35.048
12.421
12.432
C
PRO




411
HA
34.075
12.178
12.03
H
PRO




412
CB
35.917
12.923
11.275
C
PRO




413
HB
35.418
13.828
10.867
H
PRO




414
CG2
37.311
13.365
11.774
C
PRO




415
HG21
37.889
12.495
12.153
H
PRO




416
HG22
37.236
14.121
12.584
H
PRO




417
HG23
37.887
13.817
10.938
H
PRO




418
CG1
36.038
11.914
10.103
C
PRO




419
HG11
36.527
10.983
10.461
H
PRO




420
HG12
36.708
12.36
9.337
H
PRO




421
CD1
34.707
11.564
9.428
C
PRO




422
HD1
34.176
12.488
9.116
H
PRO




423
HD2
34.053
10.991
10.12
H
PRO




424
HD3
34.887
10.94
8.527
H
PRO




425
C
35.589
11.146
13.065
C
PRO




426
O
35.279
10.037
12.635
O
PRO


27
GLU
427
N
36.365
11.279
14.164
N
PRO




428
HN
36.665
12.177
14.476
H
PRO




429
CA
36.906
10.187
14.942
C
PRO




430
HA
37.31
9.454
14.26
H
PRO




431
CB
38.029
10.657
15.905
C
PRO




432
HB1
38.419
9.763
16.436
H
PRO




433
HB2
37.615
11.345
16.674
H
PRO




434
CG
39.241
11.332
15.215
C
PRO




435
HG1
39.506
10.772
14.292
H
PRO




436
HG2
40.11
11.292
15.906
H
PRO




437
CD
39.022
12.804
14.857
C
PRO




438
OE1
37.936
13.361
15.169
O
PRO




439
OE2
39.95
13.402
14.252
O
PRO




440
C
35.834
9.519
15.778
C
PRO




441
O
36.017
8.4
16.252
O
PRO


28
ALA
442
N
34.659
10.173
15.943
N
PRO




443
HN
34.515
11.072
15.537
H
PRO




444
CA
33.537
9.637
16.682
C
PRO




445
HA
33.891
8.928
17.415
H
PRO




446
CB
32.765
10.748
17.416
C
PRO




447
HB1
32.338
11.478
16.695
H
PRO




448
HB2
33.448
11.291
18.103
H
PRO




449
HB3
31.936
10.318
18.018
H
PRO




450
C
32.593
8.916
15.744
C
PRO




451
O
31.54
8.433
16.159
O
PRO


29
CYS
452
N
32.993
8.766
14.457
N
PRO




453
HN
33.813
9.224
14.122
H
PRO




454
CA
32.312
7.923
13.498
C
PRO




455
HA
31.265
7.844
13.752
H
PRO




456
CB
32.465
8.434
12.046
C
PRO




457
HB1
31.94
7.741
11.354
H
PRO




458
HB2
33.539
8.431
11.762
H
PRO




459
SG
31.795
10.102
11.842
S
PRO




460
HG1
32.089
10.195
10.554
H
PRO




461
C
32.933
6.551
13.521
C
PRO




462
O
32.426
5.631
12.884
O
PRO


30
MET
463
N
34.037
6.381
14.281
N
PRO




464
HN
34.418
7.144
14.797
H
PRO




465
CA
34.724
5.127
14.452
C
PRO




466
HA
34.52
4.473
13.618
H
PRO




467
CB
36.251
5.332
14.609
C
PRO




468
HB1
36.752
4.341
14.634
H
PRO




469
HB2
36.466
5.847
15.57
H
PRO




470
CG
36.86
6.182
13.479
C
PRO




471
HG1
36.365
7.177
13.464
H
PRO




472
HG2
36.631
5.689
12.511
H
PRO




473
SD
38.653
6.428
13.623
S
PRO




474
CE
38.777
7.408
12.099
C
PRO




475
HE1
38.161
8.33
12.166
H
PRO




476
HE2
38.426
6.823
11.223
H
PRO




477
HE3
39.828
7.711
11.908
H
PRO




478
C
34.167
4.536
15.715
C
PRO




479
O
34.295
5.126
16.787
O
PRO


31
PHE
480
N
33.479
3.379
15.62
N
PRO




481
HN
33.413
2.848
14.779
H
PRO




482
CA
32.687
2.894
16.725
C
PRO




483
HA
32.548
3.669
17.464
H
PRO




484
CB
31.288
2.372
16.298
C
PRO




485
HB1
30.715
2.043
17.191
H
PRO




486
HB2
31.41
1.506
15.613
H
PRO




487
CG
30.422
3.387
15.591
C
PRO




488
CD1
30.535
4.778
15.783
C
PRO




489
HD1
31.27
5.189
16.46
H
PRO




490
CE1
29.697
5.664
15.095
C
PRO




491
HE1
29.802
6.728
15.246
H
PRO




492
CZ
28.728
5.173
14.215
C
PRO




493
HZ
28.088
5.859
13.68
H
PRO




494
CD2
29.418
2.909
14.729
C
PRO




495
HD2
29.305
1.845
14.583
H
PRO




496
CE2
28.577
3.793
14.044
C
PRO




497
HE2
27.819
3.408
13.378
H
PRO




498
C
33.399
1.753
17.388
C
PRO




499
O
34.202
1.041
16.786
O
PRO


32
GLU
500
N
33.067
1.54
18.678
N
PRO




501
HN
32.467
2.173
19.161
H
PRO




502
CA
33.469
0.419
19.493
C
PRO




503
HA
34.546
0.35
19.456
H
PRO




504
CB
33.003
0.588
20.963
C
PRO




505
HB1
33.461
−0.231
21.558
H
PRO




506
HB2
31.901
0.469
21.039
H
PRO




507
CG
33.414
1.928
21.626
C
PRO




508
HG1
34.45
2.193
21.325
H
PRO




509
HG2
33.4
1.793
22.728
H
PRO




510
CD
32.491
3.113
21.311
C
PRO




511
OE1
31.527
2.955
20.513
O
PRO




512
OE2
32.749
4.205
21.877
O
PRO




513
C
32.876
−0.858
18.94
C
PRO




514
O
33.488
−1.923
18.983
O
PRO


33
SER
515
N
31.655
−0.742
18.367
N
PRO




516
HN
31.206
0.148
18.342
H
PRO




517
CA
30.881
−1.813
17.785
C
PRO




518
HA
30.871
−2.629
18.493
H
PRO




519
CB
29.412
−1.381
17.549
C
PRO




520
HB1
28.938
−1.191
18.536
H
PRO




521
HB2
28.848
−2.195
17.046
H
PRO




522
OG
29.312
−0.196
16.764
O
PRO




523
HG1
28.479
0.217
17.001
H
PRO




524
C
31.464
−2.339
16.491
C
PRO




525
O
31.156
−3.456
16.083
O
PRO


34
ASP
526
N
32.364
−1.574
15.829
N
PRO




527
HN
32.607
−0.661
16.149
H
PRO




528
CA
33.051
−2.033
14.637
C
PRO




529
HA
32.341
−2.52
13.986
H
PRO




530
CB
33.76
−0.879
13.881
C
PRO




531
HB1
34.232
−1.268
12.953
H
PRO




532
HB2
34.552
−0.434
14.52
H
PRO




533
CG
32.789
0.221
13.48
C
PRO




534
OD1
31.618
−0.089
13.137
O
PRO




535
OD2
33.214
1.409
13.486
O
PRO




536
C
34.139
−3.025
14.997
C
PRO




537
O
34.596
−3.794
14.152
O
PRO


35
LEU
538
N
34.575
−3.024
16.276
N
PRO




539
HN
34.166
−2.413
16.95
H
PRO




540
CA
35.704
−3.792
16.747
C
PRO




541
HA
36.332
−4.073
15.914
H
PRO




542
CB
36.531
−2.965
17.765
C
PRO




543
HB1
37.428
−3.544
18.073
H
PRO




544
HB2
35.917
−2.79
18.673
H
PRO




545
CG
36.995
−1.584
17.241
C
PRO




546
HG
36.097
−1.016
16.917
H
PRO




547
CD1
37.648
−0.765
18.369
C
PRO




548
HD11
38.566
−1.274
18.735
H
PRO




549
HD12
36.942
−0.647
19.219
H
PRO




550
HD13
37.926
0.245
17.998
H
PRO




551
CD2
37.937
−1.692
16.027
C
PRO




552
HD21
37.429
−2.188
15.172
H
PRO




553
HD22
38.843
−2.278
16.292
H
PRO




554
HD23
38.254
−0.679
15.701
H
PRO




555
C
35.238
−5.053
17.438
C
PRO




556
O
36.052
−5.883
17.838
O
PRO


36
THR
557
N
33.903
−5.244
17.572
N
PRO




558
HN
33.256
−4.559
17.245
H
PRO




559
CA
33.302
−6.414
18.19
C
PRO




560
HA
33.851
−6.593
19.103
H
PRO




561
CB
31.834
−6.228
18.562
C
PRO




562
HB
31.189
−6.35
17.665
H
PRO




563
OG1
31.609
−4.915
19.049
O
PRO




564
HG1
32.233
−4.781
19.767
H
PRO




565
CG2
31.387
−7.208
19.663
C
PRO




566
HG21
32.079
−7.166
20.531
H
PRO




567
HG22
31.344
−8.251
19.282
H
PRO




568
HG23
30.37
−6.94
20.021
H
PRO




569
C
33.466
−7.627
17.298
C
PRO




570
O
33.6
−7.507
16.079
O
PRO


37
ARG
571
N
33.483
−8.839
17.902
N
PRO




572
HN
33.382
−8.906
18.891
H
PRO




573
CA
33.629
−10.105
17.217
C
PRO




574
HA
34.596
−10.097
16.737
H
PRO




575
CB
33.567
−11.281
18.224
C
PRO




576
HB1
32.554
−11.317
18.679
H
PRO




577
HB2
34.287
−11.066
19.043
H
PRO




578
CG
33.901
−12.663
17.627
C
PRO




579
HG1
34.95
−12.662
17.26
H
PRO




580
HG2
33.243
−12.851
16.752
H
PRO




581
CD
33.688
−13.835
18.597
C
PRO




582
HD1
33.918
−14.796
18.088
H
PRO




583
HD2
32.638
−13.845
18.96
H
PRO




584
NE
34.61
−13.669
19.767
N
PRO




585
HE
35.193
−12.858
19.81
H
PRO




586
CZ
34.675
−14.562
20.786
C
PRO




587
NH1
33.929
−15.689
20.794
N
PRO




588
HH11
33.323
−15.894
20.025
H
PRO




589
HH12
34.029
−16.311
21.57
H
PRO




590
NH2
35.504
−14.337
21.832
N
PRO




591
HH21
36.07
−13.513
21.864
H
PRO




592
HH22
35.531
−15.018
22.563
H
PRO




593
C
32.56
−10.326
16.166
C
PRO




594
O
31.366
−10.209
16.438
O
PRO


38
SER
595
N
33.004
−10.659
14.931
N
PRO




596
HN
33.986
−10.683
14.763
H
PRO




597
CA
32.196
−11.058
13.795
C
PRO




598
HA
32.924
−11.332
13.046
H
PRO




599
CB
31.343
−12.342
14.02
C
PRO




600
HB1
31.985
−13.122
14.482
H
PRO




601
HB2
30.988
−12.731
13.042
H
PRO




602
OG
30.213
−12.123
14.859
O
PRO




603
HG1
30.538
−11.605
15.599
H
PRO




604
C
31.415
−9.913
13.183
C
PRO




605
O
30.436
−10.128
12.468
O
PRO


39
ALA
606
N
31.867
−8.661
13.43
N
PRO




607
HN
32.641
−8.517
14.041
H
PRO




608
CA
31.325
−7.454
12.847
C
PRO




609
HA
30.265
−7.453
13.054
H
PRO




610
CB
31.95
−6.187
13.462
C
PRO




611
HB1
33.043
−6.153
13.264
H
PRO




612
HB2
31.794
−6.18
14.562
H
PRO




613
HB3
31.489
−5.267
13.043
H
PRO




614
C
31.495
−7.407
11.345
C
PRO




615
O
32.464
−7.94
10.802
O
PRO


40
PHE
616
N
30.538
−6.767
10.64
N
PRO




617
HN
29.758
−6.333
11.085
H
PRO




618
CA
30.614
−6.612
9.208
C
PRO




619
HA
31.647
−6.429
8.954
H
PRO




620
CB
30.137
−7.841
8.375
C
PRO




621
HB1
30.766
−8.714
8.653
H
PRO




622
HB2
30.306
−7.645
7.294
H
PRO




623
CG
28.699
−8.266
8.563
C
PRO




624
CD1
28.316
−9.038
9.673
C
PRO




625
HD1
29.045
−9.277
10.432
H
PRO




626
CE1
27.009
−9.527
9.789
C
PRO




627
HE1
26.731
−10.125
10.644
H
PRO




628
CZ
26.065
−9.245
8.793
C
PRO




629
HZ
25.056
−9.622
8.879
H
PRO




630
CD2
27.741
−7.986
7.572
C
PRO




631
HD2
28.023
−7.411
6.703
H
PRO




632
CE2
26.432
−8.473
7.684
C
PRO




633
HE2
25.705
−8.254
6.916
H
PRO




634
C
29.867
−5.372
8.813
C
PRO




635
O
28.987
−4.897
9.529
O
PRO


41
HIS
636
N
30.239
−4.81
7.646
N
PRO




637
HN
30.962
−5.208
7.087
H
PRO




638
CA
29.632
−3.624
7.101
C
PRO




639
HA
28.757
−3.352
7.672
H
PRO




640
CB
30.61
−2.428
7.023
C
PRO




641
HB1
30.065
−1.503
6.74
H
PRO




642
HB2
31.383
−2.625
6.248
H
PRO




643
ND1
30.797
−1.72
9.466
N
PRO




644
HD1
29.859
−1.393
9.58
H
PRO




645
CG
31.355
−2.206
8.305
C
PRO




646
CE1
31.769
−1.753
10.411
C
PRO




647
HE1
31.601
−1.451
11.445
H
PRO




648
NE2
32.909
−2.221
9.939
N
PRO




649
CD2
32.646
−2.506
8.611
C
PRO




650
HD2
33.42
−2.929
7.982
H
PRO




651
C
29.213
−3.987
5.708
C
PRO




652
O
29.955
−4.656
4.989
O
PRO


42
LEU
653
N
28.005
−3.555
5.298
N
PRO




654
HN
27.418
−3.01
5.891
H
PRO




655
CA
27.513
−3.773
3.959
C
PRO




656
HA
28.248
−4.288
3.359
H
PRO




657
CB
26.164
−4.526
3.894
C
PRO




658
HB1
25.806
−4.55
2.843
H
PRO




659
HB2
25.411
−3.97
4.492
H
PRO




660
CG
26.214
−5.983
4.406
C
PRO




661
HG
26.57
−5.963
5.459
H
PRO




662
CD1
24.801
−6.587
4.409
C
PRO




663
HD11
24.389
−6.609
3.377
H
PRO




664
HD12
24.122
−5.972
5.037
H
PRO




665
HD13
24.819
−7.622
4.811
H
PRO




666
CD2
27.18
−6.873
3.601
C
PRO




667
HD21
28.224
−6.502
3.689
H
PRO




668
HD22
26.894
−6.883
2.528
H
PRO




669
HD23
27.153
−7.915
3.986
H
PRO




670
C
27.316
−2.415
3.364
C
PRO




671
O
26.95
−1.466
4.058
O
PRO


43
GLY
672
N
27.595
−2.299
2.051
N
PRO




673
HN
27.919
−3.073
1.514
H
PRO




674
CA
27.443
−1.07
1.321
C
PRO




675
HA1
28.41
−0.83
0.906
H
PRO




676
HA2
27.041
−0.294
1.956
H
PRO




677
C
26.503
−1.291
0.186
C
PRO




678
O
26.465
−2.369
−0.407
O
PRO


44
GLY
679
N
25.733
−0.237
−0.151
N
PRO




680
HN
25.794
0.613
0.368
H
PRO




681
CA
24.827
−0.235
−1.273
C
PRO




682
HA1
23.948
0.322
−0.983
H
PRO




683
HA2
24.61
−1.25
−1.572
H
PRO




684
C
25.472
0.5
−2.389
C
PRO




685
O
25.937
1.619
−2.199
O
PRO


45
PHE
686
N
25.502
−0.108
−3.589
N
PRO




687
HN
25.092
−1.007
−3.723
H
PRO




688
CA
26.185
0.47
−4.721
C
PRO




689
HA
26.559
1.451
−4.47
H
PRO




690
CB
27.365
−0.386
−5.24
C
PRO




691
HB1
27.735
−0.005
−6.216
H
PRO




692
HB2
27.066
−1.449
−5.362
H
PRO




693
CG
28.503
−0.32
−4.262
C
PRO




694
CD1
28.589
−1.223
−3.188
C
PRO




695
HD1
27.83
−1.981
−3.062
H
PRO




696
CE1
29.645
−1.139
−2.271
C
PRO




697
HE1
29.698
−1.837
−1.448
H
PRO




698
CZ
30.627
−0.152
−2.424
C
PRO




699
HZ
31.443
−0.082
−1.72
H
PRO




700
CD2
29.49
0.669
−4.402
C
PRO




701
HD2
29.432
1.375
−5.217
H
PRO




702
CE2
30.548
0.755
−3.489
C
PRO




703
HE2
31.299
1.522
−3.603
H
PRO




704
C
25.189
0.651
−5.825
C
PRO




705
O
24.481
−0.277
−6.221
O
PRO


46
TYR
706
N
25.119
1.893
−6.342
N
PRO




707
HN
25.66
2.643
−5.97
H
PRO




708
CA
24.356
2.206
−7.517
C
PRO




709
HA
24.382
1.356
−8.183
H
PRO




710
CB
22.901
2.618
−7.175
C
PRO




711
HB1
22.873
3.604
−6.664
H
PRO




712
HB2
22.463
1.86
−6.49
H
PRO




713
CG
22.033
2.658
−8.402
C
PRO




714
CD1
21.504
3.874
−8.866
C
PRO




715
HD1
21.722
4.79
−8.337
H
PRO




716
CE1
20.7
3.908
−10.012
C
PRO




717
HE1
20.3
4.849
−10.362
H
PRO




718
CZ
20.416
2.724
−10.705
C
PRO




719
OH
19.612
2.766
−11.864
O
PRO




720
HH
19.558
1.875
−12.219
H
PRO




721
CD2
21.739
1.475
−9.101
C
PRO




722
HD2
22.135
0.532
−8.753
H
PRO




723
CE2
20.935
1.506
−10.248
C
PRO




724
HE2
20.722
0.587
−10.774
H
PRO




725
C
25.107
3.341
−8.158
C
PRO




726
O
25.533
4.273
−7.478
O
PRO


47
GLY
727
N
25.329
3.263
−9.49
N
PRO




728
HN
25.01
2.48
−10.018
H
PRO




729
CA
26.075
4.268
−10.223
C
PRO




730
HA1
25.787
5.246
−9.868
H
PRO




731
HA2
25.856
4.121
−11.271
H
PRO




732
C
27.563
4.12
−10.046
C
PRO




733
O
28.327
4.998
−10.442
O
PRO


48
GLY
734
N
28.009
3.007
−9.413
N
PRO




735
HN
27.359
2.305
−9.135
H
PRO




736
CA
29.4
2.764
−9.082
C
PRO




737
HA1
30.019
3.127
−9.89
H
PRO




738
HA2
29.505
1.701
−8.922
H
PRO




739
C
29.828
3.461
−7.817
C
PRO




740
O
31.009
3.463
−7.482
O
PRO


49
LYS
741
N
28.871
4.073
−7.086
N
PRO




742
HN
27.915
4.036
−7.365
H
PRO




743
CA
29.139
4.881
−5.921
C
PRO




744
HA
30.202
4.94
−5.737
H
PRO




745
CB
28.554
6.308
−6.089
C
PRO




746
HB1
27.456
6.234
−6.245
H
PRO




747
HB2
28.985
6.75
−7.012
H
PRO




748
CG
28.832
7.272
−4.92
C
PRO




749
HG1
29.931
7.409
−4.829
H
PRO




750
HG2
28.46
6.83
−3.971
H
PRO




751
CD
28.139
8.632
−5.1
C
PRO




752
HD1
27.044
8.453
−5.157
H
PRO




753
HD2
28.453
9.077
−6.068
H
PRO




754
CE
28.402
9.63
−3.963
C
PRO




755
HE1
28.115
9.197
−2.98
H
PRO




756
HE2
27.816
10.557
−4.138
H
PRO




757
NZ
29.83
10.008
−3.889
N
PRO




758
HZ1
30.212
10.125
−4.849
H
PRO




759
HZ2
30.357
9.271
−3.378
H
PRO




760
HZ3
29.931
10.903
−3.37
H
PRO




761
C
28.474
4.225
−4.742
C
PRO




762
O
27.363
3.708
−4.858
O
PRO


50
LEU
763
N
29.156
4.229
−3.571
N
PRO




764
HN
30.098
4.554
−3.525
H
PRO




765
CA
28.587
3.855
−2.295
C
PRO




766
HA
28.141
2.879
−2.413
H
PRO




767
CB
29.683
3.8
−1.206
C
PRO




768
HB1
30.151
4.804
−1.112
H
PRO




769
HB2
30.478
3.104
−1.549
H
PRO




770
CG
29.222
3.336
0.191
C
PRO




771
HG
