CRYSTAL STRUCTURES OF HIV-1 PROTEASE INHIBITORS BOUND TO HIV-1 PROTEASE

Abstract
Described herein are methods for rational design of inhibitors of HIV-1 protease, and crystal structures of HIV-1 protease inhibitors bound to HIV-1 protease.
Description
TECHNICAL FIELD

This invention relates to human immunodeficiency virus (HIV)-1 protease/inhibitor complexes, crystals of HIV-1 protease/inhibitor complexes, and related methods and software systems.


BACKGROUND

Human immunodeficiency virus type 1 (HIV-1) protease plays an essential role in the viral life cycle by cleaving Gag and Gag-Pol polyproteins into structural and functional proteins necessary for viral assembly and maturation (Debouck, AIDS Res Hum Retroviruses 8, 153-164, 1992). Therefore HIV-1 protease is a prime target of drugs developed to control HIV/AIDS with nine protease-inhibitor drugs approved for clinical use since 1995 by the U.S. Food and Drug Administration. The nine protease inhibitors are saquinavir (SQV), indinavir (IDV), ritonavir (RTV), nelfinavir (NFV), amprenavir (APV), lopinavir (LPV), atazanavir (ATV), tipranavir (TPV) and darunavir (DRV/TMC114). All of these drugs are competitive inhibitors that bind in the active site of HIV-1 protease, and all these inhibitors, except for TPV, are peptidomimetics, i.e., they have a common hydroxyethylene or hydroxyethylamine core element instead of a peptide bond (Randolph and DeGoey, Curr Top Med Chem 4(10), 1079-1095, 2004). These core elements act as noncleavable peptide isosteres to mimic the transition state formed by the HIV-1 protease substrates during cleavage (Randolph and DeGoey, 2004, supra). The clinical pharmacokinetics and potency of these inhibitors were maximized by structure-based design.


Complexes between peptidomimetic inhibitors and HIV-1 protease are characterized by a noticeable structural feature, a conserved water molecule that mediates contacts between the P2/P1′ carbonyl oxygen atoms of the inhibitors and the amide groups of Ile50/Ile50′ of the enzyme (Wlodawer et al., Annu Rev Biochem 62, 543-585, 1993; Appelt, Perspect Drug Discovery Des 1, 23-48, 1993). Replacing this conserved water was proposed as a way of making highly specific protease inhibitors (Swain et al., Proc Natl Acad Sci USA 87, 8805-8809, 1990). This approach was used to design compounds with a 7-membered cyclic urea ring as the starting pharmacophore (Lam et al., J Med Chem 39, 3514-3525, 1996). The crystal structure of this cyclic urea compound in complex with HIV-1 protease showed that the urea oxygen replaces the role of the conserved water. One of these cyclic urea inhibitors, DMP-450, was shown to have excellent inhibitory properties, was highly potent against the virus in cell cultures, and was orally bioavailable in humans. DMP-450 showed promising results until Phase III trials, but its development was discontinued due to safety concerns (Rusconi et al., Therapy 3(1), 79-88, 2006). TPV is another protease inhibitor in which the conserved water is replaced by the lactone oxygen atom of the inhibitor's dihydropyrone ring (Turner et al., J Med Chem 41, 3467-3476, 1998). TPV was the first nonpeptidic compound among the currently marketed protease inhibitors (Flexner et al., Nat Rev Drug Discov 4, 955-956, 2005).


The development of protease inhibitors has improved the lives of AIDS patients and contributed to the success of highly active anti-retroviral therapy (HAART). However, the rapid emergence of resistance to these protease inhibitors has become a major issue. This problem has generated a pressing need to improve current drugs in terms of greater antiretroviral potency, bioavailability, toxicity, and higher activity towards drug-resistant mutant viruses. These goals are being targeted by the development of many second-generation protease inhibitors.


One way of developing new drugs is to modify the substituents of existing protease inhibitors or to design totally new molecular cores. Recently lysine sulfonamides were developed as novel HIV-1 protease inhibitors (Stranix et al., Bioorg Med Chem Lett 13, 4289-4292, 2003). One of these lysine sulfonamides, PL-100, is highly potent against drug-resistant proteases and exhibits a favorable cross-resistance profile against the marketed protease inhibitors (Wu et al., 15th International HIV Drug Resistance Workshop, Jun. 13-17, 2006 Sitges, Spain; Abstract published in Antiviral Therapy 11:S152 (2006); poster available at ambrilia.com/en/products/hiv-aids-pPPL-100-references.php). PPL-100, a prodrug of PL-100, is in Phase I human clinical trials with promising results thus far (Wu et al., 2006, supra). Another lysine sulfonamide inhibitor with a chemical structure similar to that of PL-100 is P867883 (see FIGS. 1A-B).


SUMMARY

The present invention is based, at least in part, on the elucidation of the crystal structures of several novel inhibitors, including P867883, in complex with HIV-1 protease. These crystal structures can be used in rational drug design methods. In particular, P867883 binds to the protease in a novel mode by replacing the conserved water, and thus provides a completely new structural paradigm for inhibitor design, which may yield inhibitors that are less susceptible to the development of drug-resistant viruses, e.g., P867883 analogs as described herein.


In one aspect, the invention features a crystallized HIV-1 protease/inhibitor complex that includes an HIV-1 protease and an inhibitor described herein, e.g., P867883. As used herein, “an HIV-1 protease” is a dimer formed by two identical HIV-1 protease polypeptides. The amino acids of the two polypeptides are differentiated herein by the use of the notation “prime” 0 on the amino acids of one of the polypeptides. Thus, Asp50 and Asp50′ refer to amino acid 50 in each of the two polypeptides.


In another aspect, the invention features a composition that includes a crystal. The crystal includes an HIV-1 protease and an inhibitor described herein, e.g., P867883.


In another aspect, the invention features a method that includes using a three-dimensional model of a complex that includes an HIV-1 protease. In some embodiments, the complex includes a fragment of the protease as defined by structural coordinates of amino acids sufficient to define a binding pocket. The structural coordinates can be as shown in table 2, or a homolog thereof that has a root mean square deviation of not more than 1.5 Angstroms from the backbone atoms of the amino acids as shown in table 2. The protease can be free (unbound) or bound to an inhibitor, e.g., P867883. The three-dimensional model can be used to select or design an inhibitor that binds the HIV-1 protease, with specific binding features as described herein, e.g., the formation of hydrogen bonds with the protease. In some embodiments, employing the three-dimensional structural model to design or select a potential inhibitor includes providing a three-dimensional model of the potential inhibitor, employing computational means to perform a fitting operation between the model of the potential inhibitor and the model of the HIV-1 protease active site to provide an energy minimized configuration of the potential inhibitor in the active site, and evaluating the results of the fitting operation to design or select a potential inhibitor that has the specified interactions with the HIV-1 protease.


As used herein, a “hydrogen bond” is an interaction between a proton acceptor and a proton donor that forms when the proton-acceptor distance is less than 2.5 Angstroms and the angle defined by the donor-hydrogen-acceptor atoms lies between 90 and 180 degrees (see, e.g., Baker and Hubbard, Prog. Biophys. Molec. Biol. 44:97-179 (1984)).


In a further aspect, the invention features methods that include using a three-dimensional model of an HIV-1 protease to select or design an inhibitor that binds the HIV-1 protease.


In some embodiments, the methods include the use of a three-dimensional structural model that includes at least the atomic coordinates of the atoms of HIV-1 protease amino acids 24-30, 24′-30′, 47-53, 47′-53′, 84 and 84′, and optionally amino acids 82 and 82′, according to Table 2± a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5 Å. In some embodiments, a three-dimensional structural model is a computer model.


In another aspect, the invention features methods that include selecting an inhibitor by performing rational drug design with a three-dimensional structure of a crystalline complex.


In some embodiments, the potential inhibitors identified, designed or selected by a method described herein form at least one hydrogen bond with the backbone, e.g., the backbone nitrogen atoms, of amino acids 50 and 50′ of the HIV-1 protease via a sulfonyl or selenonyl group without an intervening water molecule. In some embodiments, the potential inhibitors form at least one hydrogen bond with the backbone, e.g., the backbone nitrogen atoms, of amino acids 50 and 50′ of the HIV-1 protease via an acyclic group without an intervening water molecule.


A sulfonyl group is an organic radical or functional group obtained from a sulfonic acid by the removal of the hydroxyl group. Sulfonyl groups can be written as having the general formula R—S(═O)2—R′, where there are two double bonds between the sulfur and oxygen. A selenonyl group is a selenium version of a thioketone group, and can be written as R—Se(═O)2—R′, where there are two double bonds between the selenium and oxygen.


As used herein, an “intervening water molecule” is a water molecule that forms hydrogen bonds with both the potential inhibitor and the specified amino acid, linking the two together. For example, the conserved water molecule shown in FIG. 3 is an intervening water molecule that binds to both the inhibitor Amprenavir and the backbone of amino acids 50 and 50′ of the flap regions of the HIV-1 protease.


In some embodiments, the potential inhibitors further form at least one hydrogen bond with the conserved side chain atoms, e.g., oxygen atoms, of at least one of amino acids Asp25 and Asp25′ of the HIV-1 protease, e.g., a hydrogen bond with the side chain that is formed by a primary hydroxyl, thiol, or amino group on the potential inhibitor. In some embodiments, the hydrogen bond is a bifurcated hydrogen bond. In some embodiments, the potential inhibitor does not hydrogen bond with any atoms of amino acid 27 of the HIV-1 protease. In some embodiments, the potential inhibitor forms at least one hydrogen bond with a backbone atom, e.g., a nitrogen atom, of one or both of amino acids 48 or 28 of the HIV-1 protease, and/or forms at least one hydrogen bond with atoms of the conserved side chain, e.g., the oxygens atoms, of amino acid Asp29 of the HIV-1 protease


In some embodiments, the potential inhibitors identified, designed or selected by a method described herein have the following interactions with the HIV-1 protease:

    • (a) hydrogen bonding with the backbone, e.g., the backbone nitrogen atoms, of amino acids 50 and 50′ of the HIV-1 protease, without an intervening water molecule; and
    • (b) direct hydrogen bonding with the conserved side chain, e.g., the side chain oxygens, of amino acid Asp25 and Asp25′ of the HIV-1 protease;


and two or more of the following:

    • (c) no hydrogen bonding interaction with any atoms of amino acid 27 of the HIV-1 protease;
    • (d) direct hydrogen bonding with the backbone, e.g., the backbone nitrogen atoms, of amino acids 48 and 28 of the HIV-1 protease; and
    • (e) direct hydrogen bonding with the conserved side chain of amino acid Asp29, e.g., the side chain oxygen atoms, of the HIV-1 protease.


      In some embodiments, the potential inhibitors have all of interactions (a)-(e) with the HIV-1 protease. In some embodiments, the potential inhibitors additionally have one of the following interactions with the HIV-1 protease:
    • (f) direct hydrogen bonding with the backbone, side chains, or both, of one or more of amino acids 29′, 30′, and 48′ of the HIV-1 protease; or
    • (g) indirect (e.g., via an intervening water molecule) hydrogen bonding with the backbone, side chains, or both, of one or more of amino acids 29′, 30′, and 48′ of the HIV-1 protease.


In some embodiments, the designed inhibitor is then synthesized or otherwise obtained, and contacted with an HIV-1 protease, and the ability of the inhibitor to bind and/or inhibit the HIV-1 protease is detected.


In yet another aspect, the invention features a method that includes contacting an HIV-1 protease with an inhibitor to form a composition and crystallizing the composition to form a crystalline complex where the inhibitor is bound to the HIV-1 protease. The crystalline complex can diffract X-rays to a resolution of at least about 3.5 Å, e.g., 2 Å. The inhibitor is an inhibitor described herein, e.g., P867883.


In another aspect, the invention features a software system that includes instructions for causing a computer system to accept information relating to the structure of an HIV-1 protease bound to an inhibitor, accept information relating to a candidate inhibitor, and determine binding characteristics of the candidate inhibitor to the HIV-1 protease. Determination of the binding characteristics is based on the information relating to the structure of the HIV-1 protease bound to the inhibitor and the information relating to the candidate inhibitor. The inhibitor is an inhibitor described herein, e.g., P867883.


In another aspect, the invention features a computer program on a computer readable medium on which is stored a plurality of instructions. When the instructions are executed by one or more processors, the processors accept information relating to the structure of a complex that includes an HIV-1 protease bound to an inhibitor. The processors further accept information relating to a candidate inhibitor and determine binding characteristics of the candidate inhibitor to the HIV-1 protease. Determination of the binding characteristics is based on the information related to the structure of the HIV-1 protease and the information related to the candidate inhibitor.


In a further aspect, the invention features a method that includes accepting information relating to the structure of a complex including an HIV-1 protease bound to an inhibitor and modeling the binding characteristics of the HIV-1 protease with a candidate inhibitor. Such a method is implemented by a software system.


In another aspect, the invention features a computer program on a computer readable medium on which is stored a plurality of instructions. When the instructions are executed by one or more processors, the processors accept information relating to a structure of a complex that includes an HIV-1 protease bound to an inhibitor. The processors further model the binding characteristics of the HIV-1 protease with a candidate inhibitor.


In an additional aspect, the invention features a software system that includes instructions for causing a computer system to accept information relating to a structure of a complex that includes an HIV-1 protease bound to an inhibitor. The instructions also cause a computer system to model the binding characteristics of the HIV-1 protease with a candidate inhibitor.


In another aspect, the invention features a method of modulating HIV-1 protease activity in a subject. The method includes using rational drug design to select an inhibitor that is capable of modulating HIV-1 protease activity, and administering a therapeutically effective amount of the inhibitor to the subject.


In another aspect, the invention features a method of treating a subject having a condition associated with HIV-1 protease activity. The method includes using rational drug design to select an inhibitor that is capable of affecting HIV-1 protease activity and administering a therapeutically effective amount of the inhibitor to a subject in need of such an inhibitor.


In another aspect, the invention features a method of prophylactically treating a subject susceptible to a condition associated with HIV-1 protease activity. The method includes determining that the subject is susceptible to the condition associated with the activity, using rational drug design to select an inhibitor that is capable of reducing HIV-1 protease activity, and administering a therapeutically effective amount of the inhibitor to the subject.


The following abbreviations are used throughout the application:


















Singe Letter
Three Letter



Amino Acid
Abbreviation
Abbreviation









Alanine
A
Ala



Threonine
T
Thr



Valine
V
Val



Cysteine
C
Cys



Leucine
L
Leu



Tyrosine
Y
Tyr



Isoleucine
I
Ile



Asparagine
N
Asn



Proline
P
Pro



Glutamine
Q
Gln



Phenylalanine
F
Phe



Aspartic Acid
D
Asp



Tryptophan
W
Trp



Glutamic Acid
E
Glu



Methionine
M
Met



Lysine
K
Lys



Glycine
G
Gly



Arginine
R
Arg



Serine
S
Ser



Histidine
H
His










Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Methods and materials are described herein for use in the present invention; other, suitable methods and materials known in the art can also be used. The materials, methods, and examples are illustrative only and not intended to be limiting. All publications, patent applications, patents, sequences, database entries, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control.


Other features and advantages of the invention will be apparent from the following detailed description and figures, and from the claims.





DESCRIPTION OF DRAWINGS


FIGS. 1A-D are the chemical structures of P867883 (1A), PL-100(1B), Amprenavir (APV), 1C), and Tipranavir (TPV, 1D).



FIG. 2A is a ribbon diagram of HIV-1 protease dimer (in dark and medium grey) bound to P867883 (in light grey). The oxygen and nitrogen atoms are shown in black.



FIG. 2B is a model showing hydrogen bonding interactions between the HIV-1 protease and P867883 (shown in gray). The nitrogen and oxygen atoms are shown in black and white respectively. Notice that the inhibitor makes hydrogen bonds directly to the flaps, unlike in other peptidomimetic inhibitors.



FIG. 2C is a packing diagram of the HIV-1 protease with P867883. The nitrogen and oxygen atoms are shown in black and white respectively.



FIG. 3 is a model showing hydrogen bonding interactions between the HIV-1 protease and Amprenavir, a peptidomimetic inhibitor. A water molecule mediates hydrogen bonding between the flaps of the protease (at the top of the drawing) and the inhibitor (in the center).



FIG. 4 is a model showing hydrogen bonding interactions between the HIV-1 protease and Tipranavir, a non-peptidomimetic inhibitor. Direct hydrogen bonding occurs between the flaps of the protease (at the top of the drawing) and the inhibitor (in the center).





DETAILED DESCRIPTION

In general, the present invention relates to HIV-1 protease/inhibitor complexes, crystals of HIV-1 protease/inhibitor complexes, and related methods and software systems, including methods using the crystal structures of HIV-1 protease/inhibitor complexes for designing or identifying other inhibitors of HIV-1 protease.


HIV-1 Protease Polypeptides


As noted above, an HIV-1 protease is made up of two identical HIV-1 protease polypeptides. An exemplary HIV-1 protease polypeptide sequence used in the methods and structures described herein is as follows:









(SEQ ID NO: 1)







PQITLWKRPLVTIRIGGQLKEALLDTGADDTVLEEMNLPGKWKPKMIGGI





GGFIKVRQYDQIPIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNF






The methods can also be carried out using other variants of HIV-1 protease polypeptide, e.g., as found in the HIV reverse transcriptase and protease sequence database, an on-line relational database that catalogues evolutionary and drug-related sequence variation in the human immunodeficiency virus (HIV) reverse transcriptase (RT) and protease enzymes, the molecular targets of antiretroviral therapy (hivdb.stanford.edu, described in Rhee et al., Nuc. Acids Res. 31(1):298-303 (2003)).


For example, other HIV-1 protease polypeptide sequences that can be used include:





















In some embodiments, the HIV-1 protease polypeptide sequence is SF2. The SF2 shown above (SEQ ID NO:4) is the original, wild type sequence. In some embodiments, the sequence includes modifications; for example, the protease polypeptide sequence that was used in the examples set forth herein describing the crystallization of the protease/P867883 complex includes Gln7Lys and Val64Ile mutations to the SF2 sequence above. In some embodiments, the HIV-1 protease polypeptide sequence is as shown in SEQ ID NO:1.


HIV-1 Protease/Inhibitor P867883 Complex Compositions


The HIV-1 protease polypeptides can be produced by any known method, including synthetic methods, such as solid phase, liquid phase and combination solid phase/liquid phase syntheses; recombinant DNA methods, including cDNA cloning, optionally combined with site directed mutagenesis; and/or purification of the natural products, optionally combined with enzymatic cleavage methods to produce fragments of naturally occurring HIV-1 protease polypeptides. The P867883 inhibitor can also be produced by any known method, e.g., as described in pending application EP 06.114.672.6, filed 30 May 2006, and Nalam et al., J. Virol., 81(17):9512-9518 (2007). According to a preferred embodiment, the compositions described herein are crystallizable.


HIV-1 Protease/Inhibitor P867883 Complex Structures


Advantageously, the crystallizable compositions provided herein are amenable to x-ray crystallography. Thus, provided herein is the three-dimensional structure of an HIV-1 protease/inhibitor P867883 complex, at 2.5 Angstrom resolution or better. In some embodiments, the three-dimensional structure of the HIV-1 protease/inhibitor P867883 complex described herein is defined by a set of structural coordinates as set forth in table 2. The term “structural coordinates” refers to Cartesian coordinates derived from mathematical equations related to the patterns obtained on diffraction of a monochromatic beam of X-rays by the atoms (scattering centers) of an HIV-1 protease/inhibitor P867883 complex in crystal form. The diffraction data are used to calculate an electron density map of the repeating unit of the crystal. The electron density maps are then used to establish the positions of the individual atoms of the HIV-1 protease/inhibitor P867883 complex.


By solving the structure of a complex between HIV-1 protease and the inhibitor P867883, the present inventors have shown that this inhibitor binds in a novel way to the active site compared to other protease inhibitors in clinical use. P867883 is a nonpeptidic, competitive inhibitor (see FIG. 1A). As demonstrated herein, P867883 forms hydrogen bonds mostly to protease main-chain atoms or conserved side-chain atoms (see FIGS. 2A-2C). This bonding pattern is a favorable situation for the inhibitor since the pattern is less likely to be affected by drug-resistant mutations in protease residues of the active site.


The structure of P867883 is similar to PL-100 (see FIG. 1B; also see U.S. Pat. No. 6,632,816; PL-100 is available from Ambrilia Biopharma Inc.). The only P867883 hydrogen-bonding interaction with a nonconserved residue side chain is from the P2′ benzyl amine group to Asp30′. This interaction may not be present in PL-100 since it has a P2′ phenyl amine group, one methylene group less than the benzyl amine group of P867883. PPL-100 is in Phase I clinical trials (Wu et al., 2006, supra). Although the structure of the PL-100-protease complex has not yet been published, its hydrogen bonding patterns are likely to be similar to those of the P867883-protease complex, except for bonds made by the amine group at P2′ where the benzyl amine is replaced by a phenyl amine in PL-100. PL-100 may form water-mediated hydrogen bonds similar to P867883 (See FIG. 2B).


Insights into the clinical significance of PL-100's hydrogen-bonding pattern can be gained by examining PL-100's pattern of selecting for protease mutations in vitro. When PL-100 was subjected to an in vitro test of its ability to select for protease mutants conferring resistance (see Wu et al., 2006, supra), a novel selection pattern was found of four mutations (K45R, M46I, T80I, and P81S). Single-, double- or triple-viral mutants did not show resistance to PL-100, and only mild resistance was observed with the quadruple-viral mutant (Wu et al., 2006, supra). PL-100 also shows a favorable cross-resistance profile to the clinical protease inhibitors APV, LPV, ATV, SQV, IDV and NFV (Wu et al., 2006, supra). Since these inhibitors select for signature protease mutations in the active site, they do not affect the hydrogen-bonding pattern of PL-100. Thus, the experimental observations for PL-100 are consistent with predictions of its structure based on the crystal structure of P867883 in complex with HIV-1 protease.


P867883, and hence PL-100, has properties that contribute to it binding differently from other protease inhibitors to HIV-1 protease. P867883 has a primary OH group that interacts with the two catalytic aspartic acids, Asp25 and Asp25′, whereas all other peptidomimetic protease inhibitors have a secondary OH group that interacts with Asp25 and Asp25′. The hydrogen bonding between this primary OH group in P867883 and Asp25 and Asp25′ is facilitated by the methylene group that connects the hydroxyl group and the inhibitor core; the methylene group pushes the entire inhibitor towards the protease flaps. This displacement in turn brings the two oxygen atoms of the inhibitor's sulfone group within hydrogen-bonding distance of Ile50 and Ile50′.


All other protease inhibitors lack the methylene group, accounting in part for the different binding of P867883. For instance, in APV, a peptidomimetic inhibitor whose P1′ and P2′ are similar to those of P867883 (compare FIGS. 1A and 1C), the secondary hydroxyl group forms hydrogen bonds with Asp25 and Asp25′ as in P867883 (FIG. 3). However, APV is closer than P867883 to the bottom of the active site cavity and further from the flap region of the protease. APV cannot directly form hydrogen bonds with the flaps and hence requires a water molecule to mediate its interactions with the protease flaps. This need for a water molecule is true for all other peptidomimetic inhibitors. The presence of a primary hydroxyl group instead of a secondary hydroxyl group might be a primary reason for the novel binding of P867883 to the protease, resulting in the absence of the conserved water molecule in the crystal structure.


TPV and P867883 are non-peptidomimetic protease inhibitors with a different binding mode than previously described for other protease inhibitors (compare FIGS. 1A and 1C, and see FIG. 4). P867883 and TPV have two features that distinguish them from other protease inhibitors. First, these two inhibitors do not form hydrogen bonds with Gly27 in the floor of the protease active site. This interaction with Gly27 is conserved in all other known protease-substrate and protease-inhibitor complexes. Second, both inhibitors form hydrogen bonds directly with the protease flaps, without the mediation of a water molecule, although each inhibitor binds differently. In TPV, the lactone oxygen atom of the dihydropyrone ring forms hydrogen bonds with the amide nitrogen atoms of the flap residues, analogous to how water molecules in peptidomimetic inhibitors interact with flap residues. In contrast, in P867883, two oxygen atoms from the sulfone group form two hydrogen bonds with the flap residues. This kind of interaction distinguishes the binding of P867883 not only from that of TPV, but also from that of all known crystal structures of protease-inhibitor complexes.


Structural Models


As described herein, X-ray crystallography can be used to obtain structural coordinates of a complex of HIV-1 protease bound to an inhibitor. However, such structural coordinates can be obtained using other techniques, including NMR and other techniques known in the art. Additional structural information can be obtained from spectral techniques (e.g., optical rotary dispersion (ORD), circular dichroism (CD)), homology modeling, and computational methods (e.g., computational methods that can include data from molecular mechanics, computational methods that include data from dynamics assays).


Various software programs allow for the graphical representation of a set of structural coordinates, e.g., the coordinates provided herein, to obtain a structural model that represents a complex of HIV-1 protease bound to an inhibitor, or a portion of one of these complexes. In general, such a representation should accurately reflect (relatively and/or absolutely) structural coordinates, or information derived from structural coordinates, such as distances or angles between features. In some embodiments, the representation is a two-dimensional figure, such as a stereoscopic two-dimensional figure. In certain embodiments, the representation is an interactive two-dimensional display, such as an interactive stereoscopic two-dimensional display. An interactive two-dimensional display can be, for example, a computer display that can be rotated to show different faces of a polypeptide, a fragment of a polypeptide, a complex and/or a fragment of a complex.


In some embodiments, the representation is a three-dimensional representation. As an example, a three-dimensional model can be a physical model of a molecular structure (e.g., a ball-and-stick model). As another example, a three dimensional representation can be a graphical representation of a molecular structure (e.g., a drawing or a figure presented on a computer display). A two-dimensional graphical representation (e.g., a drawing) can correspond to a three-dimensional representation when the two-dimensional representation reflects three-dimensional information, for example, through the use of perspective, shading, or the obstruction of features more distant from the viewer by features closer to the viewer.


In some embodiments, a representation can be modeled at more than one level. As an example, when the three-dimensional representation includes a polypeptide, such as a complex of HIV-1 protease bound to an inhibitor, the polypeptide can be represented at one or more different levels of structure, such as primary (amino acid sequence), secondary (e.g., α-helices and β-sheets), tertiary (overall fold), and quaternary (oligomerization state) structure. A representation can include different levels of detail. For example, the representation can include the relative locations of secondary structural features of a protein without specifying the positions of atoms. A more detailed representation could, for example, include the positions of atoms.


In some embodiments, a representation can include information in addition to the structural coordinates of the atoms in a complex of HIV-1 protease bound to an inhibitor. For example, a representation can provide information regarding the shape of a solvent accessible surface, the van der Waals radii of the atoms of the model, and the van der Waals radius of a solvent (e.g., water). Other features that can be derived from a representation include, for example, electrostatic potential, the location of voids or pockets within a macromolecular structure, and the location of hydrogen bonds and salt bridges.


In some embodiments, X-ray diffraction data can be used to construct an electron density map of a complex of HIV-1 protease bound to an inhibitor or a fragment thereof, and the electron density map can be used to derive a representation (e.g., a two dimensional representation, a three dimensional representation) of HIV-1 protease bound to an inhibitor, or a portion thereof. Creation of an electron density map typically involves using information regarding the phase of the X-ray scatter. Phase information can be extracted, for example, either from the diffraction data or from supplementing diffraction experiments to complete the construction of the electron density map. Methods for calculating phase from X-ray diffraction data include, for example, multiwavelength anomalous dispersion (MAD), multiple isomorphous replacement (MIR), multiple isomorphous replacement with anomalous scattering (MIRAS), single isomorphous replacement with anomalous scattering (SIRAS), reciprocal space solvent flattening, molecular replacement, or any combination thereof.


Upon determination of the phase, an electron density map can be constructed. The electron density map can be used to derive a representation of the complex or a fragment thereof, e.g., by aligning a three-dimensional model of a previously solved HIV-1 protease (e.g., pdb reference no. 1F7A) or a previously known complex (e.g., a complex containing a HIV-1 protease bound to an inhibitor) with the electron density map. For example, the electron density map corresponding to a HIV-1 protease/inhibitor complex can be aligned with the electron density map corresponding to HIV-1 protease complexed to another compound, such as another inhibitor, or to a mutant or variant HIV-1 protease.


The alignment process results in a comparative model that shows the degree to which the calculated electron density map varies from the model of the previously known polypeptide or the previously known complex. The comparative model is then refined over one or more cycles (e.g., two cycles, three cycles, four cycles, five cycles, six cycles, seven cycles, eight cycles, nine cycles, 10 cycles) to generate a better fit with the electron density map. A software program such as CNS (Brunger et al., Acta Crystallogr. D54:905-921, 1998) can be used to refine the model. The quality of fit in the comparative model can be measured by, for example, an Rwork or Rfree value. A smaller value of Rwork or Rfree generally indicates a better fit. Misalignments in the comparative model can be adjusted to provide a modified comparative model and a lower Rwork or Rfree value. The adjustments can be based on information (e.g., sequence information) relating to, e.g., HIV-1 protease, alone or bound to another inhibitor.


As an example, in embodiments in which a model of a previously known complex of a HIV-1 protease bound to an inhibitor is used, an adjustment can include replacing the inhibitor in the previously known complex with a test or candidate inhibitor as described herein. As another example, in certain embodiments, an adjustment can include replacing an amino acid in the HIV-1 protease used previously with the amino acid in the corresponding site of a mutant or variant HIV-1 protease. When adjustments to the modified comparative model satisfy a best fit to the electron density map, the resulting model is that which is determined to describe the polypeptide or complex from which the X-ray data was derived (e.g., an HIV-1 protease inhibitor complex). Methods of such processes are disclosed, for example, in Carter and Sweet, eds., “Macromolecular Crystallography” in Methods in Enzymology, Vol. 277, Part B, New York: Academic Press, 1997, and articles therein, e.g., Jones and Kjeldgaard, “Electron-Density Map Interpretation,” p. 173, and Kleywegt and Jones, “Model Building and Refinement Practice,” p. 208.


Those of skill in the art will understand that a set of structure coordinates for a complex as described herein is a relative set of points that define a shape in three dimensions. Thus, it is possible that an entirely different set of coordinates could define a similar or identical shape. Moreover, slight variations in the individual coordinates will have little effect on overall shape.


For example, variations in coordinates may be generated because of mathematical manipulations of the structure coordinates. For example, the structure coordinates set forth in Table 2 could be manipulated by crystallographic permutations of the structure coordinates, fractionalization of the structure coordinates, integer additions or subtractions to sets of the structure coordinates, inversion of the structure coordinates or any combination of the above.


Alternatively, modifications in the crystal structure due to mutations, additions, substitutions, and/or deletions of amino acids, or other changes in any of the components that make up the crystal, e.g., substitution of different HIV-1 protease polypeptides, could also account for variations in structure coordinates. If such variations are within an acceptable standard error as compared to the original coordinates, the resulting three-dimensional shape is considered to be the same.


Various computational analyses can be used to determine whether a molecule or molecular complex or a portion thereof is sufficiently similar to all or parts of the HIV-1 protease/inhibitor complex described herein as to be considered the same. Such analyses may be carried out in current software applications, such as the Molecular Similarity application of QUANTA (Molecular Simulations Inc., San Diego, Calif.) version 4.1, and as described in the accompanying User's Guide.


For the purpose of the methods described herein, any molecule or molecular complex that has a root mean square deviation of conserved residue backbone atoms (N, Cα, C, or O) of less than 1.5 Angstrom when superimposed on the relevant backbone atoms described by structure coordinates listed in Table 2 are considered identical. In some embodiments, the root mean square deviation is less than 1.0 Angstrom.


The term “root mean square deviation” means the square root of the arithmetic mean of the squares of the deviations from the mean, and expresses the deviation or variation from a trend or object. For purposes of the present application, the “root mean square deviation” defines the variation in the backbone of a protein or protein complex from the relevant portion of the backbone of the HIV-1 protease portion of the complex as defined by the structure coordinates described herein.


