Crystals and structure of Synagis Fab

Information

  • Patent Grant
  • 6955717
  • Patent Number
    6,955,717
  • Date Filed
    Monday, April 29, 2002
    22 years ago
  • Date Issued
    Tuesday, October 18, 2005
    18 years ago
Abstract
The present invention provides machine readable media embedded with the three-dimensional atomic structure coordinates of Synagis Fab, and subsets thereof, and methods of using them.
Description
2. INTRODUCTION

The present invention concerns crystalline forms of polypeptides that correspond to Synagis (palivizumab) or a fragment thereof such as Synagis Fab, methods of obtaining such crystals and the high-resolution X-ray diffraction structures and atomic structure coordinates obtained therefrom. The crystals of the invention and the atomic structural information obtained therefrom are useful for solving the crystal and solution structures of related and unrelated proteins, and for screening for, identifying and/or designing compounds that bind and/or modulate a biological activity of respiratory syncytial virus.


3. BACKGROUND OF THE INVENTION

Respiratory Syncytial Virus (“RSV”) is the most important respiratory pathogen in infancy and early childhood. Studies estimate that RSV causes up to 90% of brochiolitis and approximately 90% of all pneumonia in infancy. These conditions result in over 90,000 hospitalizations and 4500 deaths annually in the United States alone (Hall, 1998, Textbook of Pediatric Infectious Diseases, 2084-2111). RSV infection in early childhood might be an important risk factor for subsequent development of recurrent wheezing and asthma (Eigen, 1999, J. Pediatr. 135:S1-S50; Stein et al., 1999, Lancet 354:541-545).


Current methods for treatment and prevention of RSV infection are limited. For instance, vaccination against RSV has not been successful to date. Vaccination of infants with an inactivated RSV actually increased the severity of RSV infection and pulmonary pathology when vaccinated infants were later challenged with RSV (Groothius, 1994, Antiviral Res 23:1-10; Hall et al., 1995, Principles and Practice of Infectious Disease, 1501-1519; Wyde, 1998, Antiviral Res. 39:63-79).


Direct administration of antibodies against RSV has had some prophylactic effect. A human immunoglobulin against RSV (“RSVIG”) was approved in 1996 for the prevention of serious lower respiratory tract disease caused by RSV in premature infants and infants with bronchopulmonary dysplasia (PREVENT study group, 1999, Pediatrics 99:93-99). Recently, Synagis (or palivizumab), a humanized monoclonal antibody against the surface fusion glycoprotein (“F protein”) of RSV, was approved for similar indications (Meissner et al., 1999, Pediatrics 18:223-31; Johnson et al., 1997, J. Infect. Dis. 176:1215-1224; Impact-RSV Study Group, 1998, Pediatrics 102:531-537). In studies on test animals, Synagis was twice as potent as RSVIG in inhibiting the RSV-induced potentiation of inflammation when administered before or in the early phase of RSV infection (Piedimonte et al., 2000, Pediatric Research 47:351-356).


Although Synagis provides safe and effective prevention of RSV infection, improved therapeutics, such as small molecule therapeutics, are needed to treat and/or prevent RSV infection. Small molecule therapeutics are easier and less expensive to manufacture and also easier to administer orally. In addition, a small molecule therapeutic such as an antigen that mimics the epitope recognized by Synagis could be administered to generate an immune response against RSV. A composition comprising an antigen that mimics RSV would provide a safer method of preventing RSV infection. An effective antigen mimic of RSV could be administered, to persons with a functioning immune system, as an immunoprophylactic to raise an immune response against the virus with minimal or no danger of infection caused by the immunoprophylactic itself.


The three-dimensional structure coordinates of crystalline Synagis would enable the design or selection of such an antigen mimic. Synagis is effective in preventing RSV infection in vivo, and a mimic of an antigen bound specifically by Synagis could raise an immune response that is as effective or even more effective than Synagis in preventing infection. The structure coordinates of the antigen binding region of crystalline Synagis and/or the structure coordinates of a co-crystal complex of Synagis and an antigen would elucidate the atomic requirements of binding between Synagis and the antigen. This atomic resolution information could then be used to design and/or select a mimic of the antigen to be used as an immunoprophylactic against RSV.


Furthermore, the atomic structure coordinates of crystalline Synagis would enable the design of an antibody with improved virus binding and/or neutralizing properties. The atomic structure coordinates of crystalline Synagis would identify those residues of Synagis that are involved in antigen-antibody binding. These residues could then be selectively altered to generate mutant Synagis molecules that could be screened for binding and/or virus neutralizing effects. These improved Synagis molecules would provide more and perhaps improved options for prevention of RSV infection.


Until the present invention, the ability to obtain the atomic structure coordinates of Synagis has not been realized.


4. SUMMARY OF THE INVENTION

In one aspect, the invention provides compositions comprising crystalline forms of polypeptides corresponding to Synagis (palivizumab), a humanized monoclonal antibody with specificity for the F protein of respiratory syncytial virus (“RSV”), or a fragment thereof such as an Fab fragment of Synagis (“Synagis Fab”). The amino acid sequences of the crystalline polypeptides may correspond to the sequence of wild-type Synagis Fab, or mutants thereof. The crystals of the invention include native crystals, in which the crystalline Synagis Fab is substantially pure; heavy-atom atom derivative crystals, in which the crystallizine Synagis Fab is in association with one or more heavy-metal atoms; and co-crystals, in which the crystalline Synagis Fab is in association with one or more binding compounds, including but not limited to, antigens, eptiopes, epitope analogs, inhibitors, etc. to form a crystalline co-complex. Preferably, such binding compounds bind the antigen binding site of Synagis Fab. The co-crystals may be native co-crystals, in which the co-complex is substantially pure, or they may be heavy-atom derivative co-crystals, in which the co-complex is in association with one or more heavy-metal atoms.


The Synagis Fab crystals (FIG. 1) of the invention are characterized by space group symmetry P212121 and an orthorhombic unit cell (i.e., a unit cell wherein a≠b≠c; and α=β=γ=90°) with dimensions of a=77.36±0.2 Å, b=103.92±0.2 Å and c=68.87±0.2 Å and are preferably of diffraction quality. A typical diffraction pattern is illustrated in FIG. 2. In more preferred embodiments, the crystals of the invention are of sufficient quality to permit the determination of the three-dimensional X-ray diffraction structure of the crystalline polypeptide to high resolution, preferably to a resolution of greater than about 3 Å, typically greater than about 2.5 Å, and more usually to a resolution of about 2 Å, 1.9 Å, 1.8 Å or even greater. The three-dimensional structural information may be used in a variety of methods to design and screen for compounds that bind Synagis Fab, as described in more detail below.


In another aspect, the invention provides methods of making the crystals of the invention. Generally, native crystals of the invention are grown by dissolving substantially pure Synagis Fab polypeptide in an aqueous buffer that includes a precipitant at a concentration just below that necessary to precipitate the polypeptide. Water is then removed by controlled evaporation to produce precipitating conditions, which are maintained until crystal growth ceases.


Co-crystals of the invention are prepared by soaking a native crystal prepared according to the above method in a liquor comprising the binding compound of the desired co-complex. Alternatively, the co-crystals may be prepared by co-crystallizing the polypeptide in the presence of the compound according to the method discussed above or by forming a co-complex comprising the polypeptide and the binding compound and crystallizing the co-complex.


Heavy-atom derivative crystals of the invention may be prepared by soaking native crystals or co-crystals prepared according to the above method in a liquor comprising a salt of a heavy atom or an organometallic compound. Alternatively, heavy-atom derivative crystals may be prepared by crystallizing a polypeptide comprising selenomethionine and/or selenocysteine residues according to the methods described previously for preparing native crystals.


In another aspect, the invention provides machine and/or computer-readable media embedded with the three-dimensional structural information obtained from the crystals of the invention, or portions or subsets thereof. Such three-dimensional structural information will typically include the atomic structure coordinates of the crystalline Synagis Fab polypeptides, either alone or in a co-complex with a binding compound, or the atomic structure coordinates of a portion thereof such as, for example, the atomic structure coordinates of residues comprising an antigen binding site, but may include other structural information, such as vector representations of the atomic structures coordinates, etc. The types of machine- or computer-readable media into which the structural information is embedded typically include magnetic tape, floppy discs, hard disc storage media, optical discs, CD-ROM, electrical storage media such as RAM or ROM, and hybrids of any of these storage media. Such media further include paper on which is recorded the structural information that can be read by a scanning device and converted into a three-dimensional structure with an OCR and also include stereo diagrams of three-dimensional structures from which coordinates can be derived. The machine readable media of the invention may further comprise additional information that is useful for representing the three-dimensional structure, including, but not limited to, thermal parameters, chain identifiers, and connectivity information.


The atomic structure coordinates and machine readable media of the invention have a variety of uses. For example, the coordinates are useful for solving the three-dimensional X-ray diffraction and/or solution structures of other proteins, including mutated Synagis Fab, co-complexes comprising Synagis Fab, and unrelated proteins, to high resolution. Structural information may also be used in a variety of molecular modeling and computer-based screening applications to, for example, intelligently design mutants of the crystallized Synagis that have altered biological activity and to computationally design and identify compounds that bind the antibody or a portion or fragment of the antibody, such as the antigen binding site. Such compounds may be used as lead compounds in pharmaceutical efforts to identify compounds that mimic the epitope of the RSV F protein recognized by Synagis as a therapeutic approach toward the development of, e.g., an anti-idiotypic vaccine for the treatment of respiratory infections caused by RSV.


Accordingly, the invention further includes methods of designing or identifying compounds that bind Synagis Fab as an approach to developing new therapeutic agents. In one method, the three-dimensional structure of Synagis Fab can be used to design molecules which bind the antigen binding site of Synagis Fab. For instance, a binding molecule can be synthesized computationally from a series of chemical groups or fragments that bind Synagis Fab. Alternatively, the three-dimensional structure of can be used to screen a plurality of molecules to identify those that bind Synagis Fab at binding sites including, for example, the antigen binding site of Synagis Fab. The potential inhibitory or binding effect of molecules can be analyzed by actual synthesis and testing or by the use of modeling techniques. The compounds can be optimized by further modeling and/or testing.


4.1 Abbreviations

The amino acid notations used herein for the twenty genetically encoded L-amino acids are conventional and are as follows:


















One-Letter
Three-Letter



Amino Acid
Symbol
Symbol









Alanine
A
Ala



Arginine
R
Arg



Asparagine
N
Asn



Aspartic acid
D
Asp



Cysteine
C
Cys



Glutamine
Q
Gln



Glutamic acid
E
Glu



Glycine
G
Gly



Histidine
H
His



Isoleucine
I
Ile



Leucine
L
Leu



Lysine
K
Lys



Methionine
M
Met



Phenylalanine
F
Phe



Proline
P
Pro



Serine
S
Ser



Threonine
T
Thr



Tryptophan
W
Trp



Tyrosine
Y
Tyr



Valine
V
Val










As used herein, unless specifically delineated otherwise, the three-letter amino acid abbreviations designate amino acids in either the D- or L-configuration. Specific enantiomers are preceded with a “D-” or “L-”, depending upon the enantiomer. The capital one-letter abbreviations refer to amino acids in the L-configuration. Lower-case one-letter abbreviations designate amino acids in the D-configuration. For example, “R” and “L-Arg” designate L-arginine, and “r” and “D-Arg” designate D-arginine.


Unless noted otherwise, when polypeptide sequences are presented as a series of one-letter and/or three-letter abbreviations, the sequences are presented in the N→C direction, in accordance with common practice.


4.2 Definitions

As used herein, the following terms shall have the following meanings:


“Genetically Encoded Amino Acid” refers to L-isomers of the twenty amino acids that are defined by genetic codons. The genetically encoded amino acids are the L-isomers of glycine, alanine, valine, leucine, isoleucine, serine, methionine, threonine, phenylalanine, tyrosine, tryptophan, cysteine, proline, histidine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and lysine.


“Genetically Non-Encoded Amino Acid” refers to amino acids that are not defined by genetic codons. Genetically non-encoded amino acids include derivatives or analogs of the genetically-encoded amino acids that are capable of being enzymatically incorporated into nascent polypeptides using conventional expression systems, such as selenomethionine (SeMet) and selenocysteine (SeCys); isomers of the genetically-encoded amino acids that are not capable of being enzymatically incorporated into nascent polypeptides using conventional expression systems, such as D-isomers of the genetically-encoded amino acids; L- and D-isomers of naturally occurring or synthetic α-amino acids that are not defined by genetic codons, such as α-aminoisobutyric acid (Aib); and other amino acids that are not encoded by genetic codons such as β-amino acids, γ-amino acids, etc. In addition to the D-isomers of the genetically-encoded amino acids, common genetically non-encoded amino acids include, but are not limited to norleucine (Nle), penicillamine (Pen), N-methylvaline (MeVal), homocysteine (hCys), homoserine (hSer), 2,3-diaminobutyric acid (Dab) and ornithine (Orn). Additional exemplary genetically non-encoded amino acids are found, for example, in Practical Handbook of Biochemistry and Molecular Biology, 1989, Fasman, Ed., CRC Press, Inc., Boca Raton, Fla., pp. 3-76 and the various references cited therein.


“Hydrophilic Amino Acid” refers to an amino acid having a side chain exhibiting a hydrophobicity of less than zero according to the normalized consensus hydrophobicity scale of Eisenberg et al., 1984, J. Mol. Biol. 179:125-142. Genetically encoded hydrophilic amino acids include, but are not limited to, L-Thr (T), L-Ser (S), L-His (H), L-Glu (E), L-Asn (N), L-Gln (Q), L-Asp (D), L-Lys (K) and L-Arg (R). Genetically non-encoded hydrophilic amino acids include the D-isomers of the above-listed genetically-encoded amino acids, ornithine (Orn), 2,3-diaminobutyric acid (Dab) and homoserine (hSer).


“Acidic Amino Acid” refers to a hydrophilic amino acid having a side chain pK value of less than 7 under physiological conditions. Acidic amino acids typically have negatively charged side chains at physiological pH due to loss of a hydrogen ion. Genetically encoded acidic amino acids include, but are not limited to, L-Glu (E) and L-Asp (D). Genetically non-encoded acidic amino acids include, but are not limited to, D-Glu (e) and D-Asp (d).


“Basic Amino Acid” refers to a hydrophilic amino acid having a side chain pK value of greater than about 7 under physiological conditions. Basic amino acids typically have positively charged side chains at physiological pH due to association with hydronium ion. Genetically encoded basic amino acids include, but are not limited to, L-His (H), L-Arg (R) and L-Lys (K). Although L-His might have a pK value slightly less than 7.0 when included in a polypeptide, L-His residues are generally classified as basic amino acids. Genetically non-encoded basic amino acids include, but are not limited to, the D-isomers of the above-listed genetically-encoded amino acids, ornithine (Orn) and 2,3-diaminobutyric acid (Dab).


“Polar Amino Acid” refers to a hydrophilic amino acid having a side chain that is uncharged at physiological pH, but which comprises at least one covalent bond in which the pair of electrons shared in common by two atoms is held more closely by one of the atoms and is thus capable of participating in a hydrogen bond. Genetically encoded polar amino acids include, but are not limited to, L-Asn (N), L-Gln (Q), LSer (S) and L-Thr (T). Genetically non-encoded polar amino acids include, but are not limited to, the D-isomers of the above-listed genetically-encoded amino acids and homoserine (hSer).


“Hydrophobic Amino Acid” refers to an amino acid having a side chain exhibiting a hydrophobicity of greater than zero according to the normalized consensus hydrophobicity scale of Eisenberg et al., 1984, J. Mol. Biol. 179:125-142. Genetically encoded hydrophobic amino acids include, but are not limited to, L-Pro (P), L-Ile (I), L-Phe (F), L-Val (V), L-Leu (L), L-Trp (W), L-Met (M), L-Ala (A), L-Gly (G) and L-Tyr (Y). Genetically non-encoded hydrophobic amino acids include, but are note limited to, the D-isomers of the above-listed genetically-encoded amino acids, norleucine (Nle) and N-methyl valine (MeVal).


“Aromatic Amino Acid” refers to a hydrophobic amino acid having a side chain comprising at least one aromatic or heteroaromatic ring. The aromatic or heteroaromatic ring may contain one or more substituents such as —OH, —SH, —CN, —F, —Cl, —Br, —I, —NO2, —NO, —NH2, —NHR, —NRR, —C(O)R, —C(O)OH, —C(O)OR, —C(O)NH2, —C(O)NHR, —C(O)NRR and the like where each R is independently (C1-C6) alkyl, (C2-C6) alkenyl, or (C2-C6) alkynyl. Genetically encoded aromatic amino acids include, but are not limited to, L-Phe (F), L-Tyr (Y), L-Trp (W) and L-His (H). Genetically non-encoded aromatic amino acids include, but are not limited to, the D-isomers of the above-listed genetically-encoded amino acids.


“Apolar Amino Acid” refers to a hydrophobic amino acid having a side chain that is uncharged at physiological pH and which has bonds in which the pair of electrons shared in common by two atoms is generally held equally by each of the two atoms (i.e., the side chain is not polar). Genetically encoded apolar amino acids include, but are not limited to, L-Leu (L), L-Val (V), L-Ile (I), L-Met (M), L-Gly (G) and L-Ala (A). Genetically non-encoded apolar amino acids include, but are not limited to, the D-isomers of the above-listed genetically-encoded amino acids, norleucine (Nle) and N-methyl valine (MeVal).


“Aliphatic Amino Acid” refers to a hydrophobic amino acid having an aliphatic hydrocarbon side chain. Genetically encoded aliphatic amino acids include, but are not limited to, L-Ala (A), L-Val (V), L-Leu (L) and L-Ile (1). Genetically non-encoded aliphatic amino acids include, but are not limited to, the D-isomers of the above-listed genetically-encoded amino acids, norleucine (Nle) and N-methyl valine (MeVal).


“Helix-Breaking Amino Acid” refers to those amino acids that have a propensity to disrupt the structure of α-helices when contained at internal positions within the helix.


Amino acid residues exhibiting helix-breaking properties are well-known in the art (see, e.g., Chou & Fasman, 1978, Ann. Rev. Biochem. 47:251-276) and include, but are not limited to L-Pro (P), D-Pro (p), L-Gly (G) and potentially all D-amino acids (when contained in an L-polypeptide; conversely, L-amino acids disrupt helical structure when contained in a D-polypeptide).


“Cysteine-like Amino Acid” refers to an amino acid having a side chain capable of participating in a disulfide linkage. Thus, cysteine-like amino acids generally have a side chain containing at least one thiol (—SH) group. Cysteine-like amino acids are unusual in that they can form disulfide bridges with other cysteine-like amino acids. The ability of L-Cys (C) -residues and other cysteine-like amino acids to exist in a polypeptide in either the reduced free —SH or oxidized disulfide-bridged form affects whether they contribute net hydrophobic or hydrophilic character to a polypeptide. Thus, while L-Cys (C) exhibits a hydrophobicity of 0.29 according to the consensus scale of Eisenberg (Eisenberg, 1984, supra), it is to be understood that for purposes of the present invention L-Cys (C) is categorized as a polar hydrophilic amino acid, notwithstanding the general classifications defined above. Other cysteine-like amino acids are similarly categorized as polar hydrophilic amino acids. Typical cysteine-like residues include, but are not limited to, penicillamine (Pen), homocysteine (hCys), etc.


As will be appreciated by those of skill in the art, the above-defined classes or categories are not mutually exclusive. Thus, amino acids having side chains exhibiting two or more physico-chemical properties can be included in multiple categories. For example, amino acid side chains having aromatic groups that are have a side chain pKa that is ionizable above or below pH 7.0, such as His (H), may exhibit both aromatic hydrophobic properties and basic or acidic hydrophilic properties, and could therefore be included in both the aromatic and basic or acidic categories. Typically, amino acids will be categorized in the class or classes that most closely define their net physico-chemical properties. The appropriate categorization of any amino acid will be apparent to those of skill in the art.


The classifications of the genetically encoded and common non-encoded amino acids according to the categories defined above are summarized in Table 1, below. It is to be understood that Table 1 is for illustrative purposes only and does not purport to be an exhaustive list of the amino acid residues belonging to each class. Other amino acid residues not specifically mentioned herein can be readily categorized based on their observed physical and chemical properties in light of the definitions provided herein.









TABLE 1







CLASSIFICATIONS OF COMMONLY


ENCOUNTERED AMINO ACIDS










Genetically
Genetically


Classification
Encoded
Non-Encoded










Hydrophobic









Aromatic
F, Y, W
f, y, w


Apolar
L, V, I, M, G, A, P
l, v, i, m, a, p, Nle, MeVal


Aliphatic
A, V, L, I
a, v, l, i, Nle, MeVal


Hydrophilic


Acidic
D, E
d, e


Basic
H, K, R
h, k, r, Orn, Dab


Polar
C, Q, N, S, T
c, q, n, s, t, hSer


Helix-Breaking
P, G
p









“Synagis” or “palivizumab” refers to the humanized monoclonal antibody that is sold under the tradename SYNAGIS (MedImmune), or that is known by the name palivizumab. Synagis comprises an immunoglobulin complex of a Synagis heavy chain and a Synagis light chain that specifically binds the F protein of respiratory syncytial virus (“RSV”), as defined herein.


“Synagis heavy chain” refers to a polypeptide having an amino acid sequence that corresponds identically to the amino acid sequence of SEQ ID NO:1 (FIG. 3A).


“Synagis light chain” refers to a polypeptide having an amino acid sequence that corresponds identically to the amino acid sequence of SEQ ID NO:7 (FIG. 3B).


“Smagis Fab” refers to the antigen binding fragment of Synagis which can be obtained by digesting Synagis with papain. Synagis Fab includes the antigen binding region of Synagis and comprises a complex of Synagis light chain (SEQ ID NO:7) and N-terminal fragment (residues 1 to 220) of Synagis heavy chain (SEQ ID NO:2) linked by a disulfide bridge between Cys 216 of SEQ ID NO:2 and Cys 214 of Synagis light chain (SEQ ID NO:7). Unless stated otherwise, “Synagis Fab” includes either wild-type Syangis Fab and mutant Synagis Fab as defined herein.


“Synagis Fc” refers to a fragment of Synagis which can be obtained by digesting Synagis with papain. Synagis Fc does not include the antigen binding region of Synagis and comprises a complex of two C-terminal fragments of Synagis heavy chain (SEQ ID NO:3) linked by at least two disulfide bridges, one between the Cys 222 residues of the two chains and the other between the Cys 225 residues of the two chains.


“Synagis Fv” refers to a complex comprising the N-terminal variable segment residues 1 to 105 of Synagis heavy chain (SEQ ID NO:1) and the N-terminal sequence residues 1 to 109 of Synagis light chain (SEQ. ID NO:7). Synagis Fv includes the complementarity determining regions (“CDRs”) of Synagis heavy chain, H1 (SEQ ID NO:4), H2 (SEQ ID NO:5) and H3 (SEQ ID NO:6), and the CDRs of Synagis light chain, L1 (SEQ ID NO:8), L2 (SEQ ID NO:9) and L3 (SEQ ID NO:10).


“Association” refers to a condition of proximity between a chemical entity or compound, or portions or fragments thereof, and a polypeptide such as Synagis Fab, or portions or fragments thereof. The association may be non-covalent, i.e., where the juxtaposition is energetically favored by, e.g., hydrogen-bonding, van der Waals, electrostatic or hydrophobic interactions, or it may be covalent.


“Co-Complex” refers to a complex between Synagis, Synagis Fab, Synagis Fv or another binding fragment of Synagis and another compound, for example, an antigen, an epitope, a hapten or an analog, a mimic or a fragment thereof or an inhibitor of Synagis.


“Antibody” or “Immunoglobulin” refers to a glycoprotein produced by B leukocyte cells in response to stimulation with an immunogen, or a synthetic or recombinant version or analog of such a glycoprotein. Antibodies comprise heavy chains and light chains linked together by disulfide bonds. IgG type antibodies typically comprise two antigen binding sites.


“Complementarity Determining Region” or “CDR” refers to the hypervariable regions of an antibody that form the three-dimensional cavity or surface where an antigen or an epitope binds to the antibody. Typically, heavy chains and light chains contribute three CDRs to the antigen binding region of an antibody.


“Antigen” refers to a substance that specifically binds with antibody CDRs.


“Epitope” refers to the smallest structural area on an antigen molecule that binds an antibody.


“Antigen binding site” or “antibody binding site” refers to the location on an antibody molecule where the antigen or eptiope binds. The antigen binding site is located at the molecular surface define by the N-terminal CDRs and/or in a cleft bordered by the N-terminal CDRs of the heavy and light chains of the Fab region of an antibody molecule.


“Crystallized Synagis” refers to Synagis which is in crystalline form.


“Crystallized Synagis Fab” refers to a Synagis Fab complex which is in the crystalline form.


“Wild-type” refers to a Synagis molecule, that comprises Synagis heavy chain corresponding identically to SEQ ID NO:1 and/or Synagis light chain corresponding identically to SEQ ID NO:7, or fragments thereof. Although Synagis is a humanized antibody not derived from a natural source, for convenience the phrase “wild-type” is used to refer to a molecule which corresponds identically to Synagis, or a fragment thereof, and the phrase “mutant” is used as defined below.


“Mutant” refers to a polypeptide or complex of polypeptides characterized by an amino acid sequence that differs from the wild-type Synagis heavy chain and/or light chain sequence by the substitution of at least one amino acid residue of the wild-type Synagis sequence with a different amino acid residue and/or by the addition and/or deletion of one or more amino acid residues to or from the wild-type Synagis sequence. The additions and/or deletions can be from an internal region of the wild-type Synagis sequence and/or at either or both of the N- or C-termini. A mutant may have, but need not have, Synagis activity. Preferably, a mutant displays biological activity that is substantially similar to that of Synagis.


“Conservative Mutant” refers to a mutant in which at least one amino acid residue from the wild-type Synagis heavy chain and/or light chain sequence is substituted with a different amino acid residue that has similar physical and chemical properties, i.e., an amino acid residue that is a member of the same class or category, as defined above. For example, a conservative mutant may be a polypeptide that differs in amino acid sequence from the wild-type Synagis sequence by the substitution of a specific aromatic Phe (F) residue with an aromatic Tyr (Y) or Trp (W) residue.


“Non-Conservative Mutant” refers to a mutant in which at least one amino acid residue from the wild-type Synagis heavy chain and/or light chain sequence is substituted with a different amino acid residue that has dissimilar physical and/or chemical properties, i.e., an amino acid residue that is a member of a different class or category, as defined above. For example, a non-conservative mutant may be a polypeptide that differs in amino acid sequence from the wild-type Synagis sequence by the substitution of an acidic Glu (E) residue with a basic Arg (R), Lys (K) or Orn residue.


“Deletion Mutant” refers to a mutant having an amino acid sequence that differs from the wild-type Synagis heavy chain and/or light chain sequence by the deletion of one or more amino acid residues from the wild-type sequence. The residues may be deleted from internal regions of the wild-type Synagis sequence and/or from one or both termini.