28.412
4.008
0.546
H
PRO




772
CD1
28.675
1.906
0.172
C
PRO




773
HD11
29.448
1.198
−0.196
H
PRO




774
HD12
27.778
1.828
−0.478
H
PRO




775
HD13
28.385
1.612
1.203
H
PRO




776
CD2
30.38
3.443
1.194
C
PRO




777
HD21
30.766
4.484
1.233
H
PRO




778
HD22
31.206
2.769
0.881
H
PRO




779
HD23
30.043
3.15
2.211
H
PRO




780
C
27.517
4.845
−1.873
C
PRO




781
O
27.811
5.997
−1.553
O
PRO


51
ILE
782
N
26.238
4.406
−1.893
N
PRO




783
HN
26.036
3.463
−2.144
H
PRO




784
CA
25.094
5.272
−1.694
C
PRO




785
HA
25.436
6.258
−1.416
H
PRO




786
CB
24.254
5.426
−2.966
C
PRO




787
HB
23.337
6.01
−2.739
H
PRO




788
CG2
25.086
6.272
−3.955
C
PRO




789
HG21
25.984
5.711
−4.29
H
PRO




790
HG22
25.424
7.217
−3.478
H
PRO




791
HG23
24.481
6.522
−4.853
H
PRO




792
CG1
23.827
4.103
−3.66
C
PRO




793
HG11
24.717
3.458
−3.823
H
PRO




794
HG12
23.45
4.383
−4.667
H
PRO




795
CD1
22.722
3.3
−2.97
C
PRO




796
HD1
21.861
3.956
−2.719
H
PRO




797
HD2
23.097
2.825
−2.038
H
PRO




798
HD3
22.362
2.493
−3.644
H
PRO




799
C
24.239
4.808
−0.54
C
PRO




800
O
23.206
5.412
−0.26
O
PRO


52
SER
801
N
24.649
3.752
0.192
N
PRO




802
HN
25.492
3.261
−0.013
H
PRO




803
CA
23.92
3.308
1.362
C
PRO




804
HA
23.625
4.177
1.932
H
PRO




805
CB
22.682
2.431
1.023
C
PRO




806
HB1
23.008
1.481
0.548
H
PRO




807
HB2
22.042
2.976
0.296
H
PRO




808
OG
21.887
2.123
2.165
O
PRO




809
HG1
21.291
2.862
2.308
H
PRO




810
C
24.9
2.531
2.191
C
PRO




811
O
25.879
2.008
1.663
O
PRO


53
VAL
812
N
24.667
2.454
3.517
N
PRO




813
HN
23.865
2.884
3.924
H
PRO




814
CA
25.547
1.77
4.43
C
PRO




815
HA
25.974
0.921
3.917
H
PRO




816
CB
26.682
2.662
4.941
C
PRO




817
HB
27.202
3.074
4.05
H
PRO




818
CG1
26.156
3.853
5.772
C
PRO




819
HG11
25.421
4.447
5.188
H
PRO




820
HG12
27.002
4.515
6.054
H
PRO




821
HG13
25.663
3.504
6.704
H
PRO




822
CG2
27.708
1.824
5.726
C
PRO




823
HG21
27.98
0.916
5.146
H
PRO




824
HG22
27.292
1.495
6.702
H
PRO




825
HG23
28.623
2.425
5.912
H
PRO




826
C
24.709
1.236
5.565
C
PRO




827
O
23.713
1.84
5.959
O
PRO


54
ALA
828
N
25.1
0.064
6.107
N
PRO




829
HN
25.863
−0.452
5.725
H
PRO




830
CA
24.531
−0.483
7.307
C
PRO




831
HA
24.263
0.32
7.977
H
PRO




832
CB
23.316
−1.389
7.033
C
PRO




833
HB1
23.592
−2.215
6.343
H
PRO




834
HB2
22.507
−0.797
6.554
H
PRO




835
HB3
22.922
−1.821
7.977
H
PRO




836
C
25.637
−1.281
7.942
C
PRO




837
O
26.483
−1.843
7.245
O
PRO


55
SER
838
N
25.675
−1.312
9.291
N
PRO




839
HN
24.978
−0.868
9.848
H
PRO




840
CA
26.744
−1.934
10.042
C
PRO




841
HA
27.379
−2.508
9.382
H
PRO




842
CB
27.604
−0.91
10.808
C
PRO




843
HB1
28.373
−1.429
11.418
H
PRO




844
HB2
26.973
−0.294
11.484
H
PRO




845
OG
28.27
−0.056
9.884
O
PRO




846
HG1
27.599
0.509
9.496
H
PRO




847
C
26.135
−2.89
11.025
C
PRO




848
O
25.047
−2.661
11.547
O
PRO


56
PHE
849
N
26.825
−4.021
11.268
N
PRO




850
HN
27.716
−4.187
10.852
H
PRO




851
CA
26.257
−5.157
11.954
C
PRO




852
HA
25.417
−4.853
12.56
H
PRO




853
CB
25.868
−6.307
10.982
C
PRO




854
HB1
25.352
−7.127
11.526
H
PRO




855
HB2
26.775
−6.722
10.492
H
PRO




856
CG
24.964
−5.806
9.888
C
PRO




857
CD1
25.508
−5.295
8.694
C
PRO




858
HD1
26.579
−5.287
8.555
H
PRO




859
CE1
24.682
−4.753
7.705
C
PRO




860
HE1
25.115
−4.337
6.808
H
PRO




861
CZ
23.294
−4.744
7.883
C
PRO




862
HZ
22.652
−4.344
7.113
H
PRO




863
CD2
23.569
−5.812
10.046
C
PRO




864
HD2
23.134
−6.207
10.952
H
PRO




865
CE2
22.739
−5.293
9.044
C
PRO




866
HE2
21.666
−5.312
9.167
H
PRO




867
C
27.347
−5.679
12.844
C
PRO




868
O
28.516
−5.676
12.464
O
PRO


57
HIS
869
N
27.004
−6.122
14.069
N
PRO




870
HN
26.067
−6.095
14.408
H
PRO




871
CA
27.995
−6.654
14.976
C
PRO




872
HA
28.677
−7.279
14.419
H
PRO




873
CB
28.776
−5.561
15.746
C
PRO




874
HB1
29.249
−4.876
15.011
H
PRO




875
HB2
29.596
−6.038
16.325
H
PRO




876
ND1
26.909
−3.915
16.343
N
PRO




877
HD1
26.523
−3.83
15.424
H
PRO




878
CG
27.959
−4.733
16.705
C
PRO




879
CE1
26.437
−3.356
17.482
C
PRO




880
HE1
25.582
−2.679
17.5
H
PRO




881
NE2
27.103
−3.753
18.548
N
PRO




882
CD2
28.061
−4.624
18.058
C
PRO




883
HD2
28.749
−5.11
18.739
H
PRO




884
C
27.295
−7.528
15.966
C
PRO




885
O
26.113
−7.334
16.232
O
PRO


58
GLN
886
N
28.007
−8.531
16.529
N
PRO




887
HN
28.964
−8.691
16.296
H
PRO




888
CA
27.472
−9.389
17.564
C
PRO




889
HA
26.495
−9.717
17.241
H
PRO




890
CB
28.354
−10.64
17.774
C
PRO




891
HB1
29.281
−10.354
18.316
H
PRO




892
HB2
28.654
−11.009
16.77
H
PRO




893
CG
27.637
−11.796
18.494
C
PRO




894
HG1
26.764
−12.133
17.895
H
PRO




895
HG2
27.266
−11.474
19.491
H
PRO




896
CD
28.596
−12.972
18.665
C
PRO




897
OE1
28.572
−13.939
17.895
O
PRO




898
NE2
29.482
−12.878
19.695
N
PRO




899
HE21
29.447
−12.082
20.3
H
PRO




900
HE22
30.121
−13.626
19.873
H
PRO




901
C
27.32
−8.612
18.854
C
PRO




902
O
28.165
−7.782
19.184
O
PRO


59
ALA
903
N
26.232
−8.856
19.611
N
PRO




904
HN
25.568
−9.555
19.358
H
PRO




905
CA
25.892
−8.012
20.727
C
PRO




906
HA
26.746
−7.935
21.383
H
PRO




907
CB
25.43
−6.606
20.285
C
PRO




908
HB1
24.57
−6.686
19.586
H
PRO




909
HB2
26.254
−6.081
19.756
H
PRO




910
HB3
25.13
−5.986
21.156
H
PRO




911
C
24.766
−8.653
21.491
C
PRO




912
O
23.6
−8.285
21.354
O
PRO


60
GLU
913
N
25.102
−9.649
22.34
N
PRO




914
HN
26.02
−10.037
22.352
H
PRO




915
CA
24.206
−10.228
23.316
C
PRO




916
HA
23.312
−10.55
22.802
H
PRO




917
CB
24.821
−11.455
24.034
C
PRO




918
HB1
24.172
−11.736
24.891
H
PRO




919
HB2
25.815
−11.178
24.444
H
PRO




920
CG
24.964
−12.725
23.154
C
PRO




921
HG1
23.963
−13.034
22.783
H
PRO




922
HG2
25.364
−13.549
23.784
H
PRO




923
CD
25.9
−12.556
21.956
C
PRO




924
OE1
26.971
−11.907
22.108
O
PRO




925
OE2
25.554
−13.086
20.865
O
PRO




926
C
23.792
−9.178
24.324
C
PRO




927
O
24.623
−8.435
24.844
O
PRO


61
HIS
928
N
22.47
−9.074
24.584
N
PRO




929
HN
21.813
−9.709
24.185
H
PRO




930
CA
21.893
−7.922
25.236
C
PRO




931
HA
22.665
−7.198
25.455
H
PRO




932
CB
20.826
−7.258
24.335
C
PRO




933
HB1
19.922
−7.902
24.293
H
PRO




934
HB2
21.23
−7.2
23.302
H
PRO




935
ND1
19.208
−5.3
24.514
N
PRO




936
HD1
18.437
−5.739
24.052
H
PRO




937
CG
20.443
−5.864
24.751
C
PRO




938
CE1
19.267
−4.021
24.959
C
PRO




939
HE1
18.422
−3.334
24.911
H
PRO




940
NE2
20.455
−3.722
25.45
N
PRO




941
CD2
21.196
−4.88
25.315
C
PRO




942
HD2
22.231
−4.892
25.632
H
PRO




943
C
21.246
−8.333
26.528
C
PRO




944
O
20.829
−9.476
26.697
O
PRO


62
SER
945
N
21.158
−7.389
27.49
N
PRO




946
HN
21.534
−6.475
27.355
H
PRO




947
CA
20.485
−7.555
28.762
C
PRO




948
HA
20.867
−8.452
29.226
H
PRO




949
CB
20.762
−6.359
29.711
C
PRO




950
HB1
21.831
−6.381
30.013
H
PRO




951
HB2
20.141
−6.435
30.63
H
PRO




952
OG
20.52
−5.111
29.066
O
PRO




953
HG1
20.303
−4.475
29.752
H
PRO




954
C
18.987
−7.729
28.613
C
PRO




955
O
18.377
−8.525
29.323
O
PRO


63
GLU
956
N
18.365
−6.976
27.677
N
PRO




957
HN
18.889
−6.341
27.114
H
PRO




958
CA
16.927
−6.866
27.571
C
PRO




959
HA
16.474
−7.093
28.525
H
PRO




960
CB
16.525
−5.43
27.153
C
PRO




961
HB1
15.418
−5.354
27.114
H
PRO




962
HB2
16.919
−5.217
26.136
H
PRO




963
CG
17.045
−4.35
28.121
C
PRO




964
HG1
18.155
−4.369
28.176
H
PRO




965
HG2
16.636
−4.532
29.137
H
PRO




966
CD
16.617
−2.967
27.645
C
PRO




967
OE1
15.752
−2.351
28.325
O
PRO




968
OE2
17.147
−2.501
26.604
O
PRO




969
C
16.361
−7.814
26.538
C
PRO




970
O
15.164
−7.784
26.258
O
PRO


64
LEU
971
N
17.21
−8.681
25.944
N
PRO




972
HN
18.159
−8.748
26.24
H
PRO




973
CA
16.82
−9.571
24.873
C
PRO




974
HA
15.753
−9.733
24.9
H
PRO




975
CB
17.254
−9.067
23.472
C
PRO




976
HB1
16.949
−9.798
22.693
H
PRO




977
HB2
18.363
−9.006
23.447
H
PRO




978
CG
16.691
−7.68
23.083
C
PRO




979
HG
16.878
−6.981
23.925
H
PRO




980
CD1
17.437
−7.121
21.865
C
PRO




981
HD11
17.293
−7.791
20.991
H
PRO




982
HD12
18.526
−7.048
22.074
H
PRO




983
HD13
17.057
−6.11
21.605
H
PRO




984
CD2
15.175
−7.701
22.823
C
PRO




985
HD21
14.627
−8.063
23.72
H
PRO




986
HD22
14.932
−8.367
21.967
H
PRO




987
HD23
14.813
−6.678
22.586
H
PRO




988
C
17.491
−10.891
25.143
C
PRO




989
O
18.334
−10.999
26.033
O
PRO


65
GLN
990
N
17.105
−11.948
24.395
N
PRO




991
HN
16.436
−11.858
23.661
H
PRO




992
CA
17.637
−13.272
24.613
C
PRO




993
HA
18.648
−13.179
24.979
H
PRO




994
CB
16.792
−14.101
25.62
C
PRO




995
HB1
16.192
−14.882
25.107
H
PRO




996
HB2
16.067
−13.41
26.1
H
PRO




997
CG
17.617
−14.737
26.762
C
PRO




998
HG1
16.926
−15.236
27.473
H
PRO




999
HG2
18.166
−13.944
27.314
H
PRO




1000
CD
18.593
−15.792
26.232
C
PRO




1001
OE1
18.188
−16.888
25.834
O
PRO




1002
NE2
19.912
−15.449
26.21
N
PRO




1003
HE21
20.586
−16.12
25.903
H
PRO




1004
HE22
20.194
−14.534
26.5
H
PRO




1005
C
17.713
−13.97
23.281
C
PRO




1006
O
16.913
−13.719
22.381
O
PRO


66
GLY
1007
N
18.712
−14.858
23.132
N
PRO




1008
HN
19.333
−15.057
23.887
H
PRO




1009
CA
19.041
−15.508
21.892
C
PRO




1010
HA1
19.004
−14.789
21.087
H
PRO




1011
HA2
18.389
−16.361
21.771
H
PRO




1012
C
20.45
−15.983
22.042
C
PRO




1013
O
21.252
−15.352
22.729
O
PRO


67
LYS
1014
N
20.776
−17.139
21.424
N
PRO




1015
HN
20.106
−17.614
20.859
H
PRO




1016
CA
22.081
−17.763
21.494
C
PRO




1017
HA
22.355
−17.806
22.537
H
PRO




1018
CB
22.013
−19.215
20.952
C
PRO




1019
HB1
21.756
−19.203
19.871
H
PRO




1020
HB2
21.17
−19.708
21.481
H
PRO




1021
CG
23.271
−20.069
21.211
C
PRO




1022
HG1
22.972
−21.109
21.463
H
PRO




1023
HG2
23.777
−19.654
22.108
H
PRO




1024
CD
24.278
−20.119
20.044
C
PRO




1025
HD1
25.296
−20.187
20.482
H
PRO




1026
HD2
24.228
−19.168
19.472
H
PRO




1027
CE
24.112
−21.318
19.094
C
PRO




1028
HE1
24.232
−22.272
19.652
H
PRO




1029
HE2
24.876
−21.273
18.288
H
PRO




1030
NZ
22.778
−21.333
18.451
N
PRO




1031
HZ1
22.639
−20.443
17.932
H
PRO




1032
HZ2
22.046
−21.411
19.185
H
PRO




1033
HZ3
22.708
−22.134
17.791
H
PRO




1034
C
23.137
−16.937
20.785
C
PRO




1035
O
24.237
−16.751
21.304
O
PRO


68
LYS
1036
N
22.8
−16.386
19.596
N
PRO




1037
HN
21.929
−16.607
19.164
H
PRO




1038
CA
23.597
−15.367
18.952
C
PRO




1039
HA
24.347
−15.003
19.638
H
PRO




1040
CB
24.297
−15.802
17.645
C
PRO




1041
HB1
24.819
−14.916
17.224
H
PRO




1042
HB2
23.551
−16.151
16.899
H
PRO




1043
CG
25.34
−16.902
17.869
C
PRO




1044
HG1
24.851
−17.899
17.837
H
PRO




1045
HG2
25.741
−16.766
18.896
H
PRO




1046
CD
26.504
−16.85
16.867
C
PRO




1047
HD1
26.714
−15.792
16.6
H
PRO




1048
HD2
26.199
−17.372
15.935
H
PRO




1049
CE
27.795
−17.473
17.412
C
PRO




1050
HE1
28.573
−17.501
16.619
H
PRO




1051
HE2
27.609
−18.505
17.781
H
PRO




1052
NZ
28.332
−16.666
18.537
N
PRO




1053
HZ1
27.642
−16.61
19.313
H
PRO




1054
HZ2
28.503
−15.695
18.204
H
PRO




1055
HZ3
29.221
−17.079
18.883
H
PRO




1056
C
22.694
−14.215
18.629
C
PRO




1057
O
21.69
−14.364
17.934
O
PRO


69
GLN
1058
N
23.052
−13.021
19.141
N
PRO




1059
HN
23.883
−12.923
19.684
H
PRO




1060
CA
22.269
−11.822
18.982
C
PRO




1061
HA
21.396
−12.007
18.373
H
PRO




1062
CB
21.852
−11.228
20.347
C
PRO




1063
HB1
21.272
−10.293
20.193
H
PRO




1064
HB2
22.78
−10.969
20.9
H
PRO




1065
CG
21.025
−12.206
21.208
C
PRO




1066
HG1
21.552
−13.182
21.265
H
PRO




1067
HG2
20.03
−12.378
20.744
H
PRO




1068
CD
20.824
−11.655
22.625
C
PRO




1069
OE1
20.447
−10.497
22.823
O
PRO




1070
NE2
21.099
−12.519
23.642
N
PRO




1071
HE21
20.974
−12.231
24.592
H
PRO




1072
HE22
21.376
−13.456
23.43
H
PRO




1073
C
23.16
−10.838
18.282
C
PRO




1074
O
24.327
−10.695
18.636
O
PRO


70
TYR
1075
N
22.634
−10.153
17.248
N
PRO




1076
HN
21.694
−10.296
16.947
H
PRO




1077
CA
23.387
−9.188
16.482
C
PRO




1078
HA
24.357
−9.024
16.927
H
PRO




1079
CB
23.542
−9.58
14.989
C
PRO




1080
HB1
23.81
−8.695
14.373
H
PRO




1081
HB2
22.594
−10.01
14.6
H
PRO




1082
CG
24.641
−10.599
14.829
C
PRO




1083
CD1
24.446
−11.952
15.164
C
PRO




1084
HD1
23.488
−12.277
15.542
H
PRO




1085
CH1
25.48
−12.883
14.999
C
PRO




1086
HE1
25.317
−13.921
15.251
H
PRO




1087
CZ
26.728
−12.469
14.519
C
PRO




1088
OH
27.774
−13.406
14.379
O
PRO




1089
HH
28.604
−12.937
14.485
H
PRO




1090
CD2
25.891
−10.204
14.322
C
PRO




1091
HD2
26.051
−9.173
14.041
H
PRO




1092
CE2
26.936
−11.126
14.183
C
PRO




1093
HE2
27.895
−10.793
13.814
H
PRO




1094
C
22.644
−7.888
16.571
C
PRO




1095
O
21.42
−7.868
16.65
O
PRO


71
GLN
1096
N
23.385
−6.76
16.574
N
PRO




1097
HN
24.378
−6.806
16.502
H
PRO




1098
CA
22.823
−5.437
16.687
C
PRO




1099
HA
21.747
−5.509
16.748
H
PRO




1100
CB
23.306
−4.687
17.95
C
PRO




1101
HB1
24.417
−4.652
17.943
H
PRO




1102
HB2
23.003
−5.293
18.83
H
PRO




1103
CG
22.727
−3.267
18.117
C
PRO




1104
HG1
21.619
−3.323
18.174
H
PRO




1105
HG2
23.01
−2.628
17.253
H
PRO




1106
CD
23.26
−2.61
19.391
C
PRO




1107
OE1
24.019
−3.202
20.166
O
PRO




1108
NE2
22.851
−1.329
19.607
N
PRO




1109
HE21
23.157
−0.852
20.431
H
PRO




1110
HE22
22.26
−0.87
18.943
H
PRO




1111
C
23.168
−4.65
15.448
C
PRO




1112
O
24.278
−4.712
14.919
O
PRO


72
LEU
1113
N
22.163
−3.898
14.96
N
PRO




1114
HN
21.279
−3.917
15.422
H
PRO




1115
CA
22.184
−3.08
13.779
C
PRO




1116
HA
22.918
−3.472
13.091
H
PRO




1117
CB
20.768
−3.109
13.159
C
PRO




1118
HB1
20.032
−2.752
13.911
H
PRO




1119
HB2
20.519
−4.173
12.959
H
PRO




1120
CG
20.554
−2.332
11.849
C
PRO




1121
HG
20.59
−1.242
12.065
H
PRO




1122
CD1
21.63
−2.654
10.808
C
PRO




1123
HD11
21.75
−3.757
10.756
H
PRO




1124
HD12
22.606