A machine, such as a computer, can be programmed in memory with the structural coordinates of a complex of the HIV-1 protease or the HIV-1 protease bound to an inhibitor as described herein, together with a program capable of generating a graphical representation of the structural coordinates on a display connected to the machine. Alternatively or additionally, a software system can be designed and/or utilized to accept and store the structural coordinates. The software system can be capable of generating a graphical representation of the structural coordinates. The software system can also be capable of accessing external databases to identify compounds (e.g., polypeptides) with similar structural features as an inhibitor described herein, and/or to identify one or more candidate inhibitors with characteristics that may render the candidate inhibitor(s) likely to interact with HIV-1 protease in a manner similar to an inhibitor described herein, e.g., P867883. Thus, the structural coordinates of a HIV-1 protease polypeptide/P867883 complex and portions thereof can be stored in a machine-readable storage medium. Such data may be used for a variety of purposes, such as drug discovery and x-ray crystallographic analysis or protein crystal. Accordingly, also provided herein is a machine-readable data storage medium comprising a data storage material encoded with the structure coordinates set forth in Table 2.


Rational Design of Candidate HIV-Protease Inhibitors


HIV-1 resists efforts to find a cure that will eradicate the virus from infected individuals or to develop a vaccine. Until a safe and effective vaccine is developed against HIV-1, new drugs need to be developed to reach high plasma levels and to possibly overcome the cross-resistance among various inhibitors. One approach to overcoming cross-resistance is to design new inhibitors that not only bind tightly to mutant proteases but also bind in a mode different from existing inhibitors. Support for this approach comes from TPV, which has a different binding mode and has been shown to bind to drug-resistant mutants (Rusconi et al., Antimicrob Agents Chemother 44, 1328-32, 2000). The crystal structure of the P867883-protease complex presented herein provides a new direction for designing candidate protease inhibitors. In fact, PPL-100, which is similar to P867883, is currently in Phase-I clinical trials and showing promising results. Now, however, with the structure of P867883 in complex with HIV-1 protease it is possible to design other inhibitors that fill the active site cavity in a novel manner.


Novel inhibitors of HIV-1 protease can be identified or designed by a method that includes using a model of HIV-1 protease or a portion thereof (e.g., of the active site, as described herein, or a complex of HIV-1 protease bound to an inhibitor described herein or a portion of either one of these complexes.


In some embodiments, the representation can be of an analog polypeptide, e.g., a mutant or variant of HIV-1 protease, alone or in a complex with an inhibitor, e.g., an inhibitor described herein or known in the art. A candidate inhibitor that interacts with the representation can be designed or identified by performing computer fitting analysis of the candidate inhibitor with the representation. Examples of candidate inhibitors include peptides, peptidomimetics, and small organic or inorganic molecules. The interaction can be mediated by any of the forces noted herein, including, for example, hydrogen bonding, electrostatic forces, hydrophobic interactions, and van der Waals interactions.


As noted above, X-ray crystallography, NMR, or other methods can be used to obtain structural coordinates of a complex of HIV-1 protease bound to an inhibitor.


A machine having a memory containing structure data or a software system containing such data, as described herein, can aid in the rational design or selection of candidate HIV-1 protease inhibitors. For example, such a machine or software system can aid in the evaluation of the ability of a candidate inhibitor to associate with HIV-1 protease in a manner similar to an inhibitor described herein, e.g., P867883, or can aid in the modeling of compounds related by structural homology to P867883, e.g., structural analogs that are or may be candidate inhibitors.


The machine can produce a representation (e.g., a two dimensional representation, a three dimensional representation) of the active site of the HIV-1 protease or a complex of the HIV-1 protease or a portion thereof, e.g., the active site of the HIV-1 protease, alone or bound to an inhibitor. A software system, for example, can cause the machine to produce such information. The machine can include a machine-readable data storage medium including a data storage material encoded with machine-readable data. The machine-readable data can include structural coordinates of atoms of HIV-1 protease or a complex of HIV-1 protease bound to an inhibitor, or a portion thereof, e.g., the active site of the HIV-1 protease. Machine-readable storage media (e.g., data storage material) include, for example, conventional computer hard drives, floppy disks, DAT tape, CD-ROM, DVD, and other magnetic, magneto-optical, optical, and other media which may be adapted for use with a machine (e.g., a computer).


The machine can also have a working memory for storing instructions for processing the machine-readable data, as well as a central processing unit (CPU) coupled to the working memory and to the machine-readable data storage medium for the purpose of processing the machine-readable data into the desired three-dimensional representation. A display can be connected to the CPU so that the three-dimensional representation can be visualized by the user. Accordingly, when used with a machine programmed with instructions for using the data (e.g., a computer loaded with one or more programs of the sort described herein) the machine is capable of displaying a graphical representation (e.g., a two dimensional graphical representation, a three-dimensional graphical representation) of any of the polypeptides, polypeptide fragments, complexes, or complex fragments described herein.


A display (e.g., a computer display) can show a representation of HIV-1 protease or a complex of HIV-1 protease bound to an inhibitor, e.g., a candidate inhibitor or an inhibitor described herein, or a fragment of either of these complexes. The user can inspect the representation and, using information gained from the representation, generate a model of a complex that includes HIV-1 protease or fragment thereof and a candidate inhibitor, i.e., an inhibitor other than an inhibitor described herein, e.g., an analog of an inhibitor described herein, e.g., an analog of P867883. The model can be generated, for example, by altering a previously existing representation of an HIV-1 protease bound to an inhibitor, e.g., P867883, or a previously existing representation of the active site of an HIV-1 protease bound to an inhibitor, e.g., P867883. Optionally, the user can superimpose a three-dimensional model of a candidate inhibitor on the representation of the active site of an HIV-1 protease bound to an inhibitor, e.g., P867883 or the entire HIV-1 protease bound to an inhibitor, e.g., P867883. In some embodiments, the inhibitor can be a known compound or fragment of a compound. In certain embodiments, the inhibitor can be a previously unknown compound, or a fragment of a previously unknown compound.


It can be desirable for the candidate inhibitor to have a shape that complements the shape of the active site. There can be a preferred distance, or range of distances, between atoms of the candidate inhibitor and atoms of the HIV-1 protease. Distances longer than a preferred distance may be associated with a weak interaction between the candidate inhibitor and the active site of an HIV-1 protease. Distances shorter than a preferred distance may be associated with repulsive forces that can weaken the interaction between the candidate inhibitor and the polypeptide.


A steric clash can occur when distances between atoms are too short. A steric clash occurs when the locations of two atoms are unreasonably close together, for example, when two atoms are separated by a distance less than the sum of their van der Waals radii. If a steric clash exists, the user can adjust the position of the inhibitor relative to the HIV-1 protease (e.g., a rigid body translation or rotation of the inhibitor), until the steric clash is relieved. The user can adjust the conformation or composition of the inhibitor in order to relieve a steric clash. Steric clashes can be removed, for example, by altering the structure of the inhibitor, for example, by changing a “bulky group,” such as an aromatic ring, to a smaller group, such as to a methyl or hydroxyl group, or by changing a rigid group to a flexible group that can accommodate a conformation that does not produce a steric clash.


Electrostatic forces can also influence an interaction between an inhibitor and a ligand-binding domain. For example, electrostatic properties can be associated with repulsive forces that can weaken the interaction between the inhibitor and the HIV-1 protease. Electrostatic repulsion can be relieved by altering the charge of the inhibitor, e.g., by replacing a positively charged group with a neutral group.


Forces that influence binding strength between an inhibitor and HIV-1 protease can be evaluated in the protease/inhibitor model. These can include, for example, hydrogen bonding, electrostatic forces, hydrophobic interactions, van der Waals interactions, dipole-dipole interactions, π-stacking forces, and cation-π interactions. The user can evaluate these forces visually, for example by noting a hydrogen bond donor/acceptor pair arranged with a distance and angle suitable for formation of a hydrogen bond. Based on the evaluation, the user can alter the model to find a more favorable interaction between the HIV-1 protease and the inhibitor.


Altering the model will generally include altering the chemical structure of the inhibitor, for example by substituting, adding, or removing groups. For example, if a hydrogen bond donor on the HIV-1 protease is located near a hydrogen bond donor on the inhibitor, the user can replace the hydrogen bond donor on the inhibitor with a hydrogen bond acceptor.


The relative locations of an inhibitor and the HIV-1 protease, or their conformations, can be adjusted to find an optimized binding geometry for a particular inhibitor to the HIV-1 protease, e.g., within the bounds of the electron density map. An optimized binding geometry is characterized by, for example, favorable hydrogen bond distances and angles, maximal electrostatic attractions, minimal electrostatic repulsions, the sequestration of hydrophobic moieties away from an aqueous environment, and the absence of steric clashes. The optimized geometry can have the lowest calculated energy of a family of possible geometries for an HIV-1 protease/inhibitor complex. An optimized geometry can be determined, for example, through molecular mechanics or molecular dynamics calculations.


A series of representations of complexes of HIV-1 protease bound to different inhibitors, e.g., candidate inhibitors or inhibitors described herein, can be generated. A score can be calculated for each representation. The score can describe, for example, an expected strength of interaction between HIV-1 protease and the inhibitor or inhibitor. The score can reflect one of the factors described above that influence binding strength. The score can be an aggregate score that reflects more than one of the factors. The different inhibitors can be ranked according to their scores.


Steps in the design of a candidate inhibitor can be carried out in an automated fashion by a machine. For example, a representation of HIV-1 protease, or the active site of an HIV-1 protease, can be programmed in the machine, along with representations of candidate inhibitors. The machine can find an optimized binding geometry for each of the candidate inhibitors to the active site, and calculate a score to determine which of the inhibitors in the series is likely to interact most strongly with the active site of the HIV-1 protease.


A software system can be designed and/or implemented to facilitate these steps. Software systems (e.g., computer programs) used to generate representations or perform the fitting analyses include, for example: MCSS, Ludi, QUANTA, Insight II, Cerius2, CHarMM, and Modeler from Accelrys, Inc. (San Diego, Calif.); SYBYL, Unity, F1eXX, and LEAPFROG from TRIPOS, Inc. (St. Louis, Mo.); AUTODOCK (Scripps Research Institute, La Jolla, Calif.); GRID (Oxford University, Oxford, UK); DOCK (University of California, San Francisco, Calif.); and Flo+ and Flo99 (Thistlesoft, Morris Township, N.J.). Other useful programs include ROCS, ZAP, FRED, Vida, and Szybki from Openeye Scientific Software (Santa Fe, N. Mex.); Maestro, Macromodel, and Glide from Schrodinger, LLC (Portland, Oreg.); MOE (Chemical Computing Group, Montreal, Quebec), Allegrow (Boston De Novo, Boston, Mass.), and GOLD (Jones et al., J. Mol. Biol. 245:43-53, 1995). The structural coordinates can also be used to visualize the three-dimensional structure of an ERalpha polypeptide using MOLSCRIPT, RASTER3D, or PYMOL (Kraulis, J. Appl. Crystallogr. 24: 946-950, 1991; Bacon and Anderson, J. Mol. Graph. 6: 219-220, 1998; DeLano, The PyMOL Molecular Graphics System (2002) DeLano Scientific, San Carlos, Calif.).


A candidate inhibitor can, for example, be selected by screening an appropriate database, can be designed de novo by analyzing the steric configurations and charge potentials of unbound HIV-1 protease in conjunction with the appropriate software systems, and/or can be designed using characteristics of known inhibitors, e.g., P867883 or another inhibitor described herein. The method can be used to design or select inhibitors of HIV-1 protease that bind to HIV-1 protease in a manner similar to P867883. A software system can be designed and/or implemented to facilitate database searching, and/or inhibitor selection and design.


Once a candidate inhibitor has been designed or identified, it can be obtained or synthesized and further evaluated for its effect on HIV-1 protease. For example, the inhibitor can be evaluated by contacting it with HIV-1 protease and measuring the effect of the inhibitor on protease activity. A method for evaluating the inhibitor can include an activity assay performed in vitro or in vivo. An activity assay can be a cell-based assay, for example. The candidate inhibitor can also be subjected to cross-resistance profiling, e.g., as described in Petropoulos, Antimicrob Agents Chemother 44:920-8 (2000); and Wu et al., 2006, supra. For example, cross-resistance profiling can be performed using the PhenoSense™ HIV phenotypic drug resistance assay (Monogram Biosciences, Inc., South San Francisco, Calif.) and/or the ANTIVIROGRAM®, a conventional HIV-1 phenotyping assay that uses fully replication-competent recombinant virus to assess the susceptibility to each of the currently available protease and reverse transcriptase inhibitors (Virco BVBA, Mechelen, Belgium).


Depending upon the action of the inhibitor on HIV-1 protease, the inhibitor can be classified as an inhibitor. A crystal containing HIV-1 protease bound to the identified inhibitor can be grown and the structure determined by X-ray crystallography. A second inhibitor can be designed or identified based on the interaction of the first inhibitor with HIV-1 protease.


Various molecular analysis and rational drug design techniques are further disclosed in, for example, U.S. Pat. Nos. 5,834,228, 5,939,528 and 5,856,116, as well as in PCT Application No. PCT/US98/16879, published as WO 99/09148.


EXAMPLES

The invention is further described in the following examples, which do not limit the scope of the invention described in the claims.


Example 1
Crystal Structure of Inhibitor P867883 Bound to HIV-1 Protease

This Example describes the preparation and solution of crystals of P867883 bound to the HIV-1 protease.


Protein Expression and Purification


The wild-type protease was expressed from a synthetic gene optimized for Escherichia coli codon usage with the Gln7Lys mutation to prevent autoproteolysis (Rose, J. R. et al. J Biol Chem 268, 11939-11945, 1993) (shown in SEQ ID NO:1). The protease was expressed and purified as previously described (King, N. M. et al. Protein Sci 11, 418-429, 2002). The protein was refolded by rapid dilution in a 10-fold volume of 0.05 M sodium acetate buffer at pH 5.5, containing 10% glycerol, 5% ethylene glycol and 5 mM dithiothreitol (refolding buffer). To reduce the volume, the protease was concentrated and dialyzed to remove any residual acetic acid. Protease used for crystallization was further purified with a Pharmacia Superdex 75 fast-performance liquid chromatography column equilibrated with refolding buffer.


Crystallization and Data Collection


Crystals were set up with a three-fold molar excess of inhibitor to protease, which ensures ubiquitous binding. The concentration of the protein was 1.6 mg/ml in refolding buffer. The hanging drop method was used for crystallization as previously described (Prabu-Jeyabalan et al. J Virol 77, 1306-1315, 2003). The reservoir solution consisted of 126 mM phosphate buffer at pH 6.2, 63 mM sodium citrate and 26% ammonium sulfate.


Intensity data were collected on an in-house Rigaku X-ray generator equipped with an R-axis IV image plate system. Data were collected at −80° C. Approximately 200 5-minute frames were collected with 1-degree oscillations and no overlap between frames. The frames were integrated and scaled using the programs DENZO (Minor, (Purdue University., West Lafayette, Ind., 1993) and ScalePack (Otwinowski et al., Methods Enzymol 276, 307-326, 1997), respectively. The data collection statistics are listed in Table 1.









TABLE 1







Data Collection Statistics










Parameter
P867883











Data Collection










Space group
P212121



Z
4



a (Å)
51.11



b (Å)
58.10



c (Å)
61.60



Resolution (Å)
2.0



Total number of reflections
81058



Number of unique reflections
12879



Rmerge (%)
7.2



Completeness (%)
99.2



I/σI
13.1







Refinement:










Rwork value (%)
18.7



Rfree (%)
23.2



RMSD



Bond length (Å)
0.007



Bond angles (°)
1.260



Number of waters
110










Structure Solution and Crystallographic Refinement


The CCP41 interface to the CCP4 suite (Collaborative-Computational-Project, N. The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50, 760-763, 1994) was used to refine the structure. The structure was solved with the molecular replacement package AMoRe (Navaza, Acta Crystallogr D Biol Crystallogr A50, 157-163, 1994), with 1F7A (Prabu-Jeyabalan, M et al. J Mol Biol 301, 1207-20, 2000) as the starting model. A radius of integration of 25 Å and X-ray data within 8.0 to 3.0 Å were used for the structure solution. The molecular replacement phases were further improved by using ARP/wARP (Morris et al., Acta Crystallogr D Biol Crystallogr D58, 968-975, 2002) to build solvent molecules into the unaccounted regions of electron density. Difference Fourier maps were computed and inspected with the interactive graphic program 0 (Jones et al., Methods in Molecular Design (eds. Bugg and Ealick) 189-195 (Springer-Verlag Press, Berlin, 1990), and major structural changes were incorporated in the model, such as inclusion of inhibitor and solvent molecules. Conjugate gradient refinement using Refmac5 (Murshudov et al., Acta Crystallogr D Biol Crystallogr D53, 240-255, 1997) was performed by incorporating the Schomaker and Trueblood tensor formulation of TLS (translation, libration, screw-rotation) parameters (Kuriyan and Weis, Proc Natl Acad Sci USA 88, 2773-2777, 1991, Schomaker and Trueblood, Acta Crystallogr B24, 63-76, 1968, Tickle and Moss, in IUCr99 Computing School IUCr, London, 1999). The working R (Rfactor 1 and its cross validation (Rfree) were monitored throughout the refinement.


Results


The crystal structure of the wild-type protease-P867883 complex, which crystallized in P212121 space group with one protease dimer per asymmetric unit, was solved and refined to 2.0 Å. The inhibitor was modeled in one orientation, with continuous electron density for the entire molecule except for the isopropyl group at P1′. The final Rfactor value is 18.7% (Rfree=23.2%). The crystallographic statistics are listed in Table 1. The atomic coordinates are listed in Table 2.


P867883 binds to the active site through interactions between two oxygen atoms of the inhibitor's sulfonyl group and the nitrogen atoms of protease's Ile50 and Ile50′. In other protease-inhibitor and protease-substrate complexes these interactions are made by a conserved water molecule to the nitrogen atoms of Ile50 and Ile50′, indicating a novel mode of binding for P867883.


P867883 protease hydrogen bonds. P867883 displays a novel hydrogen bonding pattern compared to other protease inhibitors. FIG. 2B shows hydrogen bonding between atoms in the protease active site and atoms in the inhibitor, including those mediated by water. The catalytic aspartic acids of the enzyme, Asp25 and Asp25′, are within hydrogen bonding distance of the hydroxyl group of P867883. The inhibitor makes 12 hydrogen bonds with the protease. Except for one interaction, all hydrogen bonds are between the inhibitor and either protease main-chain atoms or side-chain atoms of conserved residues (Asp25 and Asp29). The two nitrogen atoms of Ile50 and Ile50′ at the tips of the flaps form hydrogen bonds with the two oxygen atoms of the inhibitor's sulfonyl group. This hydrogen bonding is a novel structural feature compared to the structures of most protease-inhibitor complexes in which a water molecule tetrahedrally coordinates the nitrogen atoms of Ile50 and Ile50′ with the inhibitor atoms.


The amide and carbamate groups of P867883 form hydrogen bonds with residue Gly48 in the flap and with residue Asp29 in the floor of the active site. At the other end of the inhibitor, the amine group forms a hydrogen bond with the carboxyl group of Asp30′. This amine group also forms water-mediated hydrogen bonds with the residues Gly48′ in the flap and Asp29′ at the bottom of the active site. The important feature of the P867883-protease hydrogen bonds is their involvement with residues in both the flap (Gly48 and Ile50) and the active site (Asp25, Asp29 and Asp30). This feature is distinct from the inhibitor-protease hydrogen bonds formed by peptidomimetic inhibitors (IDV, NFV, DRV, APV, LPV), which do not form hydrogen bonds with the flap residues (Prabu-Jeyabalan et al., Antimicrob Agents Chemother 50, 1518-1521, 2006). The substrates, in contrast, form hydrogen bonds with the flap residue, Gly48, and in certain cases, even with Met46 (Prabu-Jeyabalan et al., Structure 10, 369-381, 2002).


van der Waals contacts. P867883 packs in an extended conformation in the active site by forming 134 van der Waals (vdW) contacts to the protease, with an interatomic distance of <4.2 Å (FIG. 2C). The isopropyl group of the P1′ site is surrounded by residues Leu23, Asp25, Ile84, Gly27′ and Ile50′ of the protease. The benzyl amine group of P2′ forms vdW contacts with Ile50, Gly48′, Gly49′ of the flap as well as with Asp30′ and Val32′. The aliphatic hydrophobic amino alkyl central part of the inhibitor backbone is within vdW distance of the aliphatic hydrophobic residues Ala28, Ile47, Gly48, Ile50′, Ile84. An aromatic diphenyl methyl group occupies P3 position. One of the phenyl rings of this group points in the direction of the P1 site. This phenyl ring is within vdW distance of many protease residues (Leu23′, Asp25′, Gly27, Gly48, Gly49, Ile50, Pro81′, Ile84′), whereas the other phenyl ring forms vdW contacts with only three residues (Arg8′, Pro81′, Val82′).


Other Embodiments

It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.












TABLE 2







HEADER
---
XX-XXX-XX
MADH


COMPND
---










REMARK
3




REMARK
3
REFINEMENT.


REMARK
3
 PROGRAM:
REFMAC 5.2.0005


REMARK
3
 AUTHORS:
MURSHUDOV, VAGIN, DODSON


REMARK
3









REMARK
3
  REFINEMENT TARGET: MAXIMUM LIKELIHOOD


REMARK
3


REMARK
3
DATA USED IN REFINEMENT.











REMARK
3
 RESOLUTION RANGE HIGH
(ANGSTROMS):
 2.00


REMARK
3
 RESOLUTION RANGE LOW
(ANGSTROMS):
 42.26


REMARK
3
 DATA CUTOFF
(SIGMA(F)):
NONE


REMARK
3
 COMPLETENESS FOR RANGE
(%):
 98.82


REMARK
3
 NUMBER OF REFLECTIONS:

 12220


REMARK
3









REMARK
3
FIT TO DATA USED IN REFINEMENT.










REMARK
3
 CROSS-VALIDATION METHOD:
THROUGHOUT


REMARK
3
 FREE R VALUE TEST SET SELECTION:
RANDOM











REMARK
3
 R VALUE
(WORKING + TEST SET):
0.18898


REMARK
3
 R VALUE
(WORKING SET):
 0.18676


REMARK
3
 FREE R VALUE:

 0.23230











REMARK
3
 FREE R VALUE TEST SET SIZE
(%):
 4.8










REMARK
3
 FREE R VALUE TEST SET COUNT:
 619


REMARK
3


REMARK
3
FIT IN THE HIGHEST RESOLUTION BIN.










REMARK
3
 TOTAL NUMBER OF BINS USED:
  20


REMARK
3
 BIN RESOLUTION RANGE HIGH:
1.995


REMARK
3
 BIN RESOLUTION RANGE LOW:
2.047











REMARK
3
 REFLECTION IN BIN
(WORKING SET):
  844


REMARK
3
 BIN COMPLETENESS
(WORKING + TEST) (%):
94.32


REMARK
3
 BIN R VALUE
(WORKING SET):
0.219










REMARK
3
 BIN FREE R VALUE SET COUNT:
  36


REMARK
3
 BIN FREE R VALUE:
0.312


REMARK
3









REMARK
3
NUMBER OF NON-HYDROGEN ATOMS USED IN REFINEMENT.










REMARK
3
 ALL ATOMS:
1679


REMARK
3


REMARK
3
B VALUES.











REMARK
3
 FROM WILSON PLOT
(A**2):
NULL


REMARK
3
 MEAN B VALUE
(OVERALL, A**2):
 24.819









REMARK
3
 OVERALL ANISOTROPIC B VALUE.











REMARK
3
B11 (A**2):
−1.10



REMARK
3
B22 (A**2):
−0.32


REMARK
3
B33 (A**2):
1.42


REMARK
3
B12 (A**2):
0.00


REMARK
3
B13 (A**2):
0.00


REMARK
3
B23 (A**2):
0.00


REMARK
3











REMARK
3
ESTIMATED OVERALL COORDINATE ERROR.




REMARK
3
 ESU BASED ON R VALUE
(A):
0.210


REMARK
3
 ESU BASED ON FREE R VALUE
(A):
0.175


REMARK
3
 ESU BASED ON MAXIMUM LIKELIHOOD
(A):
0.127


REMARK
3
 ESU FOR B VALUES BASED ON MAXIMUM LIKELIHOOD
(A**2):
8.829


REMARK
3


REMARK
3
CORRELATION COEFFICIENTS.










REMARK
3
 CORRELATION COEFFICIENT FO-FC:
0.954


REMARK
3
 CORRELATION COEFFICIENT FO-FC FREE:
0.935


REMARK
3












REMARK
3
RMS DEVIATIONS FROM IDEAL VALUES
COUNT
RMS
WEIGHT













REMARK
3
 BOND LENGTHS REFINED ATOMS
(A):
1593;
0.007;
0.022


REMARK
3
 BOND LENGTHS OTHERS
(A):
1534;
0.001;
0.020


REMARK
3
 BOND ANGLES REFINED ATOMS
(DEGREES):
2169;
1.260;
2.025


REMARK
3
 BOND ANGLES OTHERS
(DEGREES):
3552;
0.647;
3.000


REMARK
3
 TORSION ANGLES, PERIOD 1
(DEGREES):
200;
6.588;
5.000


REMARK
3
 TORSION ANGLES, PERIOD 2
(DEGREES):
52;
37.808;
25.000


REMARK
3
 TORSION ANGLES, PERIOD 3
(DEGREES):
260;
12.364;
15.000


REMARK
3
 TORSION ANGLES, PERIOD 4
(DEGREES):
7;
14.960;
15.000


REMARK
3
 CHIRAL-CENTER RESTRAINTS
(A**3):
256;
0.080;
0.200


REMARK
3
 GENERAL PLANES REFINED ATOMS
(A):
1727;
0.006;
0.020


REMARK
3
 GENERAL PLANES OTHERS
(A):
282;
0.001;
0.020


REMARK
3
 NON-BONDED CONTACTS REFINED ATOMS
(A):
234;
0.174;
0.200


REMARK
3
 NON-BONDED CONTACTS OTHERS
(A):
1559;
0.188;
0.200


REMARK
3
 NON-BONDED TORSION REFINED ATOMS
(A):
741;
0.175;
0.200


REMARK
3
 NON-BONDED TORSION OTHERS
(A):
1025;
0.085;
0.200


REMARK
3
 H-BOND (X...Y) REFINED ATOMS
(A):
80;
0.177;
0.200


REMARK
3
 SYMMETRY VDW REFINED ATOMS
(A):
11;
0.289;
0.200


REMARK
3
 SYMMETRY VDW OTHERS
(A):
61;
0.205;
0.200


REMARK
3
 SYMMETRY H-BOND REFINED ATOMS
(A):
8;
0.282;
0.200


REMARK
3


REMARK
3
ISOTROPIC THERMAL FACTOR RESTRAINTS.