“Truncated Mutant” refers to a deletion mutant in which the deleted residues are from the N- and/or C-terminus of the wild-type Synagis sequence.


“Extended Mutant” refers to a mutant in which additional residues are added to the N- and/or C-terminus of the wild-type Synagis sequence.


“Methionine mutant” refers to (1) a mutant in which at least one methionine residue of the wild-type Synagis heavy chain and/or light chain sequence is replaced with another residue, preferably with an aliphatic residue, most preferably with a Leu (L) or Ile (I) residue; or (2) a mutant in which a non-methionine residue, preferably an aliphatic residue, most preferably a Leu (L) or Ile (I) residue, of the wild-type Synagis sequence is replaced with a methionine residue.


“Selenomethionine mutant” refers to (1) a mutant which includes at least one selenomethionine (SeMet) residue, typically by substitution of one or more Met residues of the wild-type Synagis heavy chain and/or light chain sequence with a SeMet residue, or by addition of one or more SeMet residues at one or more termini, or (2) a methionine mutant in which at least one Met residue is substituted with a SeMet residue. Preferred SeMet mutants are those in which each Met residue is substituted with a SeMet residue.


“Cysteine mutant” refers to (1) a mutant in which at least one cysteine residue of the wild-type Synagis heavy chain and/or light chain sequence is replaced with another residue, preferably with a Ser (S) residue; or (2) a mutant in which a non-cysteine residue, preferably a Ser (S) residue, of the wild-type Synagis sequence is replaced with a cysteine residue.


“Selenocysteine mutant” refers to (1) a mutant which includes at least one selenocysteine (SeCys) residue, typically by substitution of one or more Cys residues of the wild-type Synagis heavy chain and/or light chain sequence with a SeCys residue, or by addition of one or more SeCys residues at one or more termini, or (2) a cysteine mutant in which at least one Cys residue is substituted with a SeCys residue. Preferred SeCys mutants are those in which each Cys residue or selected Cys residues of Synagis not typically involved in disulfide bonding under physiological conditions is substituted with a SeCys residue. One such Cys residue in the Synagis Fab fragment that may be substituted with selenocysteine is Cys 25 in the light chain (SEQ. ID NO: 7).


“Homologue” refers to a polypeptide having at least 70%, 80%, 90%, 95% or 99% amino acid sequence identity or having a BLAST score of 1×10−6 over at least 100 amino acids (Altschul et al., 1997, Nucleic Acids Res. 25:3389-402) with wild-type Synagis, Synagis heavy chain and/or Synagis light chain, or any functional domain of Synagis, Synagis heavy chain and/or Synagis light chain, as defined herein.


“Crystal” refers to a composition comprising a polypeptide and/or polypeptides in crystalline form. The term “crystal” includes native crystals, heavy-atom derivative crystals and co-crystals, as defined herein.


“Native Crystal” refers to a crystal wherein the polypeptide and/or polypeptides are substantially pure. As used herein, native crystals do not include crystals of polypeptides comprising amino acids that are modified with heavy atoms, such as crystals of selenomethionine mutants, selenocysteine mutants, etc.


“Heavy-atom Derivative Crystal” refers to a crystal wherein the polypeptide and/or polypeptides are in association with one or more heavy-metal atoms. As used herein, heavy-atom derivative crystals include native crystals into which a heavy metal atom is soaked, as well as crystals of selenomethionine mutants and selenocysteine mutants.


“Co-Crystal” refers to a composition comprising a co-complex, as defined above, in crystalline form. Co-crystals include native co-crystals and heavy-atom derivative co-crystals.


“Diffraction Quality Crystal” refers to a crystal that is well-ordered and of a sufficient size, i.e., at least 10 μm, preferably at least 50 μm, and most preferably at least 100 μm in its smallest dimension such that it produces measurable diffraction to at least 3 Å resolution, preferably to at least 2 Å resolution, and most preferably to at least 1.5 Å resolution or lower. Diffraction quality crystals include native crystals, heavy-atom derivative crystals, and co-crystals.


“Unit Cell” refers to the smallest and simplest volume element (i.e., parallelpiped-shaped block) of a crystal that is completely representative of the unit or pattern of the crystal, such that the entire crystal can be generated by translation of the unit cell. The dimensions of the unit cell are defined by six numbers: dimensions a, b and c and angles α, β and γ (Blundel et al., 1976, Protein Crystallography, Academic Press.). A crystal is an efficiently packed array of many unit cells.


“Triclinic Unit Cell” refers to a unit cell in which a≠b≠c and α≠β≠γ.


“Monoclinic Unit Cell” refers to a unit cell in which a≠b≠c; α=γ=90°; and β≠90°, defined to be ≧90°.


“Orthorhombic Unit Cell” refers to a unit cell in which a≠b≠c; and α=β=γ=90°.


“Tetragonal Unit Cell” refers to a unit cell in which a=b≠c; and α=β=γ=90°.


“Trigonal/Rhombohedral Unit Cell” refers to a unit cell in which a=b=c; and α=β=γ≠90°.


“Trigonal/Hexagonal Unit Cell” refers to a unit cell in which a=b=c; α=β=90°; and γ=120°.


“Cubic Unit Cell” refers to a unit cell in which a=b=c; and α=β=γ=90°.


“Crystal Lattice” refers to the array of points defined by the vertices of packed unit cells.


“Space Group” refers to the set of symmetry operations of a unit cell. In a space group designation (e.g., C2) the capital letter indicates the lattice type and the other symbols represent symmetry operations that can be carried out on the unit cell without changing its appearance.


“Asymmetric Unit” refers to the largest aggregate of molecules in the unit cell that possesses no symmetry elements that are part of the space group symmetry, but that can be juxtaposed on other identical entities by symmetry operations.


“Crystallographically-Related Dimer” refers to a dimer of two molecules wherein the symmetry axes or planes that relate the two molecules comprising the dimer coincide with the symmetry axes or planes of the crystal lattice.


“Non-Crystallographically-Related Dimer” refers to a dimer of two molecules wherein the symmetry axes or planes that relate the two molecules comprising the dimer do not coincide with the symmetry axes or planes of the crystal lattice.


“Isomorphous Replacement” refers to the method of using heavy-atom derivative crystals to obtain the phase information necessary to elucidate the three-dimensional structure of a crystallized polypeptide (Blundel et al., 1976, Protein Crystallography, Academic Press.).


“Multi-Wavelength Anomalous Dispersion or MAD” refers to a crystallographic technique in which X-ray diffraction data are collected at several different wavelengths from a single heavy-atom derivative crystal, wherein the heavy atom has absorption edges near the energy of incoming X-ray radiation. The resonance between X-rays and electron orbitals leads to differences in X-ray scattering from absorption of the X-rays (known as anomalous scattering) and permits the locations of the heavy atoms to be identified, which in turn provides phase information for a crystal of a polypeptide. A detailed discussion of MAD analysis can be found in Hendrickson, 1985, Trans. Am. Crystallogr. Assoc., 21:11; Hendrickson et al, 1990, EMBO J. 9:1665; and Hendrickson, 1991, Science 4:91.


“Single Wavelength Anomalous Dispersion or SAD” refers to a crystallographic technique in which X-ray diffraction data are collected at a single wavelength from a single native or heavy-atom derivative crystal, and phase information is extracted using anomalous scattering information from atoms such as sulfur or chlorine in the native crystal or from the heavy atoms in the heavy-atom derivative crystal. The wavelength of X-rays used to collect data for this phasing technique need not be close to the absorption edge of the anomalous scatterer. A detailed discussion of SAD analysis can be found in Brodersen et al., 2000, Acta Cryst., D56:431-441.


“Single Isomorphous Replacement With Anomalous Scattering or SIRAS” refers to a crystallographic technique that combines isomorphous replacement and anomalous scattering techniques to provide phase information for a crystal of a polypeptide. X-ray diffraction data are collected at a single wavelength, usually from a single heavy-atom derivative crystal. Phase information obtained only from the location of the heavy atoms in a single heavy-atom derivative crystal leads to an ambiguity in the phase angle, which is resolved using anomalous scattering from the heavy atoms. Phase information is therefore extracted from both the location of the heavy atoms and from anomalous scattering of the heavy atoms. A detailed discussion of SIRAS analysis can be found in North, 1965, Acta Cryst. 18:212-216; Matthews, 1966, Acta Cryst. 20:82-86.


“Molecular Replacement” refers to the method of calculating initial phases for a new crystal of a polypeptide whose structure coordinates are unknown by orienting and positioning a polypeptide whose structure coordinates are known within the unit cell of the new crystal so as to best account for the observed diffraction pattern of the new crystal. Phases are then calculated from the oriented and positioned polypeptide and combined with observed amplitudes to provide an approximate Fourier synthesis of the structure of the polypeptides comprising the new crystal. This, in turn, is subject to any of several methods of refinement to provide a final, accurate set of structure coordinates for the new crystal (Lattman, 1985, Methods in Enzymology 115:55-77; Rossmann, 1972, “The Molecular Replacement Method,” Int. Sci. Rev. Ser. No. 13, Gordon & Breach, New York; Brünger et al, 1991, Acta Crystallogr A. 47:195-204).


“Having Substantially the Same Three-dimensional Structure” refers to a polypeptide that is characterized by a set of atomic structure coordinates that have a root mean square deviation (r.m.s.d.) of less than or equal to about 2 Å when superimposed onto the atomic structure coordinates of Table 2, or a subset thereof such as individual CDRs, individual secondary structure elements or grouped secondary structure elements such as β-sheets, when at least about 50% to 100% of the Cα atoms of the coordinates are included in the superposition.


“Cα:” As used herein, “Cα” refers to the alpha carbon of an amino acid residue.





5. BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 provides a photograph of an orthorhombic crystal of Synagis Fab;



FIG. 2 provides a diffraction pattern (1° oscillation) of Synagis Fab prepared as described in the Examples;



FIG. 3A provides the amino acid sequences of Synagis heavy chain (SEQ ID NO:1), Synagis heavy chain Fab fragment (SEQ ID NO:2), Synagis heavy chain Fc fragment (SEQ ID NO:3), Synagis heavy chain variable region H1 (SEQ ID NO:4), heavy chain variable region H2 (SEQ ID NO:5) and Synagis heavy chain variable region H3 (SEQ ID NO:6).



FIG. 3B provides the amino acid sequences of Synagis light chain (SEQ ID NO:7), Synagis light chain variable region L1 (SEQ ID NO:8), Synagis light chain variable region L2 (SEQ ID NO:9) and Synagis light chain variable region L3 (SEQ ID NO:10).



FIG. 4 provides a ribbon diagram of the three-dimensional X-ray diffraction structure of Synagis Fab;



FIG. 5 provides a photograph of a tetragonal crystal form of Synagis Fab;



FIG. 6 provides a schematic representation of a generalized IgG type antibody showing the relative positions of the light chain VL and CL domains and the heavy chain VH, CH1, CH2 and CH3 domains;



FIG. 7A provides a ribbon diagram of the three-dimensional structure of Synagis VH and VL domains;



FIG. 7B provides a ribbon diagram of the three-dimensional structure of Synagis Fab CL and CH1 domains;



FIG. 8 provides a stereo view of a superposition of Synagis light chain CDRs L1, L2 & L3 with representative canonical structures;



FIG. 9 provides a stereo view of a superposition of Synagis heavy chain CDRs H1 & H2 with representative canonical structures; and



FIG. 10 provides a Ramachandran plot of the model Synagis Fab crystal structure.





5.1. BRIEF DESCRIPTION OF THE TABLES

Table 1 Classifications of Commonly Encountered Amino Acids;


Table 2 Coordinates of Synagis Fab;


Table 3 Description and Comparison of Synagis Light Chain CDR Canonical Structure;


Table 4 Description and Comparison of Synagis Heavy Chain CDR Canonical Structure;


Table 5 Data Collection Summary;


Table 6 Refinement Parameters.


6. DETAILED DESCRIPTION OF THE INVENTION
6.1 Crystalline Synagis Fab

The crystals of the invention may be obtained include native crystals and heavy-atom derivative crystals. Native crystals generally comprise substantially pure polypeptides corresponding to Synagis Fab in crystalline form.


It is to be understood that the crystalline Synagis Fab of the invention that can be obtained is not limited to wild-type Synagis Fab. Indeed, the crystals may comprise mutants of wild-type Synagis Fab. Mutants of wild-type Synagis Fab are obtained by replacing at least one amino acid residue in the sequence of the wild-type Synagis Fab with a different amino acid residue, or by adding or deleting one or more amino acid residues within the wild-type sequence and/or at the N- and/or C-terminus of the wild-type Synagis Fab. Such mutants should crystallize under crystallization conditions that are substantially similar to those used to crystallize the wild-type Synagis Fab.


The types of mutants contemplated by this invention include conservative mutants, non-conservative mutants, deletion mutants, truncated mutants, extended mutants, methionine mutants, selenomethionine mutants, cysteine mutants and selenocysteine mutants. A mutant or a fragment may have, but need not have, Synagis activity. Preferably, a mutant or a fragment displays biological activity that is substantially similar to that of the wild-type Synagis. Methionine, selenomethione, cysteine, and selenocysteine mutants are particularly useful for producing heavy-atom derivative crystals, as described in detail, below.


It will be recognized by one of skill in the art that the types of mutants contemplated herein are not mutually exclusive; that is, for example, a polypeptide having a conservative mutation in one amino acid may in addition have a truncation of residues at the N-terminus, and several Leu or Ile→Met mutations.


Sequence alignments of polypeptides in a protein family or of homologous polypeptide domains can be used to identify potential amino acid residues in the polypeptide sequence that are candidates for mutation. Identifying mutations that do not significantly interfere with the three-dimensional structure of Synagis and/or that do not deleteriously affect, and that may even enhance, the activity of Synagis will depend, in part, on the region where the mutation occurs. In the CDR regions of the molecule, such as those shown in FIG. 4, non-conservative substitutions as well as conservative substitutions may be tolerated without significantly disrupting the three-dimensional structure and/or biological activity of the molecule. In framework regions, or regions containing significant secondary structure, such as those regions shown in FIG. 4, conservative amino acid substitutions are preferred.


Conservative amino acid substitutions are well-known in the art, and include substitutions made on the basis of a similarity in polarity, charge, solubility, size, hydrophobicity and/or the hydrophilicity of the amino acid residues involved. Typical conservative substitutions are those in which the amino acid is substituted with a different amino acid that is a member of the same class or category, as those classes are defined herein. Thus, typical conservative substitutions include aromatic to aromatic, apolar to apolar, aliphatic to aliphatic, acidic to acidic, basic to basic, polar to polar, etc. Other conservative amino acid substitutions are well known in the art. It will be recognized by those of skill in the art that generally, a total of about 20% or fewer, typically about 10% or fewer, most usually about 5% or fewer, of the amino acids in the wild-type polypeptide sequence can be conservatively substituted with other amino acids without deleteriously affecting the biological activity and/or three-dimensional structure of the molecule, provided that such substitutions do not involve residues that are critical for structure or activity, as discussed above. There has been no complete examination of the effect of conservative mutations of the closely conserved amino acids in immunoglobulin framework regions.


In some embodiments, it may be desirable to make mutations in the active site of a protein or in the antigen binding site of an antibody, e.g., to reduce or completely eliminate antibody activity. While in most instances the amino acids of Synagis will be substituted with genetically-encoded amino acids, in certain circumstances mutants may include genetically non-encoded amino acids. For example, non-encoded derivatives of certain encoded amino acids, such as SeMet and/or SeCys, may be incorporated into the polypeptide chain using biological expression systems (such SeMet and SeCys mutants are described in more detail, infra).


Alternatively, in instances where the mutant will be prepared in whole or in part by chemical synthesis, virtually any non-encoded amino acids may be used, ranging from D-isomers of the genetically encoded amino acids to non-encoded naturally-occurring natural and synthetic amino acids.


Conservative amino acid substitutions for many of the commonly known non-genetically encoded amino acids are well known in the art. Conservative substitutions for other non-encoded amino acids can be determined based on their physical properties as compared to the properties of the genetically encoded amino acids.


In some instances, it may be particularly advantageous or convenient to substitute, delete from and/or add amino acid residues to Synagis in order to provide convenient cloning sites in cDNA encoding the polypeptide, to aid in purification of the polypeptide, etc. Such substitutions, deletions and/or additions that do not substantially alter the three dimensional structure of the native Synagis will be apparent to those having skills in the art. These substitutions, deletions and/or additions include, but are not limited to, His tags, intein-containing self-cleaving tags, maltose binding protein fusions, glutathione S-transferase protein fusions, antibody fusions, green fluorescent protein fusions, signal peptide fusions, biotin accepting peptide fusions, and the like.


Mutations may also be introduced into a polypeptide sequence where there are residues, e.g., cysteine residues, that interfere with crystallization. Such cysteine residues can be substituted with an appropriate amino acid that does not readily form covalent bonds with other amino acid residues under crystallization conditions; e.g., by substituting the cysteine with Ala, Ser or Gly. Any cysteine residue that does not form disulfide bonds either between a heavy chain and a light chain or between two heavy chains of Synagis is a good candidate for replacement. Preferably, Cys residues that are known to participate in disulfide bridges are not substituted or are conservatively substituted with other cysteine-like amino acids so that the residue can participate in a disulfide bridge. In addition, other cysteine residues located in a non-helical or non-β-stranded segment, based on secondary structure assignments, are good candidates for replacement. One such Cys residue in the Synagis Fab crystal structure is at light chain position 25 (SEQ. ID NO: 7).


It should be noted that the mutants contemplated herein need not exhibit Synagis activity. Indeed, amino acid substitutions, additions or deletions that interfere with the activity of Synagis are specifically contemplated by the invention. Such crystalline polypeptides, or the atomic structure coordinates obtained therefrom, can be used to provide phase information to aid the determination of the three-dimensional X-ray structures of other related or non-related crystalline polypeptides.


The heavy-atom derivative crystals from which the atomic structure coordinates of the invention can be obtained generally comprise a crystalline Synagis Fab complex in association with one or more heavy metal atoms. The complex may correspond to a wild-type or a mutant Synagis Fab, which may optionally be in co-complex with one or more molecules, as previously described. The complex may also correspond to another Synagis fragment or to a mutated form thereof. There are two types of heavy-atom derivatives of polypeptides: heavy-atom derivatives resulting from exposure of the protein to a heavy metal in solution, wherein crystals are grown in medium comprising the heavy metal, or in crystalline form, wherein the heavy metal diffuses into the crystal, and heavy-atom derivatives wherein the polypeptide comprises heavy-atom containing amino acids, e.g., selenomethionine and/or selenocysteine mutants.


In practice, heavy-atom derivatives of the first type can be formed by soaking a native crystal in a solution comprising heavy metal atom salts, or organometallic compounds, e.g., lead chloride, gold thiomalate, ethylmercurithiosalicylic acid-sodium salt (thimerosal), uranyl acetate, platinum tetrachloride, osmium tetraoxide, zinc sulfate, and cobalt hexamine, which can diffuse through the crystal and bind to the crystalline polypeptide.


Heavy-atom derivatives of this type can also be formed by adding to a crystallization solution comprising the polypeptide to be crystallized an amount of a heavy metal atom salt, which may associate with the protein and be incorporated into the crystal. The location(s) of the bound heavy metal atom(s) can be determined by X-ray diffraction analysis of the crystal. This information, in turn, is used to generate the phase information needed to construct the three-dimensional structure of the protein.


Heavy-atom derivative crystals may also be prepared from polypeptides that include one or more SeMet and/or SeCys residues (SeMet and/or SeCys mutants). Such selenocysteine or selenomethionine mutants may be made from wild-type or mutant Synagis Fab by expression of Synagis Fab-encoding cDNAs in auxotrophic E. coli strains. Hendrickson et al., 1990, EMBO J. 9(5):1665-1672. The selenocysteine or selenomethionine mutants may also be made from intact Synagis, other fragments of Synagis, or mutated forms thereof. In this method, a cDNA encoding a wild-type or mutant Synagis polypeptide may be expressed in a host organism on a growth medium depleted of either natural cysteine or methionine (or both) but enriched in selenocysteine or selenomethionine (or both). Alternatively, selenocysteine or selenomethionine mutants may be made using nonauxotrophic E. coli strains, e.g., by inhibiting methionine biosynthesis in these strains with high concentrations of Ile, Lys, Thr, Phe, Leu or Val and then providing selenomethionine in the medium (Doublié, 1997, Methods in Enzymology 276:523-530). Furthermore, selenocysteine can be selectively incorporated into polypeptides by exploiting the prokaryotic and eukaryotic mechanisms for selenocysteine incorporation into certain classes of proteins in vivo, as described in U.S. Pat. No. 5,700,660 to Leonard et al. (filed Jun. 7, 1995). One of skill in the art will recognize that selenocysteine is preferably not incorporated in place of cysteine residues that form disulfide bridges, as these may be important for maintaining the three-dimensional structure of the protein and are preferably not to be eliminated. One of skill in the art will further recognize that, in order to obtain accurate phase information, approximately one selenium atom should be incorporated for every 140 amino acid residues of the polypeptide chain. The number of selenium atoms incorporated into the polypeptide chain can be conveniently controlled by designing a Met or Cys mutant having an appropriate number of Met and/or Cys residues, as described more fully below.


In some instances, a polypeptide to be crystallized may not contain cysteine or methionine residues. Therefore, if selenomethionine and/or selenocysteine mutants are to be used to obtain heavy-atom derivative crystals, methionine and/or cysteine residues must be introduced into the polypeptide chain. Likewise, Cys residues may be introduced into the polypeptide chain if the use of a cysteine-binding heavy metal, such as mercury, is contemplated for production of a heavy-atom derivative crystal.


Such mutations are preferably introduced into the polypeptide sequence at sites that will not disturb the overall protein fold. For example, a residue that is conserved among many members of the protein family or that is thought to be involved in maintaining its activity or structural integrity, as determined by, e.g., sequence alignments, should not be mutated to a Met or Cys. In addition, conservative mutations, such as Ser to Cys, or Leu or Ile to Met, are preferably introduced. One additional consideration is that, in order for a heavy-atom derivative crystal to provide phase information for structure determination, the location of the heavy atom(s) in the crystal unit cell must be determinable and provide phase information. Therefore, a mutation is preferably not introduced into a portion of the protein that is likely to be mobile, e.g., at, or within about 1-5 residues of, the N- and C-termini.


Conversely, if there are too many methionine and/or cysteine residues in a polypeptide sequence, over-incorporation of the selenium-containing side chains can lead to the inability of the polypeptide to fold and/or crystallize, as well as to complications in solving the crystal structure. In this case, methionine and/or cysteine mutants are prepared by substituting one or more of these Met and/or Cys residues with another residue. The considerations for these substitutions are the same as those discussed above for mutations that introduce methionine and/or cysteine residues into the polypeptide. Specifically, the Met and/or Cys residues are preferably conservatively substituted with Leu/Ile and Ser, respectively.


As DNA encoding cysteine and methionine mutants can be used in the methods described above for obtaining SeCys and SeMet heavy-atom derivative crystals, the preferred Cys or Met mutant will have one Cys or Met residue for every 140 amino acids.


6.2 Production of Polypeptides

The native and mutated Synagis polypeptides described herein may be chemically synthesized in whole or part using techniques that are well-known in the art (see, e.g., Creighton, 1983, Proteins: Structures and Molecular Principles, W. H. Freeman & Co., NY.). Alternatively, methods that are well known to those skilled in the art can be used to construct expression vectors containing a native or mutated Synagis polypeptide coding sequence and appropriate transcriptional/translational control signals. These methods include in vitro recombinant DNA techniques, synthetic techniques and in vivo recombination/genetic recombination. See, for example, the techniques described in Maniatis et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY and Ausubel et al., 1989, Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley Interscience, NY.


A variety of host-expression vector systems may be utilized to express Synagis coding sequences. These include but are not limited to microorganisms such as bacteria transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing the Synagis coding sequences; yeast transformed with recombinant yeast expression vectors containing the Synagis coding sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing the Synagis coding sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing the Synagis coding sequences; or animal cell systems. The expression elements of these systems vary in their strength and specificities.


Specifically designed vectors allow the shuttling of DNA between hosts such as bacteria-yeast or bacteria-animal cells. An appropriately constructed expression vector may contain: an origin of replication for autonomous replication in host cells, selectable markers, a limited number of useful restriction enzyme sites, a potential for high copy number, and active promoters. A promoter is defined as a DNA sequence that directs RNA polymerase to bind to DNA and initiate RNA synthesis. A strong promoter is one that causes mRNAs to be initiated at high frequency.


Depending on the host/vector system utilized, any of a number of suitable transcription and translation elements, including constitutive and inducible promoters, may be used in the expression vector. For example, when cloning in bacterial systems, inducible promoters such as the T7 promoter, pL of bacteriophage λ, plac, ptrp, ptac (ptrp-lac hybrid promoter) and the like may be used; when cloning in insect cell systems, promoters such as the baculovirus polyhedrin promoter may be used; when cloning in plant cell systems, promoters derived from the genome of plant cells (e.g., heat shock promoters; the promoter for the small subunit of RUBISCO; the promoter for the chlorophyll a/b binding protein) or from plant viruses (e.g., the 35S RNA promoter of CaMV; the coat protein promoter of TMV) may be used; when cloning in mammalian cell systems, promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter) may be used; when generating cell lines that contain multiple copies of the tyrosine kinase domain DNA, SV40-, BPV- and EBV-based vectors may be used with an appropriate selectable marker.


The expression vector may be introduced into host cells via any one of a number of techniques including but not limited to transformation, transfection, infection, protoplast fusion, and electroporation. The expression vector-containing cells are clonally propagated and individually analyzed to determine whether they produce Synagis. Identification of Synagis expressing host cell clones may be done by several means, including but not limited to immunological reactivity with anti-Synagis antibodies, and the presence of host cell-associated Synagis activity.


Expression of Synagis cDNA may also be performed using in vitro produced synthetic mRNA. Synthetic mRNA can be efficiently translated in various cell-free systems, including but not limited to wheat germ extracts and reticulocyte extracts, as well as efficiently translated in cell based systems, including but not limited to microinjection into frog oocytes.


To determine the Synagis cDNA sequence(s) that yields optimal levels of Synagis activity and/or Synagis protein, modified Synagis cDNA molecules are constructed. Host cells are transformed with the cDNA molecules and the levels of Synagis RNA and/or protein are measured.


Levels of Synagis protein in host cells are quantitated by a variety of methods such as immunoaffinity and/or ligand affinity techniques, Synagis-specific affinity beads or Synagis-specific antibodies are used to isolate 35S-methionine labeled or unlabeled Synagis protein. Labeled or unlabeled Synagis protein is analyzed by SDS-PAGE. Unlabeled Synagis is detected by Western blotting, ELISA or RIA employing Synagis-specific antibodies.


Following expression of a Synagis polypeptide in a recombinant host cell, the Synagis polypeptide may be recovered to provide Synagis Fab in active form. Several Synagis purification procedures are available and suitable for use. Recombinant Synagis may be purified from cell lysates or from conditioned culture media, by various combinations of, or individual application of, fractionation, or chromatography steps that are known in the art.