−2.199
11.081
H
PRO




1125
HD13
21.337
−2.276
9.805
H
PRO




1126
CD2
19.163
−2.662
11.283
C
PRO




1127
HD21
18.37
−2.367
12.003
H
PRO




1128
HD22
19.074
−3.751
11.084
H
PRO




1129
HD23
19.005
−2.119
10.327
H
PRO




1130
C
22.549
−1.666
14.161
C
PRO




1131
O
21.937
−1.07
15.046
O
PRO


73
ARG
1132
N
23.582
−1.104
13.499
N
PRO




1133
HN
24.046
−1.597
12.768
H
PRO




1134
CA
24.128
0.2
13.792
C
PRO




1135
HA
23.434
0.785
14.378
H
PRO




1136
CB
25.521
0.109
14.479
C
PRO




1137
HB1
26.036
1.093
14.452
H
PRO




1138
HB2
26.145
−0.603
13.898
H
PRO




1139
CG
25.495
−0.373
15.946
C
PRO




1140
HG1
26.532
−0.638
16.243
H
PRO




1141
HG2
24.887
−1.301
16.007
H
PRO




1142
CD
24.945
0.645
16.959
C
PRO




1143
HD1
24.915
0.219
17.984
H
PRO




1144
HD2
23.914
0.948
16.676
H
PRO




1145
NE
25.798
1.882
16.936
N
PRO




1146
HE
25.569
2.596
16.274
H
PRO




1147
CZ
26.857
2.119
17.756
C
PRO




1148
NH1
27.258
1.236
18.694
N
PRO




1149
HH11
26.746
0.398
18.882
H
PRO




1150
HH12
28.021
1.463
19.3
H
PRO




1151
NH2
27.532
3.282
17.621
N
PRO




1152
HH21
28.305
3.514
18.211
H
PRO




1153
HH22
27.195
3.942
16.949
H
PRO




1154
C
24.338
0.904
12.478
C
PRO




1155
O
24.398
0.275
11.423
O
PRO


74
GLY
1156
N
24.483
2.249
12.531
N
PRO




1157
HN
24.388
2.72
13.405
H
PRO




1158
CA
25.019
3.045
11.446
C
PRO




1159
HA1
26.011
2.668
11.245
H
PRO




1160
HA2
25.04
4.066
11.797
H
PRO




1161
C
24.267
3.036
10.141
C
PRO




1162
O
24.893
3.185
9.094
O
PRO


75
VAL
1163
N
22.926
2.853
10.143
N
PRO




1164
HN
22.408
2.741
10.988
H
PRO




1165
CA
22.18
2.689
8.908
C
PRO




1166
HA
22.806
2.145
8.216
H
PRO




1167
CB
20.899
1.883
9.064
C
PRO




1168
HB
20.14
2.463
9.631
H
PRO




1169
CG1
20.326
1.527
7.673
C
PRO




1170
HG11
19.999
2.436
7.125
H
PRO




1171
HG12
19.448
0.855
7.784
H
PRO




1172
HG13
21.091
1.001
7.063
H
PRO




1173
CG2
21.211
0.603
9.857
C
PRO




1174
HG21
21.493
0.831
10.907
H
PRO




1175
HG22
22.039
0.039
9.378
H
PRO




1176
HG23
20.308
−0.044
9.881
H
PRO




1177
C
21.85
4.031
8.299
C
PRO




1178
O
21.236
4.887
8.935
O
PRO


76
ALA
1179
N
22.259
4.24
7.03
N
PRO




1180
HN
22.752
3.541
6.518
H
PRO




1181
CA
22.007
5.475
6.338
C
PRO




1182
HA
21.038
5.861
6.62
H
PRO




1183
CB
23.094
6.526
6.613
C
PRO




1184
HB1
24.103
6.111
6.402
H
PRO




1185
HB2
23.057
6.829
7.682
H
PRO




1186
HB3
22.938
7.431
5.988
H
PRO




1187
C
21.989
5.205
4.862
C
PRO




1188
O
22.64
4.284
4.378
O
PRO


77
THR
1189
N
21.234
6.035
4.114
N
PRO




1190
HN
20.685
6.748
4.542
H
PRO




1191
CA
21.187
6.012
2.671
C
PRO




1192
HA
22.012
5.43
2.286
H
PRO




1193
CB
19.882
5.469
2.103
C
PRO




1194
HB
19.021
6.003
2.56
H
PRO




1195
OG1
19.767
4.085
2.411
O
PRO




1196
HG1
18.86
3.845
2.207
H
PRO




1197
CG2
19.811
5.599
0.571
C
PRO




1198
HG21
20.67
5.082
0.092
H
PRO




1199
HG22
19.811
6.664
0.254
H
PRO




1200
HG23
18.873
5.137
0.195
H
PRO




1201
C
21.412
7.44
2.265
C
PRO




1202
O
20.878
8.367
2.873
O
PRO


78
LEU
1203
N
22.264
7.644
1.236
N
PRO




1204
HN
22.661
6.865
0.756
H
PRO




1205
CA
22.657
8.93
0.71
C
PRO




1206
HA
23.092
9.478
1.533
H
PRO




1207
CB
23.716
8.756
−0.406
C
PRO




1208
HB1
23.259
8.181
−1.241
H
PRO




1209
HB2
24.543
8.134
−0.002
H
PRO




1210
CG
24.335
10.05
−0.982
C
PRO




1211
HG
23.516
10.668
−1.411
H
PRO




1212
CD1
25.062
10.898
0.074
C
PRO




1213
HD11
25.925
10.338
0.492
H
PRO




1214
HD12
24.387
11.192
0.906
H
PRO




1215
HD13
25.45
11.825
−0.4
H
PRO




1216
CD2
25.285
9.709
−2.138
C
PRO




1217
HD21
24.746
9.126
−2.916
H
PRO




1218
HD22
26.14
9.104
−1.767
H
PRO




1219
HD23
25.675
10.637
−2.608
H
PRO




1220
C
21.481
9.723
0.188
C
PRO




1221
O
20.521
9.176
−0.352
O
PRO


79
GLU
1222
N
21.539
11.061
0.365
N
PRO




1223
HN
22.327
11.481
0.808
H
PRO




1224
CA
20.54
12.001
−0.078
C
PRO




1225
HA
19.606
11.713
0.381
H
PRO




1226
CB
20.901
13.432
0.387
C
PRO




1227
HB1
20.063
14.12
0.145
H
PRO




1228
HB2
21.805
13.783
−0.156
H
PRO




1229
CG
21.186
13.486
1.905
C
PRO




1230
HG1
22.074
12.869
2.161
H
PRO




1231
HG2
20.307
13.077
2.448
H
PRO




1232
CD
21.454
14.904
2.39
C
PRO




1233
OE1
22.43
15.535
1.906
O
PRO




1234
OE2
20.702
15.368
3.291
O
PRO




1235
C
20.375
11.959
−1.585
C
PRO




1236
O
21.352
11.982
−2.334
O
PRO


80
GLY
1237
N
19.107
11.866
−2.047
N
PRO




1238
HN
18.338
11.888
−1.412
H
PRO




1239
CA
18.76
11.707
−3.447
C
PRO




1240
HA1
19.447
12.293
−4.041
H
PRO




1241
HA2
17.738
12.037
−3.554
H
PRO




1242
C
18.825
10.281
−3.936
C
PRO




1243
O
18.566
10.025
−5.109
O
PRO


81
TYR
1244
N
19.151
9.312
−3.05
N
PRO




1245
HN
19.439
9.541
−2.123
H
PRO




1246
CA
19.151
7.894
−3.365
C
PRO




1247
HA
18.775
7.729
−4.364
H
PRO




1248
CB
20.554
7.248
−3.218
C
PRO




1249
HB1
20.498
6.142
−3.307
H
PRO




1250
HB2
21.003
7.499
−2.233
H
PRO




1251
CG
21.464
7.743
−4.308
C
PRO




1252
CD1
21.589
7.022
−5.509
C
PRO




1253
HD1
21.03
6.108
−5.647
H
PRO




1254
CE1
22.437
7.476
−6.528
C
PRO




1255
HE1
22.531
6.914
−7.445
H
PRO




1256
CZ
23.165
8.66
−6.356
C
PRO




1257
OH
24.013
9.116
−7.386
O
PRO




1258
HH
24.374
9.964
−7.118
H
PRO




1259
CD2
22.2
8.929
−4.147
C
PRO




1260
HD2
22.11
9.494
−3.232
H
PRO




1261
CE2
23.044
9.39
−5.167
C
PRO




1262
HE2
23.599
10.305
−5.025
H
PRO




1263
C
18.203
7.197
−2.418
C
PRO




1264
O
18.208
5.973
−2.304
O
PRO


82
ARG
1265
N
17.35
7.973
−1.716
N
PRO




1266
HN
17.34
8.96
−1.86
H
PRO




1267
CA
16.401
7.473
−0.751
C
PRO




1268
HA
16.803
6.58
−0.295
H
PRO




1269
CB
16.129
8.496
0.371
C
PRO




1270
HB1
15.317
8.125
1.032
H
PRO




1271
HB2
15.795
9.458
−0.073
H
PRO




1272
CG
17.373
8.732
1.241
C
PRO




1273
HG1
18.199
9.092
0.592
H
PRO




1274
HG2
17.682
7.759
1.679
H
PRO




1275
CD
17.144
9.744
2.365
C
PRO




1276
HD1
16.366
9.386
3.073
H
PRO




1277
HD2
16.845
10.726
1.94
H
PRO




1278
NE
18.442
9.881
3.095
N
PRO




1279
HE
19.143
9.178
2.976
H
PRO




1280
CZ
18.777
10.948
3.859
C
PRO




1281
NH1
17.926
11.968
4.099
N
PRO




1282
HH11
16.979
11.933
3.78
H
PRO




1283
HH12
18.253
12.762
4.611
H
PRO




1284
NH2
20.019
11.001
4.394
N
PRO




1285
HH21
20.647
10.239
4.237
H
PRO




1286
HH22
20.271
11.816
4.915
H
PRO




1287
C
15.1
7.106
−1.419
C
PRO




1288
O
14.755
7.634
−2.477
O
PRO


83
GLU
1289
N
14.375
6.147
−0.798
N
PRO




1290
HN
14.705
5.77
0.064
H
PRO




1291
CA
13.117
5.584
−1.253
C
PRO




1292
HA
12.861
4.857
−0.497
H
PRO




1293
CB
11.938
6.594
−1.346
C
PRO




1294
HB1
11.033
6.081
−1.735
H
PRO




1295
HB2
12.203
7.394
−2.07
H
PRO




1296
CG
11.557
7.248
−0.003
C
PRO




1297
HG1
10.734
7.976
−0.166
H
PRO




1298
HG2
12.43
7.793
0.416
H
PRO




1299
CD
11.083
6.199
0.995
C
PRO




1300
OE1
11.69
6.118
2.094
O
PRO




1301
OE2
10.102
5.465
0.683
O
PRO




1302
C
13.247
4.806
−2.545
C
PRO




1303
O
12.314
4.738
−3.345
O
PRO


84
GLN
1304
N
14.413
4.16
−2.751
N
PRO




1305
HN
15.155
4.223
−2.088
H
PRO




1306
CA
14.709
3.37
−3.926
C
PRO




1307
HA
13.881
3.396
−4.619
H
PRO




1308
CB
16.007
3.85
−4.63
C
PRO




1309
HB1
16.141
3.282
−5.576
H
PRO




1310
HB2
16.88
3.631
−3.98
H
PRO




1311
CG
16.052
5.361
−4.948
C
PRO




1312
HG1
16.988
5.59
−5.501
H
PRO




1313
HG2
16.066
5.937
−3.999
H
PRO




1314
CD
14.864
5.792
−5.813
C
PRO




1315
OE1
14.629
5.241
−6.894
O
PRO




1316
NE2
14.1
6.811
−5.327
N
PRO




1317
HE21
13.314
7.122
−5.862
H
PRO




1318
HE22
14.3
7.199
−4.428
H
PRO




1319
C
14.923
1.938
−3.497
C
PRO




1320
O
15.326
1.1
−4.304
O
PRO


85
LYS
1321
N
14.664
1.642
−2.199
N
PRO




1322
HN
14.327
2.355
−1.588
H
PRO




1323
CA
14.837
0.356
−1.561
C
PRO




1324
HA
14.505
0.498
−0.544
H
PRO




1325
CB
13.983
−0.784
−2.174
C
PRO




1326
HB1
14.177
−1.728
−1.621
H
PRO




1327
HB2
14.273
−0.939
−3.235
H
PRO




1328
CG
12.467
−0.538
−2.097
C
PRO




1329
HG1
11.952
−1.366
−2.63
H
PRO




1330
HG2
12.211
0.411
−2.615
H
PRO




1331
CD
11.967
−0.502
−0.646
C
PRO




1332
HD1
12.385
0.39
−0.133
H
PRO




1333
HD2
12.358
−1.398
−0.118
H
PRO




1334
CE
10.447
−0.494
−0.484
C
PRO




1335
HE1
10.218
−0.467
0.603
H
PRO




1336
HE2
9.979
−1.394
−0.937
H
PRO




1337
NZ
9.844
0.705
−1.1
N
PRO




1338
HZ1
9.759
0.578
−2.128
H
PRO




1339
HZ2
10.431
1.538
−0.892
H
PRO




1340
HZ3
8.903
0.862
−0.684
H
PRO




1341
C
16.288
−0.037
−1.436
C
PRO




1342
O
16.626
−1.222
−1.437
O
PRO


86
ALA
1343
N
17.189
0.963
−1.277
N
PRO




1344
HN
16.907
1.919
−1.292
H
PRO




1345
CA
18.593
0.723
−1.048
C
PRO




1346
HA
18.931
−0.014
−1.762
H
PRO




1347
CB
19.428
2.007
−1.216
C
PRO




1348
HB1
19.142
2.772
−0.462
H
PRO




1349
HB2
19.262
2.438
−2.226
H
PRO




1350
HB3
20.512
1.79
−1.104
H
PRO




1351
C
18.827
0.174
0.333
C
PRO




1352
O
19.46
−0.867
0.482
O
PRO


87
GLY
1353
N
18.249
0.822
1.374
N
PRO




1354
HN
17.723
1.657
1.233
H
PRO




1355
CA
18.458
0.447
2.758
C
PRO




1356
HA1
17.977
1.2
3.365
H
PRO




1357
HA2
19.521
0.377
2.934
H
PRO




1358
C
17.836
−0.877
3.086
C
PRO




1359
O
18.407
−1.662
3.839
O
PRO


88
SER
1360
N
16.66
−1.174
2.485
N
PRO




1361
HN
16.182
−0.473
1.962
H
PRO




1362
CA
15.978
−2.452
2.587
C
PRO




1363
HA
15.788
−2.647
3.632
H
PRO




1364
CB
14.644
−2.494
1.807
C
PRO




1365
HB1
14.219
−3.52
1.815
H
PRO




1366
HB2
14.799
−2.182
0.752
H
PRO




1367
OG
13.688
−1.636
2.413
O
PRO




1368
HG1
13.999
−0.74
2.267
H
PRO




1369
C
16.816
−3.581
2.052
C
PRO




1370
O
16.834
−4.664
2.631
O
PRO


89
SER
1371
N
17.55
−3.345
0.938
N
PRO




1372
HN
17.544
−2.447
0.505
H
PRO




1373
CA
18.399
−4.348
0.326
C
PRO




1374
HA
17.785
−5.213
0.123
H
PRO




1375
CB
19.052
−3.878
−1.002
C
PRO




1376
HB1
19.653
−4.707
−1.434
H
PRO




1377
HB2
19.725
−3.011
−0.828
H
PRO




1378
OG
18.071
−3.516
−1.968
O
PRO




1379
HG1
17.76
−2.639
−1.732
H
PRO




1380
C
19.514
−4.786
1.25
C
PRO




1381
O
19.752
−5.981
1.391
O
PRO


90
LEU
1382
N
20.201
−3.832
1.927
N
PRO




1383
HN
19.98
−2.866
1.818
H
PRO




1384
CA
21.319
−4.128
2.807
C
PRO




1385
HA
22.033
−4.727
2.262
H
PRO




1386
CB
22.024
−2.855
3.346
C
PRO




1387
HB1
22.626
−3.119
4.242
H
PRO




1388
HB2
21.261
−2.116
3.67
H
PRO




1389
CG
23.012
−2.18
2.373
C
PRO




1390
HG
23.721
−2.954
2.006
H
PRO




1391
CD1
22.339
−1.529
1.164
C
PRO




1392
HD11
21.63
−0.747
1.512
H
PRO




1393
HD12
21.797
−2.272
0.54
H
PRO




1394
HD13
23.105
−1.036
0.528
H
PRO




1395
CD2
23.825
−1.121
3.125
C
PRO




1396
HD21
24.352
−1.581
3.988
H
PRO




1397
HD22
23.154
−0.32
3.504
H
PRO




1398
HD23
24.58
−0.656
2.455
H
PRO




1399
C
20.91
−4.909
4.029
C
PRO




1400
O
21.552
−5.893
4.385
O
PRO


91
VAL
1401
N
19.829
−4.478
4.711
N
PRO




1402
HN
19.307
−3.684
4.408
H
PRO




1403
CA
19.415
−5.06
5.971
C
PRO




1404
HA
20.309
−5.185
6.564
H
PRO




1405
CB
18.503
−4.149
6.78
C
PRO




1406
HB
18.271
−4.623
7.757
H
PRO




1407
CG1
19.263
−2.839
7.088
C
PRO




1408
HG11
19.49
−2.278
6.156
H
PRO




1409
HG12
20.217
−3.056
7.616
H
PRO




1410
HG13
18.643
−2.185
7.738
H
PRO




1411
CG2
17.18
−3.885
6.039
C
PRO




1412
HG21
16.533
−4.788
6.044
H
PRO




1413
HG22
17.364
−3.582
4.986
H
PRO




1414
HG23
16.638
−3.054
6.539
H
PRO




1415
C
18.838
−6.45
5.803
C
PRO




1416
O
19.073
−7.316
6.641
O
PRO


92
LYS
1417
N
18.09
−6.709
4.703
N
PRO




1418
HN
17.875
−5.989
4.049
H
PRO




1419
CA
17.575
−8.024
4.374
C
PRO




1420
HA
17.157
−8.448
5.275
H
PRO




1421
CB
16.446
−7.957
3.326
C
PRO




1422
HB1
16.144
−8.983
3.026
H
PRO




1423
HB2
16.812
−7.427
2.421
H
PRO




1424
CG
15.207
−7.232
3.876
C
PRO




1425
HG1
15.505
−6.219
4.221
H
PRO




1426
HG2
14.818
−7.787
4.757
H
PRO




1427
CD
14.095
−7.08
2.832
C
PRO




1428
HD1
13.686
−8.083
2.583
H
PRO




1429
HD2
14.562
−6.659
1.916
H
PRO




1430
CE
12.977
−6.142
3.296
C
PRO




1431
HE1
13.404
−5.141
3.518
H
PRO




1432
HE2
12.474
−6.538
4.204
H
PRO




1433
NZ
11.954
−5.96
2.241
N
PRO




1434
HZ1
12.427
−5.715
1.348
H
PRO




1435
HZ2
11.307
−5.198
2.527
H
PRO




1436
HZ3
11.422
−6.845
2.118
H
PRO




1437
C
18.666
−8.964
3.91
C
PRO




1438
O
18.659
−10.14
4.262
O
PRO


93
HIS
1439
N
19.664
−8.455
3.146
N
PRO




1440
HN
19.623
−7.511
2.828
H
PRO




1441
CA
20.856
−9.189
2.751
C
PRO




1442
HA
20.542
−10.082
2.231
H
PRO




1443
CB
21.736
−8.331
1.809
C
PRO




1444
HB1
21.993
−7.376
2.315
H
PRO




1445
HB2
21.122
−8.073
0.919
H
PRO




1446
ND1
24.191
−9.02
1.993
N
PRO




1447
HD1
24.327
−8.737
2.942
H
PRO




1448
CG
23.006
−8.954
1.29
C
PRO




1449
CE1
25.116
−9.546
1.155
C
PRO




1450
HE1
26.155
−9.706
1.446
H
PRO




1451
NE2
24.613
−9.826
−0.031
N
PRO




1452
CD2
23.283
−9.455
0.057
C
PRO




1453
HD2
22.633
−9.57
−0.802
H
PRO




1454
C
21.662
−9.609
3.959
C
PRO




1455
O
22.188
−10.716
4.023
O
PRO


94
ALA
1456
N
21.752
−8.732
4.98
N
PRO




1457
HN
21.378
−7.811
4.897
H
PRO




1458
CA
22.351
−9.054
6.25
C
PRO




1459
HA
23.35
−9.414
6.054
H
PRO




1460
CB
22.451
−7.831
7.156
C
PRO




1461
HB1
21.447
−7.429
7.41
H
PRO




1462
HB2
23.019
−7.034
6.631
H
PRO




1463
HB3
22.988
−8.073
8.098
H
PRO




1464
C
21.613
−10.135
6.995
C
PRO




1465
O
22.254
−10.998
7.58
O
PRO


95
GLU
1466
N
20.257
−10.155
6.97
N
PRO




1467
HN
19.74
−9.429
6.523
H
PRO




1468
CA
19.467
−11.224
7.561
C
PRO




1469
HA
19.739
−11.289
8.604
H
PRO




1470
CB
17.938
−11.006
7.471
C
PRO




1471
HB1
17.419
−11.928
7.812
H
PRO




1472
HB2
17.648
−10.825
6.414
H
PRO




1473
CG
17.434
−9.849
8.351
C
PRO




1474
HG1
17.929
−8.9
8.054
H
PRO




1475
HG2
17.674
−10.054
9.416
H
PRO




1476
CD
15.924
−9.704
8.206
C
PRO




1477
OE1
15.209
−10.709
8.46
O
PRO




1478
OE2
15.453
−8.592
7.843
O
PRO




1479
C
19.773
−12.563
6.932
C
PRO




1480
O
19.846
−13.564
7.635
O
PRO


96