COUNT
RMS
WEIGHT


REMARK
3
 MAIN-CHAIN BOND REFINED ATOMS
(A**2):
1059;
0.743;
1.500


REMARK
3
 MAIN-CHAIN BOND OTHER ATOMS
(A**2):
416;
0.196;
1.500


REMARK
3
 MAIN-CHAIN ANGLE REFINED ATOMS
(A**2):
1614;
0.960;
2.000


REMARK
3
 SIDE-CHAIN BOND REFINED ATOMS
(A**2):
647;
1.519;
3.000


REMARK
3
 SIDE-CHAIN ANGLE REFINED ATOMS
(A**2):
555;
2.208;
4.500


REMARK
3









REMARK
3
NCS RESTRAINTS STATISTICS


REMARK
3
 NUMBER OF NCS GROUPS: NULL


REMARK
3


REMARK
3


REMARK
3
TLS DETAILS


REMARK
3
 NUMBER OF TLS GROUPS:   21


REMARK
3
 ATOM RECORD CONTAINS RESIDUAL B FACTORS ONLY


REMARK
3


REMARK
3
 TLS GROUP:   1


REMARK
3
  NUMBER OF COMPONENTS GROUP:   1











REMARK
3
  COMPONENTS
C SSSEQI  TO
C SSSEQI


REMARK
3
  RESIDUE RANGE:
A  1
A  7









REMARK
3
  ORIGIN FOR THE GROUP (A):  20.2533  14.1639  22.3260


REMARK
3
  T TENSOR


REMARK
3
   T11:  0.0088 T22:  −0.0757


REMARK
3
   T33:  0.0032 T12:  −0.0134


REMARK
3
   T13:  0.0506 T23:  −0.0236


REMARK
3
  L TENSOR


REMARK
3
   L11:  7.2367 L22:  5.8335


REMARK
3
   L33:  8.2982 L12:  −4.4678


REMARK
3
   L13:  −2.5184 L23:  1.4125


REMARK
3
  S TENSOR


REMARK
3
   S11:  −0.0791 S12:  0.1776 S13:  −0.8795


REMARK
3
   S21:  0.9283 S22:  −0.0128 S23:  0.6753


REMARK
3
   S31:  0.6836 S32:  −0.6229 S33:  0.0920


REMARK
3


REMARK
3
 TLS GROUP:   2


REMARK
3
  NUMBER OF COMPONENTS GROUP:   1











REMARK
3
  COMPONENTS
C SSSEQI  TO
C SSSEQI


REMARK
3
  RESIDUE RANGE:
A  8
A  12









REMARK
3
  ORIGIN FOR THE GROUP (A):  13.4279  18.2148  16.0872


REMARK
3
  T TENSOR


REMARK
3
   T11:  −0.0742 T22:  −0.1087


REMARK
3
   T33:  0.0117 T12:  0.0132


REMARK
3
   T13:  −0.0238 T23:  −0.0240


REMARK
3
  L TENSOR


REMARK
3
   L11:  53.3065 L22:  9.9464


REMARK
3
   L33:  1.7758 L12:  −4.6868


REMARK
3
   L13:  −4.6541 L23:  −0.5984


REMARK
3
  S TENSOR


REMARK
3
   S11:  −0.0951 S12:  1.6104 S13:  −0.6781


REMARK
3
   S21:  −0.1481 S22:  0.0634 S23:  0.8956


REMARK
3
   S31:  0.0656 S32:  −0.5675 S33:  0.0316


REMARK
3


REMARK
3
 TLS GROUP:   3


REMARK
3
  NUMBER OF COMPONENTS GROUP:   1











REMARK
3
  COMPONENTS
C SSSEQI  TO
C SSSEQI


REMARK
3
  RESIDUE RANGE:
A  13
A  26









REMARK
3
  ORIGIN FOR THE GROUP (A):  6.5613  22.3590  16.8042


REMARK
3
  T TENSOR


REMARK
3
   T11:  −0.0690 T22:  −0.0738


REMARK
3
   T33:  0.0639 T12:  −0.0085


REMARK
3
   T13:  0.0149 T23:  −0.0296


REMARK
3
  L TENSOR


REMARK
3
   L11:  28.5732 L22:  1.6520


REMARK
3
   L33:  5.4724 L12:  3.4678


REMARK
3
   L13:  7.9967 L23:  2.1138


REMARK
3
  S TENSOR


REMARK
3
   S11:  0.1614 S12:  0.6621 S13:  −0.9402


REMARK
3
   S21:  −0.0359 S22:  0.0032 S23:  0.4095


REMARK
3
   S31:  0.1956 S32:  −0.4190 S33:  −0.1646


REMARK
3


REMARK
3
 TLS GROUP:   4


REMARK
3
  NUMBER OF COMPONENTS GROUP:   1











REMARK
3
  COMPONENTS
C SSSEQI  TO
C SSSEQI


REMARK
3
  RESIDUE RANGE:
A  27
A  33









REMARK
3
  ORIGIN FOR THE GROUP (A):  12.5642  32.1612  18.0832


REMARK
3
  T TENSOR


REMARK
3
   T11:  −0.0854 T22:  −0.1178


REMARK
3
   T33:  0.0032 T12:  0.0257


REMARK
3
   T13:  −0.0208 T23:  −0.0325


REMARK
3
  L TENSOR


REMARK
3
   L11:  1.6373 L22:  0.1812


REMARK
3
   L33:  11.7405 L12:  −0.5447


REMARK
3
   L13:  4.3844 L23:  −1.4585


REMARK
3
  S TENSOR


REMARK
3
   S11:  −0.1072 S12:  −0.3691 S13:  0.2231


REMARK
3
   S21:  −0.0220 S22:  0.1583 S23:  0.4399


REMARK
3
   S31:  −0.6264 S32:  −0.4651 S33:  −0.0511


REMARK
3


REMARK
3
 TLS GROUP:   5


REMARK
3
  NUMBER OF COMPONENTS GROUP:   1











REMARK
3
  COMPONENTS
C SSSEQI  TO
C SSSEQI


REMARK
3
  RESIDUE RANGE:
A  34
A  37









REMARK
3
  ORIGIN FOR THE GROUP (A):  1.9732  30.0448  9.2304


REMARK
3
  T TENSOR


REMARK
3
   T11:  0.0853 T22:  0.1024


REMARK
3
   T33:  0.0375 T12:  −0.1363


REMARK
3
   T13:  −0.1390 T23:  0.0459


REMARK
3
  L TENSOR


REMARK
3
   L11:  42.3118 L22:  55.6425


REMARK
3
   L33:  19.9083 L12: −39.7854


REMARK
3
   L13: −18.3235 L23:  3.4888


REMARK
3
  S TENSOR


REMARK
3
   S11:  0.2342 S12:  1.0275 S13:  −0.3756


REMARK
3
   S21:  −0.3264 S22:  −0.1747 S23:  1.0820


REMARK
3
   S31:  1.2727 S32:  −1.3739 S33:  −0.0595


REMARK
3


REMARK
3
 TLS GROUP:   6


REMARK
3
  NUMBER OF COMPONENTS GROUP:   1











REMARK
3
  COMPONENTS
C SSSEQI  TO
C SSSEQI


REMARK
3
  RESIDUE RANGE:
A  38
A  45









REMARK
3
  ORIGIN FOR THE GROUP (A):  1.4368  39.9831  14.5142


REMARK
3
  T TENSOR


REMARK
3
   T11:  −0.0964 T22:  0.0171


REMARK
3
   T33:  0.2971 T12:  0.0558


REMARK
3
   T13:  0.0945 T23:  0.0757


REMARK
3
  L TENSOR


REMARK
3
   L11:  26.9281 L22:  22.0339


REMARK
3
   L33:  2.9887 L12:  17.4593


REMARK
3
   L13:  −6.3171 L23:  −8.1137


REMARK
3
  S TENSOR


REMARK
3
   S11:  0.3495 S12:  −0.4777 S13:  2.4648


REMARK
3
   S21:  0.7240 S22:  0.7035 S23:  2.0061


REMARK
3
   S31:  −0.1871 S32:  −0.4257 S33:  −1.0530


REMARK
3


REMARK
3
 TLS GROUP:   7


REMARK
3
  NUMBER OF COMPONENTS GROUP:   1











REMARK
3
  COMPONENTS
C SSSEQI  TO
C SSSEQI


REMARK
3
  RESIDUE RANGE:
A  46
A  50









REMARK
3
  ORIGIN FOR THE GROUP (A):  17.2779  37.7842  11.9730


REMARK
3
  T TENSOR


REMARK
3
   T11:  −0.0395 T22:  −0.0505


REMARK
3
   T33:  −0.1297 T12:  0.0397


REMARK
3
   T13:  0.0382 T23:  0.0033


REMARK
3
  L TENSOR


REMARK
3
   L11:  83.4841 L22:  47.2632


REMARK
3
   L33:  2.9140 L12: −52.9502


REMARK
3
   L13:  3.9398 L23:  3.6100


REMARK
3
  S TENSOR


REMARK
3
   S11:  0.4329 S12:  −0.2094 S13:  −0.4895


REMARK
3
   S21:  −0.9040 S22:  0.0805 S23:  0.5825


REMARK
3
   S31:  0.2856 S32:  0.3092 S33:  −0.5134


REMARK
3


REMARK
3
 TLS GROUP:   8


REMARK
3
  NUMBER OF COMPONENTS GROUP:   1











REMARK
3
  COMPONENTS
C SSSEQI  TO
C SSSEQI


REMARK
3
  RESIDUE RANGE:
A  51
A  74









REMARK
3
  ORIGIN FOR THE GROUP (A):  5.5620  32.1079  18.8720


REMARK
3
  T TENSOR


REMARK
3
   T11:  −0.0609 T22:  −0.0407


REMARK
3
   T33:  0.0590 T12:  0.0157


REMARK
3
   T13:  −0.0118 T23:  0.0962


REMARK
3
  L TENSOR


REMARK
3
   L11:  6.1367 L22:  4.5073


REMARK
3
   L33:  6.4415 L12:  3.5409


REMARK
3
   L13:  −4.1492 L23:  −5.3874


REMARK
3
  S TENSOR


REMARK
3
   S11:  0.2060 S12:  −0.2608 S13:  0.4530


REMARK
3
   S21:  −0.1078 S22:  0.1981 S23:  0.6654


REMARK
3
   S31:  0.1840 S32:  −0.0602 S33:  −0.4040


REMARK
3


REMARK
3
 TLS GROUP:   9


REMARK
3
  NUMBER OF COMPONENTS GROUP:   1











REMARK
3
  COMPONENTS
C SSSEQI  TO
C SSSEQI


REMARK
3
  RESIDUE RANGE:
A  75
A  88









REMARK
3
  ORIGIN FOR THE GROUP (A):  10.5467  30.2638  15.1896


REMARK
3
  T TENSOR


REMARK
3
   T11:  −0.0934 T22:  −0.0781


REMARK
3
   T33:  −0.0040 T12:  0.0263


REMARK
3
   T13:  −0.0032 T23:  0.0216


REMARK
3
  L TENSOR


REMARK
3
   L11:  5.1046 L22:  5.7971


REMARK
3
   L33:  5.0675 L12:  −3.2991


REMARK
3
   L13:  3.9947 L23:  −5.2492


REMARK
3
  S TENSOR


REMARK
3
   S11:  0.2465 S12:  0.2892 S13:  0.4017


REMARK
3
   S21:  −0.5560 S22:  −0.2905 S23:  0.3795


REMARK
3
   S31:  0.4765 S32:  0.1718 S33:  0.0439


REMARK
3


REMARK
3
 TLS GROUP:   10


REMARK
3
  NUMBER OF COMPONENTS GROUP:   1











REMARK
3
  COMPONENTS
C SSSEQI  TO
C SSSEQI


REMARK
3
  RESIDUE RANGE:
A  89
A  99









REMARK
3
  ORIGIN FOR THE GROUP (A):  15.9880  24.3215  28.7317


REMARK
3
  T TENSOR


REMARK
3
   T11:  −0.0184 T22:  0.0238


REMARK
3
   T33:  −0.0866 T12:  0.0476


REMARK
3
   T13:  0.1024 T23:  0.0264


REMARK
3
  L TENSOR


REMARK
3
   L11:  11.8857 L22:  8.8690


REMARK
3
   L33:  2.6154 L12:  −8.8530


REMARK
3
   L13:  4.0519 L23:  −1.8852


REMARK
3
  S TENSOR


REMARK
3
   S11:  −0.3704 S12:  −0.3117 S13:  −0.3156


REMARK
3
   S21:  0.5457 S22:  0.1360 S23:  0.3309


REMARK
3
   S31:  0.1590 S32:  −0.1623 S33:  0.2345


REMARK
3


REMARK
3
  TLS GROUP:   11


REMARK
3
  NUMBER OF COMPONENTS GROUP:   1











REMARK
3
  COMPONENTS
C SSSEQI  TO
C SSSEQI


REMARK
3
  RESIDUE RANGE:
B  1
B  7









REMARK
3
  ORIGIN FOR THE GROUP (A):  19.8953  27.8418  31.9033


REMARK
3
  T TENSOR


REMARK
3
   T11:  0.1136 T22:  0.0499


REMARK
3
   T33:  −0.1241 T12:  0.0609


REMARK
3
   T13:  −0.0149 T23:  −0.0795


REMARK
3
  L TENSOR


REMARK
3
   L11:  9.5293 L22:  8.8408


REMARK
3
   L33:  2.6999 L12:  −1.3452


REMARK
3
   L13:  −2.9545 L23:  −0.9705


REMARK
3
  S TENSOR


REMARK
3
   S11:  −0.2714 S12:  −1.0681 S13:  0.1374


REMARK
3
   S21:  1.4438 S22:  0.3372 S23:  −0.2156


REMARK
3
   S31:  0.3511 S32:  0.0013 S33:  −0.0659


REMARK
3


REMARK
3
 TLS GROUP:   12


REMARK
3
  NUMBER OF COMPONENTS GROUP:   1











REMARK
3
  COMPONENTS
C SSSEQI  TO
C SSSEQI


REMARK
3
  RESIDUE RANGE:
B  8
B  13









REMARK
3
  ORIGIN FOR THE GROUP (A):  28.1340  32.1189  25.7782


REMARK
3
  T TENSOR


REMARK
3
   T11:  −0.0560 T22:  −0.0610


REMARK
3
   T33:  −0.1372 T12:  0.0460


REMARK
3
   T13:  0.0027 T23:  −0.0489


REMARK
3
  L TENSOR


REMARK
3
   L11:  34.5010 L22:  2.5197


REMARK
3
   L33:  0.0930 L12:  1.6655


REMARK
3
   L13:  0.1730 L23:  0.4825


REMARK
3
  S TENSOR


REMARK
3
   S11:  0.4725 S12:  −0.3054 S13:  0.5007


REMARK
3
   S21:  0.2123 S22:  −0.3302 S23:  −0.0755


REMARK
3
   S31:  −0.4414 S32:  −0.0315 S33:  −0.1422


REMARK
3


REMARK
3
 TLS GROUP:   13


REMARK
3
  NUMBER OF COMPONENTS GROUP:   1











REMARK
3
  COMPONENTS
C SSSEQI  TO
C SSSEQI


REMARK
3
  RESIDUE RANGE:
B  14
B  20









REMARK
3
  ORIGIN FOR THE GROUP (A):  40.9424  31.6242  22.7181


REMARK
3
  T TENSOR


REMARK
3
   T11:  −0.0873 T22:  −0.1326


REMARK
3
   T33:  −0.0436 T12:  −0.0143


REMARK
3
   T13:  −0.0424 T23:  0.0320


REMARK
3
  L TENSOR


REMARK
3
   L11:  37.2815 L22:  17.4530


REMARK
3
   L33:  22.7316 L12:  −0.6723


REMARK
3
   L13: −13.2444 L23:  6.9131


REMARK
3
  S TENSOR


REMARK
3
   S11:  −0.2339 S12:  0.1492 S13:  0.9680


REMARK
3
   S21:  −0.2042 S22:  0.2664 S23:  −1.3109


REMARK
3
   S31:  0.2100 S32:  0.7640 S33:  −0.0325


REMARK
3


REMARK
3
 TLS GROUP:   14


REMARK
3
  NUMBER OF COMPONENTS GROUP:   1











REMARK
3
  COMPONENTS
C SSSEQI  TO
C SSSEQI


REMARK
3
  RESIDUE RANGE:
B  21
B  29









REMARK
3
  ORIGIN FOR THE GROUP (A):  25.3141  27.5563  19.8226


REMARK
3
  T TENSOR


REMARK
3
   T11:  −0.1413 T22:  −0.1095


REMARK
3
   T33:  −0.1323 T12:  0.0237


REMARK
3
   T13:  0.0110 T23:  0.0147


REMARK
3
  L TENSOR


REMARK
3
   L11:  8.5013 L22:  2.9393


REMARK
3
   L33:  2.1853 L12:  3.0081


REMARK
3
   L13:  0.3365 L23:  −1.8989


REMARK
3
  S TENSOR


REMARK
3
   S11:  −0.2280 S12:  0.1831 S13:  0.3941


REMARK
3
   S21:  0.0366 S22:  −0.0337 S23:  0.3035


REMARK
3
   S31:  −0.0327 S32:  0.0482 S33:  0.2618


REMARK
3


REMARK
3
 TLS GROUP:   15


REMARK
3
  NUMBER OF COMPONENTS GROUP:   1











REMARK
3
  COMPONENTS
C SSSEQI  TO
C SSSEQI


REMARK
3
  RESIDUE RANGE:
B  30
B  35









REMARK
3
  ORIGIN FOR THE GROUP (A):  32.1899  31.0655  13.3676


REMARK
3
  T TENSOR


REMARK
3
   T11:  −0.1111 T22:  −0.0789


REMARK
3
   T33:  −0.1936 T12:  0.0225


REMARK
3
   T13:  0.0281 T23:  0.0263


REMARK
3
  L TENSOR


REMARK
3
   L11:  25.7761 L22:  41.7454


REMARK
3
   L33:  2.2628 L12:  22.7500


REMARK
3
   L13:  2.5528 L23:  −3.6390


REMARK
3
  S TENSOR


REMARK
3
   S11:  −0.6481 S12:  0.3468 S13:  0.3601


REMARK
3
   S21:  −0.9276 S22:  0.5748 S23:  −0.2147


REMARK
3
   S31:  −0.4300 S32:  −0.2581 S33:  0.0732


REMARK
3


REMARK
3
 TLS GROUP:   16


REMARK
3
  NUMBER OF COMPONENTS GROUP:   1











REMARK
3
  COMPONENTS
C SSSEQI  TO
C SSSEQI


REMARK
3
  RESIDUE RANGE:
B  36
B  48









REMARK
3
  ORIGIN FOR THE GROUP (A):  36.9994  28.5830   5.8803


REMARK
3
  T TENSOR


REMARK
3
   T11:  −0.0205 T22:  −0.0930


REMARK
3
   T33:  0.0350 T12:  0.0157


REMARK
3
   T13:  0.0591 T23:  0.0453


REMARK
3
  L TENSOR


REMARK
3
   L11:  10.5790 L22:  6.0951


REMARK
3
   L33:  10.1633 L12:  0.5094


REMARK
3
   L13:  5.5884 L23:  2.7850


REMARK
3
  S TENSOR


REMARK
3
   S11:  0.0450 S12:  0.5476 S13:  −0.5923


REMARK
3
   S21:  −0.1093 S22:  −0.0038 S23:  −0.5972


REMARK
3
   S31:  0.1146 S32:  0.7845 S33:  −0.0412


REMARK
3


REMARK
3
 TLS GROUP:   17


REMARK
3
  NUMBER OF COMPONENTS GROUP:   1











REMARK
3
  COMPONENTS
C SSSEQI  TO
C SSSEQI


REMARK
3
  RESIDUE RANGE:
B  49
B  55









REMARK
3
  ORIGIN FOR THE GROUP (A):  23.0944  32.4429   4.5301


REMARK
3
  T TENSOR


REMARK
3
   T11:  0.1998 T22:  0.3634


REMARK
3
   T33:  0.2279 T12:  0.0374


REMARK
3
   T13:  0.1457 T23:  0.0773


REMARK
3
  L TENSOR


REMARK
3
   L11:  75.7687 L22:  4.7251


REMARK
3
   L33:  9.3831 L12: −18.9212


REMARK
3
   L13:  −26.6636 L23:  6.6585


REMARK
3
  S TENSOR


REMARK
3
   S11:  −1.2704 S12:  1.4611 S13:  −0.4476


REMARK
3
   S21:  −0.1493 S22:  0.2872 S23:  0.9662


REMARK
3
   S31:  0.9230 S32:  −1.8269 S33:  0.9832


REMARK
3


REMARK
3
  TLS GROUP:   18


REMARK
3
  NUMBER OF COMPONENTS GROUP:   1











REMARK
3
  COMPONENTS
C SSSEQI  TO
C SSSEQI


REMARK
3
  RESIDUE RANGE:
B  56
B  66









REMARK
3
  ORIGIN FOR THE GROUP (A):  38.0651  24.9094  13.8811


REMARK
3
  T TENSOR


REMARK
3
   T11:  −0.1241 T22:  −0.1114


REMARK
3
   T33:  −0.0799 T12:  −0.0530


REMARK
3
   T13:  0.0139 T23:  −0.0300


REMARK
3
  L TENSOR


REMARK
3
   L11:  4.0187 L22:  3.1182


REMARK
3
   L33:  17.2205 L12:  −2.8640


REMARK
3
   L13:  0.6512 L23:  −4.7576


REMARK
3
  S TENSOR


REMARK
3
   S11:  0.1899 S12:  0.1379 S13:  0.0871


REMARK
3
   S21:  −0.0456 S22:  −0.3404 S23:  −0.2323


REMARK
3
   S31:  0.0821 S32:  0.4026 S33:  0.1505


REMARK
3


REMARK
3
 TLS GROUP:   19


REMARK
3
  NUMBER OF COMPONENTS GROUP:   1











REMARK
3
  COMPONENTS
C SSSEQI  TO
C SSSEQI


REMARK
3
  RESIDUE RANGE:
B  67
B  73









REMARK
3
  ORIGIN FOR THE GROUP (A):  36.7803  20.7098  24.6536


REMARK
3
  T TENSOR


REMARK
3
   T11:  −0.0830 T22:  −0.1040


REMARK
3
   T33:  −0.0822 T12:  −0.0232


REMARK
3
   T13:  −0.0086 T23:  0.0396


REMARK
3
  L TENSOR


REMARK
3
   L11:  10.4856 L22:  5.0424


REMARK
3
   L33:  46.4834 L12:  −2.9285


REMARK
3
   L13: −13.4444 L23:  11.9689


REMARK
3
  S TENSOR


REMARK
3
   S11:  −0.0882 S12:  −0.8736 S13:  0.2583


REMARK
3
   S21:  0.4818 S22:  −0.0638 S23:  −0.4751


REMARK
3
   S31:  0.0251 S32:  0.6484 S33:  0.1520


REMARK
3


REMARK
3
 TLS GROUP:   20


REMARK
3
  NUMBER OF COMPONENTS GROUP:   1











REMARK
3
  COMPONENTS
C SSSEQI  TO
C SSSEQI


REMARK
3
  RESIDUE RANGE:
B  74
B  99









REMARK
3
  ORIGIN FOR THE GROUP (A):  27.4628  24.2151  18.8215


REMARK
3
  T TENSOR


REMARK
3
   T11:  −0.1148 T22:  −0.0916


REMARK
3
   T33:  −0.1282 T12:  0.0020


REMARK
3
   T13:  −0.0046 T23:  0.0285


REMARK
3
  L TENSOR


REMARK
3
   L11:  1.7974 L22:  3.1127


REMARK
3
   L33:  1.5086 L12:  −0.3008


REMARK
3
   L13:  −0.4493 L23:  0.2052


REMARK
3
  S TENSOR


REMARK
3
   S11:  −0.1373 S12:  0.0494 S13:  −0.0451


REMARK
3
   S21:  0.1427 S22:  0.0985 S23:  0.1983


REMARK
3
   S31:  −0.0950 S32:  −0.1207 S33:  0.0388


REMARK
3


REMARK
3
 TLS GROUP:   21


REMARK
3
  NUMBER OF COMPONENTS GROUP:   1











REMARK
3
  COMPONENTS
C SSSEQI  TO
C SSSEQI


REMARK
3
  RESIDUE RANGE:
C  200
C  200









REMARK
3
  ORIGIN FOR THE GROUP (A):  20.1342  32.5388  14.6692


REMARK
3
  T TENSOR


REMARK
3
   T11:  −0.0622 T22:  −0.1177


REMARK
3
   T33:  −0.0311 T12:  0.0033


REMARK
3
   T13:  0.0213 T23:  0.0456


REMARK
3
  L TENSOR


REMARK
3
   L11:  30.0146 L22:  29.7565


REMARK
3
   L33:  48.6484 L12: −28.9960


REMARK
3
   L13: −27.1396 L23:  30.0094


REMARK
3
  S TENSOR


REMARK
3
   S11:  0.3764 S12:  0.6733 S13:  0.6460


REMARK
3
   S21:  −0.9054 S22:  0.2589 S23:  −0.8331


REMARK
3
   S31:  −0.4749 S32:  −0.2191 S33:  −0.6353


REMARK
3


REMARK
3


REMARK
3
BULK SOLVENT MODELLING.


REMARK
3
 METHOD USED : BABINET MODEL WITH MASK


REMARK
3
 PARAMETERS FOR MASK CALCULATION










REMARK
3
 VDW PROBE RADIUS
:  1.20


REMARK
3
 ION PROBE RADIUS
:  0.80


REMARK
3
 SHRINKAGE RADIUS
:  0.80


REMARK
3









REMARK
3
OTHER REFINEMENT REMARKS:


REMARK
3
HYDROGENS HAVE BEEN ADDED IN THE RIDING POSITIONS


REMARK
3








CRYST1
51.105  58.097  61.601  90.00  90.00  90.00  P 21 21 21








SCALE1
0.019568  0.000000  0.000000   0.00000


SCALE2
0.000000  0.017213  0.000000   0.00000


SCALE3
0.000000  0.000000  0.016234   0.00000


TER


















ATOM
1
N
PRO
A
1
12.390
14.243
29.698
1.00
29.45
N


ATOM
2
CA
PRO
A
1
13.114
13.692
28.555
1.00
29.42
C


ATOM
4
CB
PRO
A
1
12.296
14.166
27.350
1.00
29.72
C


ATOM
7
CG
PRO
A
1
10.950
14.441
27.865
1.00
29.62
C


ATOM
10
CD
PRO
A
1
11.086
14.813
29.314
1.00
29.70
C


ATOM
13
C
PRO
A
1
14.527
14.251
28.451
1.00
28.94
C


ATOM
14
O
PRO
A
1
14.747
15.422
28.746
1.00
28.90
O


ATOM
17
N
GLN
A
2
15.476
13.403
28.077
1.00
28.55
N


ATOM
18
CA
GLN
A
2
16.792
13.854
27.668
1.00
28.32
C


ATOM
20
CB
GLN
A
2
17.880
13.015
28.341
1.00
28.46
C


ATOM
23
CG
GLN
A
2
19.302
13.358
27.888
1.00
29.12
C


ATOM
26
CD
GLN
A
2
20.366
12.827
28.831
1.00
29.77
C


ATOM
27
OE1
GLN
A
2
21.128
11.920
28.484
1.00
32.12
O


ATOM
28
NE2
GLN
A
2
20.417
13.382
30.035
1.00
29.29
N


ATOM
31
C
GLN
A
2
16.875
13.721
26.149
1.00
27.79
C


ATOM
32
O
GLN
A
2
16.476
12.701
25.596
1.00
27.87
O


ATOM
34
N
ILE
A
3
17.352
14.770
25.482
1.00
26.67
N


ATOM
35
CA
ILE
A
3
17.476
14.773
24.031
1.00
26.88
C


ATOM
37
CB
ILE
A
3
16.583
15.881
23.393
1.00
26.43
C


ATOM
39
CG1
ILE
A
3
15.107
15.530
23.585
1.00
27.95
C


ATOM
42
CD1
ILE
A
3
14.136
16.616
23.175
1.00
27.70
C


ATOM
46
CG2
ILE
A
3
16.910
16.059
21.910
1.00
27.19
C


ATOM
50
C
ILE
A
3
18.951
14.991
23.699
1.00
26.27
C


ATOM
51
O
ILE
A
3
19.532
15.998
24.097
1.00
24.78
O


ATOM
53
N
THR
A
4
19.576
14.029
23.023
1.00
26.54
N


ATOM
54
CA
THR
A
4
20.974
14.208
22.608
1.00
26.87
C


ATOM
56
CB
THR
A
4
21.730
12.866
22.417
1.00
27.08
C


ATOM
58
OG1
THR
A
4
21.068
12.071
21.429
1.00
28.82
O


ATOM
60
CG2
THR
A
4
21.818
12.078
23.747
1.00
28.45
C


ATOM
64
C
THR
A
4
21.019
15.038
21.318
1.00
26.64
C


ATOM
65
O
THR
A
4
19.977
15.335
20.723
1.00
25.96
O


ATOM
67
N
LEU
A
5
22.230
15.404
20.899
1.00
26.46
N


ATOM
68
CA
LEU
A
5
22.431
16.345
19.798
1.00
27.08
C


ATOM
70
CB
LEU
A
5
23.126
17.606
20.320
1.00
26.37
C


ATOM
73
CG
LEU
A
5
22.360
18.297
21.455
1.00
26.38
C


ATOM
75
CD1
LEU
A
5
23.176
19.446
22.061
1.00
25.84
C


ATOM
79
CD2
LEU
A
5
20.996
18.791
20.978
1.00
27.07
C


ATOM
83
C
LEU
A
5
23.228
15.712
18.654
1.00
27.06
C


ATOM
84
O
LEU
A
5
23.814
16.398
17.821
1.00
26.72
O


ATOM
86
N
TRP
A
6
23.201
14.389
18.602
1.00
27.60
N


ATOM
87
CA
TRP
A
6
23.717
13.636
17.465
1.00
27.72
C


ATOM
89
CB
TRP
A
6
23.529
12.153
17.722
1.00
28.18
C


ATOM
92
CG
TRP
A
6
24.396
11.566
18.788
1.00
27.62
C


ATOM
93
CD1
TRP
A
6
23.974
10.910
19.904
1.00
27.94
C


ATOM
95
NE1
TRP
A
6
25.047
10.435
20.614
1.00
27.31
N


ATOM
97
CE2
TRP
A
6
26.200
10.795
19.969
1.00
26.91
C


ATOM
98
CD2
TRP
A
6
25.826
11.508
18.804
1.00
26.00
C


ATOM
99
CE3
TRP
A
6
26.828
11.991
17.959
1.00
26.28
C


ATOM
101
CZ3
TRP
A
6
28.158
11.735
18.289
1.00
27.25
C


ATOM
103
CH2
TRP
A
6
28.497
11.021
19.446
1.00
28.03
C


ATOM
105
CZ2
TRP
A
6
27.535
10.543
20.299
1.00
28.41
C


ATOM
107
C
TRP
A
6
22.974
13.979
16.178
1.00
27.82
C


ATOM
108
O
TRP
A
6
23.565
13.996
15.095
1.00
27.51
O


ATOM
110
N
LYS
A
7
21.670
14.211
16.318
1.00
26.96
N


ATOM
111
CA
LYS
A
7
20.788
14.673
15.235
1.00
26.77
C


ATOM
113
CB
LYS
A
7
19.710
13.621
14.955
1.00
27.12
C


ATOM
120
C
LYS
A
7
20.093
15.983
15.643
1.00
26.58
C


ATOM
121
O
LYS
A
7
20.148
16.379
16.806
1.00
26.46
O


ATOM
123
N
ARG
A
8
19.459
16.655
14.685
1.00
25.92
N


ATOM
124
CA
ARG
A
8
18.712
17.882
14.952
1.00
26.58
C


ATOM
126
CB
ARG
A
8
18.028
18.396
13.670
1.00
25.99
C


ATOM
129
CG
ARG
A
8
18.997
18.941
12.626
1.00
28.93
C


ATOM
132
CD
ARG
A
8
18.273
19.481
11.387
1.00
28.36
C


ATOM
135
NE
ARG
A
8
19.205
19.985
10.375
1.00
29.94
N


ATOM
137
CZ
ARG
A
8
18.777
19.991
9.055
0.00
20.00
C


ATOM
138
NH1
ARG
A
8
17.521
20.374
8.849
0.00
20.00
N


ATOM
141
NH2
ARG
A
8
19.638
20.013
8.044
0.00
20.00
N


ATOM
144
C
ARG
A
8
17.659
17.563
16.008
1.00
26.04
C


ATOM
145
O
ARG
A
8
16.962
16.557
15.895
1.00
25.49
O


ATOM
147
N
PRO
A
9
17.577
18.375
17.071
1.00
25.99
N


ATOM
148
CA
PRO
A
9
16.579
18.082
18.099
1.00
26.96
C


ATOM
150
CB
PRO
A
9
17.070
18.909
19.282
1.00
26.70
C


ATOM
153
CG
PRO
A
9
17.727
20.095
18.629
1.00
27.09
C


ATOM
156
CD
PRO
A
9
18.405
19.543
17.430
1.00
26.77
C


ATOM
159
C
PRO
A
9
15.166
18.507
17.667
1.00
26.77
C


ATOM
160
O
PRO
A
9
14.669
19.539
18.097
1.00
24.91
O


ATOM
161
N
LEU
A
10
14.537
17.677
16.843
1.00
26.66
N


ATOM
162
CA
LEU
A
10
13.191
17.944
16.353
1.00
27.51
C


ATOM
164
CB
LEU
A
10
13.017
17.441
14.922
1.00
27.86
C


ATOM
167
CG
LEU
A
10
13.879
18.136
13.862
1.00
28.11
C


ATOM
169
CD1
LEU
A
10
13.927
17.303
12.583
1.00
30.30
C


ATOM
173
CD2
LEU
A
10
13.342
19.535
13.585
1.00
28.94
C


ATOM
177
C
LEU
A
10
12.176
17.279
17.265
1.00
27.30
C


ATOM
178
O
LEU
A
10
12.371
16.156
17.719
1.00
26.55
O


ATOM
180
N
VAL
A
11
11.094
17.993
17.543
1.00
27.04
N


ATOM
181
CA
VAL
A
11
10.037
17.464
18.385
1.00
27.13
C


ATOM
183
CB
VAL
A
11
10.084
18.053
19.802
1.00
26.92
C


ATOM
185
CG1
VAL
A
11
11.426
17.752
20.469
1.00
27.67
C


ATOM
189
CG2
VAL
A
11
9.810
19.548
19.773
1.00
27.81
C


ATOM
193
C
VAL
A
11
8.703
17.818
17.769
1.00
27.14
C


ATOM
194
O
VAL
A
11
8.623
18.644
16.858
1.00
27.19
O


ATOM
196
N
THR
A
12
7.652
17.222
18.314
1.00
26.58
N


ATOM
197
CA
THR
A
12
6.302
17.545
17.901
1.00
26.62
C


ATOM
199
CB
THR
A
12
5.359
16.358
18.133
1.00
26.22
C


ATOM
201
OG1
THR
A
12
5.689
15.328
17.201
1.00
26.52
O


ATOM
203
CG2
THR
A
12
3.923
16.771
17.941
1.00
26.97
C


ATOM
207
C
THR
A
12
5.779
18.746
18.666
1.00
26.09
C


ATOM
208
O
THR
A
12
5.902
18.814
19.889
1.00
26.70
O


ATOM
210
N
ILE
A
13
5.204
19.690
17.929
1.00
25.72
N


ATOM
211
CA
ILE
A
13
4.463
20.778
18.539
1.00
25.07
C


ATOM
213
CB
ILE
A
13
5.136
22.142
18.333
1.00
24.92
C


ATOM
215
CG1
ILE
A
13
5.118
22.555
16.858
1.00
25.51
C


ATOM
218
CD1
ILE
A
13
5.211
24.041
16.652
1.00
25.29
C


ATOM
222
CG2
ILE
A
13
6.575
22.131
18.855
1.00
25.74
C


ATOM
226
C
ILE
A
13
3.038
20.796
17.994
1.00
25.18
C


ATOM
227
O
ILE
A
13
2.783
20.386
16.859
1.00
23.22
O


ATOM
229
N
ARG
A
14
2.114
21.237
18.838
1.00
25.21
N


ATOM
230
CA
ARG
A
14
0.744
21.478
18.418
1.00
26.78
C


ATOM
232
CB
ARG
A
14
−0.210
20.500
19.113
1.00
27.07
C


ATOM
235
CG
ARG
A
14
0.120
19.050
18.800
1.00
28.19
C


ATOM
238
CD
ARG
A
14
−0.864
18.064
19.390
1.00
30.36
C


ATOM
241
NE
ARG
A
14
−0.351
16.706
19.238
1.00
33.10
N


ATOM
243
CZ
ARG
A
14
0.541
16.140
20.047
1.00
35.30
C


ATOM
244
NH1
ARG
A
14
1.007
16.785
21.112
1.00
38.14
N


ATOM
247
NH2
ARG
A
14
0.958
14.905
19.803
1.00
35.83
N


ATOM
250
C
ARG
A
14
0.343
22.918
18.727
1.00
26.31
C


ATOM
251
O
ARG
A
14
0.552
23.411
19.839
1.00
25.34
O


ATOM
253
N
ILE
A
15
−0.227
23.587
17.731
1.00
26.62
N


ATOM
254
CA
ILE
A
15
−0.751
24.922
17.928
1.00
27.66
C


ATOM
256
CB
ILE
A
15
0.285
26.001
17.529
1.00
28.36
C


ATOM
258
CG1
ILE
A
15
−0.389
27.345
17.245
1.00
28.75
C


ATOM
261
CD1
ILE
A
15
0.628
28.467
17.191
1.00
29.58
C


ATOM
265
CG2
ILE
A
15
1.141
25.547
16.354
1.00
29.70
C


ATOM
269
C
ILE
A
15
−2.080
25.055
17.204
1.00
27.56
C


ATOM
270
O
ILE
A
15
−2.191
24.778
16.007
1.00
27.20
O


ATOM
272
N
GLY
A
16
−3.109
25.369
17.986
1.00
27.45
N


ATOM
273
CA
GLY
A
16
−4.474
25.456
17.501
1.00
27.46
C


ATOM
276
C
GLY
A
16
−4.905
24.293
16.631
1.00
27.12
C


ATOM
277
O
GLY
A
16
−5.592
24.497
15.628
1.00
28.00
O


ATOM
279
N
GLY
A
17
−4.511
23.077
16.993
1.00
26.26
N


ATOM
280
CA
GLY
A
17
−4.886
21.908
16.197
1.00
26.89
C


ATOM
283
C
GLY
A
17
−4.050
21.636
14.947
1.00
26.70
C


ATOM
284
O
GLY
A
17
−4.320
20.688
14.213
1.00
26.88
O


ATOM
286
N
GLN
A
18
−3.054
22.471
14.681
1.00
26.30
N


ATOM
287
CA
GLN
A
18
−2.072
22.164
13.654
1.00
26.29
C


ATOM
289
CB
GLN
A
18
−1.552
23.444
12.997
1.00
26.40
C


ATOM
296
C
GLN
A
18
−0.942
21.422
14.351
1.00
26.28
C


ATOM
297
O
GLN
A
18
−0.527
21.797
15.437
1.00
25.86
O


ATOM
299
N
LEU
A
19
−0.491
20.330
13.749
1.00
26.69
N


ATOM
300
CA
LEU
A
19
0.575
19.527
14.324
1.00
26.69
C


ATOM
302
CB
LEU
A
19
0.151
18.059
14.380
1.00
26.79
C


ATOM
305
CG
LEU
A
19
1.050
17.090
15.155
1.00
27.05
C


ATOM
307
CD1
LEU
A
19
1.242
16.942
15.971
0.00
20.00
C


ATOM
311
CD2
LEU
A
19
0.369
15.556
14.087
0.00
20.00
C


ATOM
315
C
LEU
A
19
1.782
19.732
13.425
1.00
26.98
C


ATOM
316
O
LEU
A
19
1.690
19.555
12.213
1.00
26.85
O


ATOM
318
N
LYS
A
20
2.882
20.186
14.017
1.00
27.55
N


ATOM
319
CA
LYS
A
20
4.089
20.504
13.281
1.00
28.60
C


ATOM
321
CB
LYS
A
20
4.215
22.014
13.073
1.00
29.24
C


ATOM
324
CG
LYS
A
20
3.208
22.590
12.081
1.00
30.69
C


ATOM
327
CD
LYS
A
20
2.786
23.997
12.475
1.00
32.00
C


ATOM
330
CE
LYS
A
20
1.863
24.604
11.442
1.00
31.64
C


ATOM
333
NZ
LYS
A
20
2.635
25.234
10.332
1.00
35.13
N


ATOM
337
C
LYS
A
20
5.332
19.980
13.992
1.00
28.58
C


ATOM
338
O
LYS
A
20
5.295
19.576
15.156
1.00
29.08
O


ATOM
340
N
GLU
A
21
6.423
19.970
13.241
1.00
27.83
N


ATOM
341
CA
GLU
A
21
7.712
19.529
13.720
1.00
27.49
C


ATOM
343
CB
GLU
A
21
8.342
18.617
12.659
1.00
27.47
C


ATOM
346
CG
GLU
A
21
9.855
18.563
12.621
1.00
28.86
C


ATOM
349
CD
GLU
A
21
10.350
17.486
11.681
1.00
29.20
C


ATOM
350
OE1
GLU
A
21
11.139
17.803
10.764
1.00
33.12
O


ATOM
351
OE2
GLU
A
21
9.914
16.324
11.833
1.00
32.07
O


ATOM
352
C
GLU
A
21
8.525
20.803
13.956
1.00
27.04
C


ATOM
353
O
GLU
A
21
8.511
21.710
13.126
1.00
26.24
O


ATOM
355
N
ALA
A
22
9.192
20.883
15.100
1.00
26.07
N


ATOM
356
CA
ALA
A
22
10.002
22.052
15.415
1.00
26.91
C


ATOM
358
CB
ALA
A
22
9.222
22.992
16.349
1.00
26.51
C


ATOM
362
C
ALA
A
22
11.359
21.676
16.026
1.00
26.80
C


ATOM
363
O
ALA
A
22
11.499
20.646
16.678
1.00
27.59
O


ATOM
365
N
LEU
A
23
12.345
22.525
15.760
1.00
26.80
N


ATOM
366
CA
LEU
A
23
13.702
22.437
16.299
1.00
26.85
C


ATOM
368
CB
LEU
A
23
14.642
23.172
15.331
1.00
26.28
C


ATOM
371
CG
LEU
A
23
16.150
22.997
15.457
1.00
27.03
C


ATOM
373
CD1
LEU
A
23
16.518
21.531
15.271
1.00
26.39
C


ATOM
377
CD2
LEU
A
23
16.855
23.850
14.400
1.00
27.38
C


ATOM
381
C
LEU
A
23
13.800
23.104
17.667
1.00
25.73
C


ATOM
382
O
LEU
A
23
13.483
24.277
17.800
1.00
27.74
O


ATOM
384
N
LEU
A
24
14.286
22.391
18.673
1.00
26.44
N


ATOM
385
CA
LEU
A
24
14.579
23.030
19.960
1.00
26.95
C


ATOM
387
CB
LEU
A
24
14.616
22.003
21.099
1.00
26.71
C


ATOM
390
CG
LEU
A
24
13.351
21.160
21.254
1.00
27.86
C


ATOM
392
CD1
LEU
A
24
13.604
20.058
22.231
1.00
27.07
C


ATOM
396
CD2
LEU
A
24
12.158
22.000
21.694
1.00
28.97
C


ATOM
400
C
LEU
A
24
15.917
23.764
19.825
1.00
26.55
C


ATOM
401
O
LEU
A
24
16.943
23.139
19.583
1.00
28.65
O


ATOM
403
N
ASP
A
25
15.887
25.085
19.985
1.00
26.47
N


ATOM
404
CA
ASP
A
25
16.932
25.975
19.467
1.00
26.16
C


ATOM
406
CB
ASP
A
25
16.420
26.698
18.203
1.00
25.46
C


ATOM
409
CG
ASP
A
25
17.498
27.492
17.480
1.00
26.98
C


ATOM
410
OD1
ASP
A
25
17.248
27.875
16.320
1.00
27.89
O


ATOM
411
OD2
ASP
A
25
18.585
27.741
18.049
1.00
28.65
O


ATOM
412
C
ASP
A
25
17.345
26.968
20.553
1.00
26.06
C


ATOM
413
O
ASP
A
25
16.816
28.077
20.649
1.00
26.16
O


ATOM
415
N
THR
A
26
18.340
26.564
21.338
1.00
26.23
N


ATOM
416
CA
THR
A
26
18.821
27.329
22.486
1.00
25.48
C


ATOM
418
CB
THR
A
26
19.813
26.482
23.340
1.00
25.53
C


ATOM
420
OG1
THR
A
26
20.929
26.070
22.539
1.00
25.69
O


ATOM
422
CG2
THR
A
26
19.139
25.250
23.896
1.00
23.68
C


ATOM
426
C
THR
A
26
19.513
28.626
22.078
1.00
26.08
C


ATOM
427
O
THR
A
26
19.587
29.577
22.877
1.00
25.09
N


ATOM
429
N
GLY
A
27
19.986
28.668
20.832
1.00
25.31
N


ATOM
430
CA
GLY
A
27
20.533
29.882
20.231
1.00
25.80
C


ATOM
433
C
GLY
A
27
19.515
30.980
19.946
1.00
25.71
C


ATOM
434
O
GLY
A
27
19.849
32.162
20.006
1.00
26.96
O


ATOM
436
N
ALA
A
28
18.274
30.602
19.651
1.00
25.52
N


ATOM
437
CA
ALA
A
28
17.256
31.557
19.259
1.00
25.59
C


ATOM
439
CB
ALA
A
28
16.163
30.855
18.466
1.00
26.07
C


ATOM
443
C
ALA
A
28
16.640
32.209
20.487
1.00
26.21
C


ATOM
444
O
ALA
A
28
16.191
31.501
21.396
1.00
24.21
O


ATOM
446
N
ASP
A
29
16.591
33.545
20.479
1.00
25.80
N


ATOM
447
CA
ASP
A
29
15.962
34.319
21.541
1.00
26.65
C


ATOM
449
CB
ASP
A
29
16.148
35.820
21.304
1.00
26.71
C


ATOM
452
CG
ASP
A
29
17.591
36.262
21.407
1.00
26.70
C


ATOM
453
OD1
ASP
A
29
18.378
35.644
22.161
1.00
21.74
O


ATOM
454
OD2
ASP
A
29
17.921
37.264
20.741
1.00
22.18
O


ATOM
455
C
ASP
A
29
14.466
34.030
21.572
1.00
27.08
C


ATOM
456
O
ASP
A
29
13.864
33.867
22.636
1.00
26.82
O


ATOM
458
N
ASP
A
30
13.909
33.965
20.368
1.00
27.83
N


ATOM
459
CA
ASP
A
30
12.481
33.938
20.107
1.00
27.64
C


ATOM
461
CB
ASP
A
30
12.093
35.154
19.273
1.00
28.08
C


ATOM
464
CG
ASP
A
30
12.518
36.458
19.910
1.00
30.71
C


ATOM
465
OD1
ASP
A
30
12.227
36.639
21.118
1.00
32.56
O


ATOM
466
OD2
ASP
A
30
13.154
37.284
19.208
1.00
31.25
O


ATOM
467
C
ASP
A
30
12.146
32.690
19.305
1.00
26.99
C


ATOM
468
O
ASP
A
30
13.018
32.033
18.735
1.00
27.43
O


ATOM
470
N
THR
A
31
10.858
32.407
19.240
1.00
26.97
N


ATOM
471
CA
THR
A
31
10.325
31.258
18.535
1.00
26.14
C


ATOM
473
CB
THR
A
31
9.176
30.644
19.373
1.00
26.76
C


ATOM
475
OG1
THR
A
31
9.736
30.017
20.533
1.00
26.19
O


ATOM
477
CG2
THR
A
31
8.342
29.643
18.586
1.00
25.32
C


ATOM
481
C
THR
A
31
9.835
31.764
17.185
1.00
25.78
C


ATOM
482
O
THR
A
31
9.044
32.714
17.106
1.00
25.34
O


ATOM
484
N
VAL
A
32
10.296
31.113
16.127
1.00
25.58
N


ATOM
485
CA
VAL
A
32
9.992
31.526
14.768
1.00
25.66
C


ATOM
487
CB
VAL
A
32
11.266
31.939
13.994
1.00
25.97
C


ATOM
489
CG1
VAL
A
32
10.900
32.507
12.632
1.00
25.78
C


ATOM
493
CG2
VAL
A
32
12.065
32.934
14.800
1.00
26.31
C


ATOM
497
C
VAL
A
32
9.350
30.364
14.047
1.00
26.11
C


ATOM
498
O
VAL
A
32
9.983
29.316
13.837
1.00
24.86
O


ATOM
500
N
LEU
A
33
8.092
30.557
13.669
1.00
26.01
N


ATOM
501
CA
LEU
A
33
7.328
29.510
13.019
1.00
26.89
C


ATOM
503
CB
LEU
A
33
5.956
29.369
13.670
1.00
26.92
C


ATOM
506
CG
LEU
A
33
5.880
28.958
15.141
1.00
27.94
C


ATOM
508
CD1
LEU
A
33
4.443
28.563
15.469
1.00
28.15
C


ATOM
512
CD2
LEU
A
33
6.827
27.829
15.452
1.00
28.57
C


ATOM
516
C
LEU
A
33
7.123
29.800
11.543
1.00
26.87
C


ATOM
517
O
LEU
A
33
6.947
30.952
11.148
1.00
27.54
O


ATOM
519
N
GLU
A
34
7.108
28.731
10.752
1.00
26.80
N


ATOM
520
CA
GLU
A
34
6.736
28.777
9.349
1.00
27.07
C


ATOM
522
CB
GLU
A
34
6.644
27.358
8.767
1.00
27.37
C


ATOM
525
CG
GLU
A
34
5.469
26.530
9.317
1.00
27.40
C


ATOM
528
CD
GLU
A
34
5.657
25.029
9.160
1.00
27.28
C


ATOM
529
OE1
GLU
A
34
6.382
24.597
8.239
1.00
28.26
O


ATOM
530
OE2
GLU
A
34
5.083
24.269
9.968
1.00
27.79
O


ATOM
531
C
GLU
A
34
5.385
29.448
9.180
1.00
27.88
C


ATOM
532
O
GLU
A
34
4.583
29.549
10.127
1.00
28.02
O


ATOM
534
N
GLU
A
35
5.134
29.885
7.957
1.00
27.10
N


ATOM
535
CA
GLU
A
35
3.934
30.634
7.662
1.00
27.81
C


ATOM
537
CB
GLU
A
35
3.870
30.952
6.165
1.00
28.17
C


ATOM
540
CG
GLU
A
35
4.547
32.265
5.836
1.00
29.45
C


ATOM
543
CD
GLU
A
35
3.857
33.424
6.516
1.00
31.61
C


ATOM
544
OE1
GLU
A
35
2.630
33.307
6.767
1.00
31.53
O


ATOM
545
OE2
GLU
A
35
4.537
34.439
6.791
1.00
33.36
O


ATOM
546
C
GLU
A
35
2.667
29.922
8.124
1.00
27.51
C


ATOM
547
O
GLU
A
35
2.450
28.753
7.815
1.00
27.82
O


ATOM
549
N
MET
A
36
1.853
30.646
8.890
1.00
27.31
N


ATOM
550
CA
MET
A
36
0.579
30.144
9.389
1.00
27.10
C


ATOM
552
CB
MET
A
36
0.805
29.159
10.535
1.00
26.71
C


ATOM
555
CG
MET
A
36
1.333
29.781
11.811
1.00
27.10
C


ATOM
558
SD
MET
A
36
1.464
28.603
13.174
1.00
27.31
S


ATOM
559
CE
MET
A
36
2.744
27.526
12.542
1.00
29.56
C


ATOM
563
C
MET
A
36
−0.316
31.295
9.844
1.00
26.74
C


ATOM
564
O
MET
A
36
0.164
32.327
10.319
1.00
26.70
O


ATOM
566
N
ASN
A
37
−1.619
31.127
9.654
1.00
26.78
N


ATOM
567
CA
ASN
A
37
−2.596
32.049
10.206
1.00
26.74
C


ATOM
569
CB
ASN
A
37
−3.976
31.830
9.574
1.00
27.09
C


ATOM
572
CG
ASN
A
37
−4.073
32.392
8.172
1.00
27.67
C


ATOM
573
OD1
ASN
A
37
−3.062
32.575
7.496
1.00
30.45
O


ATOM
574
ND2
ASN
A
37
−5.294
32.680
7.730
1.00
29.73
N


ATOM
577
C
ASN
A
37
−2.677
31.800
11.698
1.00
26.75
C


ATOM
578
O
ASN
A
37
−2.858
30.665
12.127
1.00
26.25
O


ATOM
580
N
LEU
A
38
−2.487
32.851
12.483
1.00
26.80
N


ATOM
581
CA
LEU
A
38
−2.826
32.814
13.894
1.00
26.80
C


ATOM
583
CB
LEU
A
38
−1.588
33.034
14.771
1.00
26.96
C


ATOM
586
CG
LEU
A
38
−0.514
31.940
14.724
1.00
26.64
C


ATOM
588
CD1
LEU
A
38
0.718
32.368
15.491
1.00
29.14
C


ATOM
592
CD2
LEU
A
38
−1.043
30.628
15.252
1.00
26.25
C


ATOM
596
C
LEU
A
38
−3.847
33.909
14.145
1.00
26.69
C


ATOM
597
O
LEU
A
38
−3.877
34.903
13.429
1.00
26.86
O


ATOM
599
N
PRO
A
39
−4.681
33.732
15.175
1.00
26.87
N


ATOM
600
CA
PRO
A
39
−5.668
34.732
15.528
1.00
26.83
C


ATOM
602
CB
PRO
A
39
−6.606
33.999
16.490
1.00
27.16
C


ATOM
605
CG
PRO
A
39
−5.886
32.773
16.933
1.00
27.43
C


ATOM
608
CD
PRO
A
39
−4.663
32.584
16.097
1.00
27.18
C


ATOM
611
C
PRO
A
39
−5.011
35.913
16.211
1.00
26.93
C


ATOM
612
O
PRO
A
39
−3.904
35.787
16.724
1.00
27.59
O


ATOM
613
N
GLY
A
40
−5.665
37.066
16.171
1.00
27.40
N


ATOM
614
CA
GLY
A
40
−5.229
38.215
16.953
1.00
27.49
C


ATOM
617
C
GLY
A
40
−4.377
39.217
16.198
1.00
27.67
C


ATOM
618
O
GLY
A
40
−3.960
38.995
15.059
1.00
27.45
O


ATOM
620
N
ARG
A
41
−4.132
40.341
16.857
1.00
28.06
N


ATOM
621
CA
ARG
A
41
−3.283
41.386
16.317
1.00
27.98
C


ATOM
623
CB
ARG
A
41
−3.389
42.634
17.193
1.00
27.94
C


ATOM
632
C
ARG
A
41
−1.831
40.905
16.246
1.00
28.31
C


ATOM
633
O
ARG
A
41
−1.353
40.193
17.134
1.00
28.33
O


ATOM
635
N
TRP
A
42
−1.156
41.269
15.158
1.00
28.32
N


ATOM
636
CA
TRP
A
42
0.287
41.107
15.041
1.00
28.22
C


ATOM
638
CB
TRP
A
42
0.629
40.027
14.013
1.00
28.77
C


ATOM
641
CG
TRP
A
42
0.023
40.261
12.660
1.00
29.20
C


ATOM
642
CD1
TRP
A
42
−1.222
39.877
12.241
1.00
30.46
C


ATOM
644
NE1
TRP
A
42
−1.427
40.269
10.941
1.00
28.61
N


ATOM
646
CE2
TRP
A
42
−0.321
40.942
10.502
1.00
30.21
C


ATOM
647
CD2
TRP
A
42
0.619
40.947
11.554
1.00
29.71
C


ATOM
648
CE3
TRP
A
42
1.841
41.592
11.358
1.00
30.09
C


ATOM
650
CZ3
TRP
A
42
2.094
42.170
10.134
1.00
29.56
C


ATOM
652
CH2
TRP
A
42
1.151
42.128
9.102
1.00
29.71
C


ATOM
654
CZ2
TRP
A
42
−0.057
41.520
9.265
1.00
29.95
C


ATOM
656
C
TRP
A
42
0.941
42.427
14.638
1.00
27.95
C


ATOM
657
O
TRP
A
42
0.305
43.290
14.033
1.00
26.82
O


ATOM
659
N
LYS
A
43
2.214
42.572
14.987
1.00
28.19
N


ATOM
660
CA
LYS
A
43
3.026
43.680
14.507
1.00
28.36
C


ATOM
662
CB
LYS
A
43
3.412
44.608
15.652
1.00
28.44
C


ATOM
665
CG
LYS
A
43
4.377
44.030
16.668
1.00
28.16
C


ATOM
668
CD
LYS
A
43
4.237
44.796
17.985
1.00
28.74
C


ATOM
671
CE
LYS
A
43
5.477
44.690
18.864
1.00
29.03
C


ATOM
674
NZ
LYS
A
43
5.167
44.981
20.304
1.00
29.69
N


ATOM
678
C
LYS
A
43
4.284
43.151
13.835
1.00
28.46
C


ATOM
679
O
LYS
A
43
4.787
42.083
14.198
1.00
28.47
O


ATOM
681
N
PRO
A
44
4.778
43.886
12.832
1.00
27.95
N


ATOM
682
CA
PRO
A
44
6.020
43.518
12.169
1.00
27.55
C


ATOM
684
CB
PRO
A
44
6.150
44.540
11.031
1.00
28.14
C


ATOM
687
CG
PRO
A
44
4.902
45.292
10.973
1.00
28.47
C


ATOM
690
CD
PRO
A
44
4.154
45.088
12.251
1.00
28.44
C


ATOM
693
C
PRO
A
44
7.235
43.590
13.096
1.00
26.79
C


ATOM
694
O
PRO
A
44
7.337
44.481
13.943
1.00
25.27
O


ATOM
695
N
LYS
A
45
8.162
42.660
12.906
1.00
26.40
N


ATOM
696
CA
LYS
A
45
9.426
42.678
13.623
1.00
26.29
C


ATOM
698
CB
LYS
A
45
9.352
41.721
14.817
1.00
26.55
C


ATOM
701
CG
LYS
A
45
10.519
41.807
15.783
1.00
26.15
C


ATOM
704
CD
LYS
A
45
10.433
40.692
16.826
1.00
26.65
C


ATOM
707
CE
LYS
A
45
11.362
40.959
18.003
1.00
26.91
C


ATOM
710
NZ
LYS
A
45
10.826
42.037
18.880
1.00
28.28
N


ATOM
714
C
LYS
A
45
10.514
42.214
12.670
1.00
26.16
C


ATOM
715
O
LYS
A
45
10.221
41.534
11.689
1.00
25.98
O


ATOM
717
N
MET
A
46
11.764
42.543
12.986
1.00
25.25
N


ATOM
718
CA
MET
A
46
12.904
42.040
12.235
1.00
25.87
C


ATOM
720
CB
MET
A
46
13.737
43.199
11.701
1.00
25.91
C


ATOM
723
CG
MET
A
46
12.995
44.059
10.714
1.00
26.57
C


ATOM
726
SD
MET
A
46
12.930
43.239
9.128
1.00
28.21
S


ATOM
727
CE
MET
A
46
14.565
43.600
8.477
1.00
29.83
C


ATOM
731
C
MET
A
46
13.756
41.197
13.153
1.00
26.15
C


ATOM
732
O
MET
A
46
14.093
41.622
14.257
1.00
27.17
O


ATOM
734
N
AILE
A
47
14.101
39.998
12.699
0.50
26.39
N


ATOM
735
N
BILE
A
47
14.090
39.992
12.703
0.50
26.41
N


ATOM
736
CA
AILE
A
47
14.948
39.103
13.473
0.50
26.37
C


ATOM
737
CA
BILE
A
47
14.939
39.087
13.469
0.50
26.41
C


ATOM
740
CB
AILE
A
47
14.187
37.841
13.934
0.50
26.78
C


ATOM
741
CB
BILE
A
47
14.192
37.799
13.886
0.50
26.79
C


ATOM
744
CG1
AILE
A
47
15.015
37.063
14.955
0.50
26.35
C


ATOM
745
CG1
BILE
A
47
13.602
37.082
12.668
0.50
27.09
C


ATOM
750
CD1
AILE
A
47
14.203
36.074
15.729
0.50
27.05
C


ATOM
751
CD1
BILE
A
47
13.081
35.705
12.975
0.50
27.28
C


ATOM
758
CG2
AILE
A
47
13.814
36.948
12.754
0.50
26.99
C


ATOM
759
CG2
BILE
A
47
13.078
38.129
14.876
0.50
26.33
C


ATOM
766
C
AILE
A
47
16.171
38.729
12.649
0.50
26.39
C


ATOM
767