In addition, a recombinant Synagis polypeptide can be separated from other cellular proteins by use of an immuno-affinity column made with monoclonal or polyclonal antibodies specific for full length nascent Synagis or polypeptide fragments thereof.


Alternatively, a Synagis polypeptide may be recovered from a host cell in an unfolded, inactive form, e.g., from inclusion bodies of bacteria. Proteins recovered in this form may be solublized using a denaturant, e.g., guanidinium hydrochloride, and then refolded into an active form using methods known to those skilled in the art, such as dialysis (Rudolph & Lee, FASEB J., 10:49-56).


6.3 Crystallization of Polypeptides and Characterization of Crystal

The native crystalline Synagis Fab from which the atomic structure coordinates of the invention are obtained can be obtained by conventional means and are well-known in the art of protein crystallography, including batch, liquid bridge, dialysis, and vapor diffusion methods (see, e.g., McPherson, 1982, Preparation and Analysis of Protein Crystals, John Wiley, New York; McPherson, 1990, Eur. J. Biochem. 189:1-23.; Weber, 1991, Adv. Protein Chem. 41:1-36.).


Generally, native crystals are grown by dissolving substantially pure Synagis Fab in an aqueous buffer containing a precipitant at a concentration just below that necessary to precipitate the protein. Examples of precipitants include, but are not limited to, polyethylene glycol, ammonium sulfate, 2-methyl-2,4-pentanediol, sodium citrate, sodium chloride, glycerol, isopropanol, lithium sulfate, sodium acetate, sodium formate, potassium sodium tartrate, ethanol, hexanediol, ethylene glycol, dioxane, t-butanol and combinations thereof. Water is removed by controlled evaporation to produce precipitating conditions, which are maintained until crystal growth ceases.


In a preferred embodiment, native crystals are grown by vapor diffusion in hanging drops (McPherson, 1982, Preparation and Analysis of Protein Crystals, John Wiley, New York; McPherson, 1990, Eur. J. Biochem. 189:1-23.). In this method, the polypeptide/precipitant solution is allowed to equilibrate in a closed container with a larger aqueous reservoir having a precipitant concentration optimal for producing crystals. Generally, less than about 25 μL of substantially pure polypeptide solution is mixed with an equal volume of reservoir solution, giving a precipitant concentration about half that required for crystallization. This solution is suspended as a droplet underneath a coverslip, which is sealed onto the top of the reservoir. The sealed container is allowed to stand, usually for about 2-6 weeks, until crystals grow.


For native crystals from which the atomic structure coordinates of the invention are obtained, it has been found that hanging drops or sitting drops containing about 2 μL of Synagis Fab (15 mg/mL in 1 mM Tris, pH 7.6) and 2 μL reservoir solution (15% w/v PEG 4000, 10% 2-propanol, 0.2 M ammonium sulfate and 100 mM Tris, pH 8.5) suspended over 500 μL reservoir solution for about 10 to 14 days at 22° C. provide diffraction quality crystals.


Of course, those having skill in the art will recognize that the above-described crystallization conditions can be varied. Such variations may be used alone or in combination, and include polypeptide solutions containing Synagis Fab concentrations between 3 mg/mL and 10 mg/mL, Tris concentrations between 50 mM and 100 mM, 2-propanol concentrations between 7% and 20%, pH ranges between 6.4 and 11, PEG concentrations of 7% to 10%, PEG molecular weights of 3350 to 8000; and equilibrated with reservoir solutions containing PEG 4000 concentrations between 14% and 20% (w/v), polyethylene glycol molecular weights between 3350 and 8000, 2-propanol concentrations between 7% and 20% (v/v). Other buffer solutions may be used such as sodium cacodylate, HEPES, CAPS, CAPSO, bicine and glycine buffer, so long as the desired pH range is maintained.


Synagis Fab has also been crystallized using ammonium sulfate as the precipitant. These crystals (FIG. 5) are grown from a solution of 15 mg/ml Synagis Fab with equal volume of 1.8 to 2.1 M ammounium sulfate, pH 9.0, equilibrated against 1.8 to 2.1 M ammonium sulfate. The crystals are tetragonal, space group R32 with a=b=92.63 Å, c=179.02 Å, α=β=γ=90°. These Synagis Fab crystals diffract to 3.5 Å or better.


Heavy-atom derivative crystals can be obtained by soaking native crystals in mother liquor containing salts of heavy metal atoms. It has been found that soaking a native crystal in a solution identical to the crystallization solution and additionally containing 1 mM to about 100 mM of a molecule containing the desired heavy atom (Hg, Ur, Pt, Sm, Cd, W, Os, Ir, Pb, ect.) for about 1 hour to several months. One to two day soakings of the crystal in the heavy atom containing solution should be sufficient to provide derivative crystals suitable for use as isomorphous replacements in determining the X-ray crystal structure of the Synagis Fab polypeptide.


Heavy-atom derivative crystals can also be obtained from SeMet and/or SeCys mutants, as described above for native crystals.


Mutant proteins may crystallize under slightly different crystallization conditions than wild-type protein, or under very different crystallization conditions, depending on the nature of the mutation, and its location in the protein. For example, a non-conservative mutation may result in alteration of the hydrophilicity of the mutant, which may in turn make the mutant protein either more soluble or less soluble than the wild-type protein. Typically, if a protein becomes more hydrophilic as a result of a mutation, it will be more soluble than the wild-type protein in an aqueous solution and a higher precipitant concentration will be needed to cause it to crystallize. Conversely, if a protein becomes less hydrophilic as a result of a mutation, it will be less soluble in an aqueous solution and a lower precipitant concentration will be needed to cause it to crystallize. If the mutation happens to be in a region of the protein involved in crystal lattice contacts, crystallization conditions may be affected in more unpredictable ways.


Co-crystals can be obtained by soaking a native crystal in mother liquor containing compound that binds Synagis Fab such as an antigen or an analog thereof, or by co-crystallizing Synagis Fab in the presence of one or more binding compounds.


6.4 Characterization of Crystals

The dimensions of a unit cell of a crystal are defined by six numbers, the lengths of three unique edges, a, b, and c, and three unique angles, α, β, and γ. The type of unit cell that comprises a crystal is dependent on the values of these variables, as discussed above in Section 3.2.


When a crystal is placed in an X-ray beam, the incident X-rays interact with the electron cloud of the molecules that make up the crystal, resulting in X-ray scatter. The combination of X-ray scatter with the lattice of the crystal gives rise to nonuniformity of the scatter; areas of high intensity are called diffracted X-rays. The angle at which diffracted beams emerge from the crystal can be computed by treating diffraction as if it were reflection from sets of equivalent, parallel planes of atoms in a crystal (Bragg's Law). The most obvious sets of planes in a crystal lattice are those that are parallel to the faces of the unit cell. These and other sets of planes can be drawn through the lattice points. Each set of planes is identified by three indices, hkl. The h index gives the number of parts into which the a edge of the unit cell is cut, the k index gives the number of parts into which the b edge of the unit cell is cut, and the l index gives the number of parts into which the c edge of the unit cell is cut by the set of hkl planes. Thus, for example, the 235 planes cut the a edge of each unit cell into halves, the b edge of each unit cell into thirds, and the c edge of each unit cell into fifths. Planes that are parallel to the bc face of the unit cell are the 100 planes; planes that are parallel to the ac face of the unit cell are the 010 planes; and planes that are parallel to the ab face of the unit cell are the 001 planes.


When a detector is placed in the path of the diffracted X-rays, in effect cutting into the sphere of diffraction, a series of spots, or reflections, are recorded to produce a “still” diffraction pattern. Each reflection is the result of X-rays reflecting off one set of parallel planes, and is characterized by an intensity, which is related to the distribution of molecules in the unit cell, and hkl indices, which correspond to the parallel planes from which the beam producing that spot was reflected. If the crystal is rotated about an axis perpendicular to the X-ray beam, a large number of reflections is recorded on the detector, resulting in a diffraction pattern as shown in FIG. 2.


The unit cell dimensions and space group of a crystal can be determined from its diffraction pattern. First, the spacing of reflections is inversely proportional to the lengths of the edges of the unit cell. Therefore, if a diffraction pattern is recorded when the X-ray beam is perpendicular to a face of the unit cell, two of the unit cell dimensions may be deduced from the spacing of the reflections in the x and y directions of the detector, the crystal-to-detector distance, and the wavelength of the X-rays. Those of skill in the art will appreciate that, in order to obtain all three unit cell dimensions, the crystal must be rotated such that the X-ray beam is perpendicular to another face of the unit cell. Second, the angles of a unit cell can be determined by the angles between lines of spots on the diffraction pattern. Third, the absence of certain reflections and the repetitive nature of the diffraction pattern, which may be evident by visual inspection, indicate the internal symmetry, or space group, of the crystal. Therefore, a crystal may be characterized by its unit cell and space group, as well as by its diffraction pattern. Because the lengths of the unit cell axes in a protein crystal are large and the concomitant reciprocal cell lengths are very short, the unit cell dimensions and space group of a protein crystal can be determined from one reciprocal space photograph if the crystal is rotated through approximately one degree. A digital representative of such a photograph is shown in FIG. 2 for the orthorhombic Synagis Fab crystal.


Once the dimensions of the unit cell are determined, the likely number of polypeptides in the asymmetric unit can be deduced from the size of the polypeptide, the density of the average protein, and the typical solvent content of a protein crystal, which is usually in the range of 30-70% of the unit cell volume (Matthews, 1968. J. Mol. Biol. 33:491-497).


The Synagis Fab crystals of the present invention are generally characterized by a diffraction pattern, as shown in FIG. 2. The crystals are further characterized by unit cell dimensions and space group symmetry information obtained from the diffraction patterns, as described above. The crystals, which may be native crystals, heavy-atom derivative crystals or co-crystals, have an a orthorhombic unit cell (i.e., unit cells wherein a≠b≠c; and α=β=γ=90°) and space group symmetry P212121.


In one form of crystalline Synagis Fab, the unit cell has dimensions of a=77.36+/−0.2 Å, b=103.92+/−0.2 Å, c=68.87+/−0.2 Å. There is one Synagis Fab complex in the asymmetric unit.


6.5 Collection of Data and Determination of Structure Solutions

The diffraction pattern is related to the three-dimensional shape of the molecule by a Fourier transform. The process of determining the solution is in essence a re-focusing of the diffracted X-rays to produce a three-dimensional image of the molecule in the crystal. Since re-focusing of X-rays cannot be done with a lens at this time, it is done via mathematical operations.


The sphere of diffraction has symmetry that depends on the internal symmetry of the crystal, which means that certain orientations of the crystal will produce the same set of reflections. Thus, a crystal with high symmetry has a more repetitive diffraction pattern, and there are fewer unique reflections that need to be recorded in order to have a complete representation of the diffraction. The goal of data collection, a dataset, is a set of consistently measured, indexed intensities for as many reflections as possible. A complete dataset is collected if at least 80%, preferably at least 90%, most preferably at least 95% of unique reflections are recorded. In one embodiment, a complete dataset is collected using one crystal. In another embodiment, a complete dataset is collected using more than one crystal of the same type.


Sources of X-rays include, but are not limited to, a rotating anode X-ray generator such as a Rigaku RU-200 or a beamline at a synchrotron light source, such as the Advanced Photon Source at Argonne National Laboratory. Suitable detectors for recording diffraction patterns include, but are not limited to, X-ray sensitive film, multiwire area detectors, image plates coated with phosphorus, and CCD cameras. Typically, the detector and the X-ray beam remain stationary, so that, in order to record diffraction from different parts of the crystal's sphere of diffraction, the crystal itself is moved via an automated system of moveable circles called a goniostat.


One of the biggest problems in data collection, particularly from macromolecular crystals having a high solvent content, is the rapid degradation of the crystal in the X-ray beam. In order to slow the degradation, data is often collected from a crystal at liquid nitrogen temperatures. In order for a crystal to survive the initial exposure to liquid nitrogen, the formation of ice within the crystal must be prevented by the use of a cryoprotectant. Suitable cryoprotectants include, but are not limited to, low molecular weight polyethylene glycols, ethylene glycol, sucrose, glycerol, xylitol, and combinations thereof. Crystals may be soaked in a solution comprising the one or more cryoprotectants prior to exposure to liquid nitrogen, or the one or more cryoprotectants may be added to the crystallization solution. Data collection at liquid nitrogen temperatures may allow the collection of an entire dataset from one crystal.


Once a dataset is collected, the information is used to determine the three-dimensional structure of the molecule in the crystal. However, this cannot be done from a single measurement of reflection intensities because certain information, known as phase information, is lost between the three-dimensional shape of the molecule and its Fourier transform, the diffraction pattern. This phase information must be acquired by methods described below in order to perform a Fourier transform on the diffraction pattern to obtain the three-dimensional structure of the molecule in the crystal. It is the determination of phase information that in effect refocuses X-rays to produce the image of the molecule.


One method of obtaining phase information is by isomorphous replacement, in which heavy-atom derivative crystals are used. In this method, the positions of heavy atoms bound to the molecules in the heavy-atom derivative crystal are determined, and this information is then used to obtain the phase information necessary to elucidate the three-dimensional structure of a native crystal. (Blundel et al., 1976, Protein Crystallography, Academic Press).


Another method of obtaining phase information is by molecular replacement, which is a method of calculating initial phases for a new crystal of a polypeptide whose structure coordinates are unknown by orienting and positioning a polypeptide whose structure coordinates are known, and believed to be similar to the polypeptide of unknown structure, within the unit cell of the new crystal so as to best account for the observed diffraction pattern of the new crystal. Phases are then calculated from the oriented and positioned polypeptide and combined with observed amplitudes to provide an approximate Fourier synthesis of the structure of the molecules comprising the new crystal. (Lattman, 1985, Methods in Enzymology 115:55-77; Rossmann, 1972, “The Molecular Replacement Method,” Int. Sci. Rev. Ser. No. 13, Gordon & Breach, New York; Brünger et al., 1991, Acta Crystallogr A. 47:195-204).


A third method of phase determination is multi-wavelength anomalous diffraction or MAD. In this method, X-ray diffraction data are collected at several different wavelengths from a single crystal containing at least one heavy atom with absorption edges near the energy of incoming X-ray radiation. The resonance between X-rays and electron orbitals leads to differences in X-ray scattering that permits the locations of the heavy atoms to be identified, which in turn provides phase information for a crystal of a polypeptide. A detailed discussion of MAD analysis can be found in Hendrickson, 1985, Trans. Am. Crystallogr. Assoc., 21:11; Hendrickson et al., 1990, EMBO J. 9:1665; and Hendrickson, 1991, Science 4:91.


A fourth method of determining phase information is single wavelength anomalous dispersion or SAD. In this technique, X-ray diffraction data are collected at a single wavelength from a single native or heavy-atom derivative crystal, and phase information is extracted using anomalous scattering information from atoms such as sulfur or chlorine in the native crystal or from the heavy atoms in the heavy-atom derivative crystal. The wavelength of X-rays used to collect data for this phasing technique need not be close to the absorption edge of the anomalous scatterer. A detailed discussion of SAD analysis can be found in Brodersen et al., 2000, Acta Cryst., D56:431-441.


A fifth method of determining phase information is single isomorphous replacement with anomalous scattering or SIRAS. This technique combines isomorphous replacement and anomalous scattering techniques to provide phase information for a crystal of a polypeptide. X-ray diffraction data are collected at a single wavelength, usually from a single heavy-atom derivative crystal. Phase information obtained only from the location of the heavy atoms in a single heavy-atom derivative crystal leads to an ambiguity in the phase angle, which is resolved using anomalous scattering from the heavy atoms. Phase information is therefore extracted from both the location of the heavy atoms and from anomalous scattering of the heavy atoms. A detailed discussion of SIRAS analysis can be found in North, 1965, Acta Cryst. 18:212-216; Matthews, 1966, Acta Cryst. 20:82-86.


Once phase information is obtained, it is combined with the diffraction data to produce an electron density map, an image of the electron clouds that surround the atoms of the molecule(s) in the unit cell. The higher the resolution of the data, the more distinguishable are the features of the electron density map, e.g., amino acid side chains and the positions of carbonyl oxygen atoms in the peptide backbones, because atoms that are closer together are resolvable. A model of the macromolecule is then built into the electron density map with the aid of a computer, using as a guide all available information, such as the polypeptide sequence and the established rules of molecular structure and stereochemistry. Interpreting the electron density map is a process of finding the chemically realistic conformation that fits the map precisely.


After a model is generated, a structure is refined. Refinement is the process of minimizing the function
R-factor=Σ(h,k,l)Fobs(h,k,l)-Fcalc(h,k,l)Σ(h,k,l)Fobs(h,k,l)

which is an average of the differences between observed structure factors (square-root of intensity) and calculated structure factors which are a function of the position, temperature factor and occupancy of each non-hydrogen atom in the model. This usually involves alternate cycles of real space refinement, i.e., calculation of electron density maps and model building, and reciprocal space refinement, i.e., computational attempts to improve the agreement between the original intensity data and intensity data generated from each successive model. Refinement ends when the R-factor converges on a minimum wherein the model fits the electron density map and is stereochemically and conformationally reasonable. During refinement, ordered solvent molecules are added to the structure.


6.6.1 Structures of Synagis Fab

The present invention provides, for the first time, the high-resolution three-dimensional structures and atomic structure coordinates of crystalline Synagis Fab as determined by X-ray crystallography. The specific methods used to obtain the structure coordinates are provided in the examples, infra. The atomic structure coordinates of crystalline Synagis Fab, obtained from the P212121 form of the crystal to 1.8 Å resolution, are listed in Table 2.


Those having skill in the art will recognize that atomic structure coordinates as determined by X-ray crystallography are not without error. Thus, it is to be understood that any set of structure coordinates obtained for crystals of Synagis Fab, whether native crystals, heavy-atom derivative crystals or co-crystals, that have a root mean square deviation (“r.m.s.d.”) of less than or equal to about 2 Å when superimposed, using backbone atoms (N, Cα, C and O), on the structure coordinates listed in Table 2 are considered to be identical with the structure coordinates listed in the Table when at least about 50% to 100% of the backbone atoms of Synagis Fab are included in the superposition.


All IgG-type antibodies have a common structure of two identical light chains of about 25 kilodaltons and two identical heavy chains of about 50 kilodaltons. Each light chain is attached to a heavy chain by disulfide bridges and the two heavy chains are likewise attached by disulfide bridges (FIG. 6). Both the light and heavy chains contain a series of repeating, homologous units, each about 110 amino acids residues in length and a characteristic molecular weight of 12 kDa. Each of these homologous units or domains fold independently into a common structural motif call an immunoglobulin fold (FIG. 7A; FIG. 7B). The amino acid sequences of the amino terminal domains of the heavy and light chains are called variable regions (VH and VL) due to sequence diversity between antibodies at the variable domain CDRs. The remaining domains, CL of the light chain and CH1, CH2 and CH3 of the heavy chain differ less among antibodies and are thus classified as constant regions.


In IgG-type antibodies light chains fall into one of two so-called isotypes, κ and λ. Each member of a light-chain isotype shares amino acid sequence identity of the carboxy terminus with all other members of that isotype. As for IgG light chains, IgG heavy chain polypeptides contain a series of segments, each approximately 110 amino acid residues in length. The segments are likewise homologous to each other and all fold into characteristic 12 kilodalton domains. As in the light chains, the amino terminal variable domain (VH) displays the greatest sequence variation among heavy chains, and the most variable residues are concentrated into three stretches of amino acids called CDR1, CDR2 and CDR3.


The association between light and heavy chains involves both covalent and non-covalent interactions. Covalent interactions are in the form of disulfide bonds between the carboxy terminus of the light chain and the CH1 domain of the heavy chain. Non-covalent interactions arise primarily from hydrophobic interactions between VL and VH domains and between the CL and CH1 domains.


Immunoglobulin V and C domains consists of sequence discontinuous antiparallel β-strands forming two β-pleated sheets linked by an intrachain disulfide bond. In the V domains, nine such β-strands form the β-sheets (FIG. 7A) while in the C domains seven strands form the β-sheets (FIG. 7B). The β strands of the V domains, comprising the ‘framework’ regions support the hypervariable loops or complementary determining regions that form the antigen binding site. As the β-strands are tightly packed in the formation of the β-sheets through hydrogen bonding to main-chain atoms and by side chain interactions, non-conservative mutants of the framework amino acids may be deleterious to the proper formation of these so-called “immunoglobulin folds” (Poljak et al., 1973, Proc. Natl. Acad. Sci. USA 70:3305-3310). Additionally, the quaternary structure of immunoglobulins requires the association of the domains of the heavy and light immunoglobulin chains. As such, amino acids involved in the associations of the β-strands forming the β-pleated sheets and of the β-pleated sheets of individual domains in the formation of immunoglobulin quaternary structure are assumed to be strongly conserved, or replaceable by closely conserved amino acids. The solvent exposed amino acids on the exterior of the VL-VH complex and CL-CH1 complex, are assumed to be subject to less restriction in the substitution of amino acids.


The antigen binding fragment Fab, composed of the four domains VH, VL, CH1 and CL, has been the subject of numerous X-ray crystallographic structure determinations (reviewed in Padlan, 1994, Mol. Immunol. 31:169-217). Each immunoglobulin domain is paired with a second (i.e. VH-VL, CH1-CL) with the components of each of these pairs related by a pseudo two-fold rotation axis (FIG. 4). Moreover, each antibody domain is joined to a subsequent domain (i.e. VH-CH1, VL-CL) by a short segment of polypeptide sometimes refered to as the “switch”. This sequence of extended polypeptide permits intersegmental flexiblity of the Fab and, as such, allows for differing relative orientations of the VH, VL (i.e. the Fv fragment) and the CH1 and CL domains. The relative disposition of the variable and constant domains (the so-called elbow angle) of an Fab is defined as the angle between the pseudo two-fold rotation axes of the Fv and CH1-CL domains. Thus, an elbow angle of 180° specifies that the pseudo two-fold axes of the Fv and CH1-CL domains are colinear and angles greater or less than 180° specifly an Fab which is asymmetric.


The structure of the Fv fragment consists of the two immunoglobulin variable domains (VH and VL) which, as stated previously, are related by a pseudo two-fold rotation axis. Six hypervariable segments, or complementarity-determining-regions (CDRs), three each from the VH (H1, H2 and H3; FIG. 4) and VL (L1, L2 and L3; FIG. 4) domains, are formed from loops which connect beta strands in the immunoglobulin variable domains. The conformation of the CDR loops are generally determined by the length of the loop, the distance between the invariant (framework) residues which anchor the loop and the primary sequence of amino acids. By comparing the sequences and lengths of CDR loops of known structure, Chothia et al., 1989, Nature 342:877-833 discovered that each CDR loop, with the exception of the third hypervariable loop of the heavy chain (CDR H3), generally comformed to one of a few structural posibilities (i.e. canonical models). Thus, while there may be an extremely large repertoire of primary sequences of hypervariable loops, there appears to be some limit to the number of tertiary structures into which the backbone polypeptide chain at each loop can fold. This limits the overall structural design but still provides for structural diversity at the level of the amino acid side chain. As yet, no canonical models have been suggested for CDR H3. Since the specificity of antigen binding is determined almost exclusively by the topology of the CDRs, the structure of the CDRs and the interaction of the CDR with antigen has been the primary focus in the study of antibody structure.


The hypervariable loops, or CDRs, L1, L2, L3, H1 and H2 from immunoglobulins have been noted to usually have one of a small number of main chain conformations or canonical structures. The conformation of a particular canonical structure is determined by the length of the loop and residues present at key sites that interact with the loop. The conformation of CDR H3, however, does not appear to be limited based on the length of the loop as are the other CDRs.


The canonical classification of the CDRs for the Synagis Fab crystal structure were assigned by comparing loop lengths, sequences and root-mean-square deviations to example canonical loops. Tables 3 and 4 detail the canonical conformations for the free Synagis Fab crystal structure and selected representative CDRs for each canonical loop. The average main chain atom deviations for each of the defined canonical structures are significantly less than 1.0 Å and unambiguously assign the 5 CDRs to canonical classes. It is interesting to note that CDR L1 is a member of the type 1 canonical structure which is absent in the human VL repertoire. Superpositioning of the Synagis CDRs with representative canonical loops as shown in FIGS. 8 & 9.


6.7 Structure Coordinates

The atomic structure coordinates can be used in molecular modeling and design, as described more fully below. The present invention encompasses the structure coordinates and other information, e.g., amino acid sequence, connectivity tables, vector-based representations, temperature factors, etc., used to generate the three-dimensional structure of the polypeptide for use in the software programs described below and other software programs.


The invention encompasses machine readable media embedded with the three-dimensional structure of the model described herein, or with portions thereof. As used herein, “machine readable medium” refers to any medium that can be read and accessed directly by a computer or scanner. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium and magnetic tape; optical storage media such as optical discs or CD-ROM; electrical storage media such as RAM or ROM; and hybrids of these categories such as magnetic/optical storage media. Such media further include paper on which is recorded a representation of the atomic structure coordinates, e.g., Cartesian coordinates, that can be read by a scanning device and converted into a three-dimensional structure with an OCR.


A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon the atomic structure coordinates of the invention or portions thereof and/or X-ray diffraction data. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the sequence and X-ray data information on a computer readable medium. Such formats include, but are not limited to, Protein Data Bank (“PDB”) format (Research Collaboratory for Structural Bioinformatics; http://www.rcsb.org/pdb/docs/format/pdbguide2.2/guide2.2_frame.html); Cambridge Crystallographic Data Centre format (http://www.ccdc.cam.ac.uk/support/csd_doc/volume3/z323.html); Structure-data (“SD”) file format (MDL Information Systems, Inc.; Dalby et al., 1992, J. Chem. Inf. Comp. Sci. 32:244-255), and line-notation, e.g., as used in SMILES (Weininger, 1988, J. Chem. Inf. Comp. Sci. 28:31-36). Methods of converting between various formats read by different computer software will be readily apparent to those of skill in the art, e.g., BABEL (v. 1.06, Walters & Stahl, ©1992, 1993, 1994; http://www.brunel.ac.uk/departments/chem/babel.htm.) All format representations of the polypeptide coordinates described herein, or portions thereof, are contemplated by the present invention. By providing computer readable medium having stored thereon the atomic coordinates of the invention, one of skill in the art can routinely access the atomic coordinates of the invention, or portions thereof, and related information for use in modeling and design programs, described in detail below.


While Cartesian coordinates are important and convenient representations of the three-dimensional structure of a polypeptide, those of skill in the art will readily recognize that other representations of the structure are also useful. Therefore, the three-dimensional structure of a polypeptide, as discussed herein, includes not only the Cartesian coordinate representation, but also all alternative representations of the three-dimensional distribution of atoms. For example, atomic coordinates may be represented as a Z-matrix, wherein a first atom of the protein is chosen, a second atom is placed at a defined distance from the first atom, a third atom is placed at a defined distance from the second atom so that it makes a defined angle with the first atom. Each subsequent atom is placed at a defined distance from a previously placed atom with a specified angle with respect to the third atom, and at a specified torsion angle with respect to a fourth atom. Atomic coordinates may also be represented as a Patterson function, wherein all interatomic vectors are drawn and are then placed with their tails at the origin. This representation is particularly useful for locating heavy atoms in a unit cell. In addition, atomic coordinates may be represented as a series of vectors having magnitude and direction and drawn from a chosen origin to each atom in the polypeptide structure. Furthermore, the positions of atoms in a three-dimensional structure may be represented as fractions of the unit cell (fractional coordinates), or in spherical polar coordinates.