GLU
1481
N
19.997
−12.609
5.598
N
PRO




1482
HN
19.896
−11.788
5.041
H
PRO




1483
CA
20.415
−13.8
4.879
C
PRO




1484
HA
19.686
−14.574
5.072
H
PRO




1485
CB
20.481
−13.539
3.351
C
PRO




1486
HB1
20.855
−14.442
2.824
H
PRO




1487
HB2
21.209
−12.72
3.167
H
PRO




1488
CG
19.115
−13.15
2.737
C
PRO




1489
HG1
18.583
−12.441
3.406
H
PRO




1490
HG2
18.482
−14.057
2.629
H
PRO




1491
CD
19.24
−12.467
1.371
C
PRO




1492
OE1
20.377
−12.303
0.855
O
PRO




1493
OE2
18.175
−12.063
0.83
O
PRO




1494
C
21.767
−14.305
5.361
C
PRO




1495
O
21.94
−15.503
5.581
O
PRO


97
ILE
1496
N
22.745
−13.389
5.585
N
PRO




1497
HN
22.582
−12.428
5.373
H
PRO




1498
CA
24.051
−13.696
6.154
C
PRO




1499
HA
24.478
−14.501
5.575
H
PRO




1500
CB
25.004
−12.494
6.091
C
PRO




1501
HB
24.51
−11.616
6.561
H
PRO




1502
CG2
26.31
−12.776
6.876
C
PRO




1503
HG21
26.786
−13.709
6.505
H
PRO




1504
HG22
26.117
−12.887
7.965
H
PRO




1505
HG23
27.032
−11.94
6.765
H
PRO




1506
CG1
25.292
−12.137
4.61
C
PRO




1507
HG11
24.33
−11.987
4.075
H
PRO




1508
HG12
25.803
−12.996
4.125
H
PRO




1509
CD1
26.137
−10.87
4.421
C
PRO




1510
HD1
27.144
−10.983
4.877
H
PRO




1511
HD2
25.632
−9.997
4.885
H
PRO




1512
HD3
26.277
−10.664
3.338
H
PRO




1513
C
23.929
−14.191
7.584
C
PRO




1514
O
24.548
−15.181
7.962
O
PRO


98
LEU
1515
N
23.106
−13.526
8.42
N
PRO




1516
HN
22.629
−12.708
8.108
H
PRO




1517
CA
22.9
−13.883
9.807
C
PRO




1518
HA
23.875
−13.994
10.257
H
PRO




1519
CB
22.123
−12.786
10.564
C
PRO




1520
HB1
21.861
−13.145
11.582
H
PRO




1521
HB2
21.175
−12.58
10.023
H
PRO




1522
CG
22.896
−11.458
10.735
C
PRO




1523
HG
23.176
−11.075
9.73
H
PRO




1524
CD1
21.999
−10.394
11.39
C
PRO




1525
HD11
21.685
−10.724
12.404
H
PRO




1526
HD12
21.09
−10.224
10.774
H
PRO




1527
HD13
22.549
−9.433
11.482
H
PRO




1528
CD2
24.207
−11.631
11.521
C
PRO




1529
HD21
24.941
−12.234
10.944
H
PRO




1530
HD22
24.006
−12.14
12.487
H
PRO




1531
HD23
24.661
−10.638
11.726
H
PRO




1532
C
22.214
−15.223
9.971
C
PRO




1533
O
22.603
−16.006
10.831
O
PRO


99
ARG
1534
N
21.211
−15.539
9.12
N
PRO




1535
HN
20.874
−14.862
8.47
H
PRO




1536
CA
20.561
−16.836
9.043
C
PRO




1537
HA
20.202
−17.085
10.03
H
PRO




1538
CB
19.361
−16.816
8.068
C
PRO




1539
HB1
19.047
−17.853
7.82
H
PRO




1540
HB2
19.67
−16.316
7.125
H
PRO




1541
CG
18.133
−16.096
8.656
C
PRO




1542
HG1
18.442
−15.109
9.062
H
PRO




1543
HG2
17.751
−16.703
9.504
H
PRO




1544
CD
17.021
−15.874
7.623
C
PRO




1545
HD1
16.73
−16.837
7.152
H
PRO




1546
HD2
17.371
−15.168
6.84
H
PRO




1547
NE
15.823
−15.332
8.349
N
PRO




1548
HE
15.6
−15.735
9.237
H
PRO




1549
CZ
15.031
−14.323
7.907
C
PRO




1550
NH1
15.295
−13.646
6.768
N
PRO




1551
HH11
16.106
−13.872
6.228
H
PRO




1552
HH12
14.695
−12.886
6.519
H
PRO




1553
NH2
13.936
−13.975
8.625
N
PRO




1554
HH21
13.653
−14.526
9.41
H
PRO




1555
HH22
13.377
−13.208
8.31
H
PRO




1556
C
21.519
−17.932
8.624
C
PRO




1557
O
21.453
−19.042
9.146
O
PRO


100
LYS
1558
N
22.458
−17.633
7.694
N
PRO




1559
HN
22.454
−16.74
7.251
H
PRO




1560
CA
23.527
−18.523
7.275
C
PRO




1561
HA
23.067
−19.441
6.94
H
PRO




1562
CB
24.33
−17.91
6.1
C
PRO




1563
HB1
24.852
−16.989
6.439
H
PRO




1564
HB2
23.609
−17.608
5.311
H
PRO




1565
CG
25.366
−18.852
5.467
C
PRO




1566
HG1
24.836
−19.766
5.125
H
PRO




1567
HG2
26.114
−19.147
6.233
H
PRO




1568
CD
26.101
−18.208
4.28
C
PRO




1569
HD1
26.585
−17.273
4.634
H
PRO




1570
HD2
25.355
−17.923
3.507
H
PRO




1571
CE
27.182
−19.095
3.641
C
PRO




1572
HE1
27.982
−19.327
4.377
H
PRO




1573
HE2
27.63
−18.575
2.767
H
PRO




1574
NZ
26.619
−20.38
3.163
N
PRO




1575
HZ1
27.334
−20.896
2.611
H
PRO




1576
HZ2
25.785
−20.194
2.569
H
PRO




1577
HZ3
26.34
−20.957
3.982
H
PRO




1578
C
24.468
−18.866
8.419
C
PRO




1579
O
24.924
−20.001
8.54
O
PRO


101
ARG
1580
N
24.742
−17.882
9.309
N
PRO




1581
HN
24.393
−16.961
9.153
H
PRO




1582
CA
25.523
−18.052
10.519
C
PRO




1583
HA
26.376
−18.676
10.295
H
PRO




1584
CB
26.014
−16.693
11.079
C
PRO




1585
HB1
26.514
−16.854
12.058
H
PRO




1586
HB2
25.135
−16.037
11.254
H
PRO




1587
CG
27.008
−15.946
10.17
C
PRO




1588
HG1
26.561
−15.803
9.163
H
PRO




1589
HG2
27.922
−16.567
10.049
H
PRO




1590
CD
27.386
−14.579
10.755
C
PRO




1591
HD1
27.868
−14.721
11.746
H
PRO




1592
HD2
26.481
−13.944
10.867
H
PRO




1593
NE
28.343
−13.882
9.832
N
PRO




1594
HE
28.532
−14.271
8.93
H
PRO




1595
CZ
29.035
−12.772
10.2
C
PRO




1596
NH1
28.864
−12.219
11.422
N
PRO




1597
HH11
28.211
−12.63
12.059
H
PRO




1598
HH12
29.401
−11.419
11.686
H
PRO




1599
NH2
29.916
−12.211
9.341
N
PRO




1600
HH21
29.992
−12.546
8.402
H
PRO




1601
HH22
30.506
−11.459
9.634
H
PRO




1602
C
24.72
−18.732
11.617
C
PRO




1603
O
25.282
−19.167
12.621
O
PRO


102
GLY
1604
N
23.381
−18.844
11.449
N
PRO




1605
HN
22.952
−18.498
10.618
H
PRO




1606
CA
22.491
−19.51
12.38
C
PRO




1607
HA1
23.013
−20.345
12.823
H
PRO




1608
HA2
21.625
−19.815
11.812
H
PRO




1609
C
22.011
−18.619
13.489
C
PRO




1610
O
21.45
−19.106
14.469
O
PRO


103
ALA
1611
N
22.236
−17.291
13.381
N
PRO




1612
HN
22.642
−16.919
12.549
N
PRO




1613
CA
21.885
−16.313
14.386
C
PRO




1614
HA
22.344
−16.65
15.304
H
PRO




1615
CB
22.442
−14.918
14.06
C
PRO




1616
HB1
21.977
−14.528
13.13
H
PRO




1617
HB2
23.541
−14.976
13.905
H
PRO




1618
HB3
22.242
−14.204
14.888
H
PRO




1619
C
20.399
−16.198
14.647
C
PRO




1620
O
19.568
−16.346
13.751
O
PRO


104
ASP
1621
N
20.05
−15.953
15.93
N
PRO




1622
HN
20.741
−15.852
16.642
H
PRO




1623
CA
18.698
−15.877
16.428
C
PRO




1624
HA
18.151
−16.729
16.054
H
PRO




1625
CB
18.662
−15.862
17.98
C
PRO




1626
HB1
17.613
−15.76
18.331
H
PRO




1627
HB2
19.246
−15.002
18.372
H
PRO




1628
CG
19.245
−17.14
18.57
C
PRO




1629
OD1
18.495
−17.851
19.29
O
PRO




1630
OD2
20.458
−17.407
18.358
O
PRO




1631
C
17.985
−14.629
15.974
C
PRO




1632
O
16.822
−14.684
15.577
O
PRO


105
MET
1633
N
18.66
−13.46
16.041
N
PRO




1634
HN
19.623
−13.417
16.297
H
PRO




1635
CA
17.957
−12.207
15.921
C
PRO




1636
HA
17.209
−12.299
15.148
H
PRO




1637
CB
17.255
−11.804
17.246
C
PRO




1638
HB1
16.58
−12.637
17.537
H
PRO




1639
HB2
16.619
−10.912
17.063
H
PRO




1640
CG
18.207
−11.512
18.424
C
PRO




1641
HG1
18.725
−10.548
18.234
H
PRO




1642
HG2
18.988
−12.302
18.445
H
PRO




1643
SD
17.4
−11.464
20.054
S
PRO




1644
CE
16.128
−10.22
19.706
C
PRO




1645
HE1
15.563
−9.971
20.63
H
PRO




1646
HE2
15.39
−10.585
18.96
H
PRO




1647
HE3
16.584
−9.285
19.318
H
PRO




1648
C
18.878
−11.097
15.503
C
PRO




1649
O
20.097
−11.167
15.66
O
PRO


106
ILE
1650
N
18.257
−10.027
14.962
N
PRO




1651
HN
17.268
−10.031
14.836
H
PRO




1652
CA
18.882
−8.768
14.646
C
PRO




1653
HA
19.885
−8.767
15.045
H
PRO




1654
CB
18.946
−8.479
13.14
C
PRO




1655
HB
19.565
−9.283
12.689
H
PRO




1656
CG2
17.551
−8.575
12.482
C
PRO




1657
HG21
16.882
−7.771
12.857
H
PRO




1658
HG22
17.075
−9.558
12.687
H
PRO




1659
HG23
17.642
−8.457
11.381
H
PRO




1660
CG1
19.628
−7.133
12.786
C
PRO




1661
HG11
19.046
−6.292
13.221
H
PRO




1662
HG12
19.593
−7.018
11.681
H
PRO




1663
CD1
21.089
−7.028
13.23
C
PRO




1664
HD1
21.663
−7.923
12.908
H
PRO




1665
HD2
21.155
−6.941
14.336
H
PRO




1666
HD3
21.567
−6.129
12.786
H
PRO




1667
C
18.063
−7.755
15.412
C
PRO




1668
O
16.835
−7.802
15.41
O
PRO


107
TRP
1669
N
18.718
−6.836
16.149
N
PRO




1670
HN
19.714
−6.82
16.2
H
PRO




1671
CA
18.018
−5.878
16.972
C
PRO




1672
HA
16.997
−5.788
16.629
H
PRO




1673
CB
17.985
−6.259
18.476
C
PRO




1674
HB1
17.457
−7.233
18.555
H
PRO




1675
HB2
17.375
−5.513
19.028
H
PRO




1676
CG
19.317
−6.413
19.2
C
PRO




1677
CD1
20.102
−7.526
19.337
C
PRO




1678
HD1
19.917
−8.471
18.848
H
PRO




1679
NE1
21.156
−7.266
20.184
N
PRO




1680
HE1
21.874
−7.873
20.444
H
PRO




1681
CE2
21.043
−5.974
20.642
C
PRO




1682
CD2
19.905
−5.401
20.037
C
PRO




1683
CE3
19.524
−4.094
20.323
C
PRO




1684
HE3
18.659
−3.634
19.869
H
PRO




1685
CZ3
20.284
−3.376
21.257
C
PRO




1686
HZ3
19.995
−2.369
21.519
H
PRO




1687
CZ2
21.817
−5.251
21.542
C
PRO




1688
HZ2
22.69
−5.679
22.011
H
PRO




1689
CH2
21.411
−3.948
21.864
C
PRO




1690
HH2
21.978
−3.373
22.581
H
PRO




1691
C
18.632
−4.531
16.752
C
PRO




1692
O
19.704
−4.415
16.169
O
PRO


108
CYS
1693
N
17.924
−3.457
17.151
N
PRO




1694
HN
17.06
−3.543
17.641
H
PRO




1695
CA
18.331
−2.126
16.789
C
PRO




1696
HA
19.408
−2.078
16.719
H
PRO




1697
CB
17.669
−1.729
15.438
C
PRO




1698
HB1
16.576
−1.597
15.586
H
PRO




1699
HB2
17.788
−2.588
14.744
H
PRO




1700
SG
18.385
−0.259
14.644
S
PRO




1701
HG1
19.6
−0.768
14.5
H
PRO




1702
C
17.886
−1.181
17.872
C
PRO




1703
O
16.783
−1.304
18.394
O
PRO


109
ASN
1704
N
18.727
−0.175
18.203
N
PRO




1705
HN
19.656
−0.134
17.845
H
PRO




1706
CA
18.316
0.984
18.965
C
PRO




1707
HA
17.404
0.782
19.508
H
PRO




1708
CB
19.405
1.529
19.922
C
PRO




1709
HB1
19.082
2.497
20.36
H
PRO




1710
HB2
20.358
1.683
19.372
H
PRO




1711
CG
19.62
0.549
21.074
C
PRO




1712
OD1
18.688
−0.135
21.505
O
PRO




1713
ND2
20.874
0.507
21.602
N
PRO




1714
HD21
21.03
−0.069
22.404
H
PRO




1715
HD22
21.601
1.071
21.21
H
PRO




1716
C
18.031
2.042
17.938
C
PRO




1717
O
18.853
2.913
17.667
O
PRO


110
ALA
1718
N
16.841
1.952
17.314
N
PRO




1719
HN
16.196
1.238
17.576
H
PRO




1720
CA
16.361
2.865
16.31
C
PRO




1721
HA
17.124
2.951
15.55
H
PRO




1722
CB
15.061
2.345
15.678
C
PRO




1723
HB1
14.26
2.262
16.443
H
PRO




1724
HB2
15.231
1.336
15.246
H
PRO




1725
HB3
14.708
3.02
14.869
H
PRO




1726
C
16.085
4.231
16.88
C
PRO




1727
O
15.731
4.363
18.047
O
PRO


111
ARG
1728
N
16.217
5.297
16.058
N
PRO




1729
HN
16.591
5.192
15.14
H
PRO




1730
CA
15.633
6.593
16.35
C
PRO




1731
HA
15.963
6.902
17.331
H
PRO




1732
CB
16.011
7.68
15.316
C
PRO




1733
HB1
15.519
8.639
15.585
H
PRO




1734
HB2
15.644
7.382
14.311
H
PRO




1735
CG
17.52
7.93
15.23
C
PRO




1736
HG1
18.034
6.977
14.981
H
PRO




1737
HG2
17.876
8.262
16.229
H
PRO




1738
CD
17.909
8.99
14.196
C
PRO




1739
HD1
17.47
9.973
14.468
H
PRO




1740
HD2
17.58
8.695
13.177
H
PRO




1741
NE
19.403
9.078
14.215
N
PRO




1742
HE
19.904
8.376
14.722
H
PRO




1743
CZ
20.103
10.145
13.756
C
PRO




1744
NH1
19.506
11.16
13.095
N
PRO




1745
HH11
18.543
11.096
12.834
H
PRO




1746
HH12
20.05
11.967
12.863
H
PRO




1747
NH2
21.438
10.2
13.969
N
PRO




1748
HH21
21.897
9.451
14.446
H
PRO




1749
HH22
21.974
10.981
13.648
H
PRO




1750
C
14.125
6.48
16.351
C
PRO




1751
O
13.571
5.66
15.625
O
PRO


112
THR
1752
N
13.408
7.312
17.142
N
PRO




1753
HN
13.838
7.955
17.771
H
PRO




1754
CA
11.95
7.311
17.123
C
PRO




1755
HA
11.615
6.284
17.126
H
PRO




1756
CB
11.314
8.007
18.32
C
PRO




1757
HB
10.209
8.006
18.213
H
PRO




1758
OG1
11.76
9.354
18.45
O
PRO




1759
HG1
11.216
9.736
19.142
H
PRO




1760
CG2
11.675
7.232
19.602
C
PRO




1761
HG21
12.772
7.238
19.779
H
PRO




1762
HG22
11.336
6.177
19.517
H
PRO




1763
HG23
11.176
7.687
20.485
H
PRO




1764
C
11.419
7.956
15.858
C
PRO




1765
O
10.275
7.733
15.47
O
PRO


113
SER
1766
N
12.27
8.747
15.167
N
PRO




1767
HN
13.183
8.935
15.519
H
PRO




1768
CA
11.978
9.36
13.891
C
PRO




1769
HA
10.947
9.68
13.885
H
PRO




1770
CB
12.894
10.593
13.659
C
PRO




1771
HB1
12.695
11.338
14.459
H
PRO




1772
HB2
12.668
11.068
12.68
H
PRO




1773
OG
14.277
10.24
13.708
O
PRO




1774
HG1
14.769
11.04
13.907
H
PRO




1775
C
12.178
8.385
12.75
C
PRO




1776
O
11.71
8.625
11.639
O
PRO


114
ALA
1777
N
12.886
7.26
13.001
N
PRO




1778
HN
13.23
7.074
13.918
H
PRO




1779
CA
13.237
6.282
11.996
C
PRO




1780
HA
12.77
6.529
11.054
H
PRO




1781
CB
14.765
6.204
11.8
C
PRO




1782
HB1
15.269
5.861
12.729
H
PRO




1783
HB2
15.163
7.208
11.537
H
PRO




1784
HB3
15.024
5.506
10.976
H
PRO




1785
C
12.738
4.919
12.408
C
PRO




1786
O
13.178
3.903
11.875
O
PRO


115
SER
1787
N
11.793
4.843
13.374
N
PRO




1788
HN
11.416
5.658
13.806
H
PRO




1789
CA
11.291
3.576
13.869
C
PRO




1790
HA
12.126
2.899
13.965
H
PRO




1791
CB
10.635
3.701
15.269
C
PRO




1792
HB1
11.404
4.054
15.988
H
PRO




1793
HB2
10.274
2.708
15.615
H
PRO




1794
OG
9.55
4.626
15.286
O
PRO




1795
HG1
9.316
4.751
16.209
H
PRO




1796
C
10.318
2.955
12.896
C
PRO




1797
O
10.139
1.74
12.884
O
PRO


116
GLY
1798
N
9.709
3.779
12.01
N
PRO




1799
HN
9.863
4.764
12.036
H
PRO




1800
CA
8.777
3.324
11.006
C
PRO




1801
HA1
8.26
4.199
10.639
H
PRO




1802
HA2
8.111
2.602
11.455
H
PRO




1803
C
9.461
2.679
9.838
C
PRO




1804
O
8.838
1.89
9.135
O
PRO


117
TYR
1805
N
10.774
2.953
9.632
N
PRO




1806
HN
11.235
3.616
10.217
H
PRO




1807
CA
11.619
2.298
8.646
C
PRO




1808
HA
11.137
2.364
7.682
H
PRO




1809
CB
13.01
3.009
8.597
C
PRO




1810
HB1
13.354
3.172
9.641
H
PRO




1811
HB2
12.901
4.006
8.121
H
PRO




1812
CG
14.117
2.278
7.87
C
PRO




1813
CD1
13.978
1.796
6.556
C
PRO




1814
HD1
13.06
1.967
6.013
H
PRO




1815
CE1
15.014
1.071
5.946
C
PRO




1816
HE1
14.882
0.693
4.943
H
PRO




1817
CZ
16.207
0.842
6.646
C
PRO




1818
OH
17.25
0.082
6.086
O
PRO




1819
HH
16.94
−0.285
5.254
H
PRO




1820
CD2
15.329
2.056
8.545
C
PRO




1821
HD2
15.456
2.431
9.55
H
PRO




1822
CE2
16.369
1.349
7.937
C
PRO




1823
HE2
17.287
1.174
8.478
H
PRO




1824
C
11.761
0.832
8.995
C
PRO




1825
O
11.611
−0.044
8.147
O
PRO


118
TYR
1826
N
11.999
0.54
10.29
N
PRO




1827
HN
12.091
1.269
10.964
H
PRO




1828
CA
12.212
−0.801
10.782
C
PRO




1829
HA
12.791
−1.35
10.054
H
PRO




1830
CB
12.959