C
BILE
A
47
16.173
38.740
12.646
0.50
26.39
C


ATOM
768
O
AILE
A
47
16.067
38.470
11.445
0.50
25.58
O


ATOM
769
O
BILE
A
47
16.078
38.511
11.435
0.50
25.57
O


ATOM
772
N
GLY
A
48
17.326
38.739
13.308
1.00
26.11
N


ATOM
773
CA
GLY
A
48
18.606
38.472
12.654
1.00
26.89
C


ATOM
776
C
GLY
A
48
19.006
37.010
12.714
1.00
26.47
C


ATOM
777
O
GLY
A
48
18.662
36.293
13.662
1.00
25.76
O


ATOM
779
N
GLY
A
49
19.693
36.576
11.661
1.00
26.24
N


ATOM
780
CA
GLY
A
49
20.307
35.251
11.602
1.00
26.46
C


ATOM
783
C
GLY
A
49
21.663
35.361
10.946
1.00
25.02
C


ATOM
784
O
GLY
A
49
22.097
36.449
10.603
1.00
24.78
O


ATOM
786
N
ILE
A
50
22.267
34.218
10.655
1.00
24.88
N


ATOM
787
CA
ILE
A
50
23.562
34.180
10.001
1.00
24.37
C


ATOM
789
CB
ILE
A
50
24.070
32.731
9.915
1.00
24.56
C


ATOM
791
CG1
ILE
A
50
24.910
32.429
11.160
1.00
23.79
C


ATOM
794
CD1
ILE
A
50
25.615
31.116
11.107
1.00
23.74
C


ATOM
798
CG2
ILE
A
50
24.888
32.496
8.673
1.00
25.42
C


ATOM
802
C
ILE
A
50
23.628
34.913
8.652
1.00
24.57
C


ATOM
803
O
ILE
A
50
24.650
35.517
8.330
1.00
25.03
O


ATOM
805
N
GLY
A
51
22.554
34.901
7.877
1.00
23.65
N


ATOM
806
CA
GLY
A
51
22.565
35.605
6.581
1.00
24.05
C


ATOM
809
C
GLY
A
51
22.135
37.070
6.554
1.00
24.17
C


ATOM
810
O
GLY
A
51
22.203
37.738
5.515
1.00
23.90
O


ATOM
812
N
GLY
A
52
21.657
37.563
7.686
1.00
23.69
N


ATOM
813
CA
GLY
A
52
20.976
38.843
7.748
1.00
24.82
C


ATOM
816
C
GLY
A
52
19.623
38.697
8.418
1.00
25.17
C


ATOM
817
O
GLY
A
52
19.398
37.767
9.196
1.00
25.11
O


ATOM
819
N
PHE
A
53
18.705
39.605
8.102
1.00
24.79
N


ATOM
820
CA
PHE
A
53
17.455
39.690
8.836
1.00
24.70
C


ATOM
822
CB
PHE
A
53
17.204
41.127
9.282
1.00
24.08
C


ATOM
825
CG
PHE
A
53
17.981
41.527
10.503
1.00
20.96
C


ATOM
826
CD1
PHE
A
53
19.313
41.886
10.400
1.00
22.68
C


ATOM
828
CE1
PHE
A
53
20.022
42.277
11.510
1.00
20.93
C


ATOM
830
CZ
PHE
A
53
19.412
42.314
12.752
1.00
21.92
C


ATOM
832
CE2
PHE
A
53
18.077
41.989
12.873
1.00
22.15
C


ATOM
834
CD2
PHE
A
53
17.361
41.604
11.739
1.00
20.68
C


ATOM
836
C
PHE
A
53
16.295
39.212
7.982
1.00
26.28
C


ATOM
837
O
PHE
A
53
16.335
39.331
6.762
1.00
27.74
O


ATOM
839
N
ILE
A
54
15.279
38.647
8.620
1.00
26.66
N


ATOM
840
CA
ILE
A
54
13.992
38.482
7.965
1.00
27.93
C


ATOM
842
CB
ILE
A
54
13.567
37.016
7.790
1.00
27.50
C


ATOM
844
CG1
ILE
A
54
13.474
36.278
9.130
1.00
28.01
C


ATOM
847
CD1
ILE
A
54
12.614
35.033
9.032
1.00
28.46
C


ATOM
851
CG2
ILE
A
54
14.489
36.318
6.826
1.00
29.10
C


ATOM
855
C
ILE
A
54
12.908
39.207
8.738
1.00
27.40
C


ATOM
856
O
ILE
A
54
12.996
39.359
9.956
1.00
28.17
O


ATOM
858
N
LYS
A
55
11.881
39.624
8.013
1.00
27.09
N


ATOM
859
CA
LYS
A
55
10.728
40.255
8.618
1.00
26.59
C


ATOM
861
CB
LYS
A
55
10.076
41.238
7.651
1.00
26.83
C


ATOM
864
CG
LYS
A
55
9.003
42.106
8.302
1.00
26.28
C


ATOM
867
CD
LYS
A
55
8.412
43.120
7.320
1.00
28.27
C


ATOM
870
CE
LYS
A
55
7.107
43.477
7.118
0.00
20.00
C


ATOM
873
NZ
LYS
A
55
6.708
44.412
6.017
0.00
20.00
N


ATOM
877
C
LYS
A
55
9.741
39.169
9.015
1.00
26.13
C


ATOM
878
O
LYS
A
55
9.486
38.240
8.254
1.00
25.62
O


ATOM
880
N
VAL
A
56
9.183
39.309
10.206
1.00
25.77
N


ATOM
881
CA
VAL
A
56
8.238
38.343
10.735
1.00
26.74
C


ATOM
883
CB
VAL
A
56
8.875
37.481
11.849
1.00
26.56
C


ATOM
885
CG1
VAL
A
56
10.064
36.727
11.307
1.00
27.61
C


ATOM
889
CG2
VAL
A
56
9.295
38.334
13.028
1.00
27.76
C


ATOM
893
C
VAL
A
56
7.036
39.082
11.288
1.00
27.17
C


ATOM
894
O
VAL
A
56
7.050
40.310
11.379
1.00
26.20
O


ATOM
896
N
ARG
A
57
5.992
38.327
11.621
1.00
27.13
N


ATOM
897
CA
ARG
A
57
4.823
38.864
12.305
1.00
27.81
C


ATOM
899
CB
ARG
A
57
3.536
38.333
11.672
1.00
27.24
C


ATOM
902
CG
ARG
A
57
3.400
38.566
10.175
1.00
29.02
C


ATOM
905
CD
ARG
A
57
2.021
38.108
9.668
1.00
31.21
C


ATOM
908
NE
ARG
A
57
2.082
36.821
8.972
1.00
32.83
N


ATOM
910
CZ
ARG
A
57
1.392
35.729
9.294
1.00
36.19
C


ATOM
911
NH1
ARG
A
57
0.533
35.723
10.302
1.00
38.70
N


ATOM
914
NH2
ARG
A
57
1.543
34.628
8.576
1.00
37.71
N


ATOM
917
C
ARG
A
57
4.886
38.393
13.749
1.00
27.15
C


ATOM
918
O
ARG
A
57
4.979
37.195
14.005
1.00
26.23
O


ATOM
920
N
GLN
A
58
4.842
39.323
14.694
1.00
26.43
N


ATOM
921
CA
GLN
A
58
4.886
38.954
16.102
1.00
26.89
C


ATOM
923
CB
GLN
A
58
5.675
39.996
16.904
1.00
27.67
C


ATOM
926
CG
GLN
A
58
5.837
39.658
18.380
1.00
28.57
C


ATOM
929
CD
GLN
A
58
6.396
40.808
19.191
1.00
28.77
C


ATOM
930
OE1
GLN
A
58
7.265
41.549
18.733
1.00
33.38
O


ATOM
931
NE2
GLN
A
58
5.897
40.964
20.410
1.00
31.28
N


ATOM
934
C
GLN
A
58
3.457
38.822
16.633
1.00
26.57
C


ATOM
935
O
GLN
A
58
2.664
39.759
16.525
1.00
26.01
O


ATOM
937
N
TYR
A
59
3.135
37.637
17.148
1.00
26.55
N


ATOM
938
CA
TYR
A
59
1.876
37.358
17.850
1.00
27.04
C


ATOM
940
CB
TYR
A
59
1.190
36.145
17.232
1.00
26.74
C


ATOM
943
CG
TYR
A
59
0.687
36.346
15.829
1.00
26.21
C


ATOM
944
CD1
TYR
A
59
1.527
36.165
14.732
1.00
25.67
C


ATOM
946
CE1
TYR
A
59
1.060
36.325
13.444
1.00
24.38
C


ATOM
948
CZ
TYR
A
59
−0.277
36.629
13.243
1.00
26.85
C


ATOM
949
OH
TYR
A
59
−0.786
36.805
11.973
1.00
26.63
O


ATOM
951
CE2
TYR
A
59
−1.124
36.805
14.317
1.00
26.32
C


ATOM
953
CD2
TYR
A
59
−0.643
36.649
15.595
1.00
25.70
C


ATOM
955
C
TYR
A
59
2.163
37.014
19.306
1.00
27.00
C


ATOM
956
O
TYR
A
59
3.046
36.215
19.588
1.00
28.03
O


ATOM
958
N
ASP
A
60
1.391
37.578
20.223
1.00
27.64
N


ATOM
959
CA
ASP
A
60
1.642
37.427
21.659
1.00
27.82
C


ATOM
961
CB
ASP
A
60
1.568
38.792
22.360
1.00
27.86
C


ATOM
964
CG
ASP
A
60
2.711
39.721
21.971
1.00
29.18
C


ATOM
965
OD1
ASP
A
60
3.822
39.235
21.679
1.00
28.35
O


ATOM
966
OD2
ASP
A
60
2.502
40.952
21.971
1.00
31.60
O


ATOM
967
C
ASP
A
60
0.637
36.461
22.292
1.00
27.24
C


ATOM
968
O
ASP
A
60
−0.464
36.280
21.777
1.00
26.59
O


ATOM
970
N
GLN
A
61
1.050
35.831
23.391
1.00
27.01
N


ATOM
971
CA
GLN
A
61
0.223
34.903
24.172
1.00
27.35
C


ATOM
973
CB
GLN
A
61
−0.837
35.660
24.979
1.00
27.86
C


ATOM
976
CG
GLN
A
61
−0.276
36.787
25.854
1.00
29.97
C


ATOM
979
CD
GLN
A
61
0.279
36.286
27.176
1.00
32.84
C


ATOM
980
OE1
GLN
A
61
1.196
35.455
27.209
1.00
32.58
O


ATOM
981
NE2
GLN
A
61
−0.283
36.791
28.281
1.00
32.11
N


ATOM
984
C
GLN
A
61
−0.434
33.804
23.339
1.00
26.83
C


ATOM
985
O
GLN
A
61
−1.635
33.559
23.463
1.00
26.10
O


ATOM
987
N
ILE
A
62
0.368
33.141
22.505
1.00
26.05
N


ATOM
988
CA
ILE
A
62
−0.107
32.025
21.692
1.00
25.85
C


ATOM
990
CB
ILE
A
62
0.591
31.996
20.314
1.00
25.80
C


ATOM
992
CG1
ILE
A
62
0.220
33.238
19.492
1.00
26.72
C


ATOM
995
CD1
ILE
A
62
−1.267
33.411
19.234
1.00
28.14
C


ATOM
999
CG2
ILE
A
62
0.247
30.721
19.567
1.00
24.88
C


ATOM
1003
C
ILE
A
62
0.203
30.722
22.418
1.00
25.13
C


ATOM
1004
O
ILE
A
62
1.337
30.516
22.820
1.00
25.00
O


ATOM
1006
N
PRO
A
63
−0.807
29.861
22.623
1.00
25.00
N


ATOM
1007
CA
PRO
A
63
−0.547
28.559
23.234
1.00
25.18
C


ATOM
1009
CB
PRO
A
63
−1.943
28.081
23.673
1.00
25.10
C


ATOM
1012
CG
PRO
A
63
−2.880
29.206
23.411
1.00
25.58
C


ATOM
1015
CD
PRO
A
63
−2.239
30.054
22.359
1.00
25.21
C


ATOM
1018
C
PRO
A
63
0.059
27.580
22.235
1.00
24.80
C


ATOM
1019
O
PRO
A
63
−0.474
27.409
21.140
1.00
24.01
O


ATOM
1020
N
ILE
A
64
1.182
26.979
22.612
1.00
25.40
N


ATOM
1021
CA
ILE
A
64
1.813
25.904
21.855
1.00
25.46
C


ATOM
1023
CB
ILE
A
64
3.169
26.344
21.239
1.00
25.54
C


ATOM
1025
CG1
ILE
A
64
2.985
27.569
20.328
1.00
27.99
C


ATOM
1028
CD1
ILE
A
64
4.192
27.875
19.424
1.00
27.80
C


ATOM
1032
CG2
ILE
A
64
3.804
25.179
20.464
1.00
24.59
C


ATOM
1036
C
ILE
A
64
2.108
24.743
22.802
1.00
24.91
C


ATOM
1037
O
ILE
A
64
2.745
24.933
23.839
1.00
24.79
O


ATOM
1039
N
GLU
A
65
1.663
23.544
22.441
1.00
24.29
N


ATOM
1040
CA
GLU
A
65
2.048
22.342
23.173
1.00
25.25
C


ATOM
1042
CB
GLU
A
65
0.966
21.273
23.051
1.00
25.15
C


ATOM
1045
CG
GLU
A
65
1.177
20.068
23.949
1.00
27.40
C


ATOM
1048
CD
GLU
A
65
−0.055
19.185
24.012
1.00
27.76
C


ATOM
1049
OE1
GLU
A
65
−0.806
19.155
23.017
1.00
32.12
O


ATOM
1050
OE2
GLU
A
65
−0.287
18.541
25.055
1.00
30.59
O


ATOM
1051
C
GLU
A
65
3.348
21.809
22.585
1.00
24.73
C


ATOM
1052
O
GLU
A
65
3.434
21.603
21.374
1.00
23.52
O


ATOM
1054
N
ILE
A
66
4.350
21.606
23.438
1.00
24.51
N


ATOM
1055
CA
ILE
A
66
5.634
21.052
23.009
1.00
24.92
C


ATOM
1057
CB
ILE
A
66
6.770
22.076
23.188
1.00
24.39
C


ATOM
1059
CG1
ILE
A
66
6.451
23.384
22.461
1.00
25.44
C


ATOM
1062
CD1
ILE
A
66
7.228
24.572
22.993
1.00
25.75
C


ATOM
1066
CG2
ILE
A
66
8.094
21.499
22.699
1.00
24.32
C


ATOM
1070
C
ILE
A
66
5.948
19.801
23.830
1.00
25.42
C


ATOM
1071
O
ILE
A
66
6.167
19.884
25.032
1.00
23.99
O


ATOM
1073
N
CYS
A
67
5.964
18.644
23.173
1.00
27.06
N


ATOM
1074
CA
CYS
A
67
6.120
17.350
23.850
1.00
28.17
C


ATOM
1076
CB
CYS
A
67
7.557
17.151
24.308
1.00
28.60
C


ATOM
1079
SG
CYS
A
67
8.689
17.069
22.962
1.00
32.25
S


ATOM
1081
C
CYS
A
67
5.232
17.218
25.063
1.00
28.50
C


ATOM
1082
O
CYS
A
67
5.706
16.848
26.139
1.00
28.67
O


ATOM
1084
N
GLY
A
68
3.962
17.569
24.910
1.00
28.74
N


ATOM
1085
CA
GLY
A
68
3.019
17.467
26.011
1.00
29.11
C


ATOM
1088
C
GLY
A
68
3.089
18.607
27.011
1.00
28.88
C


ATOM
1089
O
GLY
A
68
2.225
18.705
27.881
1.00
29.65
O


ATOM
1091
N
HIS
A
69
4.092
19.476
26.898
1.00
27.92
N


ATOM
1092
CA
HIS
A
69
4.216
20.606
27.816
1.00
27.07
C


ATOM
1094
CB
HIS
A
69
5.678
20.983
28.038
1.00
26.44
C


ATOM
1097
CG
HIS
A
69
6.457
19.974
28.814
1.00
25.81
C


ATOM
1098
ND1
HIS
A
69
6.754
18.723
28.320
1.00
24.59
N


ATOM
1100
CE1
HIS
A
69
7.475
18.065
29.210
1.00
26.05
C


ATOM
1102
NE2
HIS
A
69
7.660
18.844
30.260
1.00
23.46
N


ATOM
1104
CD2
HIS
A
69
7.035
20.045
30.037
1.00
24.42
C


ATOM
1106
C
HIS
A
69
3.511
21.809
27.227
1.00
27.37
C


ATOM
1107
O
HIS
A
69
3.776
22.168
26.083
1.00
25.98
O


ATOM
1109
N
LYS
A
70
2.670
22.456
28.035
1.00
27.44
N


ATOM
1110
CA
LYS
A
70
1.949
23.661
27.630
1.00
27.66
C


ATOM
1112
CB
LYS
A
70
0.665
23.830
28.454
1.00
27.82
C


ATOM
1119
C
LYS
A
70
2.814
24.909
27.771
1.00
28.05
C


ATOM
1120
O
LYS
A
70
3.383
25.185
28.834
1.00
28.02
O


ATOM
1122
N
ALA
A
71
2.953
25.628
26.665
1.00
27.91
N


ATOM
1123
CA
ALA
A
71
3.644
26.899
26.645
1.00
27.47
C


ATOM
1125
CB
ALA
A
71
4.861
26.831
25.742
1.00
28.14
C


ATOM
1129
C
ALA
A
71
2.660
27.920
26.113
1.00
27.19
C


ATOM
1130
O
ALA
A
71
1.744
27.577
25.371
1.00
27.00
O


ATOM
1132
N
ILE
A
72
2.837
29.171
26.519
1.00
26.83
N


ATOM
1133
CA
ILE
A
72
2.036
30.268
25.991
1.00
26.48
C


ATOM
1135
CB
ILE
A
72
0.841
30.627
26.883
1.00
26.03
C


ATOM
1137
CG1
ILE
A
72
0.007
29.397
27.188
1.00
26.93
C


ATOM
1140
CD1
ILE
A
72
−1.248
29.736
27.948
1.00
27.09
C


ATOM
1144
CG2
ILE
A
72
−0.041
31.686
26.207
1.00
26.13
C


ATOM
1148
C
ILE
A
72
2.929
31.478
25.941
1.00
25.75
C


ATOM
1149
O
ILE
A
72
3.483
31.885
26.953
1.00
25.08
O


ATOM
1151
N
GLY
A
73
3.078
32.053
24.765
1.00
25.73
N


ATOM
1152
CA
GLY
A
73
3.928
33.211
24.659
1.00
26.08
C


ATOM
1155
C
GLY
A
73
4.003
33.755
23.261
1.00
26.25
C


ATOM
1156
O
GLY
A
73
3.118
33.540
22.430
1.00
24.72
O


ATOM
1158
N
THR
A
74
5.098
34.456
23.012
1.00
26.37
N


ATOM
1159
CA
THR
A
74
5.272
35.157
21.766
1.00
26.92
C


ATOM
1161
CB
THR
A
74
6.230
36.342
21.934
1.00
26.45
C


ATOM
1163
OG1
THR
A
74
5.546
37.361
22.664
1.00
26.38
O


ATOM
1165
CG2
THR
A
74
6.660
36.891
20.578
1.00
27.86
C


ATOM
1169
C
THR
A
74
5.748
34.209
20.689
1.00
27.40
C


ATOM
1170
O
THR
A
74
6.617
33.370
20.904
1.00
27.93
O


ATOM
1172
N
VAL
A
75
5.120
34.333
19.532
1.00
27.96
N


ATOM
1173
CA
VAL
A
75
5.451
33.520
18.382
1.00
28.35
C


ATOM
1175
CB
VAL
A
75
4.302
32.525
18.088
1.00
28.64
C


ATOM
1177
CG1
VAL
A
75
4.554
31.779
16.801
1.00
30.34
C


ATOM
1181
CG2
VAL
A
75
4.135
31.559
19.264
1.00
28.49
C


ATOM
1185
C
VAL
A
75
5.651
34.487
17.222
1.00
28.10
C


ATOM
1186
O
VAL
A
75
4.833
35.388
17.000
1.00
26.65
O


ATOM
1188
N
LEU
A
76
6.767
34.321
16.519
1.00
28.53
N


ATOM
1189
CA
LEU
A
76
7.058
35.115
15.334
1.00
28.18
C


ATOM
1191
CB
LEU
A
76
8.511
35.580
15.363
1.00
28.39
C


ATOM
1194
CG
LEU
A
76
9.039
36.215
16.651
1.00
28.30
C


ATOM
1196
CD1
LEU
A
76
10.467
36.648
16.425
1.00
29.01
C


ATOM
1200
CD2
LEU
A
76
8.207
37.429
17.053
1.00
27.79
C


ATOM
1204
C
LEU
A
76
6.805
34.262
14.095
1.00
28.22
C


ATOM
1205
O
LEU
A
76
7.292
33.134
14.000
1.00
29.02
O


ATOM
1207
N
VAL
A
77
6.029
34.775
13.152
1.00
26.77
N


ATOM
1208
CA
VAL
A
77
5.709
33.999
11.953
1.00
26.07
C


ATOM
1210
CB
VAL
A
77
4.188
33.857
11.753
1.00
25.35
C


ATOM
1212
CG1
VAL
A
77
3.881
33.055
10.490
1.00
24.94
C


ATOM
1216
CG2
VAL
A
77
3.561
33.186
12.972
1.00
24.61
C


ATOM
1220
C
VAL
A
77
6.351
34.635
10.728
1.00
25.35
C


ATOM
1221
O
VAL
A
77
6.180
35.820
10.457
1.00
25.13
O


ATOM
1223
N
GLY
A
78
7.090
33.837
9.976
1.00
25.57
N


ATOM
1224
CA
GLY
A
78
7.768
34.365
8.812
1.00
25.78
C


ATOM
1227
C
GLY
A
78
8.346
33.267
7.968
1.00
25.97
C


ATOM
1228
O
GLY
A
78
8.149
32.092
8.273
1.00
26.99
O


ATOM
1230
N
PRO
A
79
9.093
33.649
6.924
1.00
26.57
N


ATOM
1231
CA
PRO
A
79
9.644
32.719
5.945
1.00
27.52
C


ATOM
1233
CB
PRO
A
79
10.018
33.620
4.760
1.00
27.24
C


ATOM
1236
CG
PRO
A
79
10.247
34.961
5.352
1.00
28.40
C


ATOM
1239
CD
PRO
A
79
9.418
35.052
6.611
1.00
27.56
C


ATOM
1242
C
PRO
A
79
10.838
31.930
6.456
1.00
27.82
C


ATOM
1243
O
PRO
A
79
11.985
32.262
6.156
1.00
27.46
O


ATOM
1244
N
THR
A
80
10.537
30.899
7.242
1.00
28.78
N


ATOM
1245
CA
THR
A
80
11.523
29.932
7.710
1.00
28.56
C


ATOM
1247
CB
THR
A
80
11.598
29.932
9.275
1.00
29.49
C


ATOM
1249
OG1
THR
A
80
12.579
28.992
9.741
1.00
30.55
O


ATOM
1251
CG2
THR
A
80
10.244
29.613
9.920
1.00
27.76
C


ATOM
1255
C
THR
A
80
11.151
28.552
7.141
1.00
28.82
C


ATOM
1256
O
THR
A
80
9.971
28.190
7.090
1.00
28.30
O


ATOM
1258
N
PRO
A
81
12.155
27.774
6.706
1.00
28.88
N


ATOM
1259
CA
PRO
A
81
11.920
26.377
6.320
1.00
29.33
C


ATOM
1261
CB
PRO
A
81
13.228
25.986
5.633
1.00
29.40
C


ATOM
1264
CG
PRO
A
81
14.257
26.818
6.326
1.00
29.42
C


ATOM
1267
CD
PRO
A
81
13.585
28.130
6.629
1.00
28.73
C


ATOM
1270
C
PRO
A
81
11.697
25.457
7.518
1.00
29.29
C


ATOM
1271
O
PRO
A
81
11.170
24.351
7.358
1.00
29.63
O


ATOM
1272
N
VAL
A
82
12.122
25.906
8.699
1.00
28.71
N


ATOM
1273
CA
VAL
A
82
12.036
25.105
9.914
1.00
28.30
C


ATOM
1275
CB
VAL
A
82
13.441
24.572
10.333
1.00
28.84
C


ATOM
1277
CG1
VAL
A
82
14.487
25.674
10.323
1.00
29.68
C


ATOM
1281
CG2
VAL
A
82
13.396
23.901
11.695
1.00
29.19
C


ATOM
1285
C
VAL
A
82
11.399
25.909
11.037
1.00
27.24
C


ATOM
1286
O
VAL
A
82
11.796
27.038
11.304
1.00
27.29
O


ATOM
1288
N
ASN
A
83
10.399
25.333
11.696
1.00
26.83
N


ATOM
1289
CA
ASN
A
83
9.905
25.892
12.961
1.00
26.53
C


ATOM
1291
CB
ASN
A
83
8.689
25.105
13.468
1.00
26.68
C


ATOM
1294
CG
ASN
A
83
7.508
25.178
12.521
1.00
29.23
C


ATOM
1295
OD1
ASN
A
83
7.072
26.266
12.157
1.00
28.74
O


ATOM
1296
ND2
ASN
A
83
6.992
24.015
12.112
1.00
27.10
N


ATOM
1299
C
ASN
A
83
11.023
25.812
14.000
1.00
26.25
C


ATOM
1300
O
ASN
A
83
11.645
24.761
14.177
1.00
24.17
O


ATOM
1302
N
ILE
A
84
11.301
26.925
14.667
1.00
26.49
N


ATOM
1303
CA
ILE
A
84
12.303
26.930
15.708
1.00
27.40
C


ATOM
1305
CB
ILE
A
84
13.531
27.822
15.361
1.00
27.73
C


ATOM
1307
CG1
ILE
A
84
13.218
29.309
15.469
1.00
29.59
C


ATOM
1310
CD1
ILE
A
84
14.351
30.190
14.951
1.00
31.11
C


ATOM
1314
CG2
ILE
A
84
14.039
27.512
13.955
1.00
28.56
C


ATOM
1318
C
ILE
A
84
11.661
27.332
17.017
1.00
26.92
C


ATOM
1319
O
ILE
A
84
10.952
28.332
17.091
1.00
27.41
O


ATOM
1321
N
ILE
A
85
11.912
26.534
18.046
1.00
26.99
N


ATOM
1322
CA
ILE
A
85
11.460
26.851
19.388
1.00
27.19
C


ATOM
1324
CB
ILE
A
85
10.977
25.600
20.149
1.00
27.40
C


ATOM
1326
CG1
ILE
A
85
9.912
24.844
19.347
1.00
26.27
C


ATOM
1329
CD1
ILE
A
85
8.678
25.649
18.957
1.00
26.46
C


ATOM
1333
CG2
ILE
A
85
10.441
25.989
21.529
1.00
28.18
C


ATOM
1337
C
ILE
A
85
12.603
27.523
20.137
1.00
27.09
C


ATOM
1338
O
ILE
A
85
13.642
26.910
20.401
1.00
27.38
O


ATOM
1340
N
GLY
A
86
12.409
28.804
20.442
1.00
26.58
N


ATOM
1341
CA
GLY
A
86
13.423
29.598
21.106
1.00
26.03
C


ATOM
1344
C
GLY
A
86
13.319
29.653
22.615
1.00
25.81
C


ATOM
1345
O
GLY
A
86
12.433
29.050
23.216
1.00
27.11
O


ATOM
1347
N
ARG
A
87
14.232
30.408
23.225
1.00
25.46
N


ATOM
1348
CA
ARG
A
87
14.370
30.458
24.680
1.00
26.32
C


ATOM
1350
CB
ARG
A
87
15.543
31.357
25.065
1.00
25.41
C


ATOM
1353
CG
ARG
A
87
16.890
30.726
24.753
1.00
26.18
C


ATOM
1356
CD
ARG
A
87
18.063
31.545
25.309
1.00
25.42
C


ATOM
1359
NE
ARG
A
87
18.046
32.946
24.891
1.00
25.40
N


ATOM
1361
CZ
ARG
A
87
17.584
33.967
25.612
1.00
24.82
C


ATOM
1362
NH1
ARG
A
87
17.102
33.796
26.838
1.00
23.66
N


ATOM
1365
NH2
ARG
A
87
17.627
35.184
25.104
1.00
23.61
N


ATOM
1368
C
ARG
A
87
13.092
30.915
25.384
1.00
26.30
C


ATOM
1369
O
ARG
A
87
12.765
30.425
26.461
1.00
26.53
O


ATOM
1371
N
ASN
A
88
12.334
31.791
24.729
1.00
26.22
N


ATOM
1372
CA
ASN
A
88
11.137
32.339
25.334
1.00
26.85
C


ATOM
1374
CB
ASN
A
88
10.501
33.430
24.453
1.00
27.03
C


ATOM
1377
CG
ASN
A
88
9.765
32.861
23.248
1.00
25.75
C


ATOM
1378
OD1
ASN
A
88
10.369
32.223
22.398
1.00
25.63
O


ATOM
1379
ND2
ASN
A
88
8.453
33.098
23.176
1.00
23.93
N


ATOM
1382
C
ASN
A
88
10.146
31.230
25.670
1.00
26.73
C


ATOM
1383
O
ASN
A
88
9.432
31.333
26.661
1.00
27.22
O


ATOM
1385
N
LEU
A
89
10.138
30.151
24.886
1.00
27.10
N


ATOM
1386
CA
LEU
A
89
9.281
28.999
25.189
1.00
26.64
C


ATOM
1388
CB
LEU
A
89
8.527
28.525
23.946
1.00
27.02
C


ATOM
1391
CG
LEU
A
89
7.578
29.542
23.300
1.00
26.14
C


ATOM
1393
CD1
LEU
A
89
6.713
28.868
22.257
1.00
25.83
C


ATOM
1397
CD2
LEU
A
89
6.713
30.231
24.342
1.00
28.43
C


ATOM
1401
C
LEU
A
89
10.037
27.834
25.818
1.00
26.60
C


ATOM
1402
O
LEU
A
89
9.460
27.065
26.595
1.00
26.73
O


ATOM
1404
N
LEU
A
90
11.329
27.728
25.524
1.00
26.23
N


ATOM
1405
CA
LEU
A
90
12.139
26.640
26.063
1.00
26.84
C


ATOM
1407
CB
LEU
A
90
13.545
26.645
25.449
1.00
26.73
C


ATOM
1410
CG
LEU
A
90
13.689
26.264
23.979
1.00
26.99
C


ATOM
1412
CD1
LEU
A
90
15.165
26.358
23.587
1.00
26.16
C


ATOM
1416
CD2
LEU
A
90
13.150
24.872
23.708
1.00
27.43
C


ATOM
1420
C
LEU
A
90
12.221
26.749
27.582
1.00
26.58
C


ATOM
1421
O
LEU
A
90
12.083
25.760
28.294
1.00
26.73
O


ATOM
1423
N
THR
A
91
12.358
27.977
28.073
1.00
27.03
N


ATOM
1424
CA
THR
A
91
12.334
28.241
29.509
1.00
26.13
C


ATOM
1426
CB
THR
A
91
12.544
29.731
29.789
1.00
26.65
C


ATOM
1428
OG1
THR
A
91
11.619
30.518
29.015
1.00
25.97
O


ATOM
1430
CG2
THR
A
91
13.958
30.135
29.465
1.00
27.26
C


ATOM
1434
C
THR
A
91
11.021
27.814
30.162
1.00
26.18
C


ATOM
1435
O
THR
A
91
11.024
27.200
31.230
1.00
26.16
O


ATOM
1437
N
GLN
A
92
9.899
28.108
29.512
1.00
25.60
N


ATOM
1438
CA
GLN
A
92
8.579
27.774
30.067
1.00
25.37
C


ATOM
1440
CB
GLN
A
92
7.466
28.292
29.158
1.00
25.12
C


ATOM
1443
CG
GLN
A
92
7.400
29.799
28.972
1.00
24.67
C


ATOM
1446
CD
GLN
A
92
6.163
30.211
28.183
1.00
26.73
C


ATOM
1447
OE1
GLN
A
92
5.248
29.408
27.976
1.00
27.25
O


ATOM
1448
NE2
GLN
A
92
6.124
31.466
27.745
1.00
31.93
N


ATOM
1451
C
GLN
A
92
8.369
26.271
30.279
1.00
24.93
C


ATOM
1452
O
GLN
A
92
7.647
25.856
31.188
1.00
24.42
O


ATOM
1454
N
ILE
A
93
8.972
25.444
29.431
1.00
25.12
N


ATOM
1455
CA
ILE
A
93
8.826
23.999
29.589
1.00
25.31
C


ATOM
1457
CB
ILE
A
93
8.689
23.298
28.221
1.00
25.20
C


ATOM
1459
CG1
ILE
A
93
10.011
23.335
27.449
1.00
25.27
C


ATOM
1462
CD1
ILE
A
93
9.972
22.597
26.154
1.00
25.37
C


ATOM
1466
CG2
ILE
A
93
7.573
23.971
27.395
1.00
25.44
C


ATOM
1470
C
ILE
A
93
9.967
23.404
30.428
1.00
26.30
C


ATOM
1471
O
ILE
A
93
10.051
22.186
30.614
1.00
25.59
O


ATOM
1473
N
GLY
A
94
10.855
24.268
30.918
1.00
26.83
N


ATOM
1474
CA
GLY
A
94
11.863
23.859
31.894
1.00
27.12
C


ATOM
1477
C
GLY
A
94
13.056
23.190
31.247
1.00
27.58
C


ATOM
1478
O
GLY
A
94
13.698
22.327
31.852
1.00
26.40
O


ATOM
1480
N
CYS
A
95
13.352
23.605
30.019
1.00
28.86
N


ATOM
1481
CA
CYS
A
95
14.430
23.017
29.230
1.00
28.67
C


ATOM
1483
CB
CYS
A
95
14.164
23.259
27.741
1.00
28.56
C


ATOM
1486
SG
CYS
A
95
15.282
22.341
26.705
1.00
32.93
S


ATOM
1488
C
CYS
A
95
15.797
23.576
29.626
1.00
28.29
C


ATOM
1489
O
CYS
A
95
15.989
24.792
29.676
1.00
29.45
O


ATOM
1491
N
THR
A
96
16.737
22.695
29.953
1.00
28.13
N


ATOM
1492
CA
THR
A
96
18.109
23.106
30.241
1.00
27.12
C


ATOM
1494
CB
THR
A
96
18.517
22.807
31.708
1.00
27.09
C


ATOM
1496
OG1
THR
A
96
18.519
21.395
31.930
1.00
25.69
O


ATOM
1498
CG2
THR
A
96
17.563
23.469
32.699
1.00
27.33
C


ATOM
1502
C
THR
A
96
19.109
22.426
29.309
1.00
26.82
C


ATOM
1503
O
THR
A
96
18.806
21.439
28.629
1.00
26.03
O


ATOM
1505
N
LEU
A
97
20.301
23.000
29.252
1.00
26.22
N


ATOM
1506
CA
LEU
A
97
21.418
22.369
28.582
1.00
25.83
C


ATOM
1508
CB
LEU
A
97
22.240
23.402
27.817
1.00
26.51
C


ATOM
1511
CG
LEU
A
97
21.735
23.854
26.450
1.00
25.78
C


ATOM
1513
CD1
LEU
A
97
22.423
25.156
26.091
1.00
25.40
C


ATOM
1517
CD2
LEU
A
97
22.018
22.768
25.423
1.00
24.50
C


ATOM
1521
C
LEU
A
97
22.277
21.766
29.670
1.00
25.84
C


ATOM
1522
O
LEU
A
97
22.474
22.379
30.711
1.00
25.45
O


ATOM
1524
N