Additional information, such as thermal parameters, which measure the motion of each atom in the structure, chain identifiers, which identify the particular chain of a multi-chain protein in which an atom is located, and connectivity information, which indicates to which atoms a particular atom is bonded, is also useful for representing a three-dimensional molecular structure.


6.8 Uses of the Atomic Structure Coordinates


Structure information, typically in the form of the atomic structure coordinates, can be used in a variety of computational or computer-based methods to, for example, design, screen for and/or identify compounds that bind crystallized Synagis Fab or a portion or fragment thereof, or to intelligently design mutants that have altered biological properties.


In one embodiment, the crystals and structure coordinates obtained therefrom are useful for identifying and/or designing compounds that bind Synagis Fab as an approach towards developing new therapeutic agents. For example, a high resolution X-ray structure will often show the locations of ordered solvent molecules around the protein, and in particular at or near putative binding sites on the protein. This information can then be used to design molecules that bind these sites, the compounds synthesized and tested for binding in biological assays. Travis, 1993, Science 262:1374.


In another embodiment, the structure is probed with a plurality of molecules to determine their ability to bind to the Synagis Fab at various sites. Such compounds can be used as targets or leads in medicinal chemistry efforts to identify, for example, inhibitors of potential therapeutic importance.


In still another embodiment, compounds that can isomerize to short-lived reaction intermediates in the chemical reaction of a Synagis Fab-binding compound with Synagis Fab can be developed. Thus, the time-dependent analysis of structural changes in Synagis Fab during its interaction with other molecules is enabled. The reaction intermediates of Synagis Fab can also be deduced from the reaction product in co-complex with Synagis Fab. Such information is useful to design improved analogues of known Synagis Fab inhibitors or to design novel classes of inhibitors based on the reaction intermediates of Synagis Fab and Synagis Fab-inhibitor co-complexes. This provides a novel route for designing Synagis Fab inhibitors with both high specificity and stability.


In yet another embodiment, the structure can be used to computationally screen small molecule data bases for chemical entities or compounds that can bind in whole, or in part, to Synagis Fab. In this screening, the quality of fit of such entities or compounds to the binding site may be judged either by shape complementarity or by estimated interaction energy. Meng et al., 1992, J. Comp. Chem. 13:505-524.


The design of compounds that bind to or inhibit Synagis Fab according to this invention generally involves consideration of two factors. First, the compound must be capable of physically and structurally associating with Synagis Fab. This association can be covalent or non-covalent. For example, covalent interactions may be important for designing irreversible or suicide inhibitors of a protein. Non-covalent molecular interactions important in the association of Synagis Fab with its substrate include hydrogen bonding, ionic interactions and van der Waals and hydrophobic interactions. Second, the compound must be able to assume a conformation that allows it to associate with Synagis Fab. Although certain portions of the compound will not directly participate in this association with Synagis Fab, those portions may still influence the overall conformation of the molecule. This, in turn, may have a significant impact on potency. Such conformational requirements include the overall three-dimensional structure and orientation of the chemical group or compound in relation to all or a portion of the binding site, or the spacing between functional groups of a compound comprising several chemical groups that directly interact with Synagis Fab.


The potential inhibitory or binding effect of a chemical compound on Synagis Fab may be analyzed prior to its actual synthesis and testing by the use of computer modeling techniques. If the theoretical structure of the given compound suggests insufficient interaction and association between it and Synagis Fab, synthesis and testing of the compound is unnecessary. However, if computer modeling indicates a strong interaction, the molecule may then be synthesized and tested for its ability to bind to Synagis Fab and inhibit its activity. In this manner, synthesis of ineffective compounds may be avoided.


An inhibitory or other binding compound of Synagis Fab may be computationally evaluated and designed by means of a series of steps in which chemical groups or fragments are screened and selected for their ability to associate with the individual binding pockets or other areas of Synagis Fab. One skilled in the art may use one of several methods to screen chemical groups or fragments for their ability to associate with Synagis Fab. This process may begin by visual inspection of, for example, the active site on the computer screen based on the Synagis Fab coordinates. Selected fragments or chemical groups may then be positioned in a variety of orientations, or docked, within an individual binding pocket of Synagis Fab as defined supra. Docking may be accomplished using software such as QUANTA and SYBYL, followed by energy minimization and molecular dynamics with standard molecular mechanics forcefields, such as CHARMM and AMBER.


Specialized computer programs may also assist in the process of selecting fragments or chemical groups. These include:


1. GRID (Goodford, 1985, J. Med. Chem. 28:849-857). GRID is available from Oxford University, Oxford, UK;


2. MCSS (Miranker & Karplus, 1991, Proteins: Structure, Function and Genetics 11:29-34). MCSS is available from Molecular Simulations, Burlington, Mass.;


3. AUTODOCK (Goodsell & Olsen, 1990, Proteins: Structure, Function, and Genetics 8:195-202). AUTODOCK is available from Scripps Research Institute, La Jolla, Calif.; and


4. DOCK (Kuntz et al., 1982, J. Mol. Biol. 161:269-288). DOCK is available from University of California, San Francisco, Calif.


Once suitable chemical groups or fragments have been selected, they can be assembled into a single compound or inhibitor. Assembly may proceed by visual inspection of the relationship of the fragments to each other in the three-dimensional image displayed on a computer screen in relation to the structure coordinates of Synagis Fab. This would be followed by manual model building using software such as QUANTA or SYBYL.


Useful programs to aid one of skill in the art in connecting the individual chemical groups or fragments include:


1. CAVEAT (Bartlett et al., 1989, ‘CAVEAT: A Program to Facilitate the Structure-Derived Design of Biologically Active Molecules’. In Molecular Recognition in Chemical and Biological Problems’, Special Pub., Royal Chem. Soc. 78:182-196). CAVEAT is available from the University of California, Berkeley, Calif.;


2. 3D Database systems such as MACCS-3D (MDL Information Systems, San Leandro, Calif.). This area is reviewed in Martin, 1992, J. Med. Chem. 35:2145-2154); and


3. HOOK (available from Molecular Simulations, Burlington, Mass.).


Instead of proceeding to build a Synagis Fab inhibitor in a step-wise fashion one fragment or chemical group at a time, as described above, Synagis Fab binding compounds may be designed as a whole or ‘de novo’ using either an empty active site or optionally including some portion(s) of a known inhibitor(s). These methods include:


1. LUDI (Bohm, 1992, J. Comp. Aid. Molec. Design 6:61-78). LUDI is available from Molecular Simulations, Inc., San Diego, Calif.;


2. LEGEND (Nishibata & Itai, 1991, Tetrahedron 47:8985). LEGEND is available from Molecular Simulations, Burlington, Mass.; and


3. LeapFrog (available from Tripos, Inc., St. Louis, Mo.).


Other molecular modeling techniques may also be employed in accordance with this invention. See, e.g., Cohen et al, 1990, J. Med. Chem. 33:883-894. See also, Navia & Murcko, 1992, Current Opinions in Structural Biology 2:202-210.


Once a compound has been designed or selected by the above methods, the efficiency with which that compound may bind to Synagis Fab may be tested and optimized by computational evaluation. For example, a compound that has been designed or selected to function as a Synagis Fab-inhibitor must also preferably occupy a volume not overlapping the volume occupied by the active site residues when the native substrate is bound. An effective Synagis Fab inhibitor must preferably demonstrate a relatively small difference in energy between its bound and free states (i.e., it must have a small deformation energy of binding). Thus, the most efficient Synagis Fab inhibitors should preferably be designed with a deformation energy of binding of not greater than about 10 kcal/mol, preferably, not greater than 7 kcal/mol. Synagis Fab inhibitors may interact with the protein in more than one conformation that is similar in overall binding energy. In those cases, the deformation energy of binding is taken to be the difference between the energy of the free compound and the average energy of the conformations observed when the inhibitor binds to the enzyme.


A compound selected or designed for binding to Synagis Fab may be further computationally optimized so that in its bound state it would preferably lack repulsive electrostatic interaction with the target protein. Such non-complementary electrostatic interactions include repulsive charge-charge, dipole-dipole and charge-dipole interactions. Specifically, the sum of all electrostatic interactions between the inhibitor and the protein when the inhibitor is bound to it preferably make a neutral or favorable contribution to the enthalpy of binding.


Specific computer software is available in the art to evaluate compound deformation energy and electrostatic interaction. Examples of programs designed for such uses include: Gaussian 92, revision C (Frisch, Gaussian, Inc., Pittsburgh, Pa. ©1992); AMBER, version 4.0 (Kollman, University of California at San Francisco, ©1994); QUANTA/CHARMM (Molecular Simulations, Inc., Burlington, Mass., ©1994); and Insight II/Discover (Biosym Technologies Inc., San Diego, Calif., ©1994). These programs may be implemented, for instance, using a computer workstation, as are well-known in the art. Other hardware systems and software packages will be known to those skilled in the art.


Once a Synagis Fab-binding compound has been optimally selected or designed, as described above, substitutions may then be made in some of its atoms or chemical groups in order to improve or modify its binding properties. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. One of skill in the art will understand that substitutions known in the art to alter conformation should be avoided. Such altered chemical compounds may then be analyzed for efficiency of binding to Synagis Fab by the same computer methods described in detail above.


Because Synagis Fab may crystallize in more than one crystal form, the structure coordinates of Synagis Fab, or portions thereof, are particularly useful to solve the structure of those other crystal forms of Synagis or other Synagis fragments. They may also be used to solve the structure of Synagis mutants, Synagis co-complexes, fragments thereof, or of the crystalline form of any other protein that shares significant amino acid sequence homology with a structural domain of Synagis Fab.


One method that may be employed for this purpose is molecular replacement. In this method, the unknown crystal structure, whether it is another crystal form of Synagis Fab, a Synagis Fab mutant, or a Synagis Fab co-complex, or the crystal of some other protein with significant amino acid sequence homology to any functional domain of Synagis Fab, may be determined using phase information from the Synagis Fab structure coordinates. The phase information may also be used to determine the crystal structure of full-length Synagis, fragments of Synagis other than Synagis Fab, and mutants or co-complexes thereof, and other proteins with significant homology to Synagis or fragments thereof. This method will provide an accurate three-dimensional structure for the unknown protein in the new crystal more quickly and efficiently than attempting to determine such information ab initio. In addition, in accordance with this invention, Synagis Fab mutants may be crystallized in co-complex with known Synagis Fab inhibitors. The crystal structures of a series of such complexes may then be solved by molecular replacement and compared with that of wild-type Synagis Fab. Potential sites for modification within the various binding sites of the protein may thus be identified. This information provides an additional tool for determining the most efficient binding interactions, for example, increased hydrophobic interactions, between Synagis Fab and a chemical group or compound.


If an unknown crystal form has the same space group as and similar cell dimensions to the known Synagis Fab crystal form, then the phases derived from the known crystal form can be directly applied to the unknown crystal form, and in turn, an electron density map for the unknown crystal form can be calculated. Difference electron density maps can then be used to examine the differences between the unknown crystal form and the known crystal form. A difference electron density map is a subtraction of one electron density map, e.g., that derived from the known crystal form, from another electron density map, e.g., that derived from the unknown crystal form. Therefore, all similar features of the two electron density maps are eliminated in the subtraction and only the differences between the two structures remain. For example, if the unknown crystal form is of a Synagis Fab co-complex, then a difference electron density map between this map and the map derived from the native, uncomplexed crystal will ideally show only the electron density of the ligand. Similarly, if amino acid side chains have different conformations in the two crystal forms, then those differences will be highlighted by peaks (positive electron density) and valleys (negative electron density) in the difference electron density map, making the differences between the two crystal forms easy to detect. However, if the space groups and/or cell dimensions of the two crystal forms are different, then this approach will not work and molecular replacement must be used in order to derive phases for the unknown crystal form.


All of the complexes referred to above may be studied using well-known X-ray diffraction techniques and may be refined versus 50 Å to 1.5 Å or greater resolution X-ray data to an R value of about 0.20 or less using computer software, such as X-PLOR (Yale University, (c) 1992, distributed by Molecular Simulations, Inc.). See, e.g., Blundel et al., 1976, Protein Crystallography, Academic Press.; Methods in Enzymology, vol. 114 & 115, Wyckoff et al., eds., Academic Press, 1985. This information may thus be used to optimize known classes of Synagis Fab inhibitors, and more importantly, to design and synthesize novel classes of Synagis Fab inhibitors.


The structure coordinates of Synagis Fab mutants will also facilitate the identification of related proteins or enzymes analogous to Synagis Fab in function, structure or both, thereby further leading to novel therapeutic modes for treating or preventing Synagis Fab mediated diseases.


Subsets of the atomic structure coordinates can be used in any of the above methods. Particularly useful subsets of the coordinates include, but are not limited to, coordinates of single domains, coordinates of residues lining an antigen binding site, coordinates of residues of a CDR, coordinates of residues that participate in important protein-protein contacts at an interface, and Ca coordinates. For example, the coordinates of a fragment of an antibody that contains the antigen binding site may be used to design inhibitors that bind to that site, even though the antibody is fully described by a larger set of atomic coordinates. Therefore, a set of atomic coordinates that define the entire polypeptide chain, although useful for many applications, do not necessarily need to be used for the methods described herein.


7. EXAMPLE
Preparation of Crystals of Synagis Fab

The subsections below describe the production of a polypeptide containing the Synagis Fab, and the preparation and characterization of diffraction quality crystals, heavy-atom derivative crystals.


7.1 Production and Purification of Synagis Fab

Synagis IgG was prepared as described in U.S. Pat. No. 5,824,307, which is hereby incorporated by reference in its entirety.


The Synagis Fab fragment was produced by papain digestion of Synagis IgG. In brief, 20 mg of IgG was digested in a solution of PBS buffer, 1 mM EDTA, 1 mM b-mercaptoethanol and 0.2 mg papain. Digestion was carried out for 45 minutes at 37° C. The resultant digested antibody was concentrated to 250 ul in 50 mM Tris buffer, ph 8.5. This solution was applied to a Q-2 anion exchange column (BioRad) with a flow rate of 1 ml/min. The Fab fragment eluted in the void volume. The Fab preparation was further purified by size exclusion chromatography using a Pharmacia S-200 SEC column and PBS buffer flowing at a rate of 0.5 ml/min. Pure Fab eluted as a sharp peak at the appropriate molecular weight. Finally, the Fab preparation was concentrated and buffer-exchanged with Centricon P-20 centrifugal concentrators (Spectrum).


The final concentration of Synagis Fab measured at 280 nm was 15 mg/mL in approximately 1 mM Tris, pH 7.6.


7.1.1 Preparation of Synagis Fab Native Crystals


Crystals were grown at room temperature by the hanging drop vapor diffusion method using Linbro multi-well plates. Drops containing 2 μL of the protein solution and 2 μL of precipitant buffer were equilibrated against 500 μL precipitant buffer. The precipitant buffer was 15% PEG 4000, 10% 2-propanol, 0.2 M ammonium sulfate, 0.1 M Tris, pH 8.5. Crystals shaped as long rectangular prisms appeared after 4 days and grew to a maximum size of 0.8×0.1×0.1 mm in 10 to 14 days.


7.2 Analysis and Characterization of Synagis Fab Crystals

7.2.1 Diffraction Data Collection


X-ray diffraction data were collected using graphite-monochromated Cu Kα x-rays from a Siemens rotating anode source. Intensities were measured in 1° oscillation steps using a MAR 345 imaging plate and processed with the Denzo/Scalepack suite of programs. A single crystal was used to collect the diffraction data. The crystal was cryo-protected in a solution of the crystallization buffer with the addition of glycerol. The crystal was mounted in a nylon loop and flash frozen to 100 K. Data indicate that the crystals are orthorhombic, space group P212121 and cell parameters a=77.361, b=103.925, c=68.866. Data extend to 1.8 Å, the limit available by detector geometry at the crystal to detector distance of 12 cm. Statistics for the data collection and data reduction are listed in Table 5.


7.2.2 Structure Determination


Estimation of solvent content suggest one Fab molecule per asymmetric unit in the crystal. A preliminary model for the Synagis Fab structure was determined by molecular replacement techniques. The procedure was carried out using the program XPLOR (Brunger) running on a Silicon Graphics Indigo2 workstation. The procedure followed that used for the molecular replacement solution of Fab 26-10 (Brunger). For the test model, the anti-tumor Fab (CTM01, IgG1 κ, Protein Data Bank code 1AD9) was chosen. Best rotation and translation solutions were found with the model modified by a −20° change in the elbow angle. A single solution emerged from the application of rotation function, PC-refinement and translation function. Using the molecular replacement solution an initial crystallographic R-value, based on rigid body refinement of the four 1AD9 model domains (VL, CL, VH and CH1), was calculated to be 0.42.


Using the model from the molecular replacement approach and the rigid body refinement, a single cycle of simulated annealing refinement (SA) followed by a cycle of grouped B-factor refinement resulted in a crystallographic residual of 0.29. Inspection of initial 2Fo-Fc and Fo-Fc electron density maps clearly indicated the differences in amino acid sequence between and model and Synagis Fab. Refinement was continued with alternate cycles of manual model building using the visualization program TURBO and simulated annealing refinement using XPLOR, and by the 5th cycle of refinement, the complete Synagis Fab sequence was fit to electron density. Refinement continued for an additional 15 cycles with improvements to stereochemistry of the polypeptide and the addition of solvent water molecules. Refinement was terminated when no peaks in an Fo-Fc difference Fourier were greater than 2.5σ. Electron density for the light chain is well resolved from residues 4 through the C-terminus residue 213. The entire heavy chain has been modeled from the N-terminus residue 1 through C-terminus residue 220. No breaks in the electron density for the modeled polypeptides are found.









TABLE 5







Data Collection Summary









Native














X-ray source
Cu Rotating Anode



Resolution limit (Å)
1.86 Å



Rsymb(%)
6.0



Total observations
425,773



Unique reflections
39,800



Completeness (%)
92



Signal % > 2σ)
83








bRsym = 100 × ΣhΣi|Ii(h) − <I(h)>|/ΣhΣiIi(h).








7.2.3 Structure Analyses


A Ramachandran (Φ, Ψ) plot of the final model shows only one residue in a region usually considered to be disallowed (light chain Thr 51, CDR L2, FIG. 10). This residue, at residue i+1 of a γ turn, has been noted to occur with this conformation in class 3 γ turns (Milner-White & Poet, 1987). Moreover, the conformation of this residue is in agreement with the classification of CDR L2 as a class 1 canonical loop. The errors in atomic coordinates estimated by the method of Luzzatti (1952) are 0.21 Å.


The following table summarizes the X-ray crystallography refinement parameters of the structure of crystalline Synagis Fab of the invention.









TABLE 6







Refinement Parameters


Synagis Fab: 429 residues, 357 water molecules (3664 atoms)










R-
R.m.s.d.














d-spacings
Reflections
valuea
bonds
angles
B-valuesb



(Å)
(N)
(%)
(Å)
(°)
(Å2)

















Synagis
1.86
33,300
19.4
0.01
1.84
25.6


Fab:


(21.4)c






aR-value = 100 × Σh ∥Fobs(h)| − |Fcalc)h)∥/Σh|Fobs(h)| for reflections with Fobs > 2σ.




bFor bonded protein atoms.




cValue in parentheses is the free R-value (Brünger, 1992, “Free R value: a novel statistical quantity for assessing the accuracy of crystal structures,” Nature 355:472-475.) determined from 5% of the data.







Table 2, following this page, provides the atomic structure coordinates of Synagis Fab. The amino acid residue numbers coincide with those used in FIGS. 3A and 3B.


The following abbreviations are used in Table 2:


“Atom Type” refers to the element whose coordinates are provided. The first letter in the column defines the element.


“A.A.” refers to amino acid.


“X, Y and Z” provide the Cartesian coordinates of the element.


“B” is a thermal factor that measures movement of the atom around its atomic center.


“OCC” refers to occupancy, and represents the percentage of time the atom type occupies the particular coordinate. OCC values range from 0 to 1, with 1 being 100%.


Structures coordinates for Synagis Fab according to Table 2 may be modified by mathematical manipulation. Such manipulations include, but are not limited to, crystallographic permutations of the raw structure coordinates, fractionalization of the raw structure coordinates, integer additions or subtractions to sets of the raw structure coordinates, inversion of the raw structure coordinates and any combination of the above.


The present invention is not to be limited in scope by the exemplified embodiments, which are intended as illustrations of single aspects of the invention. Indeed, various modifications of the invention in addition to those described herein will become apparent to those having skill in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall with in the scope of the appended claims.









TABLE 3







Synagis VL CDR canonical structure


L1-canonical structure type 1-10 residues


Torsion Angles











Synagis

J539 (PDB code 2FBJ)













Residue
Amino Acid
Φ
Ψ
Amino Acid
Φ
Ψ
















24
Lys
−114
123
Ser
−123
143


25
Cys
−107
151
Ala
−107
147


26
Gln
−73
−26
Ser
−71
−16


28
Leu
−105
147
Ser
−157
169


29
Ser
−61
145
Ser
−59
133


30
Val
−123
140
Val
−113
151


31
Gly
−71
−61
Ser
−75
−37


32
Tyr
−142
164
Ser
−157
160


33
Met
−128
148
Leu
−141
140


34
His
−117
149
His
−136
156










r.m.s. difference Ca postitions = 0.297A; r.m.s. difference main-chain


atoms = 0.685A










L2-canonical structure type 1 Torsion Angles











Synagis

HyHel-5 (PDB code 1BQL)













Residue
Amino Acid
Φ
Ψ
Amino Acid
Φ
Ψ
















50
Asp
48
43
Asp
41
57


51
Thr
67
−46
Thr
54
−64


52
Ser
−133
5
Ser
−107
−6


53
Lys
−85
119
Lys
−85
124


54
Leu
−68
126
Leu
−72
139


55
Ala
−71
166
Ala
−78
161


56
Ser
−69
135
Ser
−53
100










r.m.s. difference Ca postitions = 0.098A; r.m.s. difference main-chain


atoms = 0.261A










L3-canonical structure type 1 Torsion Angles











Synagis

TE33 (PDB code 1TET)













Residue
Amino Acid
Φ
Ψ
Amino Acid
Φ
Ψ
















89
Phe
−132
129
Phe
−142
141


90
Gln
−107
106
Gln
−117
135


91
Gly
−120
10
Gly
−129
32


92
Ser
−80
−21
Ser
−97
−35


93
Gly
−152
167
His
−124
125


94
Tyr
−87
142
Phe
−81
124


95
Pro
−88
150
Pro
−81
140


96
Phe
−67
131
Phe
−61
128


97
Thr
−147
153
Thr
−124
151





r.m.s. difference Ca postitions = 0.240A; r.m.s. difference main-chain atoms = 0.622A













TABLE 4







Synagis VH CDR canonical structure residues and torsion angles





H1-canonical structure type 1











Synagis

50.1 (PDB code 2GGI)













Residue
Amino Acid
Φ
Ψ
Amino Acid
Φ
Ψ
















26
Gly
92
0
Gly
114
−14


27
Phe
−169
168
Phe
−165
132


27A
Ser
−124
135
Ser
−80
145


27B
Leu
−73
1
Leu
−77
6


28
Ser
−93
−18
Ser
−90
−13


29
Thr
−65
132
Thr
−65
127


30
Ser
−43
134
Tyr
−60
124


31
Gly
85
−10
Gly
94
6


32
Met
−76
143
Met
−82
154


33
Ser
−150
151
Gly
179
159


34
Val
−129
124
Val
−132
135


35
Gly
−116
165
Ser
−100
154










r.m.s. difference Ca postitions = 0.218A; r.m.s. difference main-chain


atoms = 0.390A










H2-canonical structure type 1











Synagis

HC19 (PDB code 1GIG)













Residue
Amino Acid
Φ
Ψ
Amino Acid
Φ
Ψ
















50
Asp
−152
167
Val
−143
149


51
Ile
−138
134
Ile
−126
117


52
Trp
−90
165
Trp
−79
165


53
Trp
−55
−29
Ala
−50
−42


54
Asp
−91
12
Gly
−75
−5


55
Asp
77
8
Gly
98
−5


56
Lys
−70
132
Asn
−69
144


57
Lys
−112
140
Thr
−125
155


58
Asp
−130
143
Asn
−138
143


59
Tyr
−135
149
Tyr
−123
154


60
Asn
−67
125
Asn
−66
125


61
Pro
−55
125
Ser
−56
−35


62
Ser
−58
−31
Ala
−58
−40


63
Leu
−111
−12
Leu
−90
−32


64
Lys
−34
−47
Met
−3
−59


65
Ser
−53
−34
Ser
−66
−44





r.m.s. difference Ca postitions = 0.106A; r.m.s. difference main−chain atoms = 0.243A




















TABLE 2







Atom A.A.