−0.779
12.131
C
PRO




1831
HB1
13.086
−1.804
12.541
H
PRO




1832
HB2
12.409
−0.152
12.865
H
PRO




1833
CG
14.333
−0.216
11.931
C
PRO




1834
CD1
15.269
−0.92
11.157
C
PRO




1835
HD1
15.007
−1.877
10.729
H
PRO




1836
CE1
16.535
−0.382
10.915
C
PRO




1837
HE1
17.227
−0.911
10.276
H
PRO




1838
CZ
16.896
0.845
11.48
C
PRO




1839
OH
18.182
1.366
11.234
O
PRO




1840
HH
18.276
2.173
11.745
H
PRO




1841
CD2
14.695
1.024
12.478
C
PRO




1842
HD2
13.976
1.577
13.064
H
PRO




1843
CE2
15.976
1.552
12.266
C
PRO




1844
HE2
16.236
2.508
12.695
H
PRO




1845
C
10.912
−1.544
10.941
C
PRO




1846
O
10.888
−2.769
11.017
O
PRO


119
ARG
1847
N
9.779
−0.817
10.92
N
PRO




1848
HN
9.819
0.177
10.848
H
PRO




1849
CA
8.462
−1.383
11.077
C
PRO




1850
HA
8.527
−2.287
11.664
H
PRO




1851
CB
7.592
−0.354
11.823
C
PRO




1852
HB1
7.282
0.464
11.138
H
PRO




1853
HB2
8.236
0.108
12.601
H
PRO




1854
CG
6.374
−0.916
12.569
C
PRO




1855
HG1
6.72
−1.748
13.219
H
PRO




1856
HG2
5.631
−1.319
11.848
H
PRO




1857
CD
5.735
0.176
13.436
C
PRO




1858
HD1
5.228
0.938
12.806
H
PRO




1859
HD2
6.526
0.661
14.048
H
PRO




1860
NE
4.735
−0.449
14.355
N
PRO




1861
HE
4.512
−1.419
14.257
H
PRO




1862
CZ
4.213
0.203
15.424
C
PRO




1863
NH1
4.539
1.481
15.716
N
PRO




1864
HH11
5.298
1.927
15.241
H
PRO




1865
HH12
4.217
1.855
16.586
H
PRO




1866
NH2
3.371
−0.456
16.253
N
PRO




1867
HH21
3.227
−1.436
16.11
H
PRO




1868
HH22
3.081
0.001
17.094
H
PRO




1869
C
7.884
−1.721
9.714
C
PRO




1870
O
6.82
−2.328
9.605
O
PRO


120
LYS
1871
N
8.637
−1.404
8.631
N
PRO




1872
HN
9.458
−0.847
8.732
H
PRO




1873
CA
8.373
−1.872
7.285
C
PRO




1874
HA
7.343
−2.179
7.185
H
PRO




1875
CB
8.718
−0.784
6.239
C
PRO




1876
HB1
8.62
−1.19
5.209
H
PRO




1877
HB2
9.777
−0.481
6.379
H
PRO




1878
CG
7.859
0.488
6.332
C
PRO




1879
HG1
8.377
1.292
5.767
H
PRO




1880
HG2
7.786
0.812
7.391
H
PRO




1881
CD
6.44
0.334
5.775
C
PRO




1882
HD1
5.914
−0.441
6.373
H
PRO




1883
HD2
6.495
−0.047
4.732
H
PRO




1884
CE
5.61
1.629
5.812
C
PRO




1885
HE1
5.586
2.053
6.839
H
PRO




1886
HE2
4.569
1.424
5.481
H
PRO




1887
NZ
6.17
2.659
4.904
N
PRO




1888
HZ1
7.006
2.277
4.418
H
PRO




1889
HZ2
6.447
3.515
5.426
H
PRO




1890
HZ3
5.468
2.913
4.18
H
PRO




1891
C
9.267
−3.063
7
C
PRO




1892
O
9.146
−3.709
5.959
O
PRO


121
LEU
1893
N
10.174
−3.398
7.948
N
PRO




1894
HN
10.257
−2.851
8.778
H
PRO




1895
CA
11.112
−4.494
7.838
C
PRO




1896
HA
11.073
−4.928
6.85
H
PRO




1897
CB
12.55
−4.012
8.145
C
PRO




1898
HB1
13.251
−4.873
8.148
H
PRO




1899
HB2
12.565
−3.56
9.16
H
PRO




1900
CG
13.089
−2.959
7.15
C
PRO




1901
HG
12.331
−2.154
7.038
H
PRO




1902
CD1
14.366
−2.3
7.696
C
PRO




1903
HD11
15.1
−3.076
8
H
PRO




1904
HD12
14.138
−1.666
8.58
H
PRO




1905
HD13
14.824
−1.65
6.92
H
PRO




1906
CD2
13.34
−3.549
5.754
C
PRO




1907
HD21
12.393
−3.93
5.316
H
PRO




1908
HD22
14.071
−4.383
5.813
H
PRO




1909
HD23
13.745
−2.768
5.076
H
PRO




1910
C
10.746
−5.576
8.831
C
PRO




1911
O
11.393
−6.622
8.889
O
PRO


122
GLY
1912
N
9.658
−5.367
9.61
N
PRO




1913
HN
9.148
−4.513
9.536
H
PRO




1914
CA
9.105
−6.367
10.498
C
PRO




1915
HA1
9.193
−7.336
10.029
H
PRO




1916
HA2
8.074
−6.089
10.661
H
PRO




1917
C
9.761
−6.435
11.849
C
PRO




1918
O
9.635
−7.447
12.535
O
PRO


123
PHE
1919
N
10.474
−5.367
12.277
N
PRO




1920
HN
10.593
−4.56
11.704
H
PRO




1921
CA
10.98
−5.246
13.631
C
PRO




1922
HA
11.292
−6.218
13.985
H
PRO




1923
CB
12.137
−4.219
13.811
C
PRO




1924
HB1
12.327
−4.067
14.895
H
PRO




1925
HB2
11.83
−3.245
13.375
H
PRO




1926
CG
13.456
−4.606
13.183
C
PRO




1927
CD1
13.607
−4.742
11.791
C
PRO




1928
HD1
12.756
−4.61
11.138
H
PRO




1929
CE1
14.855
−5.031
11.227
C
PRO




1930
HE1
14.957
−5.132
10.157
H
PRO




1931
CZ
15.977
−5.18
12.051
C
PRO




1932
HZ
16.939
−5.404
11.615
H
PRO




1933
CD2
14.598
−4.748
13.995
C
PRO




1934
HD2
14.513
−4.623
15.065
H
PRO




1935
CE2
15.848
−5.039
13.437
C
PRO




1936
HE2
16.713
−5.151
14.074
H
PRO




1937
C
9.851
−4.748
14.51
C
PRO




1938
O
8.984
−4.001
14.055
O
PRO


124
SER
1939
N
9.849
−5.15
15.8
N
PRO




1940
HN
10.557
−5.765
16.139
H
PRO




1941
CA
8.842
−4.758
16.765
C
PRO




1942
HA
8.128
−4.089
16.306
H
PRO




1943
CB
8.081
−5.949
17.396
C
PRO




1944
HB1
7.344
−5.58
18.141
H
PRO




1945
HB2
8.789
−6.633
17.911
H
PRO




1946
OG
7.382
−6.68
16.392
O
PRO




1947
HG1
6.526
−6.898
16.767
H
PRO




1948
C
9.515
−4.014
17.88
C
PRO




1949
O
10.59
−4.396
18.333
O
PRO


125
GLU
1950
N
8.882
−2.906
18.327
N
PRO




1951
HN
8.014
−2.624
17.926
H
PRO




1952
CA
9.317
−2.063
19.423
C
PRO




1953
HA
10.349
−1.803
19.241
H
PRO




1954
CB
8.48
−0.763
19.514
C
PRO




1955
HB1
8.865
−0.117
20.331
H
PRO




1956
HB2
7.437
−1.045
19.771
H
PRO




1957
CG
8.478
0.05
18.2
C
PRO




1958
HG1
8.315
−0.622
17.331
H
PRO




1959
HG2
9.453
0.567
18.067
H
PRO




1960
CD
7.342
1.065
18.178
C
PRO




1961
OE1
7.614
2.272
17.942
O
PRO




1962
OE2
6.17
0.628
18.348
O
PRO




1963
C
9.245
−2.774
20.757
C
PRO




1964
O
8.419
−3.664
20.955
O
PRO


126
GLN
1965
N
10.121
−2.382
21.706
N
PRO




1966
HN
10.819
−1.695
21.52
H
PRO




1967
CA
10.137
−2.947
23.031
C
PRO




1968
HA
9.153
−3.319
23.277
H
PRO




1969
CB
11.186
−4.08
23.171
C
PRO




1970
HB1
12.203
−3.662
23.017
H
PRO




1971
HB2
11.003
−4.808
22.353
H
PRO




1972
CG
11.12
−4.832
24.517
C
PRO




1973
HG1
10.118
−5.297
24.63
H
PRO




1974
HG2
11.278
−4.128
25.361
H
PRO




1975
CD
12.171
−5.945
24.574
C
PRO




1976
OE1
12.074
−6.949
23.862
O
PRO




1977
NE2
13.186
−5.766
25.465
N
PRO




1978
HE21
13.865
−6.489
25.587
H
PRO




1979
HE22
13.244
−4.918
25.992
H
PRO




1980
C
10.488
−1.853
24.006
C
PRO




1981
O
11.37
−1.035
23.747
O
PRO


127
GLY
1982
N
9.802
−1.85
25.177
N
PRO




1983
HN
9.064
−2.506
25.318
H
PRO




1984
CA
10.09
−1.005
26.319
C
PRO




1985
HA1
11.103
−1.219
26.624
H
PRO




1986
HA2
9.368
−1.264
27.08
H
PRO




1987
C
9.983
0.478
26.093
C
PRO




1988
O
9.479
0.954
25.078
O
PRO


128
GLU
1989
N
10.436
1.244
27.107
N
PRO




1990
HN
10.806
0.825
27.932
H
PRO




1991
CA
10.427
2.688
27.125
C
PRO




1992
HA
9.421
2.99
26.874
H
PRO




1993
CB
10.782
3.269
28.518
C
PRO




1994
HB1
10.692
4.376
28.486
H
PRO




1995
HB2
11.838
3.026
28.761
H
PRO




1996
CG
9.894
2.753
29.672
C
PRO




1997
HG1
10.154
3.296
30.606
H
PRO




1998
HG2
10.068
1.669
29.838
H
PRO




1999
CD
8.415
2.983
29.378
C
PRO




2000
OE1
8.026
4.156
29.13
O
PRO




2001
OE2
7.649
1.983
29.388
O
PRO




2002
C
11.351
3.319
26.11
C
PRO




2003
O
12.376
2.754
25.728
O
PRO


129
VAL
2004
N
10.983
4.543
25.666
N
PRO




2005
HN
10.113
4.929
25.961
H
PRO




2006
CA
11.824
5.466
24.928
C
PRO




2007
HA
12.228
4.937
24.077
H
PRO




2008
CB
11.016
6.672
24.44
C
PRO




2009
HB
10.586
7.199
25.319
H
PRO




2010
CG1
11.873
7.681
23.643
C
PRO




2011
HG11
12.338
7.186
22.763
H
PRO




2012
HG12
12.672
8.127
24.273
H
PRO




2013
HG13
11.232
8.511
23.278
H
PRO




2014
CG2
9.85
6.167
23.563
C
PRO




2015
HG21
9.153
5.521
24.141
H
PRO




2016
HG22
10.24
5.587
22.7
H
PRO




2017
HG23
9.27
7.03
23.173
H
PRO




2018
C
12.98
5.91
25.813
C
PRO




2019
O
12.819
6.074
27.022
O
PRO


130
PHE
2020
N
14.18
6.107
25.227
N
PRO




2021
HN
14.308
5.964
24.248
H
PRO




2022
CA
15.348
6.559
25.95
C
PRO




2023
HA
15.032
7.129
26.811
H
PRO




2024
C13
16.3
5.417
26.421
C
PRO




2025
HB1
15.821
4.892
27.275
H
PRO




2026
HB2
17.269
5.829
26.775
H
PRO




2027
CG
16.57
4.383
25.35
C
PRO




2028
CD1
15.757
3.239
25.256
C
PRO




2029
HD1
14.943
3.105
25.953
H
PRO




2030
CE1
15.983
2.281
24.263
C
PRO




2031
HE1
15.348
1.409
24.203
H
PRO




2032
CZ
17.032
2.45
23.353
C
PRO




2033
HZ
17.201
1.71
22.584
H
PRO




2034
CD2
17.634
4.533
24.442
C
PRO




2035
HD2
18.273
5.401
24.504
H
PRO




2036
CE2
17.863
3.573
23.446
C
PRO




2037
HE2
18.681
3.699
22.752
H
PRO




2038
C
16.069
7.511
25.037
C
PRO




2039
O
16.164
7.279
23.835
O
PRO


131
ASP
2040
N
16.573
8.637
25.583
N
PRO




2041
HN
16.521
8.821
26.562
H
PRO




2042
CA
17.094
9.712
24.771
C
PRO




2043
HA
16.803
9.579
23.74
H
PRO




2044
CB
16.621
11.115
25.237
C
PRO




2045
HB1
17.146
11.903
24.656
H
PRO




2046
HB2
16.852
11.258
26.315
H
PRO




2047
CG
15.12
11.319
25.03
C
PRO




2048
OD1
14.408
10.37
24.61
O
PRO




2049
OD2
14.659
12.467
25.276
O
PRO




2050
C
18.594
9.657
24.823
C
PRO




2051
O
19.191
9.571
25.895
O
PRO


132
THR
2052
N
19.233
9.698
23.634
N
PRO




2053
HN
18.73
9.784
22.778
H
PRO




2054
CA
20.671
9.613
23.507
C
PRO




2055
HA
21.133
9.492
24.476
H
PRO




2056
CB
21.126
8.457
22.621
C
PRO




2057
HB
20.72
8.568
21.593
H
PRO




2058
OG1
20.646
7.224
23.141
O
PRO




2059
HG1
20.919
6.548
22.515
H
PRO




2060
CG2
22.665
8.388
22.57
C
PRO




2061
HG21
23.081
8.287
23.596
H
PRO




2062
HG22
23.092
9.302
22.104
H
PRO




2063
HG23
22.994
7.515
21.968
H
PRO




2064
C
21.093
10.908
22.858
C
PRO




2065
O
20.798
11.087
21.678
O
PRO


133
PRO
2066
N
21.765
11.851
23.509
N
PRO




2067
CD
21.985
11.878
24.956
C
PRO




2068
HD1
22.473
10.942
25.303
H
PRO




2069
HD2
21.007
12.018
25.464
H
PRO




2070
CA
22.213
13.071
22.858
C
PRO




2071
HA
21.417
13.456
22.238
H
PRO




2072
CB
22.555
14.014
24.023
C
PRO




2073
HB1
21.647
14.597
24.289
H
PRO




2074
HB2
23.379
14.721
23.79
H
PRO




2075
CG
22.897
13.083
25.193
C
PRO




2076
HG1
23.957
12.763
25.11
H
PRO




2077
HG2
22.728
13.56
26.182
H
PRO




2078
C
23.434
12.761
22.005
C
PRO




2079
O
24.231
11.934
22.45
O
PRO


134
PRO
2080
N
23.641
13.311
20.813
N
PRO




2081
CD
24.966
13.17
20.2
C
PRO




2082
HD1
25.057
12.172
19.72
H
PRO




2083
HD2
25.757
13.294
20.97
H
PRO




2084
CA
22.911
14.445
20.258
C
PRO




2085
HA
22.29
14.953
20.981
H
PRO




2086
CB
24.043
15.316
19.696
C
PRO




2087
HB1
24.497
15.893
20.529
H
PRO




2088
HB2
23.711
16.028
18.911
H
PRO




2089
CG
25.067
14.302
19.178
C
PRO




2090
HG1
24.762
13.933
18.175
H
PRO




2091
HG2
26.089
14.734
19.118
H
PRO




2092
C
22.05
13.92
19.13
C
PRO




2093
O
21.752
14.667
18.2
O
PRO


135
VAL
2094
N
21.626
12.64
19.206
N
PRO




2095
HN
21.843
12.078
20
H
PRO




2096
CA
20.931
11.945
18.141
C
PRO




2097
HA
20.883
12.579
17.268
H
PRO




2098
CB
21.65
10.663
17.733
C
PRO




2099
HB
21.025
10.093
17.012
H
PRO




2100
CG1
22.958
11.049
17.008
C
PRO




2101
HG11
23.645
11.592
17.691
H
PRO




2102
HG12
22.741
11.697
16.131
H
PRO




2103
HG13
23.474
10.134
16.649
H
PRO




2104
CG2
21.946
9.769
18.954
C
PRO




2105
HG21
21.022
9.564
19.536
H
PRO




2106
HG22
22.689
10.245
19.628
H
PRO




2107
HG23
22.366
8.801
18.608
H
PRO




2108
C
19.494
11.678
18.551
C
PRO




2109
O
18.783
10.89
17.924
O
PRO


136
GLY
2110
N
19.026
12.397
19.599
N
PRO




2111
HN
19.66
12.983
20.098
H
PRO




2112
CA
17.648
12.451
20.045
C
PRO




2113
HA1
17.057
12.711
19.179
H
PRO




2114
HA2
17.619
13.207
20.816
H
PRO




2115
C
17.088
11.177
20.638
C
PRO




2116
O
17.817
10.223
20.912
O
PRO


137
PRO
2117
N
15.778
11.16
20.886
N
PRO




2118
CD
14.938
12.359
20.826
C
PRO




2119
HD1
14.753
12.605
19.758
H
PRO




2120
HD2
15.406
13.221
21.348
H
PRO




2121
CA
15.004
9.994
21.295
C
PRO




2122
HA
15.298
9.764
22.308
H
PRO




2123
CB
13.548
10.465
21.229
C
PRO




2124
HB1
12.902
9.93
21.957
H
PRO




2125
HB2
13.146
10.336
20.201
H
PRO




2126
CG
13.633
11.963
21.515
C
PRO




2127
HG1
12.754
12.524
21.131
H
PRO




2128
HG2
13.728
12.129
22.61
H
PRO




2129
C
15.223
8.74
20.477
C
PRO




2130
O
15.199
8.8
19.246
O
PRO


138
HIS
G
N
15.437
7.598
21.159
N
PRO




2132
HN
15.46
7.59
22.155
H
PRO




2133
CA
15.645
6.308
20.553
C
PRO




2134
HA
15.354
6.342
19.513
H
PRO




2135
CB
17.108
5.812
20.683
C
PRO




2136
HB1
17.163
4.719
20.488
H
PRO




2137
HB2
17.472
5.993
21.717
H
PRO




2138
CD2
18.656
5.911
18.618
C
PRO




2139
HD2
18.608
4.901
18.232
H
PRO




2140
CG
18.047
6.453
19.698
C
PRO




2141
NE2
19.351
6.915
18.003
N
PRO




2142
HE2
19.865
6.86
17.147
H
PRO




2143
ND1
18.384
7.779
19.718
N
PRO




2144
HD1
18.06
8.478
20.355
H
PRO




2145
CE1
19.167
8.033
18.682
C
PRO




2146
HE1
19.568
8.991
18.424
H
PRO




2147
C
14.733
5.323
21.236
C
PRO




2148
O
14.193
5.582
22.309
O
PRO


139
ILE
2149
N
14.53
4.156
20.596
N
PRO




2150
HN
14.968
3.968
19.72
H
PRO




2151
CA
13.626
3.133
21.055
C
PRO




2152
HA
13.573
3.178
22.133
H
PRO




2153
CB
12.222
3.289
20.45
C
PRO




2154
HB
11.833
4.271
20.796
H
PRO




2155
CG2
12.276
3.351
18.904
C
PRO




2156
HG21
12.647
2.393
18.48
H
PRO




2157
HG22
12.932
4.176
18.551
H
PRO




2158
HG23
11.256
3.53
18.502
H
PRO




2159
CG1
11.208
2.221
20.926
C
PRO




2160
HG11
11.546
1.213
20.602
H
PRO




2161
HG12
10.24
2.415
20.415
H
PRO




2162
CD1
10.959
2.217
22.436
C
PRO




2163
HD1
10.617
3.216
22.781
H
PRO




2164
HD2
11.877
1.944
22.999
H
PRO




2165
HD3
10.173
1.473
22.687
H
PRO




2166
C
14.262
1.817
20.682
C
PRO




2167
O
14.827
1.667
19.6
O
PRO


140
LEU
2168
N
14.217
0.823
21.601
N
PRO




2169
HN
13.783
0.958
22.488
H
PRO




2170
CA
14.677
−0.522
21.339
C
PRO




2171
HA
15.633
−0.457
20.84
H
PRO




2172
CB
14.829
−1.347
22.642
C
PRO




2173
HB1
13.843
−1.396
23.151
H
PRO




2174
HB2
15.521
−0.803
23.32
H
PRO




2175
CG
15.363
−2.79
22.473
C
PRO




2176
HG
14.704
−3.33
21.761
H
PRO




2177
CD1
16.794
−2.82
21.917
C
PRO




2178
HD11
17.481
−2.27
22.595
H
PRO




2179
HD12
16.844
−2.353
20.91
H
PRO




2180
HD13
17.149
−3.869
21.835
H
PRO




2181
CD2
15.301
−3.551
23.804
C
PRO




2182
HD21
14.264
−3.542
24.204
H
PRO




2183
HD22
15.967
−3.068
24.55
H
PRO




2184
HD23
15.625
−4.605
23.67
H
PRO




2185
C
13.695