ASN
A
98
22.800
20.574
29.434
1.00
26.55
N


ATOM
1525
CA
ASN
A
98
23.550
19.864
30.470
1.00
27.32
C


ATOM
1527
CB
ASN
A
98
22.648
18.832
31.159
1.00
27.41
C


ATOM
1530
CG
ASN
A
98
21.418
19.467
31.818
1.00
29.43
C


ATOM
1531
OD1
ASN
A
98
20.445
19.826
31.149
1.00
30.99
O


ATOM
1532
ND2
ASN
A
98
21.455
19.588
33.133
1.00
29.73
N


ATOM
1535
C
ASN
A
98
24.797
19.193
29.903
1.00
27.70
C


ATOM
1536
O
ASN
A
98
24.737
18.498
28.876
1.00
27.37
O


ATOM
1538
N
PHE
A
99
25.933
19.456
30.541
1.00
28.11
N


ATOM
1539
CA
PHE
A
99
27.172
18.768
30.220
1.00
28.37
C


ATOM
1541
CB
PHE
A
99
27.790
19.294
28.915
1.00
29.19
C


ATOM
1544
CG
PHE
A
99
28.294
20.708
28.987
1.00
29.45
C


ATOM
1545
CD1
PHE
A
99
27.433
21.777
28.779
1.00
30.19
C


ATOM
1547
CE1
PHE
A
99
27.892
23.088
28.824
1.00
30.24
C


ATOM
1549
CZ
PHE
A
99
29.230
23.339
29.043
1.00
29.69
C


ATOM
1551
CE2
PHE
A
99
30.109
22.280
29.226
1.00
30.85
C


ATOM
1553
CD2
PHE
A
99
29.642
20.970
29.186
1.00
29.90
C


ATOM
1555
C
PHE
A
99
28.175
18.845
31.364
1.00
28.49
C


ATOM
1556
O
PHE
A
99
29.257
18.241
31.290
1.00
27.34
O


ATOM
1558
OXT
PHE
A
99
27.892
19.475
32.394
1.00
28.60
O


TER


ATOM
1559
N
PRO
B
1
28.310
21.708
33.846
1.00
28.89
N


ATOM
1560
CA
PRO
B
1
27.277
22.611
34.359
1.00
28.67
C


ATOM
1562
CB
PRO
B
1
27.735
23.983
33.859
1.00
28.59
C


ATOM
1565
CG
PRO
B
1
28.475
23.690
32.579
1.00
29.40
C


ATOM
1568
CD
PRO
B
1
29.057
22.297
32.717
1.00
28.94
C


ATOM
1571
C
PRO
B
1
25.884
22.312
33.816
1.00
28.05
C


ATOM
1572
O
PRO
B
1
25.750
21.643
32.792
1.00
28.57
O


ATOM
1575
N
GLN
B
2
24.860
22.788
34.512
1.00
27.60
N


ATOM
1576
CA
GLN
B
2
23.526
22.880
33.937
1.00
27.89
C


ATOM
1578
CB
GLN
B
2
22.468
22.272
34.856
1.00
28.32
C


ATOM
1581
CG
GLN
B
2
21.029
22.500
34.391
1.00
27.46
C


ATOM
1584
CD
GLN
B
2
20.022
21.666
35.166
1.00
27.66
C


ATOM
1585
OE1
GLN
B
2
19.531
20.654
34.671
1.00
28.34
O


ATOM
1586
NE2
GLN
B
2
19.712
22.088
36.386
1.00
25.23
N


ATOM
1589
C
GLN
B
2
23.239
24.351
33.708
1.00
28.46
C


ATOM
1590
O
GLN
B
2
23.479
25.191
34.587
1.00
28.11
O


ATOM
1592
N
ILE
B
3
22.745
24.651
32.516
1.00
28.24
N


ATOM
1593
CA
ILE
B
3
22.581
26.022
32.069
1.00
28.82
C


ATOM
1595
CB
ILE
B
3
23.526
26.348
30.891
1.00
28.96
C


ATOM
1597
CG1
ILE
B
3
24.972
26.412
31.394
1.00
30.10
C


ATOM
1600
CD1
ILE
B
3
26.009
26.094
30.342
1.00
29.49
C


ATOM
1604
CG2
ILE
B
3
23.141
27.679
30.243
1.00
28.64
C


ATOM
1608
C
ILE
B
3
21.118
26.235
31.696
1.00
28.55
C


ATOM
1609
O
ILE
B
3
20.560
25.524
30.867
1.00
27.81
O


ATOM
1611
N
THR
B
4
20.485
27.168
32.391
1.00
28.37
N


ATOM
1612
CA
THR
B
4
19.111
27.525
32.103
1.00
28.33
C


ATOM
1614
CB
THR
B
4
18.438
28.167
33.323
1.00
28.34
C


ATOM
1616
OG1
THR
B
4
19.109
29.394
33.632
1.00
26.36
O


ATOM
1618
CG2
THR
B
4
18.515
27.219
34.518
1.00
29.48
C


ATOM
1622
C
THR
B
4
19.125
28.513
30.956
1.00
28.06
C


ATOM
1623
O
THR
B
4
20.190
28.979
30.549
1.00
28.37
O


ATOM
1625
N
LEU
B
5
17.939
28.863
30.473
1.00
27.91
N


ATOM
1626
CA
LEU
B
5
17.807
29.611
29.222
1.00
28.03
C


ATOM
1628
CB
LEU
B
5
17.099
28.739
28.188
1.00
28.04
C


ATOM
1631
CG
LEU
B
5
17.873
27.456
27.873
1.00
29.04
C


ATOM
1633
CD1
LEU
B
5
17.085
26.506
26.951
1.00
29.52
C


ATOM
1637
CD2
LEU
B
5
19.215
27.816
27.265
1.00
29.96
C


ATOM
1641
C
LEU
B
5
17.077
30.943
29.391
1.00
27.44
C


ATOM
1642
O
LEU
B
5
16.609
31.515
28.414
1.00
27.63
O


ATOM
1644
N
TRP
B
6
16.999
31.443
30.622
1.00
26.89
N


ATOM
1645
CA
TRP
B
6
16.424
32.766
30.884
1.00
26.59
C


ATOM
1647
CB
TRP
B
6
16.186
32.954
32.384
1.00
27.19
C


ATOM
1650
CG
TRP
B
6
15.289
31.878
32.926
1.00
26.57
C


ATOM
1651
CD1
TRP
B
6
15.672
30.732
33.565
1.00
27.69
C


ATOM
1653
NE1
TRP
B
6
14.570
29.966
33.868
1.00
28.54
N


ATOM
1655
CE2
TRP
B
6
13.451
30.589
33.377
1.00
28.06
C


ATOM
1656
CD2
TRP
B
6
13.868
31.793
32.770
1.00
26.83
C


ATOM
1657
CE3
TRP
B
6
12.905
32.625
32.189
1.00
26.79
C


ATOM
1659
CZ3
TRP
B
6
11.573
32.241
32.238
1.00
28.14
C


ATOM
1661
CH2
TRP
B
6
11.189
31.039
32.854
1.00
28.36
C


ATOM
1663
CZ2
TRP
B
6
12.114
30.198
33.422
1.00
28.52
C


ATOM
1665
C
TRP
B
6
17.316
33.870
30.302
1.00
26.56
C


ATOM
1666
O
TRP
B
6
16.858
34.994
30.036
1.00
26.50
O


ATOM
1668
N
LYS
B
7
18.591
33.543
30.132
1.00
24.96
N


ATOM
1669
CA
LYS
B
7
19.546
34.385
29.444
1.00
25.23
C


ATOM
1671
CB
LYS
B
7
20.684
34.789
30.393
1.00
26.35
C


ATOM
1678
C
LYS
B
7
20.133
33.585
28.292
1.00
25.95
C


ATOM
1679
O
LYS
B
7
20.016
32.358
28.252
1.00
27.34
O


ATOM
1681
N
ARG
B
8
20.778
34.279
27.362
1.00
25.12
N


ATOM
1682
CA
ARG
B
8
21.505
33.617
26.313
1.00
24.43
C


ATOM
1684
CB
ARG
B
8
22.153
34.659
25.403
1.00
24.24
C


ATOM
1687
CG
ARG
B
8
21.187
35.345
24.474
1.00
24.02
C


ATOM
1690
CD
ARG
B
8
21.857
36.487
23.719
1.00
24.77
C


ATOM
1693
NE
ARG
B
8
20.923
37.147
22.809
1.00
24.51
N


ATOM
1695
CZ
ARG
B
8
21.186
38.271
22.148
1.00
23.87
C


ATOM
1696
NH1
ARG
B
8
22.350
38.885
22.302
1.00
25.00
N


ATOM
1699
NH2
ARG
B
8
20.292
38.770
21.313
1.00
20.78
N


ATOM
1702
C
ARG
B
8
22.575
32.696
26.919
1.00
24.46
C


ATOM
1703
O
ARG
B
8
23.272
33.079
27.869
1.00
24.45
O


ATOM
1705
N
PRO
B
9
22.679
31.459
26.407
1.00
24.04
N


ATOM
1706
CA
PRO
B
9
23.700
30.538
26.898
1.00
25.01
C


ATOM
1708
CB
PRO
B
9
23.148
29.166
26.501
1.00
24.99
C


ATOM
1711
CG
PRO
B
9
22.367
29.438
25.283
1.00
24.35
C


ATOM
1714
CD
PRO
B
9
21.758
30.788
25.475
1.00
24.69
C


ATOM
1717
C
PRO
B
9
25.067
30.837
26.299
1.00
25.49
C


ATOM
1718
O
PRO
B
9
25.631
30.038
25.536
1.00
25.60
O


ATOM
1719
N
LEU
B
10
25.601
31.984
26.714
1.00
26.71
N


ATOM
1720
CA
LEU
B
10
26.931
32.436
26.318
1.00
27.77
C


ATOM
1722
CB
LEU
B
10
26.980
33.979
26.308
1.00
28.51
C


ATOM
1725
CG
LEU
B
10
26.088
34.700
25.282
1.00
28.93
C


ATOM
1727
CD1
LEU
B
10
25.963
36.199
25.579
1.00
28.46
C


ATOM
1731
CD2
LEU
B
10
26.640
34.482
23.871
1.00
30.59
C


ATOM
1735
C
LEU
B
10
27.959
31.878
27.310
1.00
27.61
C


ATOM
1736
O
LEU
B
10
27.780
31.957
28.520
1.00
27.85
O


ATOM
1738
N
VAL
B
11
29.024
31.280
26.800
1.00
27.30
N


ATOM
1739
CA
VAL
B
11
30.072
30.750
27.657
1.00
26.67
C


ATOM
1741
CB
VAL
B
11
30.044
29.205
27.714
1.00
26.87
C


ATOM
1743
CG1
VAL
B
11
28.722
28.719
28.303
1.00
27.79
C


ATOM
1747
CG2
VAL
B
11
30.285
28.598
26.329
1.00
27.11
C


ATOM
1751
C
VAL
B
11
31.388
31.214
27.075
1.00
25.80
C


ATOM
1752
O
VAL
B
11
31.434
31.671
25.938
1.00
25.13
O


ATOM
1754
N
THR
B
12
32.459
31.059
27.838
1.00
24.78
N


ATOM
1755
CA
THR
B
12
33.771
31.411
27.345
1.00
23.85
C


ATOM
1757
CB
THR
B
12
34.644
31.904
28.504
1.00
23.62
C


ATOM
1759
OG1
THR
B
12
34.007
33.037
29.103
1.00
23.02
O


ATOM
1761
CG2
THR
B
12
36.015
32.305
28.032
1.00
22.71
C


ATOM
1765
C
THR
B
12
34.391
30.190
26.656
1.00
24.43
C


ATOM
1766
O
THR
B
12
34.296
29.062
27.154
1.00
24.09
O


ATOM
1768
N
ILE
B
13
34.960
30.412
25.477
1.00
24.05
N


ATOM
1769
CA
ILE
B
13
35.683
29.364
24.771
1.00
24.52
C


ATOM
1771
CB
ILE
B
13
35.104
29.077
23.374
1.00
24.89
C


ATOM
1773
CG1
ILE
B
13
35.312
30.295
22.456
1.00
25.17
C


ATOM
1776
CD1
ILE
B
13
34.838
30.128
21.047
1.00
26.54
C


ATOM
1780
CG2
ILE
B
13
33.630
28.675
23.486
1.00
23.41
C


ATOM
1784
C
ILE
B
13
37.131
29.791
24.639
1.00
25.13
C


ATOM
1785
O
ILE
B
13
37.460
30.979
24.699
1.00
24.49
O


ATOM
1787
N
ARG
B
14
38.009
28.815
24.483
1.00
25.91
N


ATOM
1788
CA
ARG
B
14
39.418
29.134
24.273
1.00
26.30
C


ATOM
1790
CB
ARG
B
14
40.278
28.616
25.427
1.00
25.93
C


ATOM
1793
CG
ARG
B
14
41.747
28.961
25.295
1.00
27.26
C


ATOM
1796
CD
ARG
B
14
42.453
28.829
26.632
1.00
28.76
C


ATOM
1799
NE
ARG
B
14
43.899
28.754
26.463
1.00
32.95
N


ATOM
1801
CZ
ARG
B
14
44.618
27.635
26.513
1.00
34.10
C


ATOM
1802
NH1
ARG
B
14
44.038
26.461
26.737
1.00
36.10
N


ATOM
1805
NH2
ARG
B
14
45.934
27.695
26.341
1.00
32.77
N


ATOM
1808
C
ARG
B
14
39.833
28.486
22.988
1.00
25.23
C


ATOM
1809
O
ARG
B
14
39.608
27.298
22.797
1.00
24.61
O


ATOM
1811
N
ILE
B
15
40.377
29.284
22.082
1.00
26.63
N


ATOM
1812
CA
ILE
B
15
40.813
28.764
20.798
1.00
27.11
C


ATOM
1814
CB
ILE
B
15
39.669
28.824
19.731
1.00
27.69
C


ATOM
1816
CG1
ILE
B
15
40.121
28.190
18.421
1.00
27.99
C


ATOM
1819
CD1
ILE
B
15
39.009
28.057
17.399
1.00
28.78
C


ATOM
1823
CG2
ILE
B
15
39.155
30.252
19.510
1.00
28.84
C


ATOM
1827
C
ILE
B
15
42.088
29.492
20.375
1.00
26.60
C


ATOM
1828
O
ILE
B
15
42.152
30.719
20.383
1.00
26.55
O


ATOM
1830
N
GLY
B
16
43.140
28.723
20.115
1.00
26.55
N


ATOM
1831
CA
GLY
B
16
44.428
29.287
19.731
1.00
26.01
C


ATOM
1834
C
GLY
B
16
44.961
30.215
20.798
1.00
25.68
C


ATOM
1835
O
GLY
B
16
45.626
31.207
20.495
1.00
24.97
O


ATOM
1837
N
GLY
B
17
44.630
29.912
22.049
1.00
25.50
N


ATOM
1838
CA
GLY
B
17
45.029
30.748
23.171
1.00
25.69
C


ATOM
1841
C
GLY
B
17
44.321
32.088
23.196
1.00
25.78
C


ATOM
1842
O
GLY
B
17
44.793
33.012
23.841
1.00
26.31
O


ATOM
1844
N
GLN
B
18
43.211
32.194
22.473
1.00
25.86
N


ATOM
1845
CA
GLN
B
18
42.364
33.383
22.494
1.00
26.91
C


ATOM
1847
CB
GLN
B
18
42.009
33.822
21.072
1.00
27.45
C


ATOM
1850
CG
GLN
B
18
43.184
34.310
20.252
1.00
30.06
C


ATOM
1853
CD
GLN
B
18
43.531
35.761
20.538
1.00
33.86
C


ATOM
1854
OE1
GLN
B
18
44.440
36.047
21.314
1.00
36.99
O


ATOM
1855
NE2
GLN
B
18
42.799
36.685
19.918
1.00
34.85
N


ATOM
1858
C
GLN
B
18
41.088
33.055
23.254
1.00
26.27
C


ATOM
1859
O
GLN
B
18
40.501
31.989
23.034
1.00
26.90
O


ATOM
1861
N
LEU
B
19
40.675
33.953
24.151
1.00
25.35
N


ATOM
1862
CA
LEU
B
19
39.401
33.802
24.853
1.00
26.07
C


ATOM
1864
CB
LEU
B
19
39.506
34.294
26.297
1.00
26.74
C


ATOM
1867
CG
LEU
B
19
40.452
33.538
27.223
1.00
27.32
C


ATOM
1869
CD1
LEU
B
19
40.395
34.119
28.632
1.00
28.10
C


ATOM
1873
CD2
LEU
B
19
40.097
32.068
27.222
1.00
28.30
C


ATOM
1877
C
LEU
B
19
38.301
34.557
24.132
1.00
25.85
C


ATOM
1878
O
LEU
B
19
38.457
35.733
23.800
1.00
25.40
O


ATOM
1880
N
LYS
B
20
37.187
33.873
23.887
1.00
26.54
N


ATOM
1881
CA
LYS
B
20
36.026
34.481
23.263
1.00
26.29
C


ATOM
1883
CB
LYS
B
20
35.994
34.151
21.776
1.00
26.29
C


ATOM
1886
CG
LYS
B
20
37.307
34.494
21.088
1.00
28.35
C


ATOM
1889
CD
LYS
B
20
37.226
34.344
19.593
1.00
28.37
C


ATOM
1892
CE
LYS
B
20
38.319
35.174
18.911
1.00
30.67
C


ATOM
1895
NZ
LYS
B
20
37.983
35.416
17.508
1.00
28.64
N


ATOM
1899
C
LYS
B
20
34.750
34.002
23.931
1.00
25.66
C


ATOM
1900
O
LYS
B
20
34.748
32.991
24.605
1.00
26.11
O


ATOM
1902
N
GLU
B
21
33.670
34.749
23.731
1.00
25.00
N


ATOM
1903
CA
GLU
B
21
32.339
34.338
24.152
1.00
25.47
C


ATOM
1905
CB
GLU
B
21
31.559
35.523
24.735
1.00
24.64
C


ATOM
1908
CG
GLU
B
21
32.245
36.164
25.928
1.00
27.60
C


ATOM
1911
CD
GLU
B
21
32.381
35.215
27.124
1.00
29.65
C


ATOM
1912
OE1
GLU
B
21
31.348
34.700
27.629
1.00
31.36
O


ATOM
1913
OE2
GLU
B
21
33.531
34.989
27.546
1.00
26.07
O


ATOM
1914
C
GLU
B
21
31.594
33.757
22.957
1.00
25.41
C


ATOM
1915
O
GLU
B
21
31.658
34.278
21.845
1.00
23.60
O


ATOM
1917
N
ALA
B
22
30.914
32.650
23.197
1.00
24.98
N


ATOM
1918
CA
ALA
B
22
30.143
32.009
22.155
1.00
26.35
C


ATOM
1920
CB
ALA
B
22
30.953
30.885
21.503
1.00
26.49
C


ATOM
1924
C
ALA
B
22
28.869
31.451
22.728
1.00
27.06
C


ATOM
1925
O
ALA
B
22
28.804
31.088
23.907
1.00
27.35
O


ATOM
1927
N
LEU
B
23
27.910
31.265
21.832
1.00
27.27
N


ATOM
1928
CA
LEU
B
23
26.555
30.866
22.173
1.00
27.22
C


ATOM
1930
CB
LEU
B
23
25.617
31.647
21.252
1.00
27.68
C


ATOM
1933
CG
LEU
B
23
24.109
31.543
21.359
1.00
29.22
C


ATOM
1935
CD1
LEU
B
23
23.616
32.223
22.610
1.00
30.66
C


ATOM
1939
CD2
LEU
B
23
23.505
32.160
20.087
1.00
28.12
C


ATOM
1943
C
LEU
B
23
26.386
29.359
21.963
1.00
26.49
C


ATOM
1944
O
LEU
B
23
26.656
28.842
20.880
1.00
27.87
O


ATOM
1946
N
LEU
B
24
25.955
28.651
23.004
1.00
26.35
N


ATOM
1947
CA
LEU
B
24
25.646
27.220
22.899
1.00
25.61
C


ATOM
1949
CB
LEU
B
24
25.632
26.572
24.284
1.00
26.50
C


ATOM
1952
CG
LEU
B
24
26.911
26.664
25.126
1.00
24.10
C


ATOM
1954
CD1
LEU
B
24
26.736
25.914
26.424
1.00
25.83
C


ATOM
1958
CD2
LEU
B
24
28.132
26.160
24.396
1.00
26.37
C


ATOM
1962
C
LEU
B
24
24.295
27.050
22.201
1.00
25.78
C


ATOM
1963
O
LEU
B
24
23.267
27.458
22.737
1.00
27.17
O


ATOM
1965
N
ASP
B
25
24.319
26.524
20.975
1.00
25.61
N


ATOM
1966
CA
ASP
B
25
23.195
26.626
20.043
1.00
26.34
C


ATOM
1968
CB
ASP
B
25
23.528
27.601
18.901
1.00
26.22
C


ATOM
1971
CG
ASP
B
25
22.327
27.927
18.032
1.00
27.28
C


ATOM
1972
OD1
ASP
B
25
21.252
27.296
18.178
1.00
29.52
O


ATOM
1973
OD2
ASP
B
25
22.456
28.821
17.179
1.00
25.26
O


ATOM
1974
C
ASP
B
25
22.842
25.262
19.454
1.00
26.02
C


ATOM
1975
O
ASP
B
25
23.445
24.798
18.472
1.00
25.92
O


ATOM
1977
N
THR
B
26
21.804
24.663
20.027
1.00
25.67
N


ATOM
1978
CA
THR
B
26
21.338
23.370
19.584
1.00
25.45
C


ATOM
1980
CB
THR
B
26
20.358
22.796
20.604
1.00
24.04
C


ATOM
1982
OG1
THR
B
26
19.247
23.686
20.766
1.00
23.15
O


ATOM
1984
CG2
THR
B
26
21.072
22.599
21.918
1.00
25.50
C


ATOM
1988
C
THR
B
26
20.672
23.435
18.211
1.00
25.94
C


ATOM
1989
O
THR
B
26
20.456
22.394
17.576
1.00
25.85
O


ATOM
1991
N
GLY
B
27
20.333
24.645
17.764
1.00
25.94
N


ATOM
1992
CA
GLY
B
27
19.715
24.825
16.461
1.00
26.60
C


ATOM
1995
C
GLY
B
27
20.696
24.896
15.302
1.00
26.59
C


ATOM
1996
O
GLY
B
27
20.286
24.949
14.142
1.00
27.90
O


ATOM
1998
N
ALA
B
28
21.985
24.982
15.608
1.00
26.45
N


ATOM
1999
CA
ALA
B
28
23.030
25.026
14.589
1.00
25.92
C


ATOM
2001
CB
ALA
B
28
24.056
26.074
14.962
1.00
25.79
C


ATOM
2005
C
ALA
B
28
23.682
23.643
14.485
1.00
26.63
C


ATOM
2006
O
ALA
B
28
24.034
23.037
15.498
1.00
26.87
O


ATOM
2008
N
ASP
B
29
23.799
23.144
13.262
1.00
27.35
N


ATOM
2009
CA
ASP
B
29
24.498
21.886
12.974
1.00
27.62
C


ATOM
2011
CB
ASP
B
29
24.270
21.448
11.525
1.00
27.64
C


ATOM
2014
CG
ASP
B
29
22.801
21.337
11.141
1.00
29.65
C


ATOM
2015
OD1
ASP
B
29
21.935
21.179
12.029
1.00
30.03
O


ATOM
2016
OD2
ASP
B
29
22.527
21.367
9.918
1.00
25.22
O


ATOM
2017
C
ASP
B
29
26.003
22.066
13.148
1.00
27.05
C


ATOM
2018
O
ASP
B
29
26.712
21.133
13.526
1.00
26.40
O


ATOM
2020
N
ASP
B
30
26.452
23.287
12.861
1.00
26.67
N


ATOM
2021
CA
ASP
B
30
27.842
23.639
12.631
1.00
26.85
C


ATOM
2023
CB
ASP
B
30
27.977
24.363
11.282
1.00
27.59
C


ATOM
2026
CG
ASP
B
30
27.673
23.496
10.117
1.00
27.17
C


ATOM
2027
OD1
ASP
B
30
28.153
22.355
10.099
1.00
28.05
O


ATOM
2028
OD2
ASP
B
30
26.999
23.989
9.193
1.00
33.50
O


ATOM
2029
C
ASP
B
30
28.237
24.687
13.648
1.00
26.50
C


ATOM
2030
O
ASP
B
30
27.390
25.427
14.147
1.00
27.13
O


ATOM
2032
N
THR
B
31
29.538
24.862
13.781
1.00
26.42
N


ATOM
2033
CA
THR
B
31
30.120
25.881
14.654
1.00
25.75
C


ATOM
2035
CB
THR
B
31
31.215
25.253
15.518
1.00
24.10
C


ATOM
2037
OG1
THR
B
31
30.601
24.401
16.499
1.00
24.16
O


ATOM
2039
CG2
THR
B
31
32.072
26.308
16.216
1.00
24.29
C


ATOM
2043
C
THR
B
31
30.652
27.004
13.765
1.00
25.64
C


ATOM
2044
O
THR
B
31
31.403
26.746
12.821
1.00
25.01
O


ATOM
2046
N
VAL
B
32
30.194
28.230
14.030
1.00
26.39
N


ATOM
2047
CA
VAL
B
32
30.535
29.395
13.205
1.00
26.94
C


ATOM
2049
CB
VAL
B
32
29.331
29.893
12.356
1.00
26.72
C


ATOM
2051
CG1
VAL
B
32
29.788
30.889
11.314
1.00
26.37
C


ATOM
2055
CG2
VAL
B
32
28.614
28.729
11.689
1.00
28.34
C


ATOM
2059
C
VAL
B
32
31.025
30.532
14.105
1.00
26.69
C


ATOM
2060
O
VAL
B
32
30.291
31.026
14.957
1.00
26.37
O


ATOM
2062
N
LEU
B
33
32.277
30.937
13.898
1.00
27.60
N


ATOM
2063
CA
LEU
B
33
32.918
31.986
14.681
1.00
26.53
C


ATOM
2065
CB
LEU
B
33
34.242
31.479
15.282
1.00
26.28
C


ATOM
2068
CG
LEU
B
33
34.165
30.258
16.209
1.00
26.88
C


ATOM
2070
CD1
LEU
B
33
35.527
29.954
16.804
1.00
27.98
C


ATOM
2074
CD2
LEU
B
33
33.165
30.501
17.334
1.00
24.90
C


ATOM
2078
C
LEU
B
33
33.195
33.208
13.804
1.00
26.64
C


ATOM
2079
O
LEU
B
33
33.432
33.078
12.606
1.00
27.24
O


ATOM
2081
N
GLU
B
34
33.163
34.382
14.425
1.00
26.07
N


ATOM
2082
CA
GLU
B
34
33.475
35.655
13.784
1.00
26.23
C


ATOM
2084
CB
GLU
B
34
33.405
36.796
14.805
1.00
25.97
C


ATOM
2087
CG
GLU
B
34
32.051
36.950
15.475
1.00
28.39
C


ATOM
2090
CD
GLU
B
34
32.105
37.759
16.760
1.00
27.69
C


ATOM
2091
OE1
GLU
B
34
33.218
38.084
17.241
1.00
30.00
O


ATOM
2092
OE2
GLU
B
34
31.022
38.035
17.307
1.00
31.59
O


ATOM
2093
C
GLU
B
34
34.880
35.631
13.204
1.00
26.05
C


ATOM
2094
O
GLU
B
34
35.688
34.754
13.521
1.00
25.50
O


ATOM
2096
N
GLU
B
35
35.169
36.610
12.350
1.00
26.10
N


ATOM
2097
CA
GLU
B
35
36.421
36.621
11.617
1.00
26.47
C


ATOM
2099
CB
GLU
B
35
36.548
37.894
10.778
1.00
26.61
C


ATOM
2102
CG
GLU
B
35
37.259
37.663
9.468
1.00
28.97
C


ATOM
2105
CD
GLU
B
35
36.542
36.625
8.620
1.00
30.96
C


ATOM
2106
OE1
GLU
B
35
35.299
36.497
8.718
1.00
30.65
O


ATOM
2107
OE2
GLU
B
35
37.235
35.911
7.880
1.00
33.64
O


ATOM
2108
C
GLU
B
35
37.609
36.506
12.563
1.00
26.29
C


ATOM
2109
O
GLU
B
35
37.685
37.214
13.567
1.00
26.48
O


ATOM
2111
N
MET
B
36
38.536
35.618
12.223
1.00
25.75
N


ATOM
2112
CA
MET
B
36
39.747
35.399
13.015
1.00
27.09
C


ATOM
2114
CB
MET
B
36
39.448
34.620
14.291
1.00
26.63
C


ATOM
2117
CG
MET
B
36
38.931
33.205
14.025
1.00
27.93
C


ATOM
2120
SD
MET
B
36
38.683
32.276
15.542
1.00
29.64
S


ATOM
2121
CE
MET
B
36
40.351
32.254
16.193
1.00
28.88
C


ATOM
2125
C
MET
B
36
40.717
34.595
12.168
1.00
26.57
C


ATOM
2126
O
MET
B
36
40.306
33.895
11.246
1.00
27.04
O


ATOM
2128
N
ASN
B
37
42.001
34.713
12.471
1.00
26.81
N


ATOM
2129
CA
ASN
B
37
43.012
33.923
11.791
1.00
26.83
C


ATOM
2131
CB
ASN
B
37
44.270
34.753
11.578
1.00
26.86
C


ATOM
2134
CG
ASN
B
37
44.036
35.894
10.620
1.00
26.61
C


ATOM
2135
OD1
ASN
B
37
44.414
37.032
10.886
1.00
27.12
O


ATOM
2136
ND2
ASN
B
37
43.360
35.602
9.516
1.00
25.12
N


ATOM
2139
C
ASN
B
37
43.318
32.655
12.566
1.00
27.63
C


ATOM
2140
O
ASN
B
37
43.761
32.712
13.713
1.00
28.34
O


ATOM
2142
N
LEU
B
38
43.010
31.516
11.952
1.00
28.09
N


ATOM
2143
CA
LEU
B
38
43.426
30.216
12.463
1.00
28.41
C


ATOM
2145
CB
LEU
B
38
42.219
29.270
12.510
1.00
28.75
C


ATOM
2148
CG
LEU
B
38
41.084
29.646
13.467
1.00
29.30
C


ATOM
2150
CD1
LEU
B
38
39.816
28.777
13.257
1.00
29.77
C


ATOM
2154
CD2
LEU
B
38
41.569
29.518
14.898
1.00
29.65
C


ATOM
2158
C
LEU
B
38
44.522
29.661
11.545
1.00
28.34
C


ATOM
2159
O
LEU
B
38
44.556
29.984
10.354
1.00
27.90
O


ATOM
2161
N
PRO
B
39
45.439
28.848
12.094
1.00
28.53
N


ATOM
2162
CA
PRO
B
39
46.499
28.284
11.263
1.00
28.82
C


ATOM
2164
CB
PRO
B
39
47.559
27.833
12.286
1.00
28.74
C


ATOM
2167
CG
PRO
B
39
47.046
28.255
13.640
1.00
28.92
C


ATOM
2170
CD
PRO
B
39
45.571
28.410
13.491
1.00
28.54
C


ATOM
2173
C
PRO
B
39
46.024
27.091
10.446
1.00
28.79
C


ATOM
2174
O
PRO
B
39
44.987
26.506
10.745
1.00
28.95
O


ATOM
2175
N
GLY
B
40
46.801
26.724
9.434
1.00
29.25
N


ATOM
2176
CA
GLY
B
40
46.522
25.529
8.648
1.00
29.37
C


ATOM
2179
C
GLY
B
40
45.665
25.830
7.434
1.00
29.12
C


ATOM
2180
O
GLY
B
40
45.217
26.956
7.236
1.00
28.93
O


ATOM
2182
N
ARG
B
41
45.476
24.820
6.593
1.00
29.31
N


ATOM
2183
CA
ARG
B
41
44.709
24.995
5.372
1.00
29.26
C


ATOM
2185
CB
ARG
B
41
44.826
23.753
4.479
1.00
29.55
C


ATOM
2194
C
ARG
B
41
43.253
25.263
5.739
1.00
29.05
C


ATOM
2195
O
ARG
B
41
42.766
24.832
6.789
1.00
29.31
O


ATOM
2197
N
TRP
B
42
42.575
26.040
4.907
1.00
28.38
N


ATOM
2198
CA
TRP
B
42
41.138
26.153
5.013
1.00
27.74
C


ATOM
2200
CB
TRP
B
42
40.721
27.516
5.578
1.00
27.80
C


ATOM
2203
CG
TRP
B
42
41.326
28.677
4.866
1.00
28.14
C


ATOM
2204
CD1
TRP
B
42
42.529
29.266
5.124
1.00
27.55
C


ATOM
2206
NE1
TRP
B
42
42.736
30.311
4.262
1.00
27.75
N


ATOM
2208
CE2
TRP
B
42
41.657
30.416
3.424
1.00
27.34
C


ATOM
2209
CD2
TRP
B
42
40.746
29.403
3.780
1.00
27.25
C


ATOM
2210
CE3
TRP
B
42
39.544
29.293
3.071
1.00
27.83
C


ATOM
2212
CZ3
TRP
B
42
39.291
30.189
2.055
1.00
27.07
C


ATOM
2214
CH2
TRP
B
42
40.219
31.182
1.719
1.00
27.79
C


ATOM
2216
CZ2
TRP
B
42
41.407
31.312
2.391
1.00
27.58
C


ATOM
2218
C
TRP
B
42
40.563
25.924
3.634
1.00
27.26
C


ATOM
2219
O
TRP
B
42
41.276
26.024
2.631
1.00
27.35
O


ATOM
2221
N
LYS
B
43
39.292
25.552
3.606
1.00
26.99
N


ATOM
2222
CA
LYS
B
43
38.532
25.427
2.377
1.00
26.76
C


ATOM
2224
CB
LYS
B
43
37.879
24.039
2.298
1.00
27.06
C


ATOM
2227
CG
LYS
B
43
38.756
22.911
2.842
1.00
27.96
C


ATOM
2230
CD
LYS
B
43
38.272
21.507
2.442
1.00
27.65
C


ATOM
2233
CE
LYS
B
43
39.379
20.465
2.670
1.00
29.03
C


ATOM
2236
NZ
LYS
B
43
39.193
19.151
1.976
1.00
28.05
N


ATOM
2240
C
LYS
B
43
37.460
26.513
2.375
1.00
26.19
C


ATOM
2241
O
LYS
B
43
36.813
26.747
3.397
1.00
25.81
O


ATOM
2243
N
PRO
B
44
37.271
27.193
1.228
1.00
25.62
N


ATOM
2244
CA
PRO
B
44
36.096
28.047
1.091
1.00
25.50
C


ATOM
2246
CB
PRO
B
44
36.197
28.600
−0.338
1.00
25.07
C


ATOM
2249
CG
PRO
B
44
37.552
28.283
−0.805
1.00
25.92
C


ATOM
2252
CD
PRO
B
44
38.103
27.170
0.013
1.00
25.23
C


ATOM
2255
C
PRO
B
44
34.845
27.202
1.206
1.00
25.40
C


ATOM
2256
O
PRO
B
44
34.807
26.107
0.667
1.00
25.45
O


ATOM
2257
N
LYS
B
45
33.830
27.712
1.886
1.00
26.29
N


ATOM
2258
CA
LYS
B
45
32.562
27.014
2.011
1.00
27.11
C


ATOM
2260
CB
LYS
B
45
32.530
26.223
3.317
1.00