Type
X
Y
Z
Occ
B

























ATOM
CB
MET
L
4
69.801
42.361
−3.359
1.00
52.70


ATOM
CG
MET
L
4
70.492
41.405
−4.309
1.00
51.32


ATOM
SD
MET
L
4
72.128
42.056
−4.674
1.00
57.06


ATOM
CE
MET
L
4
72.891
41.926
−3.102
1.00
53.48


ATOM
C
MET
L
4
67.468
42.053
−4.233
1.00
49.95


ATOM
O
MET
L
4
66.690
41.125
−4.478
1.00
51.62


ATOM
N
MET
L
4
68.326
40.617
−2.404
1.00
53.46


ATOM
CA
MET
L
4
68.367
41.989
−2.995
1.00
51.42


ATOM
N
THR
L
5
67.583
43.119
−5.019
1.00
44.36


ATOM
CA
THR
L
5
66.756
43.254
−6.205
1.00
40.62


ATOM
CB
THR
L
5
66.015
44.603
−6.189
1.00
40.31


ATOM
OG1
THR
L
5
65.256
44.692
−4.977
1.00
42.05


ATOM
CG2
THR
L
5
65.074
44.729
−7.390
1.00
38.21


ATOM
C
THR
L
5
67.506
43.078
−7.527
1.00
37.94


ATOM
O
THR
L
5
68.429
43.831
−7.841
1.00
35.88


ATOM
N
GLN
L
6
67.085
42.085
−8.305
1.00
33.98


ATOM
CA
GLN
L
6
67.696
41.816
−9.598
1.00
31.54


ATOM
CB
GLN
L
6
68.193
40.367
−9.660
1.00
29.52


ATOM
CG
GLN
L
6
69.005
40.022
−10.899
1.00
23.42


ATOM
CD
GLN
L
6
69.621
38.625
−10.838
1.00
23.94


ATOM
OE1
GLN
L
6
70.059
38.085
−11.855
1.00
25.77


ATOM
NE2
GLN
L
6
69.684
38.048
−9.643
1.00
17.08


ATOM
C
GLN
L
6
66.673
42.086
−10.701
1.00
29.67


ATOM
O
GLN
L
6
65.479
41.868
−10.530
1.00
29.35


ATOM
N
SER
L
7
67.141
42.560
−11.838
1.00
29.10


ATOM
CA
SER
L
7
66.244
42.855
−12.927
1.00
29.63


ATOM
CB
SER
L
7
65.667
44.273
−12.772
1.00
33.97


ATOM
OG
SER
L
7
66.678
45.280
−12.827
1.00
38.37


ATOM
C
SER
L
7
67.021
42.748
−14.217
1.00
28.45


ATOM
O
SER
L
7
68.242
42.910
−14.216
1.00
27.60


ATOM
N
PRO
L
8
66.348
42.341
−15.308
1.00
28.70


ATOM
CD
PRO
L
8
66.881
42.417
−16.681
1.00
28.01


ATOM
CA
PRO
L
8
64.922
41.991
−15.316
1.00
28.37


ATOM
CB
PRO
L
8
64.554
42.151
−16.783
1.00
29.19


ATOM
CG
PRO
L
8
65.817
41.747
−17.482
1.00
29.51


ATOM
C
PRO
L
8
64.743
40.547
−14.832
1.00
29.08


ATOM
O
PRO
L
8
65.667
39.752
−14.932
1.00
30.35


ATOM
N
SER
L
9
63.575
40.212
−14.294
1.00
28.83


ATOM
CA
SER
L
9
63.333
38.857
−13.797
1.00
30.10


ATOM
CB
SER
L
9
61.986
38.773
−13.061
1.00
31.53


ATOM
OG
SER
L
9
60.912
38.862
−13.978
1.00
37.73


ATOM
C
SER
L
9
63.356
37.849
−14.945
1.00
29.29


ATOM
O
SER
L
9
63.765
36.689
−14.781
1.00
27.22


ATOM
N
THR
L
10
62.883
38.296
−16.098
1.00
28.81


ATOM
CA
THR
L
10
62.839
37.468
−17.292
1.00
31.44


ATOM
CB
THR
L
10
61.426
36.830
−17.508
1.00
30.75


ATOM
OG1
THR
L
10
60.415
37.843
−17.438
1.00
34.36


ATOM
CG2
THR
L
10
61.128
35.787
−16.441
1.00
30.35


ATOM
C
THR
L
10
63.225
38.341
−18.487
1.00
31.24


ATOM
O
THR
L
10
63.135
39.568
−18.433
1.00
31.34


ATOM
N
LEU
L
11
63.737
37.712
−19.528
1.00
32.55


ATOM
CA
LEU
L
11
64.132
38.432
−20.717
1.00
33.50


ATOM
CB
LEU
L
11
65.473
39.126
−20.500
1.00
35.64


ATOM
CG
LEU
L
11
65.986
39.917
−21.709
1.00
39.37


ATOM
CD1
LEU
L
11
65.040
41.089
−22.003
1.00
39.67


ATOM
CD2
LEU
L
11
67.387
40.421
−21.437
1.00
39.27


ATOM
C
LEU
L
11
64.261
37.471
−21.881
1.00
33.70


ATOM
O
LEU
L
11
64.755
36.361
−21.723
1.00
32.16


ATOM
N
SER
L
12
63.751
37.881
−23.031
1.00
33.08


ATOM
CA
SER
L
12
63.857
37.090
−24.245
1.00
34.60


ATOM
CB
SER
L
12
62.479
36.805
−24.827
1.00
34.91


ATOM
OG
SER
L
12
61.601
36.360
−23.810
1.00
42.30


ATOM
C
SER
L
12
64.610
38.050
−25.140
1.00
33.62


ATOM
O
SER
L
12
64.251
39.232
−25.224
1.00
35.15


ATOM
N
ALA
L
13
65.691
37.583
−25.742
1.00
30.90


ATOM
CA
ALA
L
13
66.482
38.439
−26.599
1.00
30.58


ATOM
CE
ALA
L
13
67.607
39.084
−25.801
1.00
30.23


ATOM
C
ALA
L
13
67.039
37.583
−27.707
1.00
31.78


ATOM
O
ALA
L
13
67.214
36.380
−27.544
1.00
31.55


ATOM
N
SER
L
14
67.289
38.204
−28.851
1.00
33.80


ATOM
CA
SER
L
14
67.816
37.494
−30.011
1.00
33.44


ATOM
CB
SER
L
14
67.526
38.294
−31.277
1.00
33.43


ATOM
OG
SER
L
14
66.232
38.878
−31.214
1.00
37.66


ATOM
C
SER
L
14
69.308
37.280
−29.897
1.00
31.30


ATOM
O
SER
L
14
69.984
37.924
−29.101
1.00
33.92


ATOM
N
VAL
L
15
69.820
36.367
−30.698
1.00
31.26


ATOM
CA
VAL
L
15
71.239
36.100
−30.720
1.00
29.90


ATOM
CB
VAL
L
15
71.525
34.913
−31.632
1.00
26.09


ATOM
CG1
VAL
L
15
72.997
34.762
−31.859
1.00
27.20


ATOM
CG2
VAL
L
15
70.977
33.662
−31.014
1.00
25.79


ATOM
C
VAL
L
15
71.940
37.371
−31.239
1.00
33.94


ATOM
O
VAL
L
15
71.432
38.085
−32.122
1.00
33.32


ATOM
N
GLY
L
16
73.086
37.682
−30.644
1.00
36.81


ATOM
CA
GLY
L
16
73.840
38.853
−31.045
1.00
35.94


ATOM
C
GLY
L
16
73.498
40.058
−30.212
1.00
35.51


ATOM
O
GLY
L
16
74.262
41.014
−30.194
1.00
39.24


ATOM
N
ASP
L
17
72.366
40.016
−29.520
1.00
34.04


ATOM
CA
ASP
L
17
71.946
41.121
−28.672
1.00
34.26


ATOM
CE
ASP
L
17
70.547
40.856
−28.113
1.00
34.85


ATOM
CG
ASP
L
17
69.447
41.156
−29.110
1.00
37.86


ATOM
OD1
ASP
L
17
68.303
41.380
−28.658
1.00
37.46


ATOM
OD2
ASP
L
17
69.717
41.172
−30.332
1.00
38.37


ATOM
C
ASP
L
17
72.896
41.368
−27.500
1.00
34.67


ATOM
O
ASP
L
17
73.665
40.484
−27.112
1.00
33.04


ATOM
N
ARG
L
18
72.857
42.581
−26.956
1.00
33.25


ATOM
CA
ARG
L
18
73.666
42.913
−25.803
1.00
32.51


ATOM
CE
ARG
L
18
74.286
44.304
−25.932
1.00
37.82


ATOM
CG
ARG
L
18
75.007
44.766
−24.667
1.00
42.38


ATOM
CD
ARG
L
18
75.722
46.081
−24.870
1.00
45.92


ATOM
NE
ARG
L
18
77.152
45.955
−24.600
1.00
52.00


ATOM
CZ
ARG
L
18
78.042
45.463
−25.459
1.00
55.43


ATOM
NH1
ARG
L
18
77.660
45.038
−26.661
1.00
56.79


ATOM
NH2
ARG
L
18
79.324
45.401
−25.119
1.00
57.64


ATOM
C
ARG
L
18
72.662
42.882
−24.671
1.00
32.18


ATOM
O
ARG
L
18
71.569
43.443
−24.793
1.00
32.94


ATOM
N
VAL
L
19
73.018
42.215
−23.579
1.00
30.42


ATOM
CA
VAL
L
19
72.118
42.081
−22.449
1.00
29.59


ATOM
CB
VAL
L
19
71.638
40.584
−22.304
1.00
30.77


ATOM
CG1
VAL
L
19
70.816
40.395
−21.036
1.00
28.91


ATOM
CG2
VAL
L
19
70.803
40.173
−23.538
1.00
29.02


ATOM
C
VAL
L
19
72.795
42.561
−21.173
1.00
28.10


ATOM
O
VAL
L
19
73.964
42.275
−20.941
1.00
27.17


ATOM
N
THR
L
20
72.035
43.285
−20.359
1.00
28.30


ATOM
CA
THR
L
20
72.508
43.827
−19.100
1.00
31.45


ATOM
CE
THR
L
20
72.585
45.362
−19.149
1.00
33.55


ATOM
OG1
THR
L
20
73.469
45.771
−20.204
1.00
33.44


ATOM
CG2
THR
L
20
73.075
45.916
−17.801
1.00
32.77


ATOM
C
THR
L
20
71.540
43.456
−17.982
1.00
33.30


ATOM
O
THR
L
20
70.343
43.747
−18.061
1.00
32.85


ATOM
N
ILE
L
21
72.082
42.840
−16.935
1.00
34.18


ATOM
CA
ILE
L
21
71.324
42.415
−15.763
1.00
31.59


ATOM
CB
ILE
L
21
71.602
40.918
−15.467
1.00
31.26


ATOM
CG2
ILE
L
21
70.863
40.470
−14.234
1.00
31.18


ATOM
CG1
ILE
L
21
71.200
40.073
−16.680
1.00
32.87


ATOM
CD1
ILE
L
21
71.639
38.629
−16.607
1.00
32.99


ATOM
C
ILE
L
21
71.802
43.294
−14.602
1.00
30.37


ATOM
O
ILE
L
21
73.000
43.557
−14.468
1.00
26.47


ATOM
N
THR
L
22
70.872
43.721
−13.756
1.00
29.86


ATOM
CA
THR
L
22
71.206
44.592
−12.643
1.00
31.35


ATOM
CB
THR
L
22
70.612
46.032
−12.903
1.00
30.91


ATOM
OG1
THR
L
22
71.159
46.574
−14.117
1.00
29.08


ATOM
CG2
THR
L
22
70.925
46.988
−11.743
1.00
31.26


ATOM
C
THR
L
22
70.765
44.090
−11.253
1.00
31.33


ATOM
O
THR
L
22
69.677
43.530
−11.093
1.00
31.64


ATOM
N
CYS
L
23
71.648
44.245
−10.268
1.00
32.19


ATOM
CA
CYS
L
23
71.351
43.899
−8.877
1.00
32.45


ATOM
C
CYS
L
23
71.574
45.153
−8.040
1.00
33.34


ATOM
O
CYS
L
23
72.639
45.759
−8.090
1.00
30.85


ATOM
CB
CYS
L
23
72.213
42.738
−8.358
1.00
31.61


ATOM
SG
CYS
L
23
71.545
41.112
−8.839
1.00
32.93


ATOM
N
LYS
L
24
70.513
45.586
−7.370
1.00
37.25


ATOM
CA
LYS
L
24
70.523
46.764
−6.518
1.00
42.39


ATOM
CB
LYS
L
24
69.405
47.728
−6.922
1.00
45.13


ATOM
CG
LYS
L
24
69.514
48.293
−8.333
1.00
50.30


ATOM
CD
LYS
L
24
68.276
49.122
−8.680
1.00
52.53


ATOM
CE
LYS
L
24
68.393
49.784
−10.042
1.00
54.46


ATOM
NZ
LYS
L
24
67.154
50.539
−10.379
1.00
56.06


ATOM
C
LYS
L
24
70.282
46.314
−5.087
1.00
44.53


ATOM
O
LYS
L
24
69.300
45.614
−4.792
1.00
45.31


ATOM
N
CYS
L
25
71.204
46.662
−4.205
1.00
47.46


ATOM
CA
CYS
L
25
71.064
46.302
−2.813
1.00
50.46


ATOM
CB
CYS
L
25
72.361
45.719
−2.262
1.00
51.49


ATOM
SG
CYS
L
25
72.217
45.136
−0.553
1.00
55.90


ATOM
C
CYS
L
25
70.726
47.576
−2.084
1.00
52.05


ATOM
O
CYS
L
25
71.080
48.673
−2.527
1.00
51.90


ATOM
N
GLN
L
26
70.002
47.434
−0.985
1.00
55.05


ATOM
CA
GLN
L
26
69.611
48.584
−0.177
1.00
58.36


ATOM
CB
GLN
L
26
68.491
48.207
0.811
1.00
60.14


ATOM
CG
GLN
L
26
68.266
46.704
1.019
1.00
63.23


ATOM
CD
GLN
L
26
67.641
46.023
−0.200
1.00
66.56


ATOM
OE1
GLN
L
26
68.181
45.039
−0.729
1.00
67.74


ATOM
NE2
GLN
L
26
66.508
46.551
−0.656
1.00
67.30


ATOM
C
GLN
L
26
70.841
49.078
0.579
1.00
58.79


ATOM
O
GLN
L
26
70.977
50.263
0.891
1.00
59.68


ATOM
N
LEU
L
28
71.759
48.152
0.820
1.00
57.89


ATOM
CA
LEU
L
28
72.977
48.441
1.547
1.00
55.81


ATOM
CB
LEU
L
28
73.202
47.342
2.594
1.00
56.86


ATOM
CG
LEU
L
28
71.922
46.791
3.252
1.00
57.59


ATOM
CD1
LEU
L
28
72.278
45.712
4.269
1.00
57.76


ATOM
CD2
LEU
L
28
71.117
47.912
3.921
1.00
58.04


ATOM
C
LEU
L
28
74.139
48.487
0.568
1.00
53.54


ATOM
O
LEU
L
28
74.132
47.788
−0.447
1.00
51.34


ATOM
N
SER
L
29
75.117
49.338
0.858
1.00
52.55


ATOM
CA
SER
L
29
76.292
49.456
0.007
1.00
50.75


ATOM
CB
SER
L
29
77.226
50.551
0.521
1.00
51.65


ATOM
OG
SER
L
29
77.860
51.233
−0.547
1.00
52.04


ATOM
C
SER
L
29
76.979
48.093
0.021
1.00
48.93


ATOM
O
SER
L
29
76.977
47.387
1.035
1.00
50.11


ATOM
N
VAL
L
30
77.566
47.733
−1.106
1.00
45.38


ATOM
CA
VAL
L
30
78.194
46.441
−1.256
1.00
43.49


ATOM
CB
VAL
L
30
77.446
45.616
−2.348
1.00
45.26


ATOM
CG1
VAL
L
30
78.148
44.296
−2.627
1.00
45.55


ATOM
CG2
VAL
L
30
76.008
45.374
−1.926
1.00
45.67


ATOM
C
VAL
L
30
79.633
46.609
−1.662
1.00
40.20


ATOM
O
VAL
L
30
79.954
47.472
−2.474
1.00
40.25


ATOM
N
GLY
L
31
80.496
45.770
−1.104
1.00
37.47


ATOM
CA
GLY
L
31
81.902
45.830
−1.442
1.00
36.78


ATOM
C
GLY
L
31
82.132
45.328
−2.857
1.00
36.26


ATOM
O
GLY
L
31
82.562
46.082
−3.725
1.00
36.41


ATOM
N
TYR
L
32
81.794
44.064
−3.096
1.00
35.02


ATOM
CA
TYR
L
32
81.967
43.427
−4.401
1.00
33.17


ATOM
CB
TYR
L
32
83.290
42.658
−4.431
1.00
31.32


ATOM
CG
TYR
L
32
83.436
41.688
−3.276
1.00
33.00


ATOM
CD1
TYR
L
32
82.777
40.454
−3.279
1.00
33.06


ATOM
CE1
TYR
L
32
82.852
39.586
−2.191
1.00
32.01


ATOM
CD2
TYR
L
32
84.183
42.025
−2.154
1.00
33.11


ATOM
CE2
TYR
L
32
84.267
41.161
−1.057
1.00
33.14


ATOM
CZ
TYR
L
32
83.595
39.945
−1.085
1.00
32.91


ATOM
OH
TYR
L
32
83.651
39.107
0.002
1.00
30.28


ATOM
C
TYR
L
32
80.780
42.483
−4.692
1.00
33.63


ATOM
O
TYR
L
32
80.035
42.099
−3.771
1.00
33.48


ATOM
N
MET
L
33
80.632
42.082
−5.954
1.00
31.62


ATOM
CA
MET
L
33
79.532
41.209
−6.373
1.00
27.51


ATOM
CB
MET
L
33
78.556
42.016
−7.245
1.00
27.25


ATOM
CG
MET
L
33
77.203
41.373
−7.521
1.00
26.66


ATOM
SD
MET
L
33
76.102
41.202
−6.088
1.00
31.44


ATOM
CE
MET
L
33
75.676
42.936
−5.687
1.00
28.65


ATOM
C
MET
L
33
80.048
39.999
−7.150
1.00
24.55


ATOM
O
MET
L
33
81.115
40.062
−7.767
1.00
22.26


ATOM
N
HIS
L
34
79.342
38.875
−7.029
1.00
22.23


ATOM
CA
HIS
L
34
79.684
37.641
−7.754
1.00
21.25


ATOM
CB
HIS
L
34
79.853
36.452
−6.789
1.00
19.84


ATOM
CG
HIS
L
34
81.229
36.312
−6.199
1.00
19.58


ATOM
CD2
HIS
L
34
82.214
35.415
−6.443
1.00
16.56


ATOM
ND1
HIS
L
34
81.702
37.133
−5.195
1.00
17.59


ATOM
CE1
HIS
L
34
82.917
36.747
−4.847
1.00
17.33


ATOM
NE2
HIS
L
34
83.251
35.709
−5.591
1.00
16.19


ATOM
C
HIS
L
34
78.489
37.349
−8.662
1.00
21.03


ATOM
O
HIS
L
34
77.356
37.702
−8.323
1.00
22.35


ATOM
N
TRP
L
35
78.726
36.736
−9.816
1.00
22.50


ATOM
CA
TRP
L
35
77.634
36.390
−10.738
1.00
20.38


ATOM
CB
TRP
L
35
77.665
37.258
−12.003
1.00
20.95


ATOM
CG
TRP
L
35
77.300
38.704
−11.763
1.00
20.91


ATOM
CD2
TRP
L
35
75.977
39.281
−11.759
1.00
19.43


ATOM
CE2
TRP
L
35
76.123
40.660
−11.473
1.00
19.35


ATOM
CE3
TRP
L
35
74.689
38.768
−11.966
1.00
19.03


ATOM
CD
TRP
L
35
78.165
39.730
−11.495
1.00
18.32


ATOM
NEl
TRP
L
35
77.465
40.904
−11.323
1.00
17.92


ATOM
CZ2
TRP
L
35
75.026
41.534
−11.382
1.00
18.46


ATOM
CZ3
TRP
L
35
73.593
39.644
−11.877
1.00
18.57


ATOM
CH2
TRP
L
35
73.777
41.010
−11.584
1.00
20.31


ATOM
C
TRP
L
35
77.747
34.922
−11.115
1.00
19.11


ATOM
O
TRP
L
35
78.856
34.411
−11.342
1.00
17.52


ATOM
N
TYR
L
36
76.607
34.243
−11.151
1.00
17.89


ATOM
CA
TYR
L
36
76.554
32.824
−11.496
1.00
18.67


ATOM
CE
TYR
L
36
76.157
31.973
−10.277
1.00
16.85


ATOM
CG
TYR
L
36
77.103
32.151
−9.112
1.00
18.90


ATOM
CD1
TYR
L
36
78.206
31.301
−8.943
1.00
17.35


ATOM
CE1
TYR
L
36
79.138
31.515
−7.925
1.00
15.46


ATOM
CD2
TYR
L
36
76.948
33.215
−8.225
1.00
16.62


ATOM
CE2
TYR
L
36
77.870
33.435
−7.210
1.00
18.33


ATOM
CZ
TYR
L
36
78.959
32.586
−7.072
1.00
16.23


ATOM
OH
TYR
L
36
79.879
32.834
−6.101
1.00
16.90


ATOM
C
TYR
L
36
75.586
32.547
−12.640
1.00
18.87


ATOM
O
TYR
L
36
74.598
33.266
−12.833
1.00
16.77


ATOM
N
GLN
L
37
75.912
31.511
−13.406
1.00
20.01


ATOM
CA
GLN
L
37
75.099
31.069
−14.524
1.00
20.83


ATOM
CE
GLN
L
37
75.938
31.002
−15.791
1.00
19.79


ATOM
CG
GLN
L
37
75.133
30.614
−17.009
1.00
21.34


ATOM
CD
GLN
L
37
76.012
30.207
−18.156
1.00
21.69


ATOM
OE1
GLN
L
37
76.829
29.295
−18.022
1.00
20.70


ATOM
NE2
GLN
L
37
75.862
30.880
−19.293
1.00
22.45


ATOM
C
GLN
L
37
74.565
29.677
−14.217
1.00
17.81


ATOM
O
GLN
L
37
75.338
28.763
−13.982
1.00
16.05


ATOM
N
GLN
L
38
73.251
29.508
−14.231
1.00
19.04


ATOM
CA
GLN
L
38
72.697
28.199
−13.952
1.00
19.08


ATOM
CB
GLN
L
38
71.947
28.200
−12.625
1.00
18.05


ATOM
CG
GLN
L
38
71.425
26.836
−12.231
1.00
16.18


ATOM
CD
GLN
L
38
70.504
26.879
−11.020
1.00
19.78


ATOM
OE1
GLN
L
38
70.437
25.910
−10.242
1.00
20.20


ATOM
NE2
GLN
L
38
69.780
27.986
−10.854
1.00
13.17


ATOM
C
GLN
L
38
71.799
27.644
−15.043
1.00
21.27


ATOM
O
GLN
L
38
70.754
28.206
−15.345
1.00
19.19


ATOM
N
LYS
L
39
72.238
26.545
−15.648
1.00
26.27


ATOM
CA
LYS
L
39
71.463
25.856
−16.671
1.00
30.24


ATOM
CB
LYS
L
39
72.360
24.926
−17.482
1.00
31.09


ATOM
CG
LYS
L
39
73.184
25.657
−18.549
1.00
31.78


ATOM
CD
LYS
L
39
72.269
26.309
−19.569
1.00
36.19


ATOM
CE
LYS
L
39
73.016
26.722
−20.839
1.00
38.15


ATOM
NZ
LYS
L
39
72.095
27.028
−22.005
1.00
33.68


ATOM
C
LYS
L
39
70.411
25.081
−15.886
1.00
34.01


ATOM
O
LYS
L
39
70.687
24.575
−14.793
1.00
31.70


ATOM
N
PRO
L
40
69.185
24.995
−16.422
1.00
38.94


ATOM
CD
PRO
L
40
68.854
25.278
−17.829
1.00
41.35


ATOM
CA
PRO
L
40
68.073
24.296
−15.770
1.00
39.98


ATOM
CB
PRO
L
40
67.076
24.070
−16.919
1.00
42.33


ATOM
CG
PRO
L
40
67.934
24.119
−18.165
1.00
43.50


ATOM
C
PRO
L
40
68.406
23.007
−15.020
1.00
40.98


ATOM
O
PRO
L
40
69.001
22.066
−15.576
1.00
39.72


ATOM
N
GLY
L
41
68.063
23.017
−13.730
1.00
41.78


ATOM
CA
GLY
L
41
68.267
21.872
−12.861
1.00
41.84


ATOM
C
GLY
L
41
69.698
21.410
−12.703
1.00
42.49


ATOM
O
GLY
L
41
69.927
20.346
−12.125
1.00
45.08


ATOM
N
LYS
L
42
70.648
22.195
−13.215
1.00
39.68


ATOM
CA
LYS
L
42
72.073
21.891
−13.136
1.00
33.25


ATOM
CB
LYS
L
42
72.723
22.072
−14.513
1.00
37.87


ATOM
CG
LYS
L
42
74.156
21.538
−14.609
1.00
45.96


ATOM
CD
LYS
L
42
75.019
22.270
−15.667
1.00
47.70


ATOM
CE
LYS
L
42
75.041
21.551
−17.009
1.00
51.25


ATOM
NZ
LYS
L
42
75.556
20.145
−16.892
1.00
53.52


ATOM
C
LYS
L
42
72.667
22.867
−12.115
1.00
27.28


ATOM
O
LYS
L
42
72.048
23.868
−11.785
1.00
22.25


ATOM
N
ALA
L
43
73.842
22.555
−11.584
1.00
25.53


ATOM
CA
ALA
L
43
74.485
23.416
−10.591
1.00
23.99


ATOM
CB
ALA
L
43
75.633
22.685
−9.919
1.00
24.09


ATOM
C
ALA
L
43
74.976
24.738
−11.178
1.00
21.59


ATOM
O
ALA
L
43
75.360
24.796
−12.353
1.00
20.16


ATOM
N
PRO
L
44
74.928
25.829
−10.377
1.00
18.22


ATOM
CD
PRO
L
44
74.263
25.938
−9.068
1.00
14.64


ATOM
CA
PRO
L
44
75.379
27.152
−10.834
1.00
18.30


ATOM
CB
PRO
L
44
75.067
28.053
−9.637
1.00
16.73


ATOM
CG
PRO
L
44
73.859
27.389
−9.035
1.00
15.24


ATOM
C
PRO
L
44
76.872
27.159
−11.169
1.00
19.43


ATOM
O
PRO
L
44
77.649
26.404
−10.573
1.00
18.33


ATOM
N
LYS
L
45
77.238
27.955
−12.174
1.00
18.18


ATOM
CA
LYS
L
45
78.621
28.103
−12.620
1.00
18.06


ATOM
CB
LYS
L
45
78.747
27.822
−14.125
1.00
20.32


ATOM
CG
LYS
L
45
80.192
27.912
−14.647
1.00
25.63


ATOM
CD
LYS
L
45
80.284
27.852
−16.169
1.00
28.87


ATOM
CE
LYS
L
45
79.679
29.096
−16.801
1.00
36.26


ATOM
NZ
LYS
L
45
79.705
29.101
−18.297
1.00
37.77


ATOM
C
LYS
L
45
79.091
29.525
−12.346
1.00
15.28


ATOM
O
LYS
L
45
78.433
30.493
−12.719
1.00
13.64