−1.214
20.428
C
PRO




2186
O
12.485
−1.139
20.633
O
PRO


141
MET
2187
N
14.202
−1.909
19.393
N
PRO




2188
HN
15.18
−1.917
19.201
H
PRO




2189
CA
13.393
−2.678
18.486
C
PRO




2190
HA
12.449
−2.916
18.953
H
PRO




2191
CB
13.164
−1.976
17.123
C
PRO




2192
HB1
12.539
−2.635
16.484
H
PRO




2193
HB2
14.141
−1.824
16.617
H
PRO




2194
CG
12.467
−0.606
17.245
C
PRO




2195
HG1
13.129
0.064
17.835
H
PRO




2196
HG2
11.532
−0.733
17.83
H
PRO




2197
SD
12.084
0.194
15.659
S
PRO




2198
CE
10.708
−0.874
15.141
C
PRO




2199
HE1
10.322
−0.569
14.145
H
PRO




2200
HE2
9.862
−0.819
15.86
H
PRO




2201
HE3
11.022
−1.938
15.072
H
PRO




2202
C
14.136
−3.962
18.246
C
PRO




2203
O
15.353
−4.027
18.417
O
PRO


142
TYR
2204
N
13.413
−5.028
17.847
N
PRO




2205
HN
12.422
−4.981
17.752
H
PRO




2206
CA
14.012
−6.325
17.643
C
PRO




2207
HA
15.029
−6.188
17.308
H
PRO




2208
CB
14.023
−7.217
18.925
C
PRO




2209
HB1
14.539
−6.675
19.746
H
PRO




2210
HB2
14.588
−8.151
18.719
H
PRO




2211
CG
12.64
−7.599
19.407
C
PRO




2212
CD1
11.897
−6.744
20.237
C
PRO




2213
HD1
12.329
−5.811
20.568
H
PRO




2214
CE1
10.584
−7.071
20.604
C
PRO




2215
HE1
10.011
−6.398
21.224
H
PRO




2216
CZ
10.006
−8.264
20.154
C
PRO




2217
OH
8.68
−8.579
20.516
O
PRO




2218
HH
8.459
−9.427
20.123
H
PRO




2219
CD2
12.052
−8.803
18.973
C
PRO




2220
HD2
12.604
−9.462
18.32
H
PRO




2221
CE2
10.742
−9.132
19.338
C
PRO




2222
HE2
10.301
−10.05
18.976
H
PRO




2223
C
13.279
−7.024
16.53
C
PRO




2224
O
12.081
−6.825
16.343
O
PRO


143
LYS
2225
N
13.996
−7.874
15.771
N
PRO




2226
HN
14.987
−7.95
15.853
H
PRO




2227
CA
13.394
−8.778
14.829
C
PRO




2228
HA
12.339
−8.888
15.034
H
PRO




2229
CB
13.611
−8.332
13.367
C
PRO




2230
HB1
14.699
−8.291
13.147
H
PRO




2231
HB2
13.218
−7.298
13.257
H
PRO




2232
CG
12.908
−9.213
12.326
C
PRO




2233
HG1
11.811
−9.142
12.486
H
PRO




2234
HG2
13.207
−10.274
12.464
H
PRO




2235
CD
13.266
−8.798
10.893
C
PRO




2236
HD1
14.365
−8.903
10.77
H
PRO




2237
HD2
13.018
−7.726
10.74
H
PRO




2238
CE
12.587
−9.656
9.821
C
PRO




2239
HE1
12.752
−10.737
10.02
H
PRO




2240
HE2
12.995
−9.409
8.818
H
PRO




2241
NZ
11.134
−9.399
9.785
N
PRO




2242
HZ1
10.994
−8.407
9.507
H
PRO




2243
HZ2
10.733
−9.569
10.729
H
PRO




2244
HZ3
10.69
−10.031
9.088
H
PRO




2245
C
14.069
−10.106
15.028
C
PRO




2246
O
15.285
−10.225
14.892
O
PRO


144
ARG
2247
N
13.286
−11.156
15.348
N
PRO




2248
HN
12.305
−11.052
15.492
H
PRO




2249
CA
13.799
−12.499
15.459
C
PRO




2250
HA
14.837
−12.456
15.756
H
PRO




2251
CB
13.038
−13.319
16.523
C
PRO




2252
HB1
12.012
−13.557
16.17
H
PRO




2253
HB2
12.935
−12.666
17.415
H
PRO




2254
CG
13.77
−14.607
16.949
C
PRO




2255
HG1
14.834
−14.363
17.157
H
PRO




2256
HG2
13.751
−15.325
16.102
H
PRO




2257
CD
13.178
−15.293
18.19
C
PRO




2258
HD1
13.707
−16.245
18.412
H
PRO




2259
HD2
12.102
−15.517
18.028
H
PRO




2260
NE
13.295
−14.352
19.359
N
PRO




2261
HE
12.572
−13.674
19.495
H
PRO




2262
CZ
14.391
−14.244
20.152
C
PRO




2263
NH1
15.427
−15.109
20.093
N
PRO




2264
HH11
15.376
−15.936
19.534
H
PRO




2265
HH12
16.188
−14.982
20.729
H
PRO




2266
NH2
14.463
−13.235
21.052
N
PRO




2267
HH21
13.749
−12.536
21.103
H
PRO




2268
HH22
15.284
−13.173
21.62
H
PRO




2269
C
13.711
−13.126
14.09
C
PRO




2270
O
12.676
−13.058
13.429
O
PRO


145
ILE
2271
N
14.838
−13.699
13.611
N
PRO




2272
HN
15.643
−13.812
14.188
H
PRO




2273
CA
15.013
−14.07
12.221
C
PRO




2274
HA
14.156
−13.746
11.649
H
PRO




2275
CB
16.249
−13.433
11.591
C
PRO




2276
HB
16.341
−13.77
10.536
H
PRO




2277
CG2
16.008
−11.91
11.553
C
PRO




2278
HG21
15.957
−11.491
12.581
H
PRO




2279
HG22
15.055
−11.682
11.029
H
PRO




2280
HG23
16.827
−11.398
11.005
H
PRO




2281
CG1
17.557
−13.82
12.324
C
PRO




2282
HG11
17.652
−14.926
12.351
H
PRO




2283
HG12
17.505
−13.462
13.374
H
PRO




2284
CD1
18.825
−13.25
11.684
C
PRO




2285
HD1
18.834
−12.14
11.733
H
PRO




2286
HD2
18.901
−13.561
10.62
H
PRO




2287
HD3
19.717
−13.63
12.226
H
PRO




2288
C
15.075
−15.568
12.088
C
PRO




2289
O
15.411
−16.089
11.025
O
PRO


146
THR
2290
N
14.704
−16.298
13.161
N
PRO




2291
HN
14.424
−15.854
14.008
H
PRO




2292
CA
14.607
−17.742
13.169
C
PRO




2293
HA
15.551
−18.142
12.829
H
PRO




2294
CB
14.304
−18.312
14.548
C
PRO




2295
HB
14.147
−19.409
14.478
H
PRO




2296
OG1
13.134
−17.713
15.097
O
PRO




2297
HG1
12.485
−17.79
14.394
H
PRO




2298
CG2
15.493
−18.045
15.49
C
PRO




2299
HG21
15.631
−16.956
15.657
H
PRO




2300
HG22
16.43
−18.46
15.06
H
PRO




2301
HG23
15.315
−18.527
16.475
H
PRO




2302
C
13.5
−18.208
12.201
C
PRO




2303
OT1
13.822
−18.993
11.271
O
PRO




2304
OT2
12.33
−17.769
12.37
O
PRO


150
ACO
2305
N1A
11.04
6.933
8.529
N
LIG




2306
C2A
10.012
6.106
8.286
C
LIG




2307
H2
9.191
6.171
9
H
LIG




2308
N3A
9.839
5.208
7.303
N
LIG




2309
C4A
10.901
5.205
6.484
C
LIG




2310
C5A
12.029
6.007
6.613
C
LIG




2311
C6A
12.112
6.918
7.679
C
LIG




2312
N6A
13.221
7.701
7.816
N
LIG




2313
H61
13.345
8.288
8.616
H
LIG




2314
H62
14.01
7.566
7.217
H
LIG




2315
N7A
12.913
5.735
5.605
N
LIG




2316
C8A
12.347
4.799
4.894
C
LIG




2317
H8
12.787
4.35
4.003
H
LIG




2318
N9A
11.115
4.421
5.372
N
LIG




2319
C1B
10.228
3.387
4.822
C
LIG




2320
H1′
9.262
3.36
5.371
H
LIG




2321
C4B
10.637
1.327
3.764
C
LIG




2322
H4′
10.152
0.358
4.012
H
LIG




2323
O4B
10.778
2.095
4.99
O
LIG




2324
C2B
9.989
3.58
3.353
C
LIG




2325
H2′
10.909
3.927
2.836
H
LIG




2326
O2B
8.939
4.489
3.107
O
LIG




2327
HO2′
9.044
4.803
2.206
H
LIG




2328
C3B
9.678
2.159
2.896
C
LIG




2329
H3′
9.995
2.05
1.836
H
LIG




2330
O3B
8.301
1.788
3.097
O
LIG




2331
P3B
7.578
0.856
2.044
P
LIG




2332
O7A
8.285
−0.438
1.953
O
LIG




2333
O8A
6.125
0.84
2.331
O
LIG




2334
O9A
7.74
1.578
0.646
O
LIG




2335
C5B
12.006
1.038
3.113
C
LIG




2336
H5′1
12.588
0.402
3.814
H
LIG




2337
H5′2
11.822
0.448
2.189
H
LIG




2338
O5B
12.75
2.23
2.821
O
LIG




2339
P1A
14.052
2.162
1.929
P
LIG




2340
O1A
13.744
2.724
0.594
O
LIG




2341
O2A
14.623
0.798
1.972
O
LIG




2342
O3A
15.017
3.134
2.713
O
LIG




2343
P2A
16.203
4.103
2.326
P
LIG




2344
O4A
15.647
5.389
1.856
O
LIG




2345
O5A
17.148
3.413
1.417
O
LIG




2346
O6A
16.94
4.307
3.699
O
LIG




2347
CBP
16.997
5.431
5.856
C
LIG




2348
CCP
16.215
4.525
4.915
C
LIG




2349
H121
15.206
4.956
4.742
H
LIG




2350
H122
16.08
3.545
5.42
H
LIG




2351
CDP
18.361
4.743
6.085
C
LIG




2352
H131
18.203
3.693
6.412
H
LIG




2353
H132
18.965
4.731
5.152
H
LIG




2354
H133
18.935
5.265
6.88
H
LIG




2355
CEP
16.184
5.489
7.167
C
LIG




2356
H141
16.068
4.464
7.58
H
LIG




2357
H142
16.703
6.105
7.933
H
LIG




2358
H143
15.17
5.906
6.991
H
LIG




2359
CAP
17.132
6.806
5.168
C
LIG




2360
H10
17.505
6.637
4.135
H
LIG




2361
OAP
15.873
7.484
5.095
O
LIG




2362
HO10
15.359
7.051
4.41
H
LIG




2363
C9P
18.166
7.681
5.841
C
LIG




2364
O9P
19.288
7.813
5.353
O
LIG




2365
N8P
17.811
8.32
6.973
N
LIG




2366
HN8
16.897
8.209
7.354
H
LIG




2367
C7P
18.691
9.239
7.637
C
LIG




2368
H71
19.317
9.777
6.893
H
LIG




2369
H72
18.08
10.014
8.147
H
LIG




2370
C6P
19.622
8.562
8.652
C
LIG




2371
HC1
20.17
7.782
8.144
H
LIG




2372
HC2
20.26
9.323
9.075
H
LIG




2373
C5P
18.837
7.957
9.766
C
LIG




2374
O5P
17.969
8.6
10.352
O
LIG




2375
N4P
19.158
6.699
10.115
N
LIG




2376
H4
19.842
6.168
9.621
H
LIG




2377
C3P
18.619
6.086
11.293
C
LIG




2378
H31
17.543
5.86
11.137
H
LIG




2379
H32
18.707
6.798
12.142
H
LIG




2380
C2P
19.38
4.799
11.634
C
LIG




2381
H151
20.429
5.053
11.617
H
LIG




2382
H152
19.144
4.071
10.872
H
LIG




2383
S1P
18.97
4.122
13.276
S
LIG




2384
C
20.392
3.069
13.565
C
LIG




2385
O
21.208
2.802
12.685
O
LIG




2386
CH3
20.565
2.543
14.95
C
LIG




2387
HB21
19.631
2.069
15.32
H
LIG




2388
HB22
21.379
1.787
14.966
H
LIG




2389
HB23
20.831
3.364
15.65
H
LIG


151
GLF
2390
C
25.252
4.742
15.152
C
LIG




2391
OC2
26.209
4.893
15.957
O
LIG




2392
OC1
24.621
3.656
15.041
O
LIG




2393
C1
24.896
5.976
14.321
C
LIG




2394
H11
25.719
6.155
13.597
H
LIG




2395
H12
24.838
6.855
14.999
H
LIG




2396
N
23.617
5.914
13.542
N
LIG




2397
HN1
23.675
5.136
12.854
H
LIG




2398
HN2
23.522
6.82
13.039
H
LIG




2399
C2
22.354
5.74
14.334
C
LIG




2400
H21
21.515
5.771
13.606
H
LIG




2401
H22
22.382
4.732
14.801
H
LIG




2402
P
22.04
7.038
15.677
P
LIG




2403
OP2
22.736
8.214
15.118
O
LIG




2404
OP1
20.566
7.091
15.65
O
LIG




2405
OP3
22.639
6.379
16.858
O
LIG


161
HOH
2406
OH2
16.789
3.914
−1.162
O
WAT




2407
H1
16.956
3.817
−0.225
H
WAT




2408
H2
17.392
4.603
−1.443
H
WAT


162
HOH
2409
OH2
34.813
−5.787
4.916
O
WAT




2410
H1
34.179
−5.073
4.852
H
WAT




2411
H2
35.636
−5.406
4.607
H
WAT


163
HOH
2412
OH2
27.594
2.743
8.984
O
WAT




2413
H1
27.825
2.907
8.07
H
WAT




2414
H2
26.653
2.912
9.028
H
WAT


164
HOH
2415
OH2
41.145
−1.022
8.832
O
WAT




2416
H1
41.929
−0.856
9.355
H
WAT




2417
H2
40.797
−0.152
8.639
H
WAT


165
HOH
2418
OH2
35.185
−1.464
0.428
O
WAT




2419
H1
35.215
−0.747
1.061
H
WAT




2420
H2
35.701
−1.151
−0.315
H
WAT


166
HOH
2421
OH2
29.313
−1.078
14.048
O
WAT




2422
H1
29.299
−0.841
14.976
H
WAT




2423
H2
30.138
−0.719
13.721
H
WAT


167
HOH
2424
OH2
29.387
5.58
3.736
O
WAT




2425
H1
30.274
5.237
3.625
H
WAT




2426
H2
29.108
5.817
2.852
H
WAT


168
HOH
2427
OH2
35.502
6.703
3.149
O
WAT




2428
H1
36.066
6.2
2.561
H
WAT




2429
H2
35.557
6.243
3.987
H
WAT


170
HOH
2430
OH2
35.225
−3.907
10.358
O
WAT




2431
H1
35.714
−3.542
11.095
H
WAT




2432
H2
34.453
−3.346
10.281
H
WAT


171
HOH
2433
OH2
11.214
3.019
−0.149
O
WAT




2434
H1
12.123
2.934
0.137
H
WAT




2435
H2
10.93
3.864
0.201
H
WAT


172
HOH
2436
OH2
21.489
0.176
17.393
O
WAT




2437
H1
21.656
−0.22
16.538
H
WAT




2438
H2
21.616
1.115
17.251
H
WAT


173
HOH
2439
OH2
14.012
7.121
2.955
O
WAT




2440
H1
14.588
6.5
2.51
H
WAT




2441
H2
13.127
6.825
2.74
H
WAT


174
HOH
2442
OH2
35.5
−6.442
14.3
O
WAT




2443
H1
35.111
−5.576
14.183
H
WAT




2444
H2
34.934
−6.876
14.938
H
WAT


175
HOH
2445
OH2
38.131
−5.29
6.33
O
WAT




2446
H1
37.567
−4.861
6.973
H
WAT




2447
H2
37.767
−5.034
5.483
H
WAT


176
HOH
2448
OH2
29.977
−3.271
12.378
O
WAT




2449
H1
29.474
−4.071
12.528
H
WAT




2450
H2
29.678
−2.668
13.058
H
WAT


177
HOH
2451
OH2
13.274
0.129
25.376
O
WAT




2452
H1
13.012
1.033
25.549
H
WAT




2453
H2
12.601
−0.207
24.784
H
WAT


178
HOH
2454
OH2
32.356
4.138
−3.187
O
WAT




2455
H1
32.696
3.857
−2.337
H
WAT




2456
H2
33.115
4.111
−3.77
H
WAT


179
HOH
2457
OH2
37.973
0.268
1.793
O
WAT




2458
H1
38.198
0.956
1.166
H
WAT




2459
H2
37.045
0.409
1.98
H
WAT


180
HOH
2460
OH2
19.387
17.718
2.993
O
WAT




2461
H1
19.908
18.42
3.382
H
WAT




2462
H2
19.943
16.941
3.059
H
WAT


181
HOH
2463
OH2
40.36
4.068
9.526
O
WAT




2464
H1
40.772
3.531
8.849
H
WAT




2465
H2
39.784
3.465
9.994
H
WAT


182
HOH
2466
OH2
30.958
9.003
−1.334
O
WAT




2467
H1
31.543
9.737
−1.146
H
WAT




2468
H2
30.498
8.846
−0.51
H
WAT


183
HOH
2469
OH2
27.913
−10.85
0.383
O
WAT




2470
H1
28.517
−11.373
0.91
H
WAT




2471
H2
27.247
−11.473
0.093
H
WAT


184
HOH
2472
OH2
10.44
−10.788
16.002
O
WAT




2473
H1
10.083
−9.938
15.745
H
WAT




2474
H2
9.725
−11.406
15.849
H
WAT


185
HOH
2475
OH2
9.653
6.669
11.482
O
WAT




2476
H1
9.111
7.125
12.126
H
WAT




2477
H2
10.307
7.316
11.217
H
WAT


186
HOH
2478
OH2
30.887
−15.014
16.886
O
WAT




2479
H1
30.885
−14.996
15.929
H
WAT




2480
H2
30.126
−14.49
17.137
H
WAT


187
HOH
2481
OH2
28.724
6.574
1.126
O
WAT




2482
H1
28.454
6.402
0.224
H
WAT




2483
H2
29.034
7.48
1.116
H
WAT


188
HOH
2484
OH2
22.139
14.64
15.436
O
WAT




2485
H1
22.754
15.366
15.331
H
WAT




2486
H2
21.923
14.642
16.369
H
WAT


189
HOH
2487
OH2
21.376
13.362
13.046
O
WAT




2488
H1
22.262
13.079
12.82
H
WAT




2489
H2
21.485
13.872
13.849
H
WAT


190
HOH
2490
OH2
24.158
−7.787
−4.312
O
WAT




2491
H1
23.427
−8.301
−3.97
H
WAT




2492
H2
24.875
−7.953
−3.7
H
WAT


191
HOH
2493
OH2
8.366
3.947
−0.811
O
WAT




2494
H1
8.188
3.188
−0.255
H
WAT




2495
H2
8.973
4.482
−0.299
H
WAT


192
HOH
2496
OH2
35.873
1.702
13.193
O
WAT




2497
H1
35.977
2.346
12.493
H
WAT




2498
H2
34.927
1.573
13.262
H
WAT


193
HOH
2499
OH2
32.296
−10.503
9.719
O
WAT




2500
H1
32.359
−9.633
10.115
H
WAT




2501
H2
33.13
−10.923
9.93
H
WAT


194
HOH
2502
OH2
9.275
−8.442
15.099
O
WAT




2503
H1
8.674
−7.836
15.533
H
WAT




2504
H2
9.367
−8.095
14.212
H
WAT


195
HOH
2505
OH2
36.644
−2.72
12.56
O
WAT




2506
H1
37.271
−3.419
12.747
H
WAT




2507
H2
35.905
−2.898
13.142
H
WAT


196
HOH
2508
OH2
16.946
−6.561
8.787
O
WAT




2509
H1
16.317
−7.229
8.515
H
WAT




2510
H2
17.739
−6.761
8.29
H
WAT


198
HOH
2511
OH2
5.863
−2.048
17.748
O
WAT




2512
H1
5.979
−1.104
17.86
H
WAT




2513
H2
5.573
−2.357
18.606
H
WAT


199
HOH
2514
OH2
36.67
4.794
1.343
O
WAT




2515
H1
36.263
3.929
1.301
H
WAT




2516
H2
37.56
4.657
1.018
H
WAT


200
HOH
2517
OH2
25.141
0.637
−10.805
O
WAT




2518
H1
24.679
0.083
−11.434
H
WAT




2519
H2
25.917
0.131
−10.564
H
WAT


201
HOH
2520
OH2
33.622
3.411
−0.745
O
WAT




2521
H1
34.245
2.902
−0.227
H
WAT




2522
H2
33.596
4.267
−0.317
H
WAT


202
HOH
2523
OH2
12.494
−18.125
9.085
O
WAT




2524
H1
12.902
−18.372
9.915
H
WAT




2525
H2
11.684
−18.634
9.055
H
WAT


203
HOH
2526
OH2
8.429
5.585
26.917
O
WAT




2527
H1
8.271
5.027
27.679
H
WAT




2528
H2
8.068
6.436
27.164
H
WAT


204
HOH
2529
OH2
22.038
16.076
5.555
O
WAT




2530
H1
22.912
16.342
5.267
H
WAT




2531
H2
21.561
15.901
4.744
H
WAT


205
HOH
2532
OH2