27.53
C


ATOM
2263
CG
LYS
B
45
31.411
25.205
3.395
1.00
29.20
C


ATOM
2266
CD
LYS
B
45
31.144
24.771
4.832
1.00
29.40
C


ATOM
2269
CE
LYS
B
45
29.883
23.930
4.921
1.00
29.45
C


ATOM
2272
NZ
LYS
B
45
30.088
22.546
4.450
1.00
29.75
N


ATOM
2276
C
LYS
B
45
31.439
28.036
1.986
1.00
27.03
C


ATOM
2277
O
LYS
B
45
31.617
29.170
2.431
1.00
27.15
O


ATOM
2279
N
AMET
B
46
30.297
27.661
1.420
0.50
27.52
N


ATOM
2280
N
BMET
B
46
30.289
27.630
1.459
0.50
26.90
N


ATOM
2281
CA
AMET
B
46
29.102
28.493
1.525
0.50
28.13
C


ATOM
2282
CA
BMET
B
46
29.091
28.459
1.499
0.50
26.81
C


ATOM
2285
CB
AMET
B
46
28.512
28.797
0.147
0.50
28.30
C


ATOM
2286
CB
BMET
B
46
28.525
28.631
0.089
0.50
26.91
C


ATOM
2291
CG
AMET
B
46
29.308
29.824
−0.649
0.50
29.38
C


ATOM
2292
CG
BMET
B
46
29.519
29.226
−0.912
0.50
26.55
C


ATOM
2297
SD
AMET
B
46
28.371
30.538
−2.017
0.50
30.92
S


ATOM
2298
SD
BMET
B
46
29.962
30.949
−0.592
0.50
25.23
S


ATOM
2299
CE
AMET
B
46
27.322
31.697
−1.137
0.50
31.51
C


ATOM
2300
CE
BMET
B
46
28.366
31.731
−0.380
0.50
23.94
C


ATOM
2307
C
AMET
B
46
28.068
27.800
2.397
0.50
27.11
C


ATOM
2308
C
BMET
B
46
28.057
27.792
2.395
0.50
26.47
C


ATOM
2309
O
AMET
B
46
27.800
26.620
2.224
0.50
26.72
O


ATOM
2310
O
BMET
B
46
27.777
26.613
2.236
0.50
26.08
O


ATOM
2313
N
ILE
B
47
27.502
28.543
3.343
1.00
26.75
N


ATOM
2314
CA
ILE
B
47
26.464
28.022
4.227
1.00
26.18
C


ATOM
2316
CB
ILE
B
47
26.972
27.894
5.685
1.00
26.69
C


ATOM
2318
CG1
ILE
B
47
27.358
29.261
6.274
1.00
27.02
C


ATOM
2321
CD1
ILE
B
47
27.759
29.177
7.733
1.00
27.26
C


ATOM
2325
CG2
ILE
B
47
28.136
26.926
5.754
1.00
25.89
C


ATOM
2329
C
ILE
B
47
25.221
28.913
4.180
1.00
25.31
C


ATOM
2330
O
ILE
B
47
25.310
30.126
4.007
1.00
23.17
O


ATOM
2332
N
GLY
B
48
24.057
28.297
4.314
1.00
24.74
N


ATOM
2333
CA
GLY
B
48
22.804
29.038
4.261
1.00
25.92
C


ATOM
2336
C
GLY
B
48
22.178
29.169
5.627
1.00
25.71
C


ATOM
2337
O
GLY
B
48
22.387
28.320
6.496
1.00
26.95
O


ATOM
2339
N
GLY
B
49
21.377
30.211
5.806
1.00
25.41
N


ATOM
2340
CA
GLY
B
49
20.525
30.303
6.982
1.00
25.18
C


ATOM
2343
C
GLY
B
49
19.440
31.346
6.821
1.00
24.70
C


ATOM
2344
O
GLY
B
49
19.292
31.941
5.748
1.00
24.48
O


ATOM
2346
N
ILE
B
50
18.692
31.554
7.901
1.00
24.00
N


ATOM
2347
CA
ILE
B
50
17.767
32.680
8.020
1.00
23.79
C


ATOM
2349
CB
ILE
B
50
17.137
32.737
9.434
1.00
23.46
C


ATOM
2351
CG1
ILE
B
50
15.900
31.836
9.480
1.00
23.01
C


ATOM
2354
CD1
ILE
B
50
15.094
31.940
10.755
1.00
23.01
C


ATOM
2358
CG2
ILE
B
50
16.776
34.172
9.827
1.00
24.09
C


ATOM
2362
C
ILE
B
50
18.489
33.989
7.674
1.00
23.68
C


ATOM
2363
O
ILE
B
50
19.481
34.356
8.307
1.00
24.46
O


ATOM
2365
N
GLY
B
51
18.009
34.658
6.631
1.00
23.47
N


ATOM
2366
CA
GLY
B
51
18.723
35.776
6.043
1.00
23.28
C


ATOM
2369
C
GLY
B
51
19.245
35.417
4.666
1.00
23.30
C


ATOM
2370
O
GLY
B
51
18.968
36.115
3.699
1.00
24.68
O


ATOM
2372
N
GLY
B
52
19.975
34.315
4.563
1.00
23.16
N


ATOM
2373
CA
GLY
B
52
20.556
33.907
3.281
1.00
23.10
C


ATOM
2376
C
GLY
B
52
21.826
33.068
3.380
1.00
22.81
C


ATOM
2377
O
GLY
B
52
22.090
32.442
4.410
1.00
23.46
O


ATOM
2379
N
PHE
B
53
22.585
33.050
2.284
1.00
21.96
N


ATOM
2380
CA
PHE
B
53
23.777
32.218
2.126
1.00
22.17
C


ATOM
2382
CB
PHE
B
53
23.784
31.599
0.721
1.00
21.72
C


ATOM
2385
CG
PHE
B
53
23.562
30.113
0.699
1.00
22.04
C


ATOM
2386
CD1
PHE
B
53
22.280
29.586
0.630
1.00
23.02
C


ATOM
2388
CE1
PHE
B
53
22.075
28.210
0.579
1.00
22.89
C


ATOM
2390
CZ
PHE
B
53
23.164
27.353
0.570
1.00
22.66
C


ATOM
2392
CE2
PHE
B
53
24.449
27.874
0.617
1.00
22.65
C


ATOM
2394
CD2
PHE
B
53
24.639
29.243
0.670
1.00
22.77
C


ATOM
2396
C
PHE
B
53
25.044
33.063
2.300
1.00
21.61
C


ATOM
2397
O
PHE
B
53
25.188
34.086
1.640
1.00
22.23
O


ATOM
2399
N
ILE
B
54
25.955
32.649
3.178
1.00
20.80
N


ATOM
2400
CA
ILE
B
54
27.197
33.392
3.390
1.00
19.84
C


ATOM
2402
CB
ILE
B
54
27.345
33.888
4.855
1.00
19.39
C


ATOM
2404
CG1
ILE
B
54
27.384
32.706
5.829
1.00
20.93
C


ATOM
2407
CD1
ILE
B
54
27.886
33.070
7.209
1.00
19.30
C


ATOM
2411
CG2
ILE
B
54
26.218
34.858
5.218
1.00
21.15
C


ATOM
2415
C
ILE
B
54
28.416
32.544
3.038
1.00
19.21
C


ATOM
2416
O
ILE
B
54
28.371
31.308
3.101
1.00
18.40
O


ATOM
2418
N
LYS
B
55
29.502
33.222
2.685
1.00
17.72
N


ATOM
2419
CA
LYS
B
55
30.780
32.563
2.518
1.00
18.97
C


ATOM
2421
CB
LYS
B
55
31.661
33.265
1.482
1.00
19.33
C


ATOM
2428
C
LYS
B
55
31.511
32.501
3.853
1.00
19.09
C


ATOM
2429
O
LYS
B
55
31.604
33.479
4.594
1.00
18.47
O


ATOM
2431
N
VAL
B
56
32.069
31.335
4.107
1.00
20.73
N


ATOM
2432
CA
VAL
B
56
32.852
31.092
5.303
1.00
21.27
C


ATOM
2434
CB
VAL
B
56
32.052
30.247
6.309
1.00
21.79
C


ATOM
2436
CG1
VAL
B
56
30.884
31.051
6.888
1.00
21.14
C


ATOM
2440
CG2
VAL
B
56
31.552
28.967
5.655
1.00
21.90
C


ATOM
2444
C
VAL
B
56
34.136
30.383
4.911
1.00
22.55
C


ATOM
2445
O
VAL
B
56
34.291
29.906
3.778
1.00
22.41
O


ATOM
2447
N
ARG
B
57
35.065
30.314
5.857
1.00
23.55
N


ATOM
2448
CA
ARG
B
57
36.279
29.539
5.682
1.00
24.34
C


ATOM
2450
CB
ARG
B
57
37.507
30.375
5.993
1.00
24.11
C


ATOM
2453
CG
ARG
B
57
37.647
31.586
5.089
1.00
26.70
C


ATOM
2456
CD
ARG
B
57
39.034
32.187
5.197
1.00
26.20
C


ATOM
2459
NE
ARG
B
57
39.433
32.371
6.586
1.00
30.00
N


ATOM
2461
CZ
ARG
B
57
39.298
33.507
7.270
1.00
32.35
C


ATOM
2462
NH1
ARG
B
57
38.776
34.582
6.699
1.00
32.78
N


ATOM
2465
NH2
ARG
B
57
39.687
33.574
8.537
1.00
32.60
N


ATOM
2468
C
ARG
B
57
36.197
28.381
6.649
1.00
24.82
C


ATOM
2469
O
ARG
B
57
35.881
28.579
7.830
1.00
23.58
O


ATOM
2471
N
GLN
B
58
36.425
27.178
6.123
1.00
25.04
N


ATOM
2472
CA
GLN
B
58
36.275
25.948
6.895
1.00
25.92
C


ATOM
2474
CB
GLN
B
58
35.577
24.858
6.069
1.00
25.42
C


ATOM
2477
CG
GLN
B
58
35.487
23.515
6.789
1.00
26.50
C


ATOM
2480
CD
GLN
B
58
34.679
22.482
6.029
1.00
27.48
C


ATOM
2481
OE1
GLN
B
58
33.886
22.824
5.159
1.00
30.48
O


ATOM
2482
NE2
GLN
B
58
34.917
21.204
6.320
1.00
27.91
N


ATOM
2485
C
GLN
B
58
37.633
25.452
7.363
1.00
25.42
C


ATOM
2486
O
GLN
B
58
38.509
25.164
6.549
1.00
25.36
O


ATOM
2488
N
TYR
B
59
37.791
25.369
8.679
1.00
26.03
N


ATOM
2489
CA
TYR
B
59
38.994
24.844
9.300
1.00
26.70
C


ATOM
2491
CB
TYR
B
59
39.522
25.840
10.329
1.00
28.22
C


ATOM
2494
CG
TYR
B
59
40.050
27.133
9.748
1.00
28.43
C


ATOM
2495
CD1
TYR
B
59
39.213
28.216
9.519
1.00
28.69
C


ATOM
2497
CE1
TYR
B
59
39.698
29.395
8.971
1.00
27.51
C


ATOM
2499
CZ
TYR
B
59
41.041
29.514
8.701
1.00
30.03
C


ATOM
2500
OH
TYR
B
59
41.575
30.677
8.184
1.00
31.05
O


ATOM
2502
CE2
TYR
B
59
41.887
28.456
8.941
1.00
31.02
C


ATOM
2504
CD2
TYR
B
59
41.391
27.283
9.464
1.00
29.87
C


ATOM
2506
C
TYR
B
59
38.663
23.518
9.975
1.00
26.65
C


ATOM
2507
O
TYR
B
59
37.762
23.436
10.815
1.00
27.11
O


ATOM
2509
N
ASP
B
60
39.388
22.470
9.619
1.00
25.99
N


ATOM
2510
CA
ASP
B
60
39.101
21.150
10.176
1.00
26.15
C


ATOM
2512
CB
ASP
B
60
39.172
20.099
9.069
1.00
26.32
C


ATOM
2515
CG
ASP
B
60
38.035
20.232
8.069
1.00
27.66
C


ATOM
2516
OD1
ASP
B
60
36.901
20.539
8.499
1.00
31.18
O


ATOM
2517
OD2
ASP
B
60
38.266
20.047
6.853
1.00
28.05
O


ATOM
2518
C
ASP
B
60
40.038
20.820
11.343
1.00
25.59
C


ATOM
2519
O
ASP
B
60
41.151
21.329
11.411
1.00
25.79
O


ATOM
2521
N
GLN
B
61
39.568
20.006
12.285
1.00
25.11
N


ATOM
2522
CA
GLN
B
61
40.425
19.431
13.324
1.00
25.17
C


ATOM
2524
CB
GLN
B
61
41.471
18.503
12.699
1.00
25.57
C


ATOM
2527
CG
GLN
B
61
40.868
17.263
12.089
1.00
28.76
C


ATOM
2530
CD
GLN
B
61
40.107
16.442
13.114
1.00
33.04
C


ATOM
2531
OE1
GLN
B
61
40.509
16.368
14.274
1.00
35.63
O


ATOM
2532
NE2
GLN
B
61
38.997
15.834
12.696
1.00
36.23
N


ATOM
2535
C
GLN
B
61
41.089
20.489
14.212
1.00
24.97
C


ATOM
2536
O
GLN
B
61
42.273
20.420
14.526
1.00
23.85
O


ATOM
2538
N
ILE
B
62
40.279
21.447
14.639
1.00
24.81
N


ATOM
2539
CA
ILE
B
62
40.727
22.570
15.440
1.00
25.66
C


ATOM
2541
CB
ILE
B
62
40.018
23.863
14.989
1.00
25.45
C


ATOM
2543
CG1
ILE
B
62
40.382
24.193
13.540
1.00
26.97
C


ATOM
2546
CD1
ILE
B
62
41.840
24.602
13.321
1.00
27.30
C


ATOM
2550
CG2
ILE
B
62
40.360
25.008
15.903
1.00
26.92
C


ATOM
2554
C
ILE
B
62
40.399
22.301
16.911
1.00
25.52
C


ATOM
2555
O
ILE
B
62
39.254
22.014
17.249
1.00
25.40
O


ATOM
2557
N
PRO
B
63
41.414
22.363
17.786
1.00
25.71
N


ATOM
2558
CA
PRO
B
63
41.111
22.227
19.200
1.00
25.15
C


ATOM
2560
CB
PRO
B
63
42.486
22.115
19.873
1.00
24.92
C


ATOM
2563
CG
PRO
B
63
43.481
22.038
18.794
1.00
26.82
C


ATOM
2566
CD
PRO
B
63
42.854
22.537
17.535
1.00
25.27
C


ATOM
2569
C
PRO
B
63
40.394
23.458
19.732
1.00
25.69
C


ATOM
2570
O
PRO
B
63
40.845
24.590
19.510
1.00
22.98
O


ATOM
2571
N
ILE
B
64
39.323
23.217
20.476
1.00
26.08
N


ATOM
2572
CA
ILE
B
64
38.607
24.289
21.138
1.00
27.90
C


ATOM
2574
CB
ILE
B
64
37.450
24.784
20.267
1.00
27.54
C


ATOM
2576
CG1
ILE
B
64
36.697
25.929
20.936
1.00
28.95
C


ATOM
2579
CD1
ILE
B
64
35.620
26.473
20.012
1.00
31.14
C


ATOM
2583
CG2
ILE
B
64
36.500
23.680
19.952
1.00
31.86
C


ATOM
2587
C
ILE
B
64
38.130
23.815
22.505
1.00
27.94
C


ATOM
2588
O
ILE
B
64
37.689
22.677
22.661
1.00
28.28
O


ATOM
2590
N
GLU
B
65
38.333
24.663
23.509
1.00
27.23
N


ATOM
2591
CA
GLU
B
65
37.942
24.352
24.859
1.00
27.95
C


ATOM
2593
CB
GLU
B
65
39.083
24.673
25.814
1.00
27.83
C


ATOM
2596
CG
GLU
B
65
38.791
24.314
27.251
1.00
30.44
C


ATOM
2599
CD
GLU
B
65
39.919
24.721
28.172
1.00
30.29
C


ATOM
2600
OE1
GLU
B
65
41.040
24.215
27.960
1.00
31.65
O


ATOM
2601
OE2
GLU
B
65
39.685
25.559
29.077
1.00
36.00
O


ATOM
2602
C
GLU
B
65
36.708
25.169
25.212
1.00
27.00
C


ATOM
2603
O
GLU
B
65
36.745
26.397
25.194
1.00
26.15
O


ATOM
2605
N
ILE
B
66
35.621
24.473
25.527
1.00
26.22
N


ATOM
2606
CA
ILE
B
66
34.322
25.098
25.707
1.00
25.86
C


ATOM
2608
CB
ILE
B
66
33.274
24.443
24.768
1.00
25.34
C


ATOM
2610
CG1
ILE
B
66
33.743
24.530
23.311
1.00
26.31
C


ATOM
2613
CD1
ILE
B
66
33.115
23.506
22.396
1.00
26.62
C


ATOM
2617
CG2
ILE
B
66
31.924
25.093
24.945
1.00
26.12
C


ATOM
2621
C
ILE
B
66
33.907
24.968
27.164
1.00
25.71
C


ATOM
2622
O
ILE
B
66
33.596
23.877
27.632
1.00
24.58
O


ATOM
2624
N
CYS
B
67
33.979
26.070
27.903
1.00
26.96
N


ATOM
2625
CA
CYS
B
67
33.583
26.052
29.296
1.00
27.47
C


ATOM
2627
CB
CYS
B
67
32.077
25.763
29.358
1.00
27.72
C


ATOM
2630
SG
CYS
B
67
31.214
26.497
30.707
1.00
31.34
S


ATOM
2632
C
CYS
B
67
34.394
24.980
30.041
1.00
27.36
C


ATOM
2633
O
CYS
B
67
33.856
24.237
30.865
1.00
27.49
O


ATOM
2635
N
GLY
B
68
35.677
24.851
29.700
1.00
26.97
N


ATOM
2636
CA
GLY
B
68
36.537
23.837
30.325
1.00
27.16
C


ATOM
2639
C
GLY
B
68
36.546
22.451
29.688
1.00
27.48
C


ATOM
2640
O
GLY
B
68
37.407
21.630
30.011
1.00
27.86
O


ATOM
2642
N
HIS
B
69
35.628
22.200
28.757
1.00
27.55
N


ATOM
2643
CA
HIS
B
69
35.537
20.905
28.074
1.00
27.59
C


ATOM
2645
CB
HIS
B
69
34.072
20.504
27.941
1.00
27.62
C


ATOM
2648
CG
HIS
B
69
33.432
20.127
29.238
1.00
25.27
C


ATOM
2649
ND1
HIS
B
69
33.089
18.830
29.546
1.00
24.65
N


ATOM
2651
CE1
HIS
B
69
32.573
18.790
30.763
1.00
25.16
C


ATOM
2653
NE2
HIS
B
69
32.583
20.013
31.262
1.00
24.41
N


ATOM
2655
CD2
HIS
B
69
33.108
20.870
30.324
1.00
28.01
C


ATOM
2657
C
HIS
B
69
36.207
20.909
26.695
1.00
27.94
C


ATOM
2658
O
HIS
B
69
35.886
21.738
25.848
1.00
29.53
O


ATOM
2660
N
LYS
B
70
37.113
19.962
26.455
1.00
27.88
N


ATOM
2661
CA
LYS
B
70
37.903
19.933
25.218
1.00
27.95
C


ATOM
2663
CB
LYS
B
70
39.212
19.167
25.432
1.00
28.28
C


ATOM
2666
CG
LYS
B
70
40.237
19.881
26.303
1.00
28.86
C


ATOM
2669
CD
LYS
B
70
41.441
18.975
26.589
1.00
29.11
C


ATOM
2672
CE
LYS
B
70
42.534
19.699
27.354
1.00
30.19
C


ATOM
2675
NZ
LYS
B
70
43.368
18.766
28.185
1.00
32.28
N


ATOM
2679
C
LYS
B
70
37.165
19.308
24.030
1.00
28.37
C


ATOM
2680
O
LYS
B
70
36.628
18.201
24.123
1.00
28.38
O


ATOM
2682
N
ALA
B
71
37.174
20.018
22.899
1.00
28.07
N


ATOM
2683
CA
ALA
B
71
36.751
19.470
21.613
1.00
27.27
C


ATOM
2685
CB
ALA
B
71
35.443
20.135
21.157
1.00
27.81
C


ATOM
2689
C
ALA
B
71
37.843
19.669
20.562
1.00
27.26
C


ATOM
2690
O
ALA
B
71
38.677
20.574
20.671
1.00
25.37
O


ATOM
2692
N
ILE
B
72
37.828
18.813
19.543
1.00
26.82
N


ATOM
2693
CA
ILE
B
72
38.668
18.993
18.355
1.00
26.50
C


ATOM
2695
CB
ILE
B
72
39.864
18.035
18.317
1.00
26.21
C


ATOM
2697
CG1
ILE
B
72
40.633
18.051
19.639
1.00
25.71
C


ATOM
2700
CD1
ILE
B
72
41.610
16.908
19.792
1.00
27.08
C


ATOM
2704
CG2
ILE
B
72
40.776
18.381
17.138
1.00
25.53
C


ATOM
2708
C
ILE
B
72
37.798
18.707
17.134
1.00
26.71
C


ATOM
2709
O
ILE
B
72
37.361
17.576
16.935
1.00
27.16
O


ATOM
2711
N
GLY
B
73
37.531
19.735
16.336
1.00
25.89
N


ATOM
2712
CA
GLY
B
73
36.516
19.617
15.314
1.00
26.68
C


ATOM
2715
C
GLY
B
73
36.519
20.742
14.304
1.00
26.13
C


ATOM
2716
O
GLY
B
73
37.421
21.569
14.278
1.00
25.69
O


ATOM
2718
N
THR
B
74
35.495
20.749
13.463
1.00
27.28
N


ATOM
2719
CA
THR
B
74
35.419
21.675
12.328
1.00
28.23
C


ATOM
2721
CB
THR
B
74
34.540
21.079
11.212
1.00
28.57
C


ATOM
2723
OG1
THR
B
74
35.171
19.891
10.715
1.00
28.73
O


ATOM
2725
CG2
THR
B
74
34.332
22.065
10.043
1.00
28.38
C


ATOM
2729
C
THR
B
74
34.875
23.011
12.822
1.00
28.11
C


ATOM
2730
O
THR
B
74
33.878
23.051
13.536
1.00
27.25
O


ATOM
2732
N
VAL
B
75
35.584
24.088
12.494
1.00
28.17
N


ATOM
2733
CA
VAL
B
75
35.169
25.439
12.823
1.00
28.56
C


ATOM
2735
CB
VAL
B
75
36.199
26.111
13.764
1.00
28.96
C


ATOM
2737
CG1
VAL
B
75
35.982
27.599
13.818
1.00
31.83
C


ATOM
2741
CG2
VAL
B
75
36.135
25.509
15.161
1.00
29.84
C


ATOM
2745
C
VAL
B
75
35.038
26.250
11.526
1.00
28.12
C


ATOM
2746
O
VAL
B
75
35.963
26.291
10.705
1.00
28.89
O


ATOM
2748
N
LEU
B
76
33.873
26.861
11.332
1.00
27.01
N


ATOM
2749
CA
LEU
B
76
33.651
27.771
10.222
1.00
26.32
C


ATOM
2751
CB
LEU
B
76
32.231
27.603
9.668
1.00
26.00
C


ATOM
2754
CG
LEU
B
76
31.850
26.163
9.332
1.00
26.37
C


ATOM
2756
CD1
LEU
B
76
30.388
26.066
8.917
1.00
24.76
C


ATOM
2760
CD2
LEU
B
76
32.809
25.600
8.247
1.00
26.83
C


ATOM
2764
C
LEU
B
76
33.878
29.213
10.702
1.00
26.04
C


ATOM
2765
O
LEU
B
76
33.404
29.596
11.775
1.00
27.41
O


ATOM
2767
N
VAL
B
77
34.657
29.974
9.941
1.00
24.11
N


ATOM
2768
CA
VAL
B
77
34.943
31.381
10.254
1.00
23.31
C


ATOM
2770
CB
VAL
B
77
36.471
31.635
10.366
1.00
23.53
C


ATOM
2772
CG1
VAL
B
77
36.773
33.099
10.663
1.00
23.57
C


ATOM
2776
CG2
VAL
B
77
37.067
30.772
11.446
1.00
23.50
C


ATOM
2780
C
VAL
B
77
34.316
32.272
9.174
1.00
24.07
C


ATOM
2781
O
VAL
B
77
34.517
32.066
7.976
1.00
22.45
O


ATOM
2783
N
GLY
B
78
33.490
33.213
9.616
1.00
24.33
N


ATOM
2784
CA
GLY
B
78
32.848
34.144
8.725
1.00
24.88
C


ATOM
2787
C
GLY
B
78
31.946
35.111
9.463
1.00
25.40
C


ATOM
2788
O
GLY
B
78
31.894
35.109
10.704
1.00
24.67
O


ATOM
2790
N
PRO
B
79
31.203
35.923
8.697
1.00
26.37
N


ATOM
2791
CA
PRO
B
79
30.348
37.004
9.207
1.00
27.09
C


ATOM
2793
CB
PRO
B
79
29.999
37.786
7.939
1.00
27.10
C


ATOM
2796
CG
PRO
B
79
30.023
36.745
6.854
1.00
26.69
C


ATOM
2799
CD
PRO
B
79
31.116
35.797
7.230
1.00
26.39
C


ATOM
2802
C
PRO
B
79
29.072
36.513
9.902
1.00
27.82
C


ATOM
2803
O
PRO
B
79
28.031
36.397
9.280
1.00
29.09
O


ATOM
2804
N
THR
B
80
29.138
36.274
11.203
1.00
29.11
N


ATOM
2805
CA
THR
B
80
27.974
35.780
11.931
1.00
28.76
C


ATOM
2807
CB
THR
B
80
28.286
34.417
12.591
1.00
28.72
C


ATOM
2809
OG1
THR
B
80
27.185
33.981
13.407
1.00
27.11
O


ATOM
2811
CG2
THR
B
80
29.583
34.489
13.412
1.00
29.65
C


ATOM
2815
C
THR
B
80
27.546
36.848
12.932
1.00
29.30
C


ATOM
2816
O
THR
B
80
28.387
37.612
13.409
1.00
29.19
O


ATOM
2818
N
PRO
B
81
26.236
36.934
13.242
1.00
29.17
N


ATOM
2819
CA
PRO
B
81
25.846
37.895
14.279
1.00
29.05
C


ATOM
2821
CB
PRO
B
81
24.334
37.694
14.411
1.00
28.63
C


ATOM
2824
CG
PRO
B
81
23.921
36.944
13.202
1.00
29.03
C


ATOM
2827
CD
PRO
B
81
25.086
36.163
12.733
1.00
29.48
C


ATOM
2830
C
PRO
B
81
26.526
37.640
15.630
1.00
28.60
C


ATOM
2831
O
PRO
B
81
26.684
38.560
16.422
1.00
27.43
O


ATOM
2832
N
VAL
B
82
26.886
36.385
15.890
1.00
28.53
N


ATOM
2833
CA
VAL
B
82
27.429
35.967
17.177
1.00
28.05
C


ATOM
2835
CB
VAL
B
82
26.295
35.701
18.206
1.00
28.72
C


ATOM
2837
CG1
VAL
B
82
25.336
34.637
17.694
1.00
29.60
C


ATOM
2841
CG2
VAL
B
82
26.872
35.277
19.550
1.00
29.66
C


ATOM
2845
C
VAL
B
82
28.218
34.677
16.976
1.00
27.20
C


ATOM
2846
O
VAL
B
82
27.909
33.902
16.065
1.00
26.52
O


ATOM
2848
N
ASN
B
83
29.217
34.442
17.827
1.00
25.88
N


ATOM
2849
CA
ASN
B
83
29.985
33.201
17.779
1.00
25.95
C


ATOM
2851
CB
ASN
B
83
31.171
33.241
18.746
1.00
25.17
C


ATOM
2854
CG
ASN
B
83
32.280
34.183
18.302
1.00
26.98
C


ATOM
2855
OD1
ASN
B
83
32.622
34.254
17.114
1.00
29.10
O


ATOM
2856
ND2
ASN
B
83
32.883
34.881
19.266
1.00
22.37
N


ATOM
2859
C
ASN
B
83
29.030
32.093
18.175
1.00
25.74
C


ATOM
2860
O
ASN
B
83
28.306
32.243
19.150
1.00
26.26
O


ATOM
2862
N
ILE
B
84
29.010
31.007
17.406
1.00
27.00
N


ATOM
2863
CA
ILE
B
84
28.014
29.935
17.538
1.00
26.90
C


ATOM
2865
CB
ILE
B
84
27.129
29.863
16.279
1.00
27.19
C


ATOM
2867
CG1
ILE
B
84
26.161
31.049
16.241
1.00
27.40
C


ATOM
2870
CD1
ILE
B
84
25.613
31.328
14.859
1.00
29.05
C


ATOM
2874
CG2
ILE
B
84
26.380
28.540
16.202
1.00
27.16
C


ATOM
2878
C
ILE
B
84
28.706
28.587
17.718
1.00
27.21
C


ATOM
2879
O
ILE
B
84
29.450
28.140
16.844
1.00
26.20
O


ATOM
2881
N
ILE
B
85
28.470
27.954
18.867
1.00
26.59
N


ATOM
2882
CA
ILE
B
85
28.862
26.569
19.062
1.00
26.04
C


ATOM
2884
CB
ILE
B
85
29.295
26.295
20.491
1.00
25.35
C


ATOM
2886
CG1
ILE
B
85
30.340
27.314
20.923
1.00
25.15
C


ATOM
2889
CD1
ILE
B
85
31.593
27.339
20.019
1.00
28.04
C


ATOM
2893
CG2
ILE
B
85
29.811
24.855
20.629
1.00
28.27
C


ATOM
2897
C
ILE
B
85
27.701
25.665
18.672
1.00
25.99
C


ATOM
2898
O
ILE
B
85
26.674
25.600
19.356
1.00
26.09
O


ATOM
2900
N
GLY
B
86
27.889
24.944
17.571
1.00
26.39
N


ATOM
2901
CA
GLY
B
86
26.873
24.032
17.071
1.00
26.02
C


ATOM
2904
C
GLY
B
86
27.032
22.575
17.471
1.00
25.89
C


ATOM
2905
O
GLY
B
86
27.939
22.201
18.217
1.00
26.68
O


ATOM
2907
N
ARG
B
87
26.127
21.746
16.968
1.00
25.80
N


ATOM
2908
CA
ARG
B
87
26.005
20.372
17.429
1.00
26.04
C


ATOM
2910
CB
ARG
B
87
24.783
19.702
16.790
1.00
26.31
C


ATOM
2913
CG
ARG
B
87
23.453
20.219
17.342
1.00
26.44
C


ATOM
2916
CD
ARG
B
87
22.250
19.457
16.809
1.00
26.97
C


ATOM
2919
NE
ARG
B
87
22.204
19.441
15.344
1.00
28.08
N


ATOM
2921
CZ
ARG
B
87
22.582
18.410
14.587
1.00
30.48
C


ATOM
2922
NH1
ARG
B
87
23.066
17.296
15.123
1.00
28.02
N


ATOM
2925
NH2
ARG
B
87
22.524
18.516
13.269
1.00
31.63
N


ATOM
2928
C
ARG
B
87
27.270
19.541
17.202
1.00
26.14
C


ATOM
2929
O
ARG
B
87
27.548
18.613
17.961
1.00
26.89
O


ATOM
2931
N
ASN
B
88
28.028
19.854
16.161
1.00
25.86
N


ATOM
2932
CA
ASN
B
88
29.251
19.109
15.887
1.00
26.55
C


ATOM
2934
CB
ASN
B
88
29.933
19.629
14.612
1.00
25.71
C


ATOM
2937
CG
ASN
B
88
30.626
20.960
14.803
1.00
28.29
C


ATOM
2938
OD1
ASN
B
88
30.035
21.919
15.312
1.00
26.22
O


ATOM
2939
ND2
ASN
B
88
31.876
21.044
14.332
1.00
26.83
N


ATOM
2942
C
ASN
B
88
30.211
19.128
17.078
1.00
26.40
C


ATOM
2943
O
ASN
B
88
30.930
18.154
17.300
1.00
26.90
O


ATOM
2945
N
LEU
B
89
30.245
20.236
17.822
1.00
26.30
N


ATOM
2946
CA
LEU
B
89
31.095
20.330
19.013
1.00
26.32
C


ATOM
2948
CB
LEU
B
89
31.790
21.688
19.093
1.00
26.14
C


ATOM
2951
CG
LEU
B
89
32.697
22.043
17.908
1.00
25.61
C


ATOM
2953
CD1
LEU
B
89
33.520
23.283
18.204
1.00
28.00
C


ATOM
2957
CD2
LEU
B
89
33.588
20.893
17.507
1.00
27.40
C


ATOM
2961
C
LEU
B
89
30.339
20.073
20.309
1.00
26.43
C


ATOM
2962
O
LEU
B
89
30.924
19.621
21.289
1.00
25.92
O


ATOM
2964
N
LEU
B
90
29.055
20.409
20.327
1.00
26.62
N


ATOM
2965
CA
LEU
B
90
28.227
20.166
21.508
1.00
26.51
C


ATOM
2967
CB
LEU
B
90
26.832
20.718
21.293
1.00
26.55
C


ATOM
2970
CG
LEU
B
90
26.707
22.235
21.240
1.00
26.72
C


ATOM
2972
CD1
LEU
B
90
25.266
22.611
21.020
1.00
27.88
C


ATOM
2976
CD2
LEU
B
90
27.204
22.839
22.522
1.00
28.08
C


ATOM
2980
C
LEU
B
90
28.157
18.686
21.881
1.00
25.96
C


ATOM
2981
O
LEU
B
90
28.174
18.321
23.066
1.00
25.16
O


ATOM
2983
N
THR
B
91
28.109
17.845
20.851
1.00
25.78
N


ATOM
2984
CA
THR
B
91
28.145
16.416
21.037
1.00
25.23
C


ATOM
2986
CB
THR
B
91
27.869
15.664
19.737
1.00
25.56
C


ATOM
2988
OG1
THR
B
91
28.759
16.112
18.701
1.00
25.01
O


ATOM
2990
CG2
THR
B
91
26.426
15.871
19.342
1.00
26.81
C


ATOM
2994
C
THR
B
91
29.483
15.987
21.598
1.00
25.96
C


ATOM
2995
O
THR
B
91
29.525
15.143
22.483
1.00
25.74
O


ATOM
2997
N
GLN
B
92
30.564
16.616
21.148
1.00
25.79
N


ATOM
2998
CA
GLN
B
92
31.888
16.267
21.664
1.00
26.04
C


ATOM
3000
CB
GLN
B
92
32.995
17.012
20.915
1.00
25.47
C


ATOM
3003
CG
GLN
B
92
33.261
16.424
19.544
1.00
26.50
C


ATOM
3006
CD
GLN
B
92
34.597
16.856
18.972
1.00
26.87
C


ATOM
3007
OE1
GLN
B
92
35.535
17.163
19.719
1.00
25.48
O


ATOM
3008
NE2
GLN
B
92
34.678
16.925
17.645
1.00
25.06
N


ATOM
3011
C
GLN
B
92
32.007
16.508
23.166
1.00
26.53
C


ATOM
3012
O
GLN
B
92
32.626
15.709
23.867
1.00
26.04
O


ATOM
3014
N
ILE
B
93
31.377
17.566
23.673
1.00
25.67
N


ATOM
3015
CA
ILE
B
93
31.508