ATOM
N
LEU
L
46
80.222
29.646
−11.676
1.00
16.78


ATOM
CA
LEU
L
46
80.781
30.950
−11.375
1.00
18.03


ATOM
CB
LEU
L
46
81.979
30.795
−10.430
1.00
17.46


ATOM
CG
LEU
L
46
82.748
32.077
−10.079
1.00
18.46


ATOM
CD1
LEU
L
46
81.862
33.118
−9.387
1.00
15.94


ATOM
CD2
LEU
L
46
83.924
31.719
−9.199
1.00
21.70


ATOM
C
LEU
L
46
81.208
31.666
−12.662
1.00
17.99


ATOM
O
LEU
L
46
81.974
31.122
−13.446
1.00
16.91


ATOM
N
LEU
L
47
80.703
32.877
−12.880
1.00
19.12


ATOM
CA
LEU
L
47
81.066
33.661
−14.068
1.00
21.92


ATOM
CB
LEU
L
47
79.830
34.286
−14.736
1.00
23.03


ATOM
CG
LEU
L
47
78.726
33.442
−15.371
1.00
24.65


ATOM
CD1
LEU
L
47
77.572
34.351
−15.770
1.00
23.61


ATOM
CD2
LEU
L
47
79.261
32.674
−16.578
1.00
22.42


ATOM
C
LEU
L
47
82.008
34.816
−13.729
1.00
23.45


ATOM
O
LEU
L
47
83.011
35.034
−14.404
1.00
24.27


ATOM
N
ILE
L
48
81.644
35.572
−12.697
1.00
24.75


ATOM
CA
ILE
L
48
82.388
36.748
−12.287
1.00
24.56


ATOM
CB
ILE
L
48
81.603
38.041
−12.743
1.00
26.86


ATOM
CG2
ILE
L
48
82.215
39.316
−12.148
1.00
23.10


ATOM
CG1
ILE
L
48
81.460
38.105
−14.276
1.00
27.21


ATOM
CD1
ILE
L
48
82.758
38.266
−15.051
1.00
29.72


ATOM
C
ILE
L
48
82.540
36.814
−10.763
1.00
27.68


ATOM
O
ILE
L
48
81.572
36.581
−10.016
1.00
28.36


ATOM
N
TYR
L
49
83.749
37.130
−10.304
1.00
27.66


ATOM
CA
TYR
L
49
84.010
37.313
−8.879
1.00
26.50


ATOM
CB
TYR
L
49
84.961
36.242
−8.338
1.00
25.78


ATOM
CG
TYR
L
49
86.345
36.242
−8.942
1.00
27.79


ATOM
CD1
TYR
L
49
87.318
37.147
−8.510
1.00
27.87


ATOM
CE1
TYR
L
49
88.610
37.122
−9.023
1.00
26.39


ATOM
CD2
TYR
L
49
86.702
35.308
−9.913
1.00
28.91


ATOM
CE2
TYR
L
49
87.995
35.275
−10.437
1.00
29.68


ATOM
CZ
TYR
L
49
88.939
36.189
−9.982
1.00
28.14


ATOM
OH
TYR
L
49
90.205
36.178
−10.499
1.00
27.11


ATOM
C
TYR
L
49
84.608
38.715
−8.710
1.00
28.04


ATOM
O
TYR
L
49
84.987
39.351
−9.701
1.00
26.90


ATOM
N
ASP
L
50
84.668
39.203
−7.471
1.00
27.93


ATOM
CA
ASP
L
50
85.228
40.526
−7.166
1.00
30.07


ATOM
CB
ASP
L
50
86.764
40.450
−7.231
1.00
32.48


ATOM
OG
ASP
L
50
87.455
41.699
−6.684
1.00
34.53


ATOM
OD1
ASP
L
50
86.809
42.526
−5.994
1.00
33.00


ATOM
OD2
ASP
L
50
88.669
41.836
−6.955
1.00
34.56


ATOM
C
ASP
L
50
84.670
41.625
−8.093
1.00
29.48


ATOM
O
ASP
L
50
85.408
42.469
−8.621
1.00
28.02


ATOM
N
THR
L
51
83.360
41.563
−8.312
1.00
28.37


ATOM
CA
THR
L
51
82.637
42.514
−9.150
1.00
29.26


ATOM
CB
THR
L
51
82.819
43.979
−8.642
1.00
29.35


ATOM
OG1
THR
L
51
82.378
44.070
−7.281
1.00
29.46


ATOM
CG2
THR
L
51
82.007
44.957
−9.474
1.00
26.57


ATOM
C
THR
L
51
82.901
42.458
−10.657
1.00
29.27


ATOM
O
THR
L
51
81.950
42.407
−11.448
1.00
28.35


ATOM
N
SER
L
52
84.167
42.388
−11.057
1.00
29.47


ATOM
CA
SER
L
52
84.492
42.413
−12.475
1.00
29.99


ATOM
CB
SER
L
52
84.959
43.829
−12.841
1.00
32.61


ATOM
OG
SER
L
52
85.836
44.382
−11.852
1.00
34.91


ATOM
C
SER
L
52
85.492
41.397
−12.999
1.00
30.37


ATOM
O
SER
L
52
85.854
41.431
−14.172
1.00
30.49


ATOM
N
LYS
L
53
85.923
40.472
−12.159
1.00
30.92


ATOM
CA
LYS
L
53
86.898
39.488
−12.603
1.00
33.14


ATOM
CB
LYS
L
53
87.752
39.014
−11.427
1.00
35.84


ATOM
CG
LYS
L
53
88.815
40.005
−10.988
1.00
37.91


ATOM
CD
LYS
L
53
89.913
40.093
−12.024
1.00
41.62


ATOM
CE
LYS
L
53
90.774
41.308
−11.779
1.00
45.49


ATOM
NZ
LYS
L
53
89.949
42.558
−11.856
1.00
50.35


ATOM
C
LYS
L
53
86.273
38.290
−13.281
2.00
33.94


ATOM
O
LYS
L
53
85.488
37.568
−12.666
1.00
35.02


ATOM
N
LEU
L
54
86.624
38.076
−14.544
1.00
33.95


ATOM
CA
LEU
L
54
86.112
36.934
−15.287
1.00
35.46


ATOM
CB
LEU
L
54
86.500
37.029
−16.770
1.00
36.70


ATOM
CG
LEU
L
54
85.401
37.137
−17.837
1.00
37.08


ATOM
CD1
LEU
L
54
85.948
36.771
−19.210
1.00
33.57


ATOM
CD2
LEU
L
54
84.264
36.216
−17.493
1.00
36.74


ATOM
C
LEU
L
54
86.715
35.664
−14.687
1.00
35.69


ATOM
O
LEU
L
54
87.932
35.555
−14.545
1.00
35.01


ATOM
N
ALA
L
55
85.860
34.714
−14.324
1.00
36.81


ATOM
CA
ALA
L
55
86.317
33.451
−13.753
1.00
37.12


ATOM
CB
ALA
L
55
85.154
32.709
−13.126
1.00
34.93


ATOM
C
ALA
L
55
86.968
32.609
−14.849
1.00
38.49


ATOM
O
ALA
L
55
86.818
32.903
−16.034
1.00
39.16


ATOM
N
SER
L
56
87.687
31.561
−14.468
1.00
40.87


ATOM
CA
SER
L
56
88.356
30.728
−15.461
1.00
43.84


ATOM
CB
SER
L
56
89.365
29.779
−14.795
1.00
46.40


ATOM
OG
SER
L
56
88.718
28.774
−14.024
1.00
50.55


ATOM
C
SER
L
56
87.352
29.937
−16.282
1.00
44.04


ATOM
O
SER
L
56
86.409
29.359
−15.735
1.00
44.83


ATOM
N
GLY
L
57
87.567
29.903
−17.594
1.00
44.28


ATOM
CA
GLY
L
57
86.666
29.176
−18.475
1.00
43.67


ATOM
C
GLY
L
57
85.361
29.904
−18.758
1.00
42.62


ATOM
O
GLY
L
57
84.320
29.277
−18.963
1.00
43.63


ATOM
N
VAL
L
58
85.405
31.229
−18.758
1.00
39.62


ATOM
CA
VAL
L
58
84.210
32.012
−19.014
1.00
38.57


ATOM
CB
VAL
L
58
83.758
32.788
−17.742
1.00
35.08


ATOM
CG1
VAL
L
58
82.474
33.549
−18.020
1.00
34.33


ATOM
CG2
VAL
L
58
83.553
31.826
−16.585
1.00
28.89


ATOM
C
VAL
L
58
84.481
32.972
−20.174
1.00
40.23


ATOM
O
VAL
L
58
85.455
33.716
−20.158
1.00
40.10


ATOM
N
PRO
L
59
83.656
32.910
−21.230
1.00
42.12


ATOM
CD
PRO
L
59
82.539
31.958
−21.393
1.00
42.64


ATOM
CA
PRO
L
59
83.791
33.767
−22.414
1.00
41.98


ATOM
CB
PRO
L
59
82.505
33.470
−23.186
1.00
42.48


ATOM
CG
PRO
L
59
82.260
32.023
−22.872
1.00
41.91


ATOM
C
PRO
L
59
83.896
35.255
−22.083
1.00
42.11


ATOM
O
PRO
L
59
83.106
35.782
−21.290
1.00
40.98


ATOM
N
SER
L
60
84.818
35.942
−22.760
1.00
42.19


ATOM
CA
SER
L
60
85.031
37.376
−22.566
1.00
42.32


ATOM
CB
SER
L
60
86.131
37.869
−23.493
1.00
44.75


ATOM
CG
SER
L
60
85.777
37.637
−24.846
1.00
48.53


ATOM
C
SER
L
60
83.756
38.145
−22.867
1.00
41.50


ATOM
O
SER
L
60
83.689
39.363
−22.684
1.00
41.56


ATOM
N
ARG
L
61
82.772
37.411
−23.385
1.00
41.32


ATOM
CA
ARG
L
61
81.446
37.907
−23.745
1.00
40.02


ATOM
CB
ARG
L
61
80.649
36.727
−24.312
1.00
41.65


ATOM
CG
ARG
L
61
79.520
37.058
−25.262
1.00
44.33


ATOM
CD
ARG
L
61
78.721
35.782
−25.563
1.00
45.07


ATOM
NE
ARG
L
61
79.586
34.654
−25.902
1.00
42.81


ATOM
CZ
ARG
L
61
79.368
33.400
−25.523
1.00
41.29


ATOM
NH1
ARG
L
61
78.314
33.096
−24.790
1.00
39.59


ATOM
NH2
ARG
L
61
80.205
32.442
−25.887
1.00
42.30


ATOM
C
ARG
L
61
80.738
38.458
−22.499
1.00
38.03


ATOM
O
ARG
L
61
79.912
39.367
−22.583
1.00
37.15


ATOM
N
PHE
L
62
81.052
37.876
−21.347
1.00
36.07


ATOM
CA
PHE
L
62
80.451
38.293
−20.092
1.00
34.13


ATOM
CB
PHE
L
62
80.242
37.079
−19.191
1.00
32.20


ATOM
CG
PHE
L
62
79.316
36.040
−19.753
1.00
30.05


ATOM
CD1
PHE
L
62
79.813
34.969
−20.475
1.00
28.20


ATOM
CD2
PHE
L
62
77.950
36.097
−19.498
1.00
29.72


ATOM
CE1
PHE
L
62
78.963
33.970
−20.928
1.00
28.11


ATOM
CE2
PHE
L
62
77.092
35.099
−19.950
1.00
27.00


ATOM
CZ
PHE
L
62
77.597
34.038
−20.662
1.00
24.59


ATOM
C
PHE
L
62
81.363
39.263
−19.354
1.00
32.87


ATOM
O
PHE
L
62
82.579
39.113
−19.382
1.00
32.64


ATOM
N
SER
L
63
80.782
40.235
−18.670
1.00
32.15


ATOM
CA
SER
L
63
81.572
41.176
−17.890
1.00
32.65


ATOM
CB
SER
L
63
82.113
42.318
−18.757
1.00
32.01


ATOM
OG
SER
L
63
81.080
43.183
−19.173
1.00
32.88


ATOM
C
SER
L
63
80.718
41.731
−16.759
1.00
33.28


ATOM
O
SER
L
63
79.486
41.746
−16.850
1.00
34.08


ATOM
N
GLY
L
64
81.377
42.150
−15.682
1.00
33.66


ATOM
CA
GLY
L
64
80.678
42.695
−14.541
1.00
30.72


ATOM
C
GLY
L
64
81.233
44.058
−14.191
1.00
31.74


ATOM
O
GLY
L
64
82.415
44.338
−14.403
1.00
29.96


ATOM
N
SER
L
65
80.368
44.908
−13.653
1.00
31.35


ATOM
CA
SER
L
65
80.743
46.249
−13.250
1.00
32.13


ATOM
CB
SER
L
65
80.579
47.198
−14.427
1.00
33.39


ATOM
OG
SER
L
65
81.199
48.432
−14.145
1.00
38.02


ATOM
C
SER
L
65
79.836
46.687
−12.107
1.00
32.01


ATOM
O
SER
L
65
78.958
45.936
−11.670
1.00
32.14


ATOM
N
GLY
L
66
80.069
47.883
−11.587
1.00
32.03


ATOM
CA
GLY
L
66
79.229
48.367
−10.514
1.00
31.82


ATOM
C
GLY
L
66
79.988
48.757
−9.268
1.00
32.34


ATOM
O
GLY
L
66
81.187
48.499
−9.149
1.00
33.45


ATOM
N
SER
L
67
79.275
49.387
−8.342
1.00
33.28


ATOM
CA
SER
L
67
79.829
49.819
−7.070
1.00
33.09


ATOM
CB
SER
L
67
80.853
50.946
−7.281
1.00
34.89


ATOM
OG
SER
L
67
80.222
52.176
−7.613
1.00
36.97


ATOM
C
SER
L
67
78.673
50.308
−6.203
1.00
33.38


ATOM
O
SER
L
67
77.529
50.430
−6.665
1.00
32.21


ATOM
N
GLY
L
68
78.967
50.573
−4.939
1.00
34.02


ATOM
CA
GLY
L
68
77.946
51.067
−4.043
1.00
35.08


ATOM
C
GLY
L
68
76.785
50.114
−3.895
1.00
36.51


ATOM
O
GLY
L
68
76.953
49.014
−3.381
1.00
37.01


ATOM
N
THR
L
69
75.614
50.526
−4.362
1.00
38.06


ATOM
CA
THR
L
69
74.413
49.706
−4.257
1.00
39.69


ATOM
CB
THR
L
69
73.238
50.539
−3.709
1.00
41.73


ATOM
OG1
THR
L
69
73.143
51.764
−4.451
1.00
44.69


ATOM
CG2
THR
L
69
73.435
50.853
−2.226
1.00
43.12


ATOM
C
THR
L
69
73.959
49.053
−5.568
1.00
39.10


ATOM
O
THR
L
69
73.035
48.239
−5.559
1.00
40.25


ATOM
N
GLU
L
70
74.596
49.393
−6.686
1.00
36.36


ATOM
CA
GLU
L
70
74.190
48.823
−7.963
1.00
33.95


ATOM
CB
GLU
L
70
73.480
49.869
−8.803
1.00
35.14


ATOM
C
GLU
L
70
75.331
48.192
−8.749
1.00
32.26


ATOM
O
GLU
L
70
76.366
48.816
−8.994
1.00
31.16


ATOM
N
PHE
L
71
75.129
46.939
−9.141
1.00
30.51


ATOM
CA
PHE
L
71
76.125
46.192
−9.885
1.00
29.00


ATOM
CB
PHE
L
71
76.713
45.102
−8.983
1.00
25.95


ATOM
CG
PHE
L
71
77.425
45.644
−7.766
1.00
26.50


ATOM
CD1
PHE
L
71
78.818
45.695
−7.718
1.00
23.83


ATOM
CD2
PHE
L
71
76.704
46.140
−6.681
1.00
23.86


ATOM
CE1
PHE
L
71
79.472
46.231
−6.615
1.00
23.12


ATOM
CE2
PHE
L
71
77.360
46.682
−5.574
1.00
25.02


ATOM
CZ
PHE
L
71
78.743
46.726
−5.543
1.00
19.89


ATOM
C
PHE
L
71
75.440
45.591
−11.103
1.00
31.37


ATOM
O
PHE
L
71
74.215
45.385
−11.089
1.00
32.37


ATOM
N
THR
L
72
76.213
45.319
−12.154
1.00
31.74


ATOM
CA
THR
L
72
75.660
44.756
−13.381
1.00
31.21


ATOM
CB
THR
L
72
75.437
45.846
−14.458
1.00
33.86


ATOM
OG1
THR
L
72
76.680
46.488
−14.753
1.00
34.13


ATOM
CG2
THR
L
72
74.408
46.887
−13.991
1.00
33.49


ATOM
C
THR
L
72
76.460
43.632
−14.038
1.00
31.02


ATOM
O
THR
L
72
77.683
43.518
−13.867
1.00
27.20


ATOM
N
LEU
L
73
75.730
42.792
−14.768
1.00
29.35


ATOM
CA
LEU
L
73
76.297
41.685
−15.521
1.00
30.38


ATOM
CB
LEU
L
73
75.674
40.341
−15.120
1.00
28.33


ATOM
CG
LEU
L
73
76.122
39.098
−15.913
1.00
28.85


ATOM
CG1
LEU
L
73
77.598
38.759
−15.662
1.00
26.27


ATOM
CD2
LEU
L
73
75.221
37.917
−15.559
1.00
26.75


ATOM
C
LEU
L
73
75.939
41.994
−16.971
1.00
30.49


ATOM
O
LEU
L
73
74.778
42.295
−17.282
1.00
29.18


ATOM
N
THR
L
74
76.922
41.896
−17.855
1.00
30.05


ATOM
CA
THR
L
74
76.682
42.181
−19.253
1.00
31.19


ATOM
CB
THR
L
74
77.270
43.566
−19.662
1.00
31.37


ATOM
OG1
THR
L
74
76.667
44.597
−18.868
1.00
28.24


ATOM
CG2
THR
L
74
77.014
43.849
−21.158
1.00
30.50


ATOM
C
THR
L
74
77.222
41.106
−20.172
1.00
29.92


ATOM
O
THR
L
74
78.336
40.621
−20.002
1.00
28.40


ATOM
N
ILE
L
75
76.373
40.714
−21.114
1.00
33.76


ATOM
CA
ILE
L
75
76.679
39.712
−22.140
1.00
38.02


ATOM
CB
ILE
L
75
75.587
38.579
−22.177
1.00
38.72


ATOM
CG2
ILE
L
75
76.058
37.421
−23.055
1.00
37.88


ATOM
CG1
ILE
L
75
75.312
38.071
−20.744
1.00
39.78


ATOM
CD1
ILE
L
75
74.105
37.164
−20.583
1.00
37.31


ATOM
C
ILE
L
75
76.635
40.580
−23.406
1.00
38.55


ATOM
O
ILE
L
75
75.579
41.106
−23.771
1.00
38.37


ATOM
N
SER
L
76
77.802
40.787
−24.008
1.00
40.06


ATOM
CA
SER
L
76
77.944
41.651
−25.170
1.00
42.95


ATOM
CB
SER
L
76
79.420
41.847
−25.484
1.00
42.51


ATOM
OG
SER
L
76
80.107
40.607
−25.441
1.00
47.98


ATOM
C
SER
L
76
77.173
41.258
−26.418
1.00
44.99


ATOM
O
SER
L
76
76.675
42.128
−27.141
1.00
47.12


ATOM
N
SER
L
77
77.078
39.961
−26.677
1.00
43.59


ATOM
CA
SER
L
77
76.346
39.475
−27.834
1.00
44.13


ATOM
CB
SER
L
77
77.226
39.498
−29.075
1.00
45.12


ATOM
OG
SER
L
77
78.508
38.981
−28.772
1.00
51.53


ATOM
C
SER
L
77
75.870
38.069
−27.523
1.00
43.98


ATOM
O
SER
L
77
76.590
37.086
−27.689
1.00
42.87


ATOM
N
LEU
L
78
74.664
38.012
−26.991
1.00
43.76


ATOM
CA
LEU
L
78
74.010
36.786
−26.591
1.00
44.13


ATOM
CB
LEU
L
78
72.550
37.110
−26.295
1.00
45.19


ATOM
CG
LEU
L
78
71.735
36.161
−25.433
1.00
45.72


ATOM
CD1
LEU
L
78
72.357
36.067
−24.054
1.00
44.08


ATOM
CD2
LEU
L
78
70.315
36.697
−25.359
1.00
46.47


ATOM
C
LEU
L
78
74.076
35.704
−27.654
1.00
43.75


ATOM
O
LEU
L
78
74.230
35.988
−28.834
1.00
45.19


ATOM
N
GLN
L
79
74.002
34.455
−27.226
1.00
43.45


ATOM
CA
GLN
L
79
73.989
33.350
−28.162
1.00
44.42


ATOM
CB
GLN
L
79
75.384
32.990
−28.648
1.00
46.01


ATOM
CG
GLN
L
79
76.334
32.491
−27.653
1.00
53.13


ATOM
CD
GLN
L
79
77.643
32.175
−28.330
1.00
60.30


ATOM
OE1
GLN
L
79
78.434
33.077
−28.630
1.00
63.72


ATOM
NE2
GLN
L
79
77.860
30.898
−28.635
1.00
62.41


ATOM
C
GLN
L
79
73.229
32.184
−27.551
1.00
42.80


ATOM
O
GLN
L
79
73.019
32.155
−26.343
1.00
42.45


ATOM
N
PRO
L
80
72.754
31.238
−28.382
1.00
42.66


ATOM
CD
PRO
L
80
73.022
31.156
−29.831
1.00
41.71


ATOM
CA
PRO
L
80
71.989
30.064
−27.942
1.00
40.32


ATOM
CB
PRO
L
80
72.141
29.113
−29.123
1.00
42.49


ATOM
CG
PRO
L
80
72.095
30.051
−30.277
1.00
42.33


ATOM
C
PRO
L
80
72.347
29.406
−26.604
1.00
37.21


ATOM
O
PRO
L
80
71.466
29.170
−25.774
1.00
34.11


ATOM
N
ASP
L
81
73.631
29.153
−26.369
1.00
36.25


ATOM
CA
ASP
L
81
74.053
28.513
−25.121
1.00
35.32


ATOM
CB
ASP
L
81
75.428
27.880
−25.283
1.00
37.14


ATOM
CG
ASP
L
81
75.785
26.986
−24.115
1.00
41.90


ATOM
OD1
ASP
L
81
76.936
27.061
−23.634
1.00
48.22


ATOM
OD2
ASP
L
81
74.908
26.221
−23.661
1.00
41.44


ATOM
C
ASP
L
81
74.031
29.405
−23.879
1.00
30.85


ATOM
O
ASP
L
81
74.419
28.986
−22.791
1.00
28.33


ATOM
N
ASP
L
82
73.571
30.636
−24.046
1.00
30.80


ATOM
CA
ASP
L
82
73.497
31.587
−22.943
1.00
29.65


ATOM
CB
ASP
L
82
73.750
33.011
−23.438
1.00
29.14


ATOM
CG
ASP
L
82
75.183
33.230
−23.872
1.00
29.25


ATOM
OD1
ASP
L
82
75.430
34.180
−24.636
1.00
31.44


ATOM
OD2
ASP
L
82
76.067
32.463
−23.438
1.00
29.20


ATOM
C
ASP
L
82
72.151
31.494
−22.260
1.00
27.63


ATOM
O
ASP
L
82
71.843
32.270
−21.359
1.00
27.38


ATOM
N
PHE
L
83
71.324
30.570
−22.730
1.00
24.99


ATOM
CA
PHE
L
83
70.025
30.371
−22.116
1.00
23.55


ATOM
CB
PHE
L
83
69.218
29.325
−22.901
1.00
20.70


ATOM
CG
PHE
L
83
68.164
28.651
−22.088
1.00
19.09


ATOM
CG1
PHE
L
83
67.068
29.359
−21.634
1.00
16.96


ATOM
CD2
PHE
L
83
68.306
27.313
−21.720
1.00
20.10


ATOM
CE1
PHE
L
83
66.133
28.753
−20.823
1.00
18.32


ATOM
CE2
PHE
L
83
67.368
26.694
−20.905
1.00
19.05


ATOM
CZ
PHE
L
83
66.282
27.412
−20.455
1.00
19.06


ATOM
C
PHE
L
83
70.368
29.850
−20.727
1.00
20.93


ATOM
O
PHE
L
83
71.155
28.921
−20.618
1.00
22.26


ATOM
N
ALA
L
84
69.843
30.485
−19.684
1.00
19.63


ATOM
CA
ALA
L
84
70.095
30.070
−18.304
1.00
19.18


ATOM
CB
ALA
L
84
71.600
29.995
−18.039
1.00
17.02


ATOM
C
ALA
L
84
69.483
31.081
−17.357
1.00
18.18


ATOM
O
ALA
L
84
68.926
32.085
−17.786
1.00
20.57


ATOM
N
THR
L
85
69.513
30.778
−16.070
1.00
18.27


ATOM
CA
THR
L
85
69.046
31.733
−15.078
1.00
18.66


ATOM
CB
THR
L
85
68.138
31.090
−14.007
1.00
16.55


ATOM
OG1
THR
L
85
66.921
30.664
−14.625
1.00
19.88


ATOM
CG2
THR
L
85
67.776
32.102
−12.943
1.00
12.55


ATOM
C
THR
L
85
70.328
32.298
−14.449
1.00
18.52


ATOM
O
THR
L
85
71.240
31.533
−14.081
1.00
16.60


ATOM
N
TYR
L
86
70.440
33.625
−14.453
1.00
17.64


ATOM
CA
TYR
L
86
71.598
34.311
−13.895
1.00
19.24


ATOM
CB
TYR
L
86
72.066
35.426
−14.817
1.00
18.33


ATOM
CG
TYR
L
86
72.555
34.865
−16.118
1.00
18.76


ATOM
CD1
TYR
L
86
71.673
34.633
−17.172
1.00
21.98


ATOM
CE1
TYR
L
86
72.111
34.050
−18.360
1.00
21.65


ATOM
CD2
TYR
L
86
73.890
34.502
−16.283
1.00
15.25


ATOM
CE2
TYR
L
86
74.335
33.923
−17.456
1.00
18.24


ATOM
CZ
TYR
L
86
73.441
33.700
−18.492
1.00
18.78


ATOM
OH
TYR
L
86
73.879
33.135
−19.663
1.00
21.03


ATOM
C
TYR
L
86
71.303
34.847
−12.519
1.00
19.80


ATOM
O
TYR
L
86
70.173
35.270
−12.237
1.00
19.56


ATOM
N
TYR
L
87
72.309
34.760
−11.645
1.00
19.65


ATOM
CA
TYR
L
87
72.180
35.201
−10.259
1.00
19.63


ATOM
CB
TYR
L
87
72.042
33.995
−9.324
1.00
17.97


ATOM
CG
TYR
L
87
70.802
33.165
−9.522
1.00
15.59


ATOM
CD1
TYR
L
87
70.854
31.964
−10.233
1.00
14.99


ATOM
CE1
TYR
L
87
69.746
31.158
−10.356
1.00
14.07


ATOM
CD2
TYR
L
87
69.596
33.538
−8.945
1.00
15.68


ATOM
CE2
TYR
L
87
68.466
32.731
−9.058
1.00
16.41


ATOM
CZ
TYR
L
87
68.548
31.542
−9.767
1.00
15.92


ATOM
OH
TYR
L
87
67.444
30.735
−9.911
1.00
16.14


ATOM
C
TYR
L
87
73.376
35.984