29.107
−10.468
21.404
O
WAT




2533
H1
28.744
−9.598
21.236
H
WAT




2534
H2
28.364
−10.98
21.724
H
WAT


206
HOH
2535
OH2
16.028
10.706
17.387
O
WAT




2536
H1
16.974
10.783
17.51
H
WAT




2537
H2
15.76
10.023
18.001
H
WAT


207
HOH
2538
OH2
20.235
−10.597
−1.245
O
WAT




2539
H1
20.407
−11.153
−0.486
H
WAT




2540
H2
19.446
−10.968
−1.64
H
WAT


208
HOH
2541
OH2
15.83
−17.772
19.095
O
WAT




2542
H1
16.784
−17.825
19.155
H
WAT




2543
H2
15.535
−18.681
19.142
H
WAT


209
HOH
2544
OH2
24.926
−1.602
22.21
O
WAT




2545
H1
24.624
−1.786
23.1
H
WAT




2546
H2
24.537
−2.294
21.676
H
WAT


213
HOH
2547
OH2
36.509
−3.612
7.913
O
WAT




2548
H1
37.195
−2.981
8.131
H
WAT




2549
H2
36.094
−3.815
8.751
H
WAT


214
HOH
2550
OH2
27.276
12.664
−2.33
O
WAT




2551
H1
28.165
12.841
−2.637
H
WAT




2552
H2
27.368
11.906
−1.753
H
WAT


215
HOH
2553
OH2
20.572
−12.563
26.669
O
WAT




2554
H1
19.876
−11.911
26.585
H
WAT




2555
H2
21.143
−12.217
27.355
H
WAT


216
HOH
2556
OH2
5.907
1.819
9.427
O
WAT




2557
H1
5.47
1.003
9.183
H
WAT




2558
H2
6.825
1.679
9.193
H
WAT


217
HOH
2559
OH2
22.149
−11.115
28.513
O
WAT




2560
H1
22.908
−10.711
28.933
H
WAT




2561
H2
21.76
−10.412
27.993
H
WAT


218
HOH
2562
OH2
22.19
−18.948
17.096
O
WAT




2563
H1
21.904
−18.961
16.183
H
WAT




2564
H2
21.562
−18.374
17.535
H
WAT


220
HOH
2565
OH2
15.824
12.223
14.985
O
WAT




2566
H1
15.984
13.14
15.21
H
WAT




2567
H2
15.907
11.754
15.815
H
WAT


222
HOH
2568
OH2
11.877
11.24
24.623
O
WAT




2569
H1
12.041
12.076
25.058
H
WAT




2570
H2
12.738
10.826
24.567
H
WAT


223
HOH
2571
OH2
29.323
1.475
20.596
O
WAT




2572
H1
29.119
1.446
21.53
H
WAT




2573
H2
30.12
2.003
20.54
H
WAT


224
HOH
2574
OH2
12.211
−15.668
10.49
O
WAT




2575
H1
12.204
−16.332
9.801
H
WAT




2576
H2
12.216
−16.168
11.306
H
WAT


225
HOH
2577
OH2
30.474
12.507
−2.571
O
WAT




2578
H1
30.887
13.334
−2.82
H
WAT




2579
H2
31.008
12.18
−1.848
H
WAT


226
HOH
2580
OH2
12.651
−11.066
21.257
O
WAT




2581
H1
12.576
−10.668
22.124
H
WAT




2582
H2
12.248
−10.431
20.665
H
WAT


227
HOH
2583
OH2
30.53
11.546
14.482
O
WAT




2584
H1
31.422
11.892
14.453
H
WAT




2585
H2
30.003
12.205
14.031
H
WAT


228
HOH
2586
OH2
13.098
−7.784
6.79
O
WAT




2587
H1
12.679
−7.305
7.506
H
WAT




2588
H2
13.95
−8.043
7.141
H
WAT


229
HOH
2589
OH2
24.411
13.654
−2.2
O
WAT




2590
H1
25.174
13.219
−2.582
H
WAT




2591
H2
23.66
13.196
−2.578
H
WAT


230
HOH
2592
OH2
27.344
−0.918
−9.896
O
WAT




2593
H1
27.577
−0.908
−8.968
H
WAT




2594
H2
26.92
−1.767
−10.027
H
WAT


231
HOH
2595
OH2
4.691
−6.714
17.197
O
WAT




2596
H1
4.136
−7.233
17.778
H
WAT




2597
H2
4.1
−6.067
16.814
H
WAT


233
HOH
2598
OH2
10.234
−3.891
3.369
O
WAT




2599
H1
9.878
−3.868
4.257
H
WAT




2600
H2
9.928
−3.077
2.967
H
WAT


235
HOH
2601
OH2
18.09
−0.61
24.997
O
WAT




2602
H1
17.432
0.083
25.055
H
WAT




2603
H2
17.778
−1.288
25.597
H
WAT


236
HOH
2604
OH2
34.845
−16.879
23.334
O
WAT




2605
H1
35.397
−17.66
23.364
H
WAT




2606
H2
34.385
−16.878
24.173
H
WAT


237
HOH
2607
OH2
19.469
−3.358
31.026
O
WAT




2608
H1
19.665
−3.088
31.924
H
WAT




2609
H2
18.661
−2.894
30.808
H
WAT


238
HOH
2610
OH2
17.672
−9.485
0.279
O
WAT




2611
H1
17.717
−10.408
0.529
H
WAT




2612
H2
18.559
−9.271
−0.011
H
WAT


239
HOH
2613
OH2
4.023
−0.501
3.536
O
WAT




2614
H1
4.785
−0.099
3.119
H
WAT




2615
H2
3.359
−0.53
2.848
H
WAT


240
HOH
2616
OH2
7.895
6.955
1.249
O
WAT




2617
H1
8.704
6.526
0.971
H
WAT




2618
H2
8.181
7.631
1.864
H
WAT


241
HOH
2619
OH2
17.113
−1.831
30.619
O
WAT




2620
H1
16.611
−2.062
29.838
H
WAT




2621
H2
16.916
−0.905
30.766
H
WAT


243
HOH
2622
OH2
33.448
−3.901
20.921
O
WAT




2623
H1
32.839
−3.445
21.502
H
WAT




2624
H2
33.673
−3.253
20.254
H
WAT


244
HOH
2625
OH2
13.364
−11.417
6.742
O
WAT




2626
H1
14.008
−11.1
7.375
H
WAT




2627
H2
13.129
−10.643
6.231
H
WAT


246
HOH
2628
OH2
30.851
10.449
−6.52
O
WAT




2629
H1
31.62
10.837
−6.938
H
WAT




2630
H2
30.252
10.266
−7.244
H
WAT


247
HOH
2631
OH2
25.761
−12.445
−0.491
O
WAT




2632
H1
25.201
−13.022
−1.01
H
WAT




2633
H2
25.258
−11.635
−0.406
H
WAT


248
HOH
2634
OH2
23.679
−3.419
−10.747
O
WAT




2635
H1
23.697
−4.222
−11.267
H
WAT




2636
H2
24.566
−3.34
−10.396
H
WAT


249
HOH
2637
OH2
26.39
−1.205
19.797
O
WAT




2638
H1
26.604
−2.108
19.56
H
WAT




2639
H2
25.98
−1.274
20.659
H
WAT


250
HOH
2640
OH2
32.833
6.779
22.434
O
WAT




2641
H1
32.885
6.806
23.39
H
WAT




2642
H2
32.796
5.846
22.222
H
WAT


251
HOH
2643
OH2
29.42
12.89
1.075
O
WAT




2644
H1
29.832
13.576
1.601
H
WAT




2645
H2
29.868
12.085
1.336
H
WAT


252
HOH
2646
OH2
4.484
−3.2
15.593
O
WAT




2647
H1
5.059
−3.804
15.124
H
WAT




2648
H2
5.017
−2.878
16.32
H
WAT


253
HOH
2649
OH2
11.543
−12.897
10.873
O
WAT




2650
H1
11.824
−12.847
11.787
H
WAT




2651
H2
11.589
−13.828
10.659
H
WAT


254
HOH
2652
OH2
30.78
12.827
3.834
O
WAT




2653
H1
31.029
12.217
3.139
H
WAT




2654
H2
30.282
12.293
4.454
H
WAT


255
HOH
2655
OH2
27.82
−9.343
−2.076
O
WAT




2656
H1
27.122
−8.689
−2.035
H
WAT




2657
H2
27.771
−9.799
−1.236
H
WAT


256
HOH
2658
OH2
13.566
−2.454
26.667
O
WAT




2659
H1
13.58
−1.597
26.241
H
WAT




2660
H2
14.318
−2.439
27.26
H
WAT


257
HOH
2661
OH2
9.966
3.116
−3.122
O
WAT




2662
H1
10.727
3.689
−3.217
H
WAT




2663
H2
9.442
3.525
−2.432
H
WAT


259
HOH
2664
OH2
28.422
10.794
−0.582
O
WAT




2665
H1
28.755
10.094
−0.02
H
WAT




2666
H2
28.809
11.593
−0.226
H
WAT


260
HOH
2667
OH2
38.343
−1.619
8.383
O
WAT




2668
H1
38.389
−0.917
7.734
H
WAT




2669
H2
39.214
−1.636
8.781
H
WAT


261
HOH
2670
OH2
14.286
9.859
5.376
O
WAT




2671
H1
14.827
9.083
5.228
H
WAT




2672
H2
13.46
9.515
5.716
H
WAT


262
HOH
2673
OH2
24.09
16.742
3.594
O
WAT




2674
H1
24.217
17.66
3.355
H
WAT




2675
H2
23.403
16.433
3.003
H
WAT


263
HOH
2676
OH2
26.762
−15.545
20.796
O
WAT




2677
H1
26.508
−14.622
20.802
H
WAT




2678
H2
25.997
−16.006
21.141
H
WAT


264
HOH
2679
OH2
40.63
−1.688
6.004
O
WAT




2680
H1
39.952
−1.017
5.93
H
WAT




2681
H2
40.975
−1.585
6.891
H
WAT


265
HOH
2682
OH2
34.286
−6.379
9.266
O
WAT




2683
H1
33.812
−6.8
9.984
H
WAT




2684
H2
34.674
−5.598
9.661
H
WAT


266
HOH
2685
OH2
20.357
10.328
−7.235
O
WAT




2686
H1
19.667
10.243
−6.577
H
WAT




2687
H2
20.966
9.616
−7.038
H
WAT


267
HOH
2688
OH2
18.227
−18.104
12.003
O
WAT




2689
H1
18.586
−17.382
12.519
H
WAT




2690
H2
18.667
−18.884
12.342
H
WAT


268
HOH
2691
OH2
20.034
13.755
5.419
O
WAT




2692
H1
20.36
14.263
6.161
H
WAT




2693
H2
20.218
14.301
4.655
H
WAT


270
HOH
2694
OH2
36.706
1.849
15.875
O
WAT




2695
H1
35.89
1.555
16.279
H
WAT




2696
H2
36.542
1.793
14.934
H
WAT


271
HOH
2697
OH2
15.08
11.962
3.717
O
WAT




2698
H1
14.304
12.467
3.475
H
WAT




2699
H2
14.753
11.293
4.319
H
WAT


272
HOH
2700
OH2
17.001
10.878
11.588
O
WAT




2701
H1
17.272
10.11
11.084
H
WAT




2702
H2
16.52
11.419
10.961
H
WAT


273
HOH
2703
OH2
35.89
−10.565
14.418
O
WAT




2704
H1
36.608
−11.168
14.229
H
WAT




2705
H2
36.27
−9.694
14.301
H
WAT


274
HOH
2706
OH2
15.973
0.784
−6.976
O
WAT




2707
H1
15.769
0.794
−6.041
H
WAT




2708
H2
15.352
1.402
−7.364
H
WAT


275
HOH
2709
OH2
30.397
−12.223
6.475
O
WAT




2710
H1
31.064
−11.544
6.577
H
WAT




2711
H2
30.068
−12.103
5.584
H
WAT


276
HOH
2712
OH2
7.415
5.162
5.572
O
WAT




2713
H1
7.869
5.21
4.731
H
WAT




2714
H2
8.103
5.288
6.225
H
WAT


277
HOH
2715
OH2
8.492
−6.434
6.394
O
WAT




2716
H1
8.677
−5.515
6.197
H
WAT




2717
H2
7.624
−6.589
6.022
H
WAT


278
HOH
2718
OH2
32.214
−9.982
6.865
O
WAT




2719
H1
32.276
−10.185
7.799
H
WAT




2720
H2
32.784
−9.222
6.747
H
WAT


279
HOH
2721
OH2
24.674
−7.171
27.31
O
WAT




2722
H1
24.695
−7.618
26.464
H
WAT




2723
H2
25.589
−6.951
27.488
H
WAT


280
HOH
2724
OH2
13.514
−5.774
−0.219
O
WAT




2725
H1
13.99
−5.102
−0.708
H
WAT




2726
H2
14.069
−6.551
−0.277
H
WAT


281
HOH
2727
OH2
5.265
3.108
28.822
O
WAT




2728
H1
6.008
2.546
29.039
H
WAT




2729
H2
5.635
3.99
28.776
H
WAT


282
HOH
2730
OH2
20.729
−1.117
24.118
O
WAT




2731
H1
20.809
−1.955
24.574
H
WAT




2732
H2
19.85
−0.807
24.336
H
WAT


283
HOH
2733
OH2
32.867
−6.26
−1.588
O
WAT




2734
H1
33.772
−5.994
−1.747
H
WAT




2735
H2
32.565
−5.679
−0.889
H
WAT


286
HOH
2736
OH2
12.396
−9.672
23.659
O
WAT




2737
H1
12.293
−9.897
24.583
H
WAT




2738
H2
12.283
−8.722
23.629
H
WAT


287
HOH
2739
OH2
15.414
14.441
23.64
O
WAT




2740
H1
15.151
13.702
24.19
H
WAT




2741
H2
15.024
15.205
24.063
H
WAT


288
HOH
2742
OH2
21.332
−3.295
−8.937
O
WAT




2743
H1
20.802
−3.825
−9.532
H
WAT




2744
H2
22.179
−3.217
−9.376
H
WAT


290
HOH
2745
OH2
23.028
3.792
17.286
O
WAT




2746
H1
22.806
4.719
17.202
H
WAT




2747
H2
23.592
3.611
16.534
H
WAT


291
HOH
2748
OH2
3.662
1.475
18.547
O
WAT




2749
H1
3.553
2.001
19.339
H
WAT




2750
H2
4.574
1.187
18.574
H
WAT


292
HOH
2751
OH2
35.309
6.968
18.526
O
WAT




2752
H1
35.691
7.531
17.853
H
WAT




2753
H2
34.977
6.211
18.045
H
WAT


293
HOH
2754
OH2
18.022
−0.568
−8.26
O
WAT




2755
H1
17.919
−0.32
−9.179
H
WAT




2756
H2
17.313
−0.11
−7.808
H
WAT


294
HOH
2757
OH2
29.154
−14.743
7.181
O
WAT




2758
H1
28.807
−15.219
6.427
H
WAT




2759
H2
29.622
−14
6.801
H
WAT


298
HOH
2760
OH2
13.982
9.368
10.184
O
WAT




2761
H1
13.134
9.162
10.578
H
WAT




2762
H2
14.527
9.646
10.92
H
WAT


299
HOH
2763
OH2
38.701
1.924
10.338
O
WAT




2764
H1
39.116
1.566
9.553
H
WAT




2765
H2
38.543
1.162
10.895
H
WAT


302
HOH
2766
OH2
13.316
11.756
17.617
O
WAT




2767
H1
14.205
11.431
17.473
H
WAT




2768
H2
12.797
10.97
17.786
H
WAT


305
HOH
2769
OH2
29.722
4.371
19.089
O
WAT




2770
H1
29.998
5.273
18.923
H
WAT




2771
H2
30.412
4.007
19.643
H
WAT


307
HOH
2772
OH2
38.262
15.916
14.472
O
WAT




2773
H1
38.127
15.012
14.758
H
WAT




2774
H2
39.124
15.909
14.056
H
WAT


308
HOH
2775
OH2
15.275
−4.041
−1.509
O
WAT




2776
H1
15.322
−3.1
−1.68
H
WAT




2777
H2
16.172
−4.352
−1.633
H
WAT


310
HOH
2778
OH2
17.834
−3.694
−4.856
O
WAT




2779
H1
17.104
−4.306
−4.949
H
WAT




2780
H2
18.039
−3.706
−3.921
H
WAT


317
HOH
2781
OH2
30.546
7.047
18.386
O
WAT




2782
H1
31.299
7.227
18.949
H
WAT




2783
H2
30.744
7.503
17.568
H
WAT


318
HOH
2784
OH2
24.337
−19.839
1.508
O
WAT




2785
H1
23.58
−20.394
1.323
H
WAT




2786
H2
24.142
−19.012
1.066
H
WAT


319
HOH
2787
OH2
6.391
−4.832
14.4
O
WAT




2788
H1
6.625
−5.582
14.947
H
WAT




2789
H2
7.231
−4.443
14.155
H
WAT


323
HOH
2790
OH2
32.141
11.459
−0.46
O
WAT




2791
H1
33.009
11.832
−0.304
H
WAT




2792
H2
31.8
11.271
0.414
H
WAT


324
HOH
2793
OH2
14.138
2.731
−7.857
O
WAT




2794
H1
14.323
3.615
−7.538
H
WAT




2795
H2
13.393
2.84
−8.448
H
WAT


327
HOH
2796
OH2
8.39
8.079
13.51
O
WAT




2797
H1
8.961
7.902
14.257
H
WAT




2798
H2
7.798
8.766
13.817
H
WAT


329
HOH
2799
OH2
18.034
14.982
2.873
O
WAT




2800
H1
17.743
15.891
2.799
H
WAT




2801
H2
18.983
15.042
2.976
H
WAT


335
HOH
2802
OH2
18.689
−18.557
23.705
O
WAT




2803
H1
18.065
−19.273
23.829
H
WAT




2804
H2
18.537
−17.975
24.449
H
WAT


342
HOH
2805
OH2
9.267
0.134
−3.877
O
WAT




2806
H1
9.227
1.004
−4.272
H
WAT




2807
H2
9.104
−0.468
−4.604
H
WAT


343
HOH
2808
OH2
26.082
−22.116
5.38
O
WAT




2809
H1
25.762
−21.794
6.223
H
WAT




2810
H2
25.967
−23.066
5.427
H
WAT


348
HOH
2811
OH2
4.751
−0.625
8.681
O
WAT




2812
H1
5.281
−1.39
8.904
H
WAT




2813
H2
4.273
−0.885
7.894
H
WAT


349
HOH
2814
OH2
4.737
3.206
2.458
O
WAT




2815
H1
5.066
3.841
1.822
H
WAT




2816
H2
5.099
2.368
2.17
H
WAT


350
HOH
2817
OH2
29.932
−2.467
−9.956
O
WAT




2818
H1
29.466
−3.249
−10.253
H
WAT




2819
H2
29.356
−1.74
−10.192
H
WAT


351
HOH
2820
OH2
29.255
7.611
−10.151
O
WAT




2821
H1
29.81
7.658
−10.93
H
WAT




2822
H2
28.899
6.723
−10.164
H
WAT


370
HOH
2823
OH2
29.874
18.074
10.832
O
WAT




2824
H1
30.504
17.364
10.706
H
WAT




2825
H2
29.455
17.876
11.67
H
WAT


378
HOH
2826
OH2
16.249
−18.947
10.048
O
WAT




2827
H1
16.886
−18.61
10.679
H
WAT




2828
H2
15.426
−18.983
10.536
H
WAT


400
HOH
2829
OH2
28.347
−4.792
−10.343
O
WAT




2830
H1
28.084
−5.29
−11.117
H
WAT




2831
H2
27.556
−4.322
−10.08
H
WAT


414
HOH
2832
OH2
23.03
2.229
19.657
O
WAT




2833
H1
23.911
2.388
19.998
H
WAT




2834
H2
22.982
2.756
18.86
H
WAT


416
HOH
2835
OH2
7.12
2.84
15.324
O
WAT




2836
H1
7.281
2.64
16.246
H
WAT




2837
H2
7.827
3.438
15.082
H
WAT


417
HOH
2838
OH2
23.036
6.369
19.424
O
WAT




2839
H1
22.813
6.455
18.497
H
WAT




2840
H2
22.63
5.546
19.694
H
WAT


418
HOH
2841
OH2
8.789
4.663
18.008
O
WAT




2842
H1
8.396
3.79
18.028
H
WAT




2843
H2
8.396
5.12
18.752
H
WAT





*The data are derived from a homology modeling structure based on PDB:2JDD (GLYAT variant R7 + AcCoA + 3PG complex). The initial glyphosate structure is manually docked into the active site according to its similarity with 3PG. The initial R11 GLYAT structure was created by mutation from 2JDD and the stereo-chemical conflict was eliminated from local side-chain rotamer refinement. The structural model underwent a series of energy minimizations with CHARMm, on newly added hydrogen (CONJ, 500 cycles), on hydrogen and glyphosate (500 cycles), on non-backbone atoms (200 cycles), and on whole system (200 cycles). The minimized model further underwent a molecular dynamics simulation (~20,000 cylces) at 300 K. and subsequent energy minimization (500 cycles).



aResI: The residue ids in the structure




bResN: The residue names; the common amino acid residue with three letter representation; GLF representing Glyphosate; ACO representing Acetyl Co-enzyme A; and HOH representing water.




cAtomI: The atom ids in structure.




dAtomN: The atom name.