17.887
25.092
1.00
26.51
C


ATOM
3017
CB
ILE
B
93
31.578
19.414
25.308
1.00
26.87
C


ATOM
3019
CG1
ILE
B
93
30.273
20.090
24.893
1.00
27.09
C


ATOM
3022
CD1
ILE
B
93
30.248
21.575
25.210
1.00
27.45
C


ATOM
3026
CG2
ILE
B
93
32.759
20.021
24.511
1.00
26.00
C


ATOM
3030
C
ILE
B
93
30.402
17.259
25.965
1.00
26.77
C


ATOM
3031
O
ILE
B
93
30.297
17.554
27.157
1.00
27.75
O


ATOM
3033
N
GLY
B
94
29.571
16.408
25.375
1.00
26.21
N


ATOM
3034
CA
GLY
B
94
28.584
15.652
26.149
1.00
26.50
C


ATOM
3037
C
GLY
B
94
27.316
16.436
26.442
1.00
26.79
C


ATOM
3038
O
GLY
B
94
26.573
16.125
27.378
1.00
25.37
O


ATOM
3040
N
CYS
B
95
27.056
17.448
25.631
1.00
27.64
N


ATOM
3041
CA
CYS
B
95
25.933
18.341
25.884
1.00
28.31
C


ATOM
3043
CB
CYS
B
95
26.179
19.707
25.234
1.00
28.88
C


ATOM
3046
SG
CYS
B
95
24.991
20.943
25.743
1.00
32.45
S


ATOM
3048
C
CYS
B
95
24.620
17.711
25.423
1.00
27.72
C


ATOM
3049
O
CYS
B
95
24.555
17.117
24.350
1.00
28.58
O


ATOM
3051
N
THR
B
96
23.617
17.735
26.303
1.00
27.31
N


ATOM
3052
CA
THR
B
96
22.267
17.308
25.978
1.00
26.13
C


ATOM
3054
CB
THR
B
96
21.915
15.974
26.683
1.00
26.57
C


ATOM
3056
OG1
THR
B
96
21.952
16.160
28.103
1.00
24.28
O


ATOM
3058
CG2
THR
B
96
22.909
14.860
26.302
1.00
27.64
C


ATOM
3062
C
THR
B
96
21.247
18.361
26.419
1.00
26.37
C


ATOM
3063
O
THR
B
96
21.534
19.239
27.240
1.00
25.66
O


ATOM
3065
N
LEU
B
97
20.041
18.249
25.875
1.00
26.34
N


ATOM
3066
CA
LEU
B
97
18.909
19.031
26.333
1.00
26.12
C


ATOM
3068
CB
LEU
B
97
18.060
19.470
25.154
1.00
26.26
C


ATOM
3071
CG
LEU
B
97
18.544
20.632
24.312
1.00
27.02
C


ATOM
3073
CD1
LEU
B
97
17.807
20.574
22.975
1.00
26.63
C


ATOM
3077
CD2
LEU
B
97
18.251
21.951
25.057
1.00
27.89
C


ATOM
3081
C
LEU
B
97
18.038
18.172
27.243
1.00
26.14
C


ATOM
3082
O
LEU
B
97
17.867
16.989
26.998
1.00
25.11
O


ATOM
3084
N
ASN
B
98
17.498
18.781
28.287
1.00
25.93
N


ATOM
3085
CA
ASN
B
98
16.704
18.066
29.273
1.00
26.90
C


ATOM
3087
CB
ASN
B
98
17.570
17.667
30.470
1.00
26.87
C


ATOM
3090
CG
ASN
B
98
18.810
16.867
30.060
1.00
28.22
C


ATOM
3091
OD1
ASN
B
98
18.808
15.640
30.112
1.00
31.52
O


ATOM
3092
ND2
ASN
B
98
19.851
17.555
29.616
1.00
26.96
N


ATOM
3095
C
ASN
B
98
15.536
18.930
29.726
1.00
27.18
C


ATOM
3096
O
ASN
B
98
15.684
20.129
29.932
1.00
25.99
O


ATOM
3098
N
PHE
B
99
14.360
18.326
29.816
1.00
28.59
N


ATOM
3099
CA
PHE
B
99
13.240
18.946
30.508
1.00
30.19
C


ATOM
3101
CB
PHE
B
99
12.430
19.856
29.572
1.00
31.41
C


ATOM
3104
CG
PHE
B
99
11.953
19.181
28.322
1.00
32.03
C


ATOM
3105
CD1
PHE
B
99
12.776
19.088
27.212
1.00
34.97
C


ATOM
3107
CE1
PHE
B
99
12.338
18.460
26.053
1.00
35.62
C


ATOM
3109
CZ
PHE
B
99
11.064
17.932
25.993
1.00
34.47
C


ATOM
3111
CE2
PHE
B
99
10.232
18.022
27.096
1.00
35.16
C


ATOM
3113
CD2
PHE
B
99
10.677
18.648
28.251
1.00
34.40
C


ATOM
3115
C
PHE
B
99
12.391
17.827
31.075
1.00
30.39
C


ATOM
3116
O
PHE
B
99
12.870
16.697
31.130
1.00
30.70
O


ATOM
3118
OXT
PHE
B
99
11.254
18.022
31.491
1.00
30.57
O


TER


HETATM
3119
O9
MUT
C
200
19.834
30.807
10.483
1.00
28.31
O


HETATM
3120
S7
MUT
C
200
20.554
30.591
11.697
1.00
27.32
S


HETATM
3121
O8
MUT
C
200
21.059
31.839
12.187
1.00
25.87
O


HETATM
3122
C1
MUT
C
200
21.783
29.573
11.421
1.00
28.01
C


HETATM
3123
C2
MUT
C
200
21.929
28.855
10.228
1.00
28.62
C


HETATM
3125
C3
MUT
C
200
23.005
27.976
10.034
1.00
28.35
C


HETATM
3127
C4
MUT
C
200
23.955
27.781
11.041
1.00
27.26
C


HETATM
3128
C15
MUT
C
200
25.163
26.839
10.920
1.00
27.32
C


HETATM
3131
N45
MUT
C
200
25.131
25.999
9.734
1.00
24.63
N


HETATM
3134
C5
MUT
C
200
23.814
28.501
12.218
1.00
26.55
C


HETATM
3136
C6
MUT
C
200
22.755
29.382
12.400
1.00
29.13
C


HETATM
3138
N10
MUT
C
200
19.474
29.961
12.728
1.00
29.20
N


HETATM
3139
C11
MUT
C
200
19.211
28.574
12.315
1.00
32.65
C


HETATM
3142
C12
MUT
C
200
17.739
28.211
12.432
1.00
33.47
C


HETATM
3144
C13
MUT
C
200
17.549
26.786
11.927
1.00
33.15
C


HETATM
3148
C14
MUT
C
200
16.889
29.144
11.580
1.00
35.04
C


HETATM
3152
C16
MUT
C
200
19.846
30.187
14.133
1.00
29.57
C


HETATM
3154
C22
MUT
C
200
19.929
28.925
14.986
1.00
27.39
C


HETATM
3157
O23
MUT
C
200
20.041
29.278
16.391
1.00
27.88
O


HETATM
3159
C17
MUT
C
200
18.937
31.202
14.844
1.00
31.10
C


HETATM
3162
C18
MUT
C
200
17.624
31.518
14.165
1.00
32.95
C


HETATM
3165
C19
MUT
C
200
17.300
33.015
14.152
1.00
30.51
C


HETATM
3168
C20
MUT
C
200
16.899
33.600
15.504
1.00
28.91
C


HETATM
3171
N21
MUT
C
200
17.784
34.731
15.771
1.00
27.24
N


HETATM
3172
C39
MUT
C
200
18.010
35.213
16.994
1.00
27.74
C


HETATM
3173
O40
MUT
C
200
17.513
34.806
18.037
1.00
29.38
O


HETATM
3174
C37
MUT
C
200
19.010
36.351
17.060
1.00
26.24
C


HETATM
3176
N38
MUT
C
200
18.479
37.361
17.952
1.00
26.50
N


HETATM
3177
C41
MUT
C
200
18.133
38.548
17.476
1.00
30.17
C


HETATM
3178
O42
MUT
C
200
17.585
39.543
18.380
1.00
31.13
O


HETATM
3179
C44
MUT
C
200
16.624
40.487
17.912
1.00
30.43
C


HETATM
3183
O43
MUT
C
200
18.282
38.806
16.290
1.00
30.93
O


HETATM
3184
C30
MUT
C
200
20.291
35.813
17.694
1.00
26.22
C


HETATM
3186
C24
MUT
C
200
21.343
36.897
17.932
1.00
27.92
C


HETATM
3187
C25
MUT
C
200
21.506
37.966
17.048
1.00
27.58
C


HETATM
3189
C26
MUT
C
200
22.501
38.909
17.263
1.00
27.17
C


HETATM
3191
C27
MUT
C
200
23.324
38.790
18.377
1.00
28.09
C


HETATM
3193
C28
MUT
C
200
23.169
37.722
19.257
1.00
27.94
C


HETATM
3195
C29
MUT
C
200
22.189
36.769
19.032
1.00
27.50
C


HETATM
3197
C31
MUT
C
200
20.958
34.757
16.817
1.00
25.27
C


HETATM
3198
C32
MUT
C
200
21.060
33.455
17.284
1.00
26.40
C


HETATM
3200
C33
MUT
C
200
21.726
32.489
16.541
1.00
25.49
C


HETATM
3202
C34
MUT
C
200
22.275
32.827
15.315
1.00
24.21
C


HETATM
3204
C35
MUT
C
200
22.175
34.123
14.838
1.00
23.62
C


HETATM
3206
C36
MUT
C
200
21.530
35.089
15.593
1.00
24.41
C


TER


HETATM
3208
P
PO4
E
501
45.599
26.035
21.566
1.00
64.62
P


HETATM
3209
O1
PO4
E
501
44.644
26.754
22.504
1.00
63.84
O


HETATM
3210
O2
PO4
E
501
44.851
25.107
20.637
1.00
63.66
O


HETATM
3211
O3
PO4
E
501
46.332
27.060
20.744
1.00
65.39
O


HETATM
3212
O4
PO4
E
501
46.617
25.222
22.329
1.00
64.30
O


HETATM
3213
P
PO4
E
503
12.139
11.754
32.621
1.00
65.14
P


HETATM
3214
O1
PO4
E
503
11.583
11.588
34.011
1.00
66.48
O


HETATM
3215
O2
PO4
E
503
13.029
10.574
32.313
1.00
66.55
O


HETATM
3216
O3
PO4
E
503
10.997
11.840
31.636
1.00
65.51
O


HETATM
3217
O4
PO4
E
503
12.962
13.017
32.550
1.00
66.62
O


HETATM
3218
OXT
ACT
E
504
26.790
13.748
22.887
1.00
49.23
O


HETATM
3219
C
ACT
E
504
26.647
12.950
23.841
1.00
49.69
C


HETATM
3220
O
ACT
E
504
25.467
12.734
24.213
1.00
49.73
O


HETATM
3221
CH3
ACT
E
504
27.823
12.314
24.522
1.00
49.34
C


HETATM
3225
OXT
ACT
E
505
6.424
20.785
10.678
1.00
45.45
O


HETATM
3226
C
ACT
E
505
5.899
20.163
9.730
1.00
46.04
C


HETATM
3227
O
ACT
E
505
5.827
18.915
9.867
1.00
46.37
O


HETATM
3228
CH3
ACT
E
505
5.380
20.882
8.518
1.00
45.93
C


HETATM
3232
OXT
ACT
E
506
20.595
16.362
10.218
1.00
48.70
O


HETATM
3233
C
ACT
E
506
20.781
15.753
11.296
1.00
48.15
C


HETATM
3234
O
ACT
E
506
19.779
15.624
12.037
1.00
47.36
O


HETATM
3235
CH3
ACT
E
506
22.130
15.206
11.657
1.00
48.26
C


TER


HETATM
3239
OH2
WAT
W
1
32.547
16.795
15.700
1.00
28.64
O


HETATM
3242
OH2
WAT
W
2
37.125
18.505
11.824
1.00
27.60
O


HETATM
3245
OH2
WAT
W
3
38.737
15.512
15.931
1.00
18.70
O


HETATM
3248
OH2
WAT
W
4
22.093
30.791
29.656
1.00
28.86
O


HETATM
3251
OH2
WAT
W
5
25.990
37.291
8.271
1.00
26.43
O


HETATM
3254
OH2
WAT
W
6
31.562
23.648
12.209
1.00
23.20
O


HETATM
3257
OH2
WAT
W
7
−8.456
36.781
14.797
1.00
32.03
O


HETATM
3260
OH2
WAT
W
8
20.405
12.684
19.058
1.00
32.99
O


HETATM
3263
OH2
WAT
W
9
24.583
15.052
22.792
1.00
25.21
O


HETATM
3266
OH2
WAT
W
10
19.823
32.549
22.732
1.00
20.22
O


HETATM
3269
OH2
WAT
W
11
41.067
29.523
−1.007
1.00
30.67
O


HETATM
3272
OH2A
WAT
W
12
20.802
37.112
27.477
0.50
11.80
O


HETATM
3273
OH2B
WAT
W
12
22.169
37.994
28.029
0.50
21.18
O


HETATM
3278
OH2
WAT
W
13
20.453
21.351
15.118
1.00
19.80
O


HETATM
3281
OH2
WAT
W
15
43.126
25.927
19.070
1.00
24.06
O


HETATM
3284
OH2
WAT
W
16
24.569
15.706
29.334
1.00
24.17
O


HETATM
3287
OH2
WAT
W
17
7.104
34.971
25.009
1.00
31.75
O


HETATM
3290
OH2
WAT
W
18
33.431
18.728
13.717
1.00
20.05
O


HETATM
3293
OH2
WAT
W
19
3.497
36.628
24.612
1.00
31.59
O


HETATM
3296
OH2
WAT
W
20
37.194
27.197
28.268
1.00
32.57
O


HETATM
3299
OH2
WAT
W
21
9.205
36.745
24.095
1.00
34.40
O


HETATM
3302
OH2
WAT
W
22
28.752
15.075
16.271
1.00
23.84
O


HETATM
3305
OH2
WAT
W
23
30.715
39.019
12.626
1.00
27.33
O


HETATM
3308
OH2
WAT
W
24
34.902
36.850
18.316
1.00
31.31
O


HETATM
3311
OH2
WAT
W
25
40.544
20.658
22.864
1.00
20.70
O


HETATM
3314
OH2
WAT
W
26
41.983
25.596
23.058
1.00
28.46
O


HETATM
3317
OH2
WAT
W
27
42.007
28.244
1.012
1.00
35.33
O


HETATM
3320
OH2
WAT
W
28
8.128
44.643
16.199
1.00
38.31
O


HETATM
3323
OH2
WAT
W
29
33.330
38.484
11.675
1.00
19.72
O


HETATM
3326
OH2
WAT
W
30
15.624
27.254
30.952
1.00
30.46
O


HETATM
3329
OH2
WAT
W
31
15.577
30.133
4.279
1.00
41.69
O


HETATM
3332
OH2
WAT
W
32
34.334
37.525
21.968
1.00
31.93
O


HETATM
3335
OH2
WAT
W
33
24.151
35.466
29.014
1.00
31.48
O


HETATM
3338
OH2
WAT
W
34
17.575
22.913
10.433
1.00
32.25
O


HETATM
3341
OH2
WAT
W
35
35.852
34.072
6.593
1.00
29.81
O


HETATM
3344
OH2
WAT
W
36
42.234
36.226
24.504
1.00
35.93
O


HETATM
3347
OH2
WAT
W
37
16.297
39.267
20.892
1.00
28.99
O


HETATM
3350
OH2
WAT
W
38
−2.843
27.914
20.117
1.00
29.68
O


HETATM
3353
OH2
WAT
W
39
18.534
15.396
18.811
1.00
39.63
O


HETATM
3356
OH2
WAT
W
40
24.155
26.497
7.069
1.00
35.89
O


HETATM
3359
OH2
WAT
W
41
33.650
16.970
27.999
1.00
33.65
O


HETATM
3362
OH2
WAT
W
42
−0.388
39.702
19.672
1.00
39.66
O


HETATM
3365
OH2
WAT
W
43
24.302
24.792
4.841
1.00
43.59
O


HETATM
3368
OH2
WAT
W
44
47.548
29.966
18.465
1.00
23.65
O


HETATM
3371
OH2
WAT
W
45
11.835
38.833
5.233
1.00
32.10
O


HETATM
3374
OH2
WAT
W
46
30.397
25.184
−0.264
1.00
33.96
O


HETATM
3377
OH2
WAT
W
47
13.764
35.420
24.711
1.00
33.61
O


HETATM
3380
OH2
WAT
W
48
29.173
36.078
2.463
1.00
30.30
O


HETATM
3383
OH2
WAT
W
49
16.309
13.865
18.825
1.00
36.03
O


HETATM
3386
OH2
WAT
W
50
35.208
16.762
25.738
1.00
32.78
O


HETATM
3389
OH2
WAT
W
51
31.482
34.209
30.209
1.00
37.52
O


HETATM
3392
OH2
WAT
W
52
25.824
27.278
34.713
1.00
42.43
O


HETATM
3395
OH2
WAT
W
53
9.626
39.517
20.343
1.00
38.93
O


HETATM
3398
OH2
WAT
W
54
14.848
11.406
22.943
1.00
41.31
O


HETATM
3401
OH2
WAT
W
55
39.442
15.246
26.378
1.00
35.42
O


HETATM
3404
OH2
WAT
W
56
14.322
10.348
26.707
1.00
50.40
O


HETATM
3407
OH2
WAT
W
57
−2.182
19.203
11.582
1.00
41.07
O


HETATM
3410
OH2
WAT
W
58
9.101
34.455
20.025
1.00
29.42
O


HETATM
3413
OH2
WAT
W
59
7.345
28.907
5.837
1.00
45.92
O


HETATM
3416
OH2
WAT
W
60
−6.006
29.893
7.513
1.00
39.87
O


HETATM
3419
OH2
WAT
W
61
−5.430
40.216
20.373
1.00
41.40
O


HETATM
3422
OH2
WAT
W
62
12.641
36.612
3.700
1.00
41.68
O


HETATM
3425
OH2
WAT
W
63
7.957
14.873
20.330
1.00
45.20
O


HETATM
3428
OH2
WAT
W
64
5.704
22.797
31.109
1.00
40.02
O


HETATM
3431
OH2
WAT
W
65
32.011
20.629
34.409
1.00
63.02
O


HETATM
3434
OH2
WAT
W
66
22.257
28.953
33.833
1.00
42.44
O


HETATM
3437
OH2A
WAT
W
67
19.233
33.354
34.685
0.50
17.99
O


HETATM
3438
OH2B
WAT
W
67
19.831
31.531
35.750
0.50
36.39
O


HETATM
3443
OH2
WAT
W
68
44.018
31.750
27.329
1.00
40.52
O


HETATM
3446
OH2
WAT
W
69
22.768
24.339
10.863
1.00
32.55
O


HETATM
3449
OH2
WAT
W
70
19.671
22.446
12.717
1.00
29.10
O


HETATM
3452
OH2
WAT
W
71
35.795
34.909
16.247
1.00
34.94
O


HETATM
3455
OH2
WAT
W
72
48.886
28.297
8.973
1.00
40.07
O


HETATM
3458
OH2
WAT
W
73
41.485
22.658
7.786
1.00
26.14
O


HETATM
3461
OH2
WAT
W
74
44.340
18.734
15.139
1.00
34.73
O


HETATM
3464
OH2
WAT
W
75
40.077
26.312
32.109
1.00
49.52
O


HETATM
3467
OH2
WAT
W
76
27.330
39.414
18.719
1.00
32.80
O


HETATM
3470
OH2
WAT
W
77
24.554
9.528
25.075
1.00
38.00
O


HETATM
3473
OH2
WAT
W
78
3.393
17.850
21.209
1.00
50.66
O


HETATM
3476
OH2
WAT
W
79
−1.363
24.295
24.042
1.00
38.38
O


HETATM
3479
OH2
WAT
W
80
17.649
15.226
11.055
1.00
55.54
O


HETATM
3482
OH2
WAT
W
81
13.380
38.200
23.209
1.00
39.19
O


HETATM
3485
OH2
WAT
W
82
13.715
43.032
16.727
1.00
33.87
O


HETATM
3488
OH2
WAT
W
83
7.963
43.838
21.440
1.00
49.40
O


HETATM
3491
OH2
WAT
W
85
−0.316
25.598
25.994
1.00
35.04
O


HETATM
3494
OH2
WAT
W
86
9.936
22.321
11.241
1.00
36.37
O


HETATM
3497
OH2
WAT
W
87
13.877
35.043
28.710
1.00
54.71
O


HETATM
3500
OH2A
WAT
W
88
15.825
38.135
24.245
0.50
27.89
O


HETATM
3501
OH2B
WAT
W
88
17.812
38.640
24.382
0.50
21.72
O


HETATM
3506
OH2
WAT
W
89
25.771
38.079
22.141
1.00
44.71
O


HETATM
3509
OH2
WAT
W
90
35.859
35.896
26.795
1.00
36.76
O


HETATM
3512
OH2
WAT
W
91
44.041
26.955
16.540
1.00
25.08
O


HETATM
3515
OH2
WAT
W
92
49.374
23.918
21.559
1.00
46.82
O


HETATM
3518
OH2
WAT
W
93
46.632
30.868
26.731
1.00
32.84
O


HETATM
3521
OH2
WAT
W
94
26.246
18.459
13.078
1.00
34.81
O


HETATM
3524
OH2
WAT
W
95
30.959
21.906
10.078
1.00
39.46
O


HETATM
3527
OH2
WAT
W
96
34.332
18.635
4.090
1.00
41.96
O


HETATM
3530
OH2
WAT
W
97
21.050
24.858
4.221
1.00
39.10
O


HETATM
3533
OH2
WAT
W
98
18.266
29.895
3.499
1.00
47.85
O


HETATM
3536
OH2
WAT
W
99
41.833
22.970
23.325
1.00
43.50
O


HETATM
3539
OH2
WAT
W
100
18.357
11.671
22.171
1.00
40.08
O


HETATM
3542
OH2
WAT
W
101
25.473
12.177
14.235
1.00
32.22
O


HETATM
3545
OH2
WAT
W
102
0.077
33.054
6.317
1.00
43.00
O


HETATM
3548
OH2
WAT
W
103
−7.330
40.478
18.599
1.00
56.76
O


HETATM
3551
OH2
WAT
W
104
20.411
41.455
19.742
1.00
53.01
O


HETATM
3554
OH2
WAT
W
105
46.712
25.597
24.694
1.00
39.46
O


HETATM
3557
OH2
WAT
W
106
40.001
37.186
21.842
1.00
36.50
O


HETATM
3560
OH2
WAT
W
107
41.180
35.937
17.194
1.00
41.52
O


HETATM
3563
OH2
WAT
W
108
29.536
36.648
27.528
1.00
34.31
O


HETATM
3566
OH2
WAT
W
109
33.496
35.655
4.170
1.00
35.21
O


HETATM
3569
OH2
WAT
W
110
38.363
16.291
9.765
1.00
43.85
O


HETATM
3572
OH2
WAT
W
111
11.827
23.493
35.283
1.00
34.24
O


HETATM
3575
OH2
WAT
W
112
9.679
24.493
35.404
1.00
30.98
O


TER


END








Claims
  • 1. A method for identifying a potential inhibitor of HIV-1 protease, the method comprising: generating a three-dimensional structural model of a molecule or molecular complex comprising an HIV-1 protease active site; andemploying the three-dimensional structural model to design or select a potential inhibitor, wherein the potential inhibitor forms at least one hydrogen bond with the backbone of amino acids 50 and 50′ of the HIV-1 protease via an acyclic group, a sulfonyl group, or a selenonyl group, without an intervening water molecule.
  • 2. The method of claim 1, wherein the potential inhibitor is a small organic molecule inhibitor that forms at least one hydrogen bond with the backbone of amino acids 50 and 50′ of the HIV-1 protease via an acyclic group without an intervening water molecule.
  • 3. The method of claim 1, wherein the potential inhibitor further forms at least one hydrogen bond with the conserved side chain of at least one of amino acids Asp25 and Asp25′ of the HIV-1 protease.
  • 4. The method of claim 3, wherein the hydrogen bond with the side chain is formed by a primary hydroxyl, thiol, or amino group on the potential inhibitor.
  • 5. The method of claim 3, wherein the hydrogen bond is a bifurcated hydrogen bond.
  • 6. The method of claim 1, wherein the potential inhibitor does not hydrogen bond with amino acid 27 of the HIV-1 protease.
  • 7. The method of claim 1, wherein the potential inhibitor forms at least one hydrogen bond with the backbone of amino acids 48 or 28 of the HIV-1 protease.
  • 8. The method of claim 1, wherein the potential inhibitor forms at least one hydrogen bond with the conserved side chain of amino acid Asp29 of the HIV-1 protease.
  • 9. The method of claim 1, wherein the potential inhibitor has the following interactions with the HIV-1 protease: (a) hydrogen bonding with the backbone of amino acids 50 and 50′ of the HIV-1 protease, without an intervening water molecule; and(b) direct hydrogen bonding with the conserved side chain of amino acid Asp25 and Asp25′ of the HIV-1 protease;
  • 10. The method of claim 9, wherein the potential inhibitor has all of interactions (a)-(e) with the HIV-1 protease.
  • 11. The method of claim 9, wherein the potential inhibitor additionally has one of the following interactions with the HIV-1 protease: (f) direct hydrogen bonding with the backbone, side chains, or both, of one or more of amino acids 29′, 30′, and 48′ of the HIV-1 protease; or(g) indirect hydrogen bonding with the backbone, side chains, or both, of one or more of amino acids 29′, 30′, and 48′ of the HIV-1 protease.
  • 12. The method of claim 1, wherein generating a three-dimensional structural model comprises using at least the atomic coordinates of HIV-1 protease amino acids 24-30, 24′-30′, 47-53, 47′-53′, 84 and 84′, and optionally amino acids 82 and 82′, according to Table 2± a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5 Å.
  • 13. The method of claim 1, wherein generating a three-dimensional structural model comprises using the atomic coordinates of HIV-1 protease according to Table 2± a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5 Å.
  • 14. The method of claim 1, further comprising: synthesizing or obtaining the potential inhibitor;contacting the potential inhibitor with a sample comprising an HIV-1 protease; anddetermining the ability of the potential inhibitor to bind to and/or inhibit protease activity of the HIV-1 protease.
  • 15. The method of claim 14, further comprising subjecting the potential inhibitor to cross-resistance profiling.
  • 16. The method of claim 14, further comprising determining the binding affinity of the potential inhibitor for the HIV-1 protease.
  • 17. The method of claim 1, wherein employing the three-dimensional structural model to design or select a potential inhibitor comprises: computationally performing a fitting operation between the computer model of the protease active site and the computer model of the potential inhibitor, andevaluating the results of the fitting operation to determine the ability of the potential inhibitor to interact with the protease active site, and/or to characterize the interaction of the potential inhibitor with the active site.
  • 18. The method of claim 17, wherein the fitting operation comprises determining an energy minima configuration of computer model of the three-dimensional structure of the potential inhibitor in the computer model of the three-dimensional structure of the protease active site.
  • 19. The method of claim 1 wherein the potential inhibitor is: (i) computationally assembled molecular fragments; (ii) selected from a small molecule database; or (iii) computationally created by de novo molecule design.
  • 20. A crystal comprising HIV-1 protease complexed with inhibitor P867883, having space group P212121.
  • 21. The crystal of claim 20, having the following properties:
  • 22. The method of claim 1, further comprising providing a crystal comprising HIV-1 protease complexed with inhibitor P867883, having space group P212121.
  • 23. The method of claim 1, wherein employing the three-dimensional structural model to design or select a potential inhibitor comprises: providing a three-dimensional model of the potential inhibitor, andemploying computational means to perform a fitting operation between the model of the potential inhibitor and the model of the HIV-1 protease active site to provide an energy minimized configuration of the potential inhibitor in the active site; and
  • 24. The method of claim 1, wherein the potential inhibitor forms at least one hydrogen bond with the backbone nitrogen of amino acids 50 and 50′ of the HIV-1 protease.
  • 25. The method of claim 3, wherein the potential inhibitor forms direct hydrogen bonding with the side chain oxygen atoms of amino acid Asp25 and Asp25′ of the HIV-1 protease.
  • 26. The method of claim 1, wherein the potential inhibitor is selected by assembly of molecular fragments.
  • 27. The method of claim 1, wherein the potential inhibitor is selected by de novo ligand design.
  • 28. The method of claim 19, wherein the potential inhibitor is selected from a database of compounds.
  • 29. The method of claim 9, wherein the potential inhibitor forms direct hydrogen bonding with the side chain oxygen atoms of amino acid Asp25 and Asp25′ of the HIV-1 protease.
CROSS REFERENCE TO RELATED APPLICATION

This application claims priority from U.S. Provisional Patent Application No. 60/875,461, filed on Dec. 18, 2006, the contents of which are incorporated herein by reference in its entirety

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2007/087990 12/18/2007 WO 00 1/4/2010
Provisional Applications (1)
Number Date Country
60875461 Dec 2006 US