−9.773
1.00
19.98


ATOM
O
TYR
L
87
74.518
35.626
−10.061
1.00
21.18


ATOM
N
CYS
L
88
73.117
37.049
−9.030
1.00
19.62


ATOM
CA
CYS
L
88
742.96
37.811
−8.445
1.00
20.76


ATOM
C
CYS
L
88
74.219
37.345
−6.995
1.00
22.45


ATOM
O
CYS
L
88
732.87
36.914
−6.448
1.00
22.65


ATOM
CB
CYS
L
88
73.915
39.305
−8.494
1.00
20.25


ATOM
SG
CYS
L
88
72.419
39.779
−7.595
1.00
23.98


ATOM
N
PHE
L
89
75.399
37.375
−6.392
1.00
21.08


ATOM
CA
PHE
L
89
75.556
36.982
−5.011
1.00
20.36


ATOM
CB
PHE
L
89
76.258
35.622
−4.910
1.00
19.78


ATOM
CG
PHE
L
89
76.577
35.202
−3.488
1.00
21.53


ATOM
CD1
PHE
L
89
77.898
35.078
−3.060
1.00
21.75


ATOM
CD2
PHE
L
89
75.553
34.945
−2.573
1.00
21.04


ATOM
CE1
PHE
L
89
782.89
34.709
−1.747
1.00
22.24


ATOM
CE2
PHE
L
89
75.838
34.577
−1.264
1.00
22.75


ATOM
CZ
PHE
L
89
77.160
34.459
−0.849
1.00
22.39


ATOM
C
PHE
L
89
76.387
38.044
−4.295
1.00
21.40


ATOM
O
PHE
L
89
77.455
38.454
−4.784
1.00
19.17


ATOM
N
GLN
L
90
75.878
38.497
−3.155
1.00
22.20


ATOM
CA
GLN
L
90
76.567
39.480
−2.337
1.00
25.57


ATOM
CB
GLN
L
90
75.629
40.659
−1.999
1.00
27.68


ATOM
CG
GLN
L
90
75.673
41.205
−0.555
1.00
34.37


ATOM
CD
GLN
L
90
76.975
41.908
−0.185
1.00
36.51


ATOM
OE1
GLN
L
90
78.050
41.538
−0.647
1.00
37.64


ATOM
NE2
GLN
L
90
76.879
42.923
0.666
1.00
42.09


ATOM
C
GLN
L
90
77.091
38.771
−1.084
1.00
24.62


ATOM
O
GLN
L
90
76.316
38.362
−0.220
1.00
24.09


ATOM
N
GLY
L
91
78.405
38.560
−1.045
1.00
24.26


ATOM
CA
GLY
L
91
79.036
37.915
0.088
1.00
25.85


ATOM
C
GLY
L
91
80.073
38.818
0.743
1.00
27.80


ATOM
O
GLY
L
91
80.845
38.369
1.590
1.00
28.54


ATOM
N
SER
L
92
802.01
40.089
0.354
1.00
28.11


ATOM
CA
SER
L
92
81.052
41.037
0.922
1.00
29.42


ATOM
CB
SER
L
92
81.342
42.170
−0.067
1.00
27.86


ATOM
OG
SER
L
92
80.L72
42.809
−0.525
1.00
28.57


ATOM
C
SER
L
92
80.628
41.603
2.279
1.00
29.98


ATOM
O
SER
L
92
81.464
42.051
3.053
1.00
29.20


ATOM
N
GLY
L
93
79.334
41.554
2.571
1.00
31.33


ATOM
CA
GLY
L
93
78.825
42.063
3.833
1.00
32.06


ATOM
C
GLY
L
93
77.548
41.346
4.230
1.00
32.98


ATOM
O
GLY
L
93
76.951
40.646
3.412
1.00
31.29


ATOM
N
TYR
L
94
77.116
41.524
5.474
1.00
34.98


ATOM
CA
TYR
L
94
75.907
40.862
5.956
1.00
39.24


ATOM
CB
TYR
L
94
76.044
40.534
7.438
1.00
41.36


ATOM
CG
TYR
L
94
77.141
39.539
7.743
1.00
45.93


ATOM
CD1
TYR
L
94
78.125
39.829
8.691
1.00
47.27


ATOM
CE1
TYR
L
94
79.121
38.916
8.996
1.00
48.93


ATOM
CD2
TYR
L
94
772.87
38.299
7.102
1.00
45.87


ATOM
CR2
TYR
L
94
78.183
37.377
7.400
1.00
47.29


ATOM
CZ
TYR
L
94
79.147
37.692
8.348
1.00
48.81


ATOM
OH
TYR
L
94
80.149
36.795
8.645
1.00
51.35


ATOM
C
TYR
L
94
74.390
41.606
5.696
1.00
39.68


ATOM
O
TYR
L
94
74.534
42.837
5.735
1.00
40.70


ATOM
N
PRO
L
95
73.516
40.859
5.375
1.00
39.57


ATOM
CG
PRO
L
95
72.146
41.409
5.309
1.00
40.15


ATOM
CA
PRO
L
95
73.503
39.395
5.249
1.00
36.54


ATOM
CB
PRO
L
95
72.055
39.050
5.573
1.00
36.84


ATOM
CG
PRO
L
95
71.308
40.192
4.948
1.00
38.59


ATOM
C
PRO
L
95
73.877
38.944
3.835
1.00
33.17


ATOM
O
PRO
L
95
73.645
39.662
2.863
1.00
32.32


ATOM
N
PHE
L
96
74.469
37.762
3.726
1.00
32.39


ATOM
CA
PHE
L
96
74.850
37.231
2.421
1.00
33.60


ATOM
CB
PHE
L
96
75.661
35.947
2.576
1.00
30.98


ATOM
CG
PHE
L
96
76.991
36.139
3.242
1.00
33.91


ATOM
CD1
PHE
L
96
77.518
37.416
3.432
1.00
33.81


ATOM
CD2
PHE
L
96
77.733
35.033
3.662
1.00
36.87


ATOM
CE1
PHE
L
96
78.759
37.595
4.027
1.00
36.46


ATOM
CE2
PHE
L
96
78.987
35.196
4.266
1.00
38.28


ATOM
CZ
PHE
L
96
79.500
36.481
4.447
1.00
37.60


ATOM
C
PHE
L
96
73.558
36.938
1.685
1.00
29.65


ATOM
O
PHE
L
96
72.661
36.310
2.241
1.00
29.87


ATOM
N
THR
L
97
73.447
37.377
0.442
1.00
27.80


ATOM
CA
THR
L
97
72.217
37.154
−0.294
1.00
27.85


ATOM
CB
THR
L
97
71.252
38.356
−0.119
1.00
31.07


ATOM
OG1
THR
L
97
71.957
39.581
−0.373
1.00
34.91


ATOM
CG2
THR
L
97
70.670
38.394
1.283
1.00
34.02


ATOM
C
THR
L
97
72.421
36.964
−1.780
1.00
25.56


ATOM
O
THR
L
97
73.385
37.468
−2.354
1.00
25.97


ATOM
N
PHE
L
98
71.493
36.243
−2.395
1.00
23.93


ATOM
CA
PHE
L
98
71.494
36.003
−3.837
1.00
22.96


ATOM
CB
PHE
L
98
71.203
34.545
−4.157
1.00
20.08


ATOM
CG
PHE
L
98
72.257
33.586
−4.165
1.00
17.47


ATOM
CD1
PHE
L
98
72.517
32.782
−3.068
1.00
18.73


ATOM
CD2
PHE
L
98
73.109
33.517
−5.252
1.00
15.42


ATOM
CE1
PHE
L
98
73.616
31.930
−3.053
1.00
18.52


ATOM
CE2
PHE
L
98
74.207
32.664
−5.239
1.00
17.15


ATOM
CZ
PHE
L
98
74.159
31.874
−4.138
1.00
16.08


ATOM
C
PHE
L
98
70.424
36.910
−4.436
1.00
23.92


ATOM
O
PHE
L
98
69.522
37.385
−3.734
1.00
26.57


ATOM
N
GLY
L
99
70.537
37.190
−5.723
1.00
24.88


ATOM
CA
GLY
L
99
69.512
37.977
−6.370
1.00
24.29


ATOM
C
GLY
L
99
68.379
37.008
−6.685
1.00
24.25


ATOM
O
GLY
L
99
68.569
35.778
−6.622
1.00
22.05


ATOM
N
GLY
L
100
67.213
37.553
−7.032
1.00
22.89


ATOM
CA
GLY
L
100
66.059
36.732
−7.357
1.00
19.67


ATOM
C
GLY
L
100
66.275
35.998
−8.683
1.00
20.73


ATOM
O
GLY
L
100
65.395
35.082
−8.959
1.00
18.00


ATOM
N
GLY
L
101
67.116
36.420
−9.521
1.00
19.87


ATOM
CA
GLY
L
101
67.306
35.765
−10.797
1.00
19.54


ATOM
C
GLY
L
101
66.184
36.508
−12.017
1.00
20.81


ATOM
O
GLY
L
101
65.922
37.391
−11.930
1.00
20.98


ATOM
N
THR
L
102
67.389
36.176
−13.151
1.00
21.18


ATOM
CA
THR
L
102
67.038
36.707
−14.459
1.00
22.07


ATOM
CD
THR
L
102
68.080
37.735
−14.978
1.00
22.40


ATOM
OG1
THR
L
102
68.114
38.880
−14.116
1.00
23.14


ATOM
CG2
THR
L
102
67.721
38.190
−16.378
1.00
22.44


ATOM
C
THR
L
102
67.085
35.483
−15.379
1.00
22.40


ATOM
O
THR
L
102
68.170
34.937
−15.636
1.00
20.43


ATOM
N
LYS
L
103
65.913
34.990
−15.782
1.00
22.47


ATOM
CA
LYS
L
103
65.851
33.843
−16.684
1.00
23.31


ATOM
CB
LYS
L
103
64.583
33.021
−16.478
1.00
21.12


ATOM
CG
LYS
L
103
64.550
31.824
−17.392
1.00
22.43


ATOM
CD
LYS
L
103
63.660
30.711
−16.876
1.00
24.88


ATOM
CE
LYS
L
103
63.733
29.481
−17.797
1.00
23.83


ATOM
NZ
LYS
L
103
63.023
28.313
−17.241
1.00
21.06


ATOM
G
LYS
L
103
65.908
34.396
−18.093
1.00
25.31


ATOM
O
LYS
L
103
65.044
35.172
−18.512
1.00
26.75


ATOM
N
LEU
L
104
66.930
33.987
−18.824
1.00
25.69


ATOM
CA
LEU
L
104
67.161
34.469
−20.168
1.00
27.01


ATOM
CD
LEU
L
104
68.650
34.808
−20.298
1.00
27.67


ATOM
CG
LEU
L
104
69.152
35.661
−21.448
1.00
27.93


ATOM
CD1
LEU
L
104
68.423
36.985
−21.446
1.00
29.85


ATOM
CD2
LEU
L
104
70.630
35.881
−21.265
1.00
29.69


ATOM
C
LEU
L
104
66.754
33.473
−21.244
1.00
28.40


ATOM
O
LEU
L
104
67.285
32.364
−21.301
1.00
30.35


ATOM
N
GLU
L
105
65.813
33.874
−22.092
1.00
28.05


ATOM
CA
GLU
L
105
65.343
33.039
−23.191
1.00
29.59


ATOM
CB
GLU
L
105
63.823
33.113
−23.325
1.00
32.46


ATOM
CG
GLU
L
105
63.264
32.079
−24.291
1.00
39.22


ATOM
CD
GLU
L
105
62.213
32.632
−25.237
1.00
41.09


ATOM
OE1
GLU
L
105
62.584
33.444
−26.101
1.00
43.86


ATOM
OE2
GLU
L
105
61.028
32.240
−25.138
1.00
39.88


ATOM
C
GLU
L
105
65.965
33.593
−24.456
1.00
28.60


ATOM
O
GLU
L
105
66.142
34.797
−24.581
1.00
28.67


ATOM
N
ILE
L
106
66.272
32.716
−25.399
1.00
29.12


ATOM
CA
ILE
L
106
66.870
33.111
−26.670
1.00
30.41


ATOM
CB
ILE
L
106
68.039
32.149
−27.066
1.00
30.16


ATOM
CG2
ILE
L
106
68.710
32.616
−28.340
1.00
32.05


ATOM
CG1
ILE
L
106
69.056
32.011
−25.928
1.00
29.52


ATOM
CD1
ILE
L
106
69.615
33.317
−25.418
1.00
30.24


ATOM
C
ILE
L
106
65.792
33.091
−27.773
1.00
31.27


ATOM
O
ILE
L
106
65.043
32.116
−27.916
1.00
32.16


ATOM
N
LYS
L
107
65.676
34.187
−28.514
1.00
30.72


ATOM
CA
LYS
L
107
64.69B
34.265
−29.585
1.00
32.13


ATOM
CB
LYS
L
107
64.400
35.716
−29.968
1.00
32.27


ATOM
CG
LYS
L
107
63.701
36.569
−28.945
1.00
34.00


ATOM
CD
LYS
L
107
63.503
37.967
−29.540
1.00
34.55


ATOM
CE
LYS
L
107
62.918
38.935
−28.536
1.00
37.68


ATOM
NZ
LYS
L
107
61.661
38.391
−27.962
1.00
40.96


ATOM
C
LYS
L
107
65.270
33.593
−30.817
1.00
31.68


ATOM
O
LYS
L
107
66.462
33.684
−31.074
1.00
32.74


ATOM
N
ARG
L
108
64.413
32.937
−31.586
1.00
31.51


ATOM
CA
ARG
L
108
64.821
32.295
−32.824
1.00
29.52


ATOM
CB
ARG
L
108
65.265
30.861
−32.591
1.00
29.77


ATOM
CG
ARG
L
108
64.243
29.994
−31.905
1.00
30.89


ATOM
CD
ARG
L
108
64.344
28.565
−32.408
1.00
30.81


ATOM
NE
ARG
L
108
64.038
28.496
−33.829
1.00
30.96


ATOM
CZ
ARG
L
108
64.564
27.618
−34.674
1.00
31.44


ATOM
NH1
ARG
L
108
65.440
26.716
−34.250
1.00
27.52


ATOM
NH2
ARG
L
108
64.205
27.646
−35.952
1.00
29.16


ATOM
C
ARG
L
108
63.636
32.342
−33.771
1.00
28.69


ATOM
O
ARG
L
108
62.572
32.852
−33.421
1.00
28.53


ATOM
N
THR
L
109
63.832
31.858
−34.985
1.00
29.11


ATOM
CA
THR
L
109
62.168
31.858
−35.976
1.00
30.78


ATOM
CB
THR
L
109
63.315
31.518
−37.370
1.00
32.45


ATOM
OG1
THR
L
109
64.064
30.299
−37.309
1.00
35.48


ATOM
CG2
THR
L
109
64.223
32.635
−37.874
1.00
30.66


ATOM
C
THR
L
109
61.693
30.850
−35.595
1.00
31.46


ATOM
O
THR
L
109
61.937
29.954
−34.795
1.00
31.24


ATOM
N
VAL
L
110
60.496
31.009
−36.146
1.00
31.64


ATOM
CA
VAL
L
110
59.417
30.086
−35.836
1.00
31.60


ATOM
CB
VAL
L
110
58.057
30.560
−36.394
1.00
32.31


ATOM
CG1
VAL
L
110
56.964
29.541
−36.066
1.00
31.80


ATOM
CG2
VAL
L
110
57.692
31.919
−35.807
1.00
31.73


ATOM
C
VAL
L
110
59.760
28.722
−36.400
1.00
30.86


ATOM
O
VAL
L
110
60.394
28.614
−37.451
1.00
30.96


ATOM
N
ALA
L
111
59.434
27.693
−35.634
1.00
29.60


ATOM
CA
ALA
L
111
59.680
26.318
−36.032
1.00
28.26


ATOM
CB
ALA
L
111
60.901
25.755
−35.316
1.00
26.88


ATOM
C
ALA
L
111
58.431
25.567
−35.618
1.00
27.23


ATOM
O
ALA
L
111
57.993
25.646
−34.466
1.00
25.20


ATOM
N
ALA
L
112
57.807
24.910
−36.581
1.00
26.83


ATOM
CA
ALA
L
112
56.602
24.153
−36.308
1.00
26.48


ATOM
CB
ALA
L
112
55.840
23.880
−37.610
1.00
27.20


ATOM
C
ALA
L
112
56.943
22.843
−35.606
1.00
23.94


ATOM
O
ALA
L
112
57.988
22.244
−35.855
1.00
23.22


ATOM
N
PRO
L
113
56.075
22.409
−34.691
1.00
22.26


ATOM
CD
PRO
L
113
54.924
23.154
−34.147
1.00
20.36


ATOM
CA
PRO
L
113
56.286
21.161
−33.957
1.00
23.79


ATOM
CB
PRO
L
113
55.244
21.249
−32.838
1.00
22.36


ATOM
CG
PRO
L
113
54.149
22.066
−33.453
1.00
23.79


ATOM
C
PRO
L
113
56.013
19.922
−34.794
1.00
23.47


ATOM
O
PRO
L
113
55.136
19.931
−35.655
1.00
25.95


ATOM
N
SER
L
114
56.769
18.863
−34.535
1.00
21.45


ATOM
CA
SER
L
114
56.557
17.580
−35.194
1.00
21.91


ATOM
CB
SER
L
114
57.871
16.823
−35.335
1.00
24.05


ATOM
OG
SER
L
114
58.789
17.547
−36.137
1.00
28.55


ATOM
C
SER
L
114
55.670
16.904
−34.157
1.00
20.29


ATOM
O
SER
L
114
56.077
16.777
−32.997
1.00
21.52


ATOM
N
VAL
L
115
54.463
16.509
−34.552
1.00
17.56


ATOM
CA
VAL
L
115
53.500
15.914
−33.621
1.00
17.02


ATOM
CB
VAL
L
115
52.110
16.578
−33.810
1.00
16.79


ATOM
CG1
VAL
L
115
51.120
16.067
−32.800
1.00
14.41


ATOM
CG2
VAL
L
115
52.244
18.092
−33.709
1.00
16.01


ATOM
C
VAL
L
115
53.379
14.394
−33.693
1.00
17.60


ATOM
O
VAL
L
115
53.355
13.818
−34.786
1.00
20.11


ATOM
N
PHE
L
116
53.347
13.746
−32.528
1.00
15.99


ATOM
CA
PHE
L
116
53.226
12.289
−32.439
1.00
17.49


ATOM
CB
PHE
L
116
54.562
11.646
−32.059
1.00
15.67


ATOM
CG
PHE
L
116
55.701
12.057
−32.926
1.00
16.56


ATOM
CD1
PHE
L
116
56.376
13.258
−32.687
1.00
15.63


ATOM
CD2
PHE
L
116
56.115
11.246
−33.984
1.00
17.82


ATOM
CE1
PHE
L
116
57.452
13.652
−33.489
1.00
18.32


ATOM
CE2
PHE
L
116
57.186
11.627
−34.792
1.00
18.08


ATOM
CZ
PHE
L
116
57.860
12.839
−34.542
1.00
17.81


ATOM
C
PHE
L
116
52.219
11.915
−31.355
1.00
19.64


ATOM
O
PHE
L
116
52.139
12.586
−30.321
1.00
20.26


ATOM
N
ILE
L
117
51.447
10.858
−31.585
1.00
18.75


ATOM
CA
ILE
L
117
50.490
10.392
−30.585
1.00
19.77


ATOM
CB
ILE
L
117
49.029
10.490
−31.075
1.00
20.51


ATOM
CG2
ILE
L
117
48.815
9.610
−32.295
1.00
18.97


ATOM
CG1
ILE
L
117
48.071
10.086
−29.946
1.00
18.35


ATOM
CG1
ILE
L
117
45.635
10.459
−30.206
1.00
17.73


ATOM
C
ILE
L
117
50.833
8.941
−30.213
1.00
20.69


ATOM
O
ILE
L
117
51.222
8.143
−31.076
1.00
20.52


ATOM
N
PHE
L
118
50.741
8.611
−28.929
1.00
19.61


ATOM
CA
PHE
L
118
51.047
7.262
−28.477
1.00
17.90


ATOM
CB
PHE
L
118
52.268
7.252
−27.557
1.00
16.09


ATOM
CG
PHE
L
118
53.491
7.832
−28.175
1.00
18.71


ATOM
CD1
PHE
L
118
53.868
9.141
−27.902
1.00
18.19


ATOM
CD2
PHE
L
118
54.283
7.069
−29.034
1.00
17.56


ATOM
CE1
PHE
L
118
55.014
9.686
−28.471
1.00
19.36


ATOM
CE2
PHE
L
118
55.436
7.613
−29.608
1.00
20.45


ATOM
CZ
PHE
L
118
55.799
8.917
−29.328
1.00
18.79


ATOM
C
PHE
L
118
49.883
6.662
−27.714
1.00
18.98


ATOM
O
PHE
L
118
49.391
7.261
−26.759
1.00
18.51


ATOM
N
PRO
L
119
49.363
5.519
−28.193
1.00
19.68


ATOM
CD
PRO
L
119
49.626
4.897
−29.503
1.00
19.95


ATOM
CA
PRO
L
119
48.254
4.839
−27.527
1.00
19.86


ATOM
CB
PRO
L
119
47.843
3.789
−28.562
1.00
16.77


ATOM
CG
PRO
L
119
49.099
3.521
−29.297
1.00
19.18


ATOM
C
PRO
L
119
48.778
4.176
−26.243
1.00
18.58


ATOM
O
PRO
L
119
49.997
4.040
−26.050
1.00
15.88


ATOM
N
PRO
L
120
47.872
3.839
−25.312
1.00
20.20


ATOM
CD
PRO
L
120
46.416
4.079
−25.288
1.00
19.97


ATOM
CA
PRO
L
120
48.314
3.193
−24.073
1.00
20.19


ATOM
CB
PRO
L
120
47.030
3.132
−23.245
1.00
19.86


ATOM
CG
PRO
L
120
45.958
3.059
−24.282
1.00
19.24


ATOM
C
PRO
L
120
48.826
1.788
−24.393
1.00
23.23


ATOM
O
PRO
L
120
48.385
1.155
−25.371
1.00
23.12


ATOM
N
SER
L
121
49.770
1.309
−23.593
1.00
23.42


ATOM
CA
SER
L
121
50.327
−0.018
−23.803
1.00
21.02


ATOM
CB
SER
L
121
51.678
−0.139
−23.087
1.00
21.17


ATOM
OG
SER
L
121
51.545
0.081
−21.687
1.00
21.28


ATOM
C
SER
L
121
49.346
−1.019
−23.229
1.00
20.91


ATOM
O
SER
L
121
48.540
−0.664
−22.356
1.00
17.96


ATOM
N
ASP
L
122
49.380
−2.251
−23.734
1.00
20.98


ATOM
CA
ASP
L
122
48.493
−3.292
−23.213
1.00
23.86


ATOM
CB
ASP
L
122
48.631
−4.578
−24.018
1.00
24.89


ATOM
CG
ASP
L
122
48.131
−4.424
−25.433
1.00
27.96


ATOM
OD1
ASP
L
122
47.303
−3.524
−25.681
1.00
27.84


ATOM
OD2
ASP
L
122
48.576
−5.193
−26.305
1.00
32.19


ATOM
C
ASP
L
122
48.845
−3.544
−21.757
1.00
23.60


ATOM
O
ASP
L
122
47.977
−3.813
−20.932
1.00
21.88


ATOM
N
GLU
L
123
50.130
−3.411
−21.454
1.00
23.93


ATOM
CA
GLU
L
123
50.642
−3.585
−20.109
1.00
27.91


ATOM
CD
GLU
L
123
52.163
−3.426
−20.122
1.00
32.19


ATOM
CG
GLU
L
123
52.830
−3.698
−18.791
1.00
40.41


ATOM
CD
GLU
L
123
54.258
−3.194
−18.748
1.00
47.82


ATOM
OE1
GLU
L
123
55.115
−3.894
−18.169
1.00
53.21


ATOM
OE2
GLU
L
123
54.527
−2.092
−19.280
1.00
51.56


ATOM
C
GLU
L
123
50.001
−2.588
−19.117
1.00
27.85


ATOM
O
GLU
L
123
49.575
−2.977
−18.019
1.00
27.68


ATOM
N
GLN
L
124
49.938
−1.308
−19.480
1.00
24.64


ATOM
CA
GLN
L
124
49.332
−0.337
−18.578
1.00
23.22


ATOM
CB
GLN
L
124
49.514
1.088
−19.072
1.00
20.28


ATOM
CG
GLN
L
124
49.008
2.087
−18.064
1.00
14.77


ATOM
CD
GLN
L
124
48.953
3.485
−18.578
1.00
14.59


ATOM
OE1
GLN
L
124
48.958
3.730
−19.780
1.00
17.10


ATOM
NE2
GLN
L
124
48.861
4.424
−17.665
1.00
15.03


ATOM
C
GLN
L
124
47.842
−0.597
−18.400
1.00
25.72


ATOM
O
GLN
L
124
47.315
−0.529
−17.285
1.00
26.05


ATOM
N
LEU
L
125
47.155
−0.864
−19.504
1.00
27.91


ATOM
CA
LEU
L
125
45.723
−1.132
−19.467
1.00
30.96


ATOM
CB
LEU
L
125
45.219
−1.558
−20.847
1.00
28.53


ATOM
CG
LEU
L
125
45.112
−0.447
−21.887
1.00
27.48


ATOM
CE1
LEU
L
125
44.392
−0.998
−23.088
1.00
28.97


ATOM
CD2
LEU
L
125
44.352
0.738
−21.318
1.00
27.09


ATOM
C
LEU
L
125
45.416
−2.208
−18.439
1.00
33.69


ATOM
O
LEU
L
125
44.440
−2.107
−17.698
1.00
34.97


ATOM
N
LYS
L
126
46.286
−3.207
−18.357
1.00
36.13


ATOM
CA
LYS
L
126
46.107
−4.282
−17.401
1.00
39.52


ATOM
CB
LYS
L
126
47.296
−5.246
−17.441
1.00
45.42


ATOM
CG
LYS
L
126
46.968
−6.615
−16.849
1.00
52.87


ATOM
CD
LYS
L
126
48.168
−7.301
−16.193
1.00
55.14


ATOM
CE
LYS
L
126
47.770
−8.667
−15.616
1.00
56.30


ATOM
NZ
LYS
L
126
46.588
−8.603
−14.695
1.00
56.59


ATOM
C
LYS
L
126
45.958
−3.715
−15.989
1.00
39.37


ATOM
O
LYS
L
126
45.105
−4.170
−15.232
1.00
40.56


ATOM
N
SER
L
127
46.745
−2.686
−15.667
1.00
38.46


ATOM
CA
SER
L
127
46.730
−2.052
−14.343
1.00
36.08


ATOM
CB
SER
L
127
47.994
−1.191
−14.125
1.00
36.59


ATOM
OG
SER
L
127
47.895
0.119
−14.693
1.00
38.49


ATOM
C
SER
L
127
45.478
−1.227
−14.072
1.00
33.85


ATOM
O
SER
L
127
45.333
−0.633
−13.000
1.00
36.40


ATOM
N
GLY
L
128
44.583
−1.166
−15.048
1.00
31.83


ATOM
CA
GLY
L
128
43.354
−0.414
−14.865
1.00
28.09


ATOM
C
GLY
L
128
43.336
1.015
−15.374
1.00
28.23


ATOM
O
GLY
L
128
42.290
1.666
−15.312
1.00
27.58


ATOM
N
THR
L
129