eX, Y, Z: The atom coordinates of X, Y, and Z axes in Angstroms.




fElemN: The corresponding element symbol for each atom.




gSegN: The segment names in the complex, Pro representing peptide, LIG representing the bound ligands, and WAT representing surrounding waters.






Claims
  • 1. A method for evaluating the potential of a polypeptide to associate with glyphosate with a higher binding affinity when compared to a native glyphosate N-acetyltransferase (GLYAT) polypeptide or higher binding specificity for glyphosate when compared to a native GLYAT polypeptide, or a combination thereof, said method comprising: (a) providing a three-dimensional molecular structure of at least a substrate binding cavity of a glyphosate N-acetyltransferase (GLYAT) polypeptide, wherein said GLYAT polypeptide is bound to glyphosate and an acetyl donor, wherein the three-dimensional molecular structure of said substrate binding cavity comprises: (i) at least the atomic coordinates of Table 1 or Table 2; or(ii) a structural variant of the substrate binding cavity of part (i), wherein said structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 1 or Table 2 of not more than 2 Å;(b) providing one or more three-dimensional molecular structures of one or more candidate polypeptides bound to glyphosate and an acetyl donor; wherein steps (a) and (b) can be performed in any order; and(c) determining if the three-dimensional molecular structure of the candidate polypeptide comprises the substrate binding cavity of part a(i) or a(ii) to evaluate the potential of the candidate polypeptide to associate with glyphosate with a higher binding affinity or higher binding specificity or both when compared to a native GLYAT polypeptide.
  • 2. The method of claim 1, wherein said substrate binding cavity comprises the atomic coordinates of Table 1 and Table 3 or a structural variant of the substrate binding cavity, wherein said structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 1 and Table 3 of not more than 2 Å.
  • 3. The method of claim 1, wherein said substrate binding cavity comprises the atomic coordinates of Table 2 and Table 4 or a structural variant of the substrate binding cavity, wherein said structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 2 and Table 4 of not more than 2 Å.
  • 4. The method of claim 1, wherein said substrate binding cavity comprises the atomic coordinates of Table 1 and Table 5; Table 3 and Table 5; Table 1, Table 3, and Table 5, or a structural variant of the substrate binding cavity, wherein said structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 1 and Table 5; Table 3 and Table 5; or Table 1, Table 3, and Table 5 of not more than 2 Å.
  • 5. The method of claim 1, wherein said substrate binding cavity comprises the atomic coordinates of Table 2 and Table 6; Table 4 and Table 6; Table 2, Table 4, and Table 6, or a structural variant of the substrate binding cavity, wherein said structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 2 and Table 6; Table 4 and Table 6; or Table 2, Table 4, and Table 6 of not more than 2 Å.
  • 6. The method of claim 1, wherein said acetyl donor comprises acetyl coA.
  • 7. The method of claim 1, wherein said candidate polypeptide comprises a GLYAT polypeptide.
  • 8. The method of claim 1, further comprising altering the primary structure of the candidate polypeptide to maximize a similarity between the three-dimensional molecular structure of part a(i) or a(ii) and the three-dimensional molecular structure of the candidate polypeptide.
  • 9. The method of claim 1, wherein said method further comprises producing said candidate polypeptide.
  • 10. The method of claim 9, wherein said method further comprises assaying the affinity, specificity, or both of said candidate polypeptide for glyphosate.
  • 11. A method for evaluating the potential of a candidate polypeptide to have N-acetyltransferase activity with a higher catalytic rate (kcat) for a substrate when compared to a native GLYAT polypeptide, said method comprising: (a) providing a three-dimensional molecular structure of at least a GNAT wedge joining region of a GLYAT polypeptide, wherein the GLYAT polypeptide is bound to glyphosate and an acetyl donor, wherein the GNAT wedge joining region comprises: (i) at least the atomic coordinates of Table 7 or Table 8; or(ii) a structural variant of the GNAT wedge joining region of part (i), wherein said structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 7 or Table 8 of not more than 2 Å, wherein said GLYAT polypeptide is bound to glyphosate and an acetyl donor;(b) providing one or more three-dimensional molecular structures of one or more candidate polypeptides bound to a substrate and an acetyl donor, wherein said candidate polypeptide is an N-acetyltransferase comprising a GNAT wedge; wherein steps (a) and (b) can be performed in any order; and(c) determining if the three-dimensional molecular structure of the candidate polypeptide comprises the GNAT wedge joining region of part (i) or (ii) to evaluate the potential of the candidate polypeptide to have N-acetyltransferase activity with a higher catalytic rate (kcat) for a substrate when compared to a native GLYAT polypeptide.
  • 12. The method of claim 11, wherein said GNAT wedge joining region comprises the atomic coordinates of Table 7 and Table 9 or a structural variant of the wedge joining region, wherein said structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 7 and Table 9 of not more than 2 Å.
  • 13. The method of claim 11, wherein said GNAT wedge joining region comprises the atomic coordinates of Table 8 and Table 10 or a structural variant of the wedge joining region, wherein said structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 8 and Table 10 of not more than 2 Å.
  • 14. The method of claim 11, wherein said method further comprises producing said candidate polypeptide.
  • 15. The method of claim 14, wherein said method further comprises assaying the catalytic rate of said candidate polypeptide for said substrate.
  • 16. The method of claim 11, wherein said substrate comprises glyphosate.
  • 17. The method of claim 16, wherein said three-dimensional molecular structure of a GLYAT polypeptide further comprises a substrate binding domain, wherein the substrate binding domain comprises: (i) at least the atomic coordinates of Table 1 or Table 2; or(ii) a structural variant of the substrate binding cavity of part (i), wherein said structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 1 or Table 2 of not more than 2 Å; andwherein said method further comprises determining if the three-dimensional molecular structure of the candidate polypeptide comprises the substrate binding cavity of (i) or (ii) to evaluate the potential of the candidate polypeptide to have N-acetyltransferase activity with a higher catalytic rate (kcat) for glyphosate when compared to a native GLYAT polypeptide.
  • 18. The method of claim 17, wherein said substrate binding cavity comprises the atomic coordinates of Table 1 and Table 3 or a structural variant of the substrate binding cavity, wherein said structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 1 and Table 3 of not more than 2 Å.
  • 19. The method of claim 17, wherein said substrate binding cavity comprises the atomic coordinates of Table 2 and Table 4 or a structural variant of the substrate binding cavity, wherein said structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 2 and Table 4 of not more than 2 Å.
  • 20. The method of claim 17, wherein said substrate binding cavity comprises the atomic coordinates of Table 1 and Table 5; Table 3 and Table 5; Table 1, Table 3, and Table 5, or a structural variant of the substrate binding cavity, wherein said structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 1 and Table 5; Table 3 and Table 5; or Table 1, Table 3, and Table 5 of not more than 2 Å.
  • 21. The method of claim 17, wherein said substrate binding cavity comprises the atomic coordinates of Table 2 and Table 6; Table 4 and Table 6; Table 2, Table 4, and Table 6, or a structural variant of the substrate binding cavity, wherein said structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 2 and Table 6; Table 4 and Table 6; or Table 2, Table 4, and Table 6 of not more than 2 Å.
  • 22. The method of claim 11, wherein said acetyl donor comprises acetyl coA.
  • 23. The method of claim 11, wherein said candidate polypeptide comprises a GLYAT polypeptide.
  • 24. The method of claim 11, further comprising altering a primary structure of the candidate polypeptide to maximize a similarity between the three-dimensional molecular structure of the GNAT wedge joining region of the GLYAT polypeptide and the three-dimensional molecular structure of the candidate polypeptide.
  • 25. A computer-readable storage medium encoded with the atomic coordinates of a glyphosate N-acetyltransferase (GLYAT) polypeptide bound to glyphosate and acetyl coenzyme A, said atomic coordinates comprising: (a) a three-dimensional representation of at least a substrate binding cavity comprising at least the atomic coordinates of Table 1 or Table 2; or(b) a variant of the three-dimensional representation of part (a), wherein said variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 1 or Table 2 of not more than 2 Å.
  • 26. The computer-readable storage medium of claim 25, wherein said substrate binding cavity comprises the atomic coordinates of Table 1 and Table 3 or a structural variant of the substrate binding cavity, wherein said structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 1 and Table 3 of not more than 2 Å.
  • 27. The computer-readable storage medium of claim 25, wherein said substrate binding cavity comprises the atomic coordinates of Table 2 and Table 4 or a structural variant of the substrate binding cavity, wherein said structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 2 and Table 4 of not more than 2 Å.
  • 28. The computer-readable storage medium of claim 25, wherein said substrate binding cavity comprises the atomic coordinates of Table 1 and Table 5; Table 3 and Table 5; Table 1, Table 3, and Table 5, or a structural variant of the substrate binding cavity, wherein said structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 1 and Table 5; Table 3 and Table 5; or Table 1, Table 3, and Table 5 of not more than 2 Å.
  • 29. The computer-readable storage medium of claim 25, wherein said substrate binding cavity comprises the atomic coordinates of Table 2 and Table 6; Table 4 and Table 6; Table 2, Table 4, and Table 6, or a structural variant of the substrate binding cavity, wherein said structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 2 and Table 6; Table 4 and Table 6; or Table 2, Table 4, and Table 6 of not more than 2 Å.
  • 30. The computer-readable storage medium of claim 25, wherein said atomic coordinates of a glyphosate N-acetyltransferase (GLYAT) polypeptide bound to glyphosate and an acetyl donor comprise the atomic coordinates of Table 18 or Table 19.
  • 31. A computer-readable storage medium encoded with the atomic coordinates of a glyphosate N-acetyltransferase (GLYAT) polypeptide bound to glyphosate and an acetyl donor, said atomic coordinates comprising: (a) a three-dimensional representation of at least a wedge joining region comprising at least the atomic coordinates of Table 7 or Table 8; or(b) a variant of the three-dimensional representation of part (a), wherein said variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 7 or Table 8 of not more than 2 Å.
  • 32. The computer-readable storage medium of claim 31, wherein said GNAT wedge joining region comprises the atomic coordinates of Table 7 and Table 9 or a structural variant of the wedge joining region, wherein said structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 7 and Table 9 of not more than 2 Å.
  • 33. The computer-readable storage medium of claim 31, wherein said GNAT wedge joining region comprises the atomic coordinates of Table 8 and Table 10 or a structural variant of the wedge joining region, wherein said structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 8 and Table 10 of not more than 2 Å.
  • 34. A recombinant GNAT polypeptide having an array of amino acid side chains which together comprise a glyphosate acetyltransferase active site, said active site being composed of: (i) at least the atomic coordinates of Table 1 or Table 2; or(ii) a structural variant of the substrate binding cavity of part (i), wherein said structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 1 or Table 2 of not more than 2 Å,wherein said GNAT polypeptide has less than about 60% sequence identity to the native GLYAT sequence as set forth in SEQ ID NO:3.
  • 35. A recombinant GNAT polypeptide having an array of amino acid side chains which together comprise a glyphosate acetyltransferase active site, said active site being composed of: (i) at least the atomic coordinates of Table 7 or Table 8; or(ii) a structural variant of the GNAT wedge joining region of part (i), wherein said structural variant comprises a root mean square deviation from the back-bone atoms of the amino acids of Table 7 or Table 8 of not more than 2 Å, wherein said GLYAT polypeptide is bound to glyphosate and an acetyl donor,wherein said GNAT polypeptide has less than about 60% sequence identity to the native GLYAT sequence as set forth in SEQ ID NO:3.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2010/041154 7/7/2010 WO 00 7/20/2012
Provisional Applications (1)
Number Date Country
61223613 Jul 2009 US