44.454
1.513
−15.894
1.00
26.97


ATOM
CA
THR
L
129
44.486
2.883
−16.390
1.00
26.43


ATOM
CB
THR
L
129
45.222
3.804
−15.424
1.00
28.39


ATOM
OG1
THR
L
129
44.466
3.862
−14.194
1.00
32.69


ATOM
OG2
THR
L
129
45.325
5.214
−15.997
1.00
29.42


ATOM
C
THR
L
129
45.071
3.015
−17.774
1.00
23.68


ATOM
O
THR
L
129
45.875
2.192
−18.194
1.00
25.37


ATOM
N
ALA
L
130
44.625
4.044
−18.487
1.00
20.97


ATOM
CA
ALA
L
130
45.069
4.323
−19.639
1.00
19.62


ATOM
CB
ALA
L
130
43.909
4.148
−20.807
1.00
18.49


ATOM
C
ALA
L
130
45.637
5.739
−19.961
1.00
19.53


ATOM
O
ALA
L
130
44.955
6.718
−19.646
1.00
19.42


ATOM
N
SER
L
131
46.909
5.832
−20.347
1.00
16.98


ATOM
CA
SER
L
131
47.656
7.114
−20.553
1.00
16.02


ATOM
CB
SER
L
131
48.899
7.186
−19.834
1.00
14.60


ATOM
OG
SER
L
131
48.729
7.094
−18.434
1.00
16.28


ATOM
C
SER
L
131
47.760
7.262
−22.048
1.00
15.07


ATOM
O
SER
L
131
48.211
6.333
−22.708
1.00
15.64


ATOM
N
VAL
L
132
47.325
8.389
−22.593
1.00
15.03


ATOM
CA
VAL
L
132
47.475
8.667
−24.010
1.00
16.30


ATOM
CB
VAL
L
132
46.116
9.021
−24.691
1.00
15.74


ATOM
CG1
VAL
L
132
46.291
9.031
−26.210
1.00
14.83


ATOM
CG2
VAL
L
132
45.014
8.034
−24.255
1.00
12.79


ATOM
C
VAL
L
132
48.420
9.861
−24.039
1.00
16.78


ATOM
O
VAL
L
132
48.193
10.852
−23.349
1.00
15.30


ATOM
N
VAL
L
133
49.601
9.736
−24.796
1.00
14.90


ATOM
CA
VAL
L
133
50.497
10.786
−24.853
1.00
16.13


ATOM
CB
VAL
L
133
51.901
10.246
−24.396
1.00
15.26


ATOM
CG1
VAL
L
133
52.953
11.362
−24.412
1.00
14.56


ATOM
CG2
VAL
L
133
51.794
9.620
−23.018
1.00
13.03


ATOM
C
VAL
L
133
50.622
11.409
−26.226
1.00
14.37


ATOM
O
VAL
L
133
50.629
10.721
−27.251
1.00
13.58


ATOM
N
CYS
L
134
50.734
12.727
−26.222
1.00
16.21


ATOM
CA
CYS
L
134
50.906
13.508
−27.433
1.00
16.73


ATOM
C
CYS
L
134
52.188
14.309
−27.250
1.00
17.07


ATOM
O
CYS
L
134
52.391
14.974
−26.229
1.00
16.97


ATOM
CB
CYS
L
134
49.727
14.456
−27.645
1.00
18.80


ATOM
SG
CYS
L
134
49.723
15.237
−29.291
1.00
24.75


ATOM
N
LEU
L
135
53.075
14.186
−28.216
1.00
16.87


ATOM
CA
LEU
L
135
54.339
14.872
−28.187
1.00
17.83


ATOM
CB
LEU
L
135
55.458
13.849
−28.433
1.00
14.08


ATOM
CG
LEU
L
135
56.857
14.414
−28.734
1.00
16.16


ATOM
CD1
LEU
L
135
57.424
15.070
−27.488
1.00
13.93


ATOM
CD2
LEU
L
135
57.794
13.329
−29.223
1.00
14.15


ATOM
C
LEU
L
135
54.364
15.922
−29.294
1.00
19.16


ATOM
O
LEU
L
135
53.898
15.648
−30.401
1.00
18.16


ATOM
N
LEU
L
136
54.826
17.136
−28.974
1.00
19.85


ATOM
CA
LEU
L
136
55.005
18.200
−29.973
1.00
18.72


ATOM
CB
LEU
L
136
54.371
19.523
−29.578
1.00
16.93


ATOM
CG
LEU
L
136
53.008
19.601
−28.922
1.00
22.19


ATOM
CD1
LEU
L
136
52.444
20.977
−29.261
1.00
20.90


ATOM
CD2
LEU
L
136
52.077
18.504
−29.370
1.00
16.66


ATOM
C
LEU
L
136
56.494
18.330
−29.821
1.00
18.78


ATOM
O
LEU
L
136
56.968
18.683
−28.745
1.00
19.77


ATOM
N
ASN
L
137
57.231
18.044
−30.878
1.00
17.88


ATOM
CA
ASN
L
137
58.677
18.051
−30.811
1.00
17.03


ATOM
CB
ASN
L
137
59.198
16.728
−31.408
1.00
18.02


ATOM
CG
ASN
L
137
60.452
16.198
−30.714
1.00
19.89


ATOM
OD1
ASN
L
137
60.761
16.559
−29.569
1.00
21.01


ATOM
ND2
ASN
L
137
61.160
15.309
−31.396
1.00
17.37


ATOM
C
ASN
L
137
59.382
19.211
−31.487
1.00
17.90


ATOM
O
ASN
L
137
59.030
19.624
−32.601
1.00
19.36


ATOM
N
ASN
L
138
60.371
19.745
−30.786
1.00
18.41


ATOM
CA
ASN
L
138
61.225
20.806
−31.298
1.00
19.22


ATOM
CB
ASN
L
138
62.269
20.191
−32.234
1.00
19.52


ATOM
CG
ASN
L
138
63.097
19.099
−31.563
1.00
19.73


ATOM
OD1
ASN
L
138
63.268
19.078
−30.340
1.00
19.78


ATOM
ND2
ASN
L
138
63.612
18.186
−32.364
1.00
23.67


ATOM
C
ASN
L
138
60.576
21.998
−31.987
1.00
20.58


ATOM
O
ASN
L
138
60.845
22.240
−33.153
1.00
22.46


ATOM
N
PHE
L
139
59.841
22.811
−31.232
1.00
21.42


ATOM
CA
PHE
L
139
59.142
23.976
−31.777
1.00
21.68


ATOM
CB
PHE
L
139
57.630
23.775
−31.654
1.00
18.86


ATOM
CG
PHE
L
139
57.128
23.694
−30.227
1.00
17.94


ATOM
CD1
PHE
L
139
56.634
24.822
−29.582
1.00
17.65


ATOM
CD2
PHE
L
139
57.081
22.478
−29.556
1.00
17.82


ATOM
CE1
PHE
L
139
56.091
24.744
−28.299
1.00
15.73


ATOM
CE2
PHE
L
139
56.540
22.399
−28.272
1.00
18.39


ATOM
CZ
PHE
L
139
56.042
23.541
−27.646
1.00
15.75


ATOM
C
PHE
L
139
59.902
25.314
−31.137
1.00
20.62


ATOM
O
PHE
L
139
60.190
25.369
−30.129
1.00
20.00


ATOM
N
TYR
L
140
59.018
26.390
−31.738
1.00
21.80


ATOM
CA
TYR
L
140
59.239
27.746
−31.232
1.00
25.88


ATOM
CB
TYR
L
140
60.712
28.166
−31.365
1.00
28.61


ATOM
CG
TYR
L
140
61.014
29.491
−30.677
1.00
32.85


ATOM
CG1
TYR
L
140
60.690
30.704
−31.285
1.00
32.88


ATOM
CE1
TYR
L
140
60.943
31.915
−30.648
1.00
33.51


ATOM
CD2
TYR
L
140
61.607
29.532
−29.408
1.00
31.57


ATOM
CE2
TYR
L
140
61.866
30.740
−28.772
1.00
29.63


ATOM
CE
TYR
L
140
61.530
31.922
−29.394
1.00
31.58


ATOM
OH
TYR
L
140
61.766
33.127
−28.777
1.00
32.96


ATOM
C
TYR
L
140
58.344
28.729
−31.992
1.00
25.00


ATOM
O
TYR
L
140
58.228
28.649
−33.216
1.00
26.01


ATOM
N
PRO
L
141
57.716
29.682
−31.290
1.00
25.66


ATOM
CD
PRO
L
141
56.823
30.618
−31.995
1.00
26.17


ATOM
CA
PRO
L
141
57.729
29.979
−29.855
1.00
26.74


ATOM
CB
PRO
L
141
56.894
31.257
−29.772
1.00
26.54


ATOM
CG
PRO
L
141
55.924
31.091
−30.885
1.00
25.01


ATOM
C
PRO
L
141
57.149
28.887
−28.972
1.00
27.91


ATOM
O
PRO
L
141
56.590
27.910
−29.468
1.00
27.79


ATOM
N
ARG
L
142
57.267
29.086
−27.661
1.00
28.05


ATOM
CA
ARG
L
142
56.781
28.140
−26.660
1.00
29.58


ATOM
CB
ARG
L
142
57.336
28.500
−25.282
1.00
32.03


ATOM
CG
ARG
L
142
57.042
27.480
−24.205
1.00
36.16


ATOM
CD
ARG
L
142
57.579
27.937
−22.862
1.00
43.89


ATOM
NE
ARG
L
142
56.887
27.256
−21.769
1.00
52.50


ATOM
CZ
ARG
L
142
55.698
27.622
−21.285
1.00
56.42


ATOM
NH1
ARG
L
142
55.061
28.684
−21.787
1.00
57.72


ATOM
NH2
ARG
L
142
55.115
26.889
−20.337
1.00
56.76


ATOM
C
ARG
L
142
55.264
27.995
−26.579
1.00
29.52


ATOM
O
ARG
L
142
54.771
26.935
−26.189
1.00
31.05


ATOM
N
GLU
L
143
54.523
29.044
−26.925
1.00
27.77


ATOM
CA
GLU
L
143
53.064
28.994
−26.878
1.00
29.28


ATOM
CB
GLU
L
143
52.461
30.381
−27.143
1.00
33.40


ATOM
CG
GLU
L
143
51.192
30.739
−26.316
1.00
43.31


ATOM
CD
GLU
L
143
49.989
29.789
−26.518
1.00
49.45


ATOM
OE1
GLU
L
143
49.242
29.944
−27.521
1.00
5L.48


ATOM
OE2
GLU
L
143
49.767
28.909
−25.643
1.00
51.44


ATOM
CG
GLU
L
143
52.529
27.985
−27.900
1.00
28.06


ATOM
O
GLU
L
143
52.854
28.036
−29.094
1.00
27.27


ATOM
N
ALA
L
144
51.722
27.054
−27.419
1.00
26.94


ATOM
CA
ALA
L
144
51.138
26.036
−28.272
1.00
28.67


ATOM
CB
ALA
L
144
52.129
24.898
−28.509
1.00
25.66


ATOM
C
ALA
L
144
49.514
25.527
−27.546
1.00
29.63


ATOM
O
ALA
L
144
49.903
25.442
−26.311
1.00
30.81


ATOM
N
LYS
L
145
48.860
25.259
−28.307
1.00
30.65


ATOM
CA
LYS
L
145
47.623
24.756
−27.734
1.00
30.11


ATOM
CB
LYS
L
145
46.446
25.673
−28.075
1.00
33.51


ATOM
CG
LYS
L
145
45.168
25.314
−27.333
1.00
38.19


ATOM
CD
LYS
L
145
44.013
25.039
−28.287
1.00
44.45


ATOM
CE
LYS
L
145
43.662
26.272
−29.116
1.00
45.04


ATOM
NZ
LYS
L
145
42.426
26.059
−29.917
1.00
45.43


ATOM
C
LYS
L
145
47.362
23.357
−28.251
1.00
28.14


ATOM
O
LYS
L
145
47.377
23.103
−29.461
1.00
26.62


ATOM
N
VAL
L
146
47.171
22.437
−27.325
1.00
28.70


ATOM
CA
VAL
L
146
46.907
21.065
−27.690
1.00
30.08


ATOM
CB
VAL
L
146
48.104
20.097
−27.325
1.00
30.21


ATOM
CG1
VAL
L
146
49.130
20.784
−26.451
1.00
30.48


ATOM
CG2
VAL
L
146
47.606
18.807
−26.701
1.00
29.81


ATOM
C
VAL
L
146
45.593
20.657
−27.057
1.00
29.32


ATOM
O
VAL
L
146
45.391
20.831
−25.860
1.00
29.58


ATOM
N
GLN
L
147
44.661
20.233
−27.902
1.00
30.06


ATOM
CA
GLN
L
147
43.346
19.802
−27.455
1.00
30.42


ATOM
CB
GLN
L
147
42.236
20.636
−28.113
1.00
35.67


ATOM
CG
GLN
L
147
42.091
22.049
−27.550
1.00
40.36


ATOM
CD
GLN
L
147
40.817
22.745
−28.005
1.00
43.14


ATOM
CE1
GLN
L
147
39.992
23.141
−27.186
1.00
43.76


ATOM
NE2
GLN
L
147
40.856
22.903
−29.314
1.00
43.31


ATOM
C
GLN
L
147
43.117
18.330
−27.745
1.00
28.02


ATOM
O
GLN
L
147
43.417
17.837
−28.838
1.00
25.81


ATOM
N
TRP
L
148
42.622
17.624
−26.742
1.00
25.59


ATOM
CA
TRP
L
148
42.333
16.213
−26.882
1.00
25.12


ATOM
CB
TRP
L
148
42.574
15.493
−25.573
1.00
23.52


ATOM
CG
TRP
L
148
44.015
15.322
−25.266
1.00
22.59


ATOM
CD2
TRP
L
148
44.870
14.282
−25.753
1.00
21.52


ATOM
CE2
TRP
L
148
46.114
14.439
−25.122
1.00
17.40


ATOM
CE3
TRP
L
148
44.898
13.226
−26.660
1.00
21.73


ATOM
CD1
TRP
L
148
44.760
16.063
−24.401
1.00
19.92


ATOM
NEl
TRP
L
148
46.020
15.532
−24.304
1.00
18.98


ATOM
CZ2
TRP
L
148
47.185
13.579
−25.359
1.00
19.15


ATOM
CZ3
TRP
L
148
45.767
12.372
−26.900
1.00
19.55


ATOM
CH2
TRP
L
148
46.993
12.555
−26.249
1.00
17.26


ATOM
C
TRP
L
148
40.897
16.050
−27.267
1.00
27.24


ATOM
O
TRP
L
148
40.021
16.706
−26.704
1.00
29.09


ATOM
N
LYS
L
149
40.842
15.170
−28.218
1.00
27.78


ATOM
CA
LYS
L
149
39.286
14.927
−28.655
1.00
28.56


ATOM
CB
LYS
L
149
39.065
15.540
−30.043
1.00
33.33


ATOM
CG
LYS
L
149
39.014
17.083
−30.049
1.00
40.99


ATOM
CD
LYS
L
149
39.056
17.665
−31.460
1.00
45.80


ATOM
CE
LYS
L
149
40.413
17.409
−32.118
1.00
50.94


ATOM
NZ
LYS
L
149
40.478
17.798
−33.568
1.00
52.55


ATOM
C
LYS
L
149
39.064
13.431
−28.673
1.00
27.65


ATOM
O
LYS
L
149
39.836
12.686
−29.274
1.00
26.68


ATOM
N
VAL
L
150
38.064
12.979
−27.932
1.00
28.55


ATOM
CA
VAL
L
150
37.736
11.555
−27.890
1.00
30.17


ATOM
CB
VAL
L
150
37.694
11.019
−26.437
1.00
29.56


ATOM
CG1
VAL
L
150
37.346
9.542
−26.446
1.00
31.46


ATOM
CG2
VAL
L
150
39.049
11.233
−25.747
1.00
28.62


ATOM
C
VAL
L
150
36.376
11.403
−28.584
1.00
32.05


ATOM
O
VAL
L
150
35.356
11.919
−28.106
1.00
31.85


ATOM
N
ASP
L
151
36.380
10.737
−29.736
1.00
33.92


ATOM
CA
ASP
L
151
35.177
10.553
−30.555
1.00
34.55


ATOM
CB
ASP
L
151
34.146
9.661
−29.863
1.00
34.11


ATOM
CG
ASP
L
151
34.488
8.190
−29.982
1.00
35.60


ATOM
OD1
ASP
L
151
35.120
7.820
−30.992
1.00
34.60


ATOM
OD2
ASP
L
151
34.129
7.405
−29.076
1.00
38.15


ATOM
C
ASP
L
151
34.601
11.916
−30.912
1.00
34.81


ATOM
O
ASP
L
151
33.396
12.141
−30.887
1.00
35.02


ATOM
N
ASN
L
152
35.513
12.837
−31.189
1.00
34.49


ATOM
CA
ASN
L
152
35.190
14.191
−31.574
1.00
35.32


ATOM
CB
ASN
L
152
34.202
14.168
−32.734
1.00
39.44


ATOM
CG
ASN
L
152
34.735
13.365
−33.910
1.00
44.85


ATOM
OD1
ASN
L
152
34.762
12.136
−33.877
1.00
46.35


ATOM
ND2
ASN
L
152
35.233
14.059
−34.922
1.00
48.06


ATOM
C
ASN
L
152
34.729
15.076
−30.435
1.00
33.57


ATOM
O
ASN
L
152
34.545
16.275
−30.619
1.00
36.79


ATOM
N
ALA
L
153
34.614
14.506
−29.243
1.00
31.08


ATOM
CA
ALA
L
153
34.207
15.266
−28.073
1.00
28.26


ATOM
CB
ALA
L
153
33.481
14.371
−27.116
1.00
28.75


ATOM
C
ALA
L
153
35.439
15.875
−27.403
1.00
28.92


ATOM
O
ALA
L
153
36.384
15.155
−27.053
1.00
26.45


ATOM
N
LEU
L
154
35.422
17.195
−27.221
1.00
29.49


ATOM
CA
LEU
L
154
36.532
17.924
−26.606
1.00
30.90


ATOM
CB
LEU
L
154
36.386
19.416
−26.835
1.00
33.24


ATOM
CG
LEU
L
154
37.433
20.289
−26.146
1.00
36.75


ATOM
CD1
LEU
L
154
38.831
19.982
−26.665
1.00
38.15


ATOM
CD2
LEU
L
154
37.086
21.748
−26.380
1.00
39.59


ATOM
C
LEU
L
154
36.645
17.642
−25.117
1.00
31.55


ATOM
O
LEU
L
154
35.690
17.838
−24.362
1.00
31.00


ATOM
N
GLN
L
155
37.840
17.209
−24.713
1.00
31.11


ATOM
CA
GLN
L
155
38.151
16.846
−23.336
1.00
28.18


ATOM
CB
GLN
L
155
39.328
15.878
−23.317
1.00
25.72


ATOM
CG
GLN
L
155
39.079
14.638
−24.112
1.00
23.68


ATOM
CD
GLN
L
155
37.881
13.888
−23.604
1.00
25.63


ATOM
OE1
GLN
L
155
37.975
13.140
−22.639
1.00
26.96


ATOM
NE2
GLN
L
155
36.737
14.094
−24.237
1.00
25.22


ATOM
C
GLN
L
155
38.485
18.050
−22.492
1.00
29.16


ATOM
O
GLN
L
155
39.007
19.047
−22.995
1.00
28.96


ATOM
N
SER
L
156
38.231
17.931
−21.196
1.00
29.53


ATOM
CA
SER
L
156
38.498
19.015
−20.273
1.00
30.80


ATOM
CB
SER
L
156
37.260
19.914
−20.143
1.00
34.66


ATOM
OG
SER
L
156
36.
60
20.429
−21.409
1.00
43.01


ATOM
C
SER
L
156
38.838
18.467
−18.907
1.00
29.08


ATOM
O
SER
L
156
38.103
17.641
−18.368
1.00
29.54


ATOM
N
GLY
L
157
39.972
18.901
−18.368
1.00
28.54


ATOM
CA
GLY
L
157
40.372
18.490
−17.038
1.00
26.39


ATOM
C
GLY
L
157
40.936
17.101
−16.850
1.00
26.37


ATOM
O
GLY
L
157
41.120
16.671
−15.715
1.00
29.38


ATOM
N
ASN
L
158
41.216
16.385
−17.928
1.00
23.45


ATOM
CA
ASN
L
158
41.770
15.049
−17.777
1.00
21.09


ATOM
CB
ASN
L
158
40.764
13.989
−18.244
1.00
19.33


ATOM
CG
ASN
L
158
40.216
14.252
−19.630
1.00
17.19


ATOM
OG1
ASN
L
158
40.588
15.213
−20.302
1.00
18.35


ATOM
ND2
ASN
L
158
39.331
13.387
−20.066
1.00
18.99


ATOM
C
ASN
L
158
43.136
14.867
−18.440
1.00
19.26


ATOM
O
ASN
L
158
43.534
13.753
−18.767
1.00
21.16


ATOM
N
SER
L
159
43.874
15.959
−18.600
1.00
18.71


ATOM
CA
SER
L
159
45.187
15.890
−19.218
1.00
20.76


ATOM
CB
SER
L
159
45.077
16.188
−20.714
1.00
18.72


ATOM
OG
SER
L
159
44.532
17.477
−20.945
1.00
20.62


ATOM
C
SER
L
159
46.131
16.882
−18.553
1.00
23.10


ATOM
O
SER
L
159
45.685
17.868
−17.957
1.00
24.15


ATOM
N
GLN
L
160
47.427
16.585
−18.592
1.00
21.31


ATOM
CA
GLN
L
160
48.442
17.471
−18.021
1.00
21.04


ATOM
CB
GLN
L
160
49.069
16.879
−16.736
1.00
23.45


ATOM
OG
GLN
L
160
48.154
16.872
−15.510
1.00
27.10


ATOM
CD
GLN
L
160
48.835
16.394
−14.231
1.00
28.51


ATOM
GE1
GLN
L
160
49.047
15.187
−14.036
1.00
24.70


ATOM
NE2
GLN
L
160
49.135
17.334
−13.329
1.00
25.84


ATOM
C
GLN
L
160
49.532
17.659
−19.066
1.00
20.99


ATOM
O
GLN
L
160
49.863
16.734
−19.816
1.00
21.59


ATOM
N
GLU
L
161
50.098
18.853
−19.124
1.00
20.61


ATOM
CA
GLU
L
161
51.172
19.106
−20.072
1.00
20.46


ATOM
CB
GLU
L
161
50.901
20.359
−20.890
1.00
20.91


ATOM
CG
GLU
L
161
49.611
20.349
−21.674
1.00
24.55


ATOM
CD
GLU
L
161
49.542
21.528
−22.619
1.00
26.26


ATOM
OE1
GLU
L
161
50.300
22.486
−22.485
1.00
29.28


ATOM
OE2
GLU
L
161
48.648
21.497
−23.507
1.00
28.66


ATOM
C
GLU
L
161
52.476
19.303
−19.328
1.00
19.83


ATOM
O
GLU
L
161
52.493
19.602
−18.134
1.00
20.07


ATOM
N
SER
L
162
53.569
19.107
−20.036
1.00
17.23


ATOM
CA
SER
L
162
54.865
19.323
−19.455
1.00
17.53


ATOM
CB
SER
L
162
55.447
18.035
−18.889
1.00
14.42


ATOM
OG
SER
L
162
56.762
18.252
−18.431
1.00
18.03


ATOM
C
SER
L
162
55.709
19.870
−20.579
1.00
16.58


ATOM
O
SER
L
162
55.655
19.376
−21.705
1.00
17.04


ATOM
N
VAL
L
163
56.386
20.975
−20.311
1.00
19.21


ATOM
CA
VAL
L
163
57.226
21.568
−21.323
1.00
18.37


ATOM
CB
VAL
L
163
56.819
23.039
−21.669
1.00
18.75


ATOM
CG1
VAL
L
163
56.923
23.931
−20.442
2.00
20.07


ATOM
CG2
VAL
L
163
57.696
23.590
−22.802
1.00
13.07


ATOM
C
VAL
L
163
58.686
21.463
−20.921
1.00
19.06


ATOM
O
VAL
L
163
59.071
21.541
−19.744
1.00
16.78


ATOM
N
THR
L
164
59.484
21.211
−21.936
1.00
18.83


ATOM
CA
THR
L
164
60.915
21.063
−21.827
1.00
19.31


ATOM
CE
THR
L
164
61.331
20.278
−23.114
1.00
19.43


ATOM
OG1
THR
L
164
61.683
18.919
−22.809
1.00
22.69


ATOM
CG2
THR
L
164
62.355
20.966
−23.872
1.00
16.60


ATOM
C
THR
L
164
61.579
22.474
−21.698
1.00
19.84


ATOM
O
THR
L
164
60.976
23.506
−22.053
1.00
17.28


ATOM
N
GLU
L
165
62.756
22.535
−21.083
1.00
19.36


ATOM
CA
GLU
L
165
63.471
23.800
−20.983
1.00
19.55


ATOM
CB
GLU
L
165
64.575
23.736
−19.925
1.00
23.79


ATOM
CG
GLU
L
165
64.076
23.813
−18.473
1.00
31.50


ATOM
CD
GLU
L
165
63.482
25.178
−18.114
1.00
38.33


ATOM
OE1
GLU
L
165
64.068
26.216
−18.506
1.00
42.53


ATOM
OE2
GLU
L
165
62.426
25.220
−17.441
1.00
42.33


ATOM
C
GLU
L
165
64.063
24.052
−22.364
1.00
17.91


ATOM
O
GLU
L
165
64.328
23.115
−23.111
1.00
16.78


ATOM
N
GLN
L
166
64.261
25.311
−22.715
1.00
19.48


ATOM
CA
GLN
L
166
64.794
25.653
−24.030
1.00
22.17


ATOM
CB
GLN
L
166
65.000
27.162
−24.135
1.00
23.76


ATOM
CG
GLN
L
166
65.302
27.660
−25.525
1.00
22.40


ATOM
CD
GLN
L
166
65.300
29.163
−25.585
1.00
24.53


ATOM
OE1
GLN
L
166
65.665
29.834
−24.615
1.00
23.40


ATOM
NE2
GLN
L
166
64.862
29.710
−26.710
1.00
22.79


ATOM
C
GLN
L
166
66.082
24.923
−24.354
1.00
22.88


ATOM
O
GLN
L
166
66.968
24.829
−23.514
1.00
23.51


ATOM
N
ASP
L
167
66.277
24.395
−25.570
1.00
24.27


ATOM
CA
ASP
L
167
67.363
23.665
−25.995
1.00
24.79


ATOM
CB
ASP
L
167
67.086
22.929
−27.307
1.00
25.67


ATOM
CG
ASP
L
167
68.201
21.975
−27.691
1.00
26.79


ATOM
OD1
ASP
L
167
68.072
20.765
−27.439
1.00
29.58


ATOM
OD2
ASP
L
167
69.206
22.429
−28.260
1.00
28.02


ATOM
C
ASP
L
167
68.528
24.647
−26.147
1.00
25.55


ATOM
O
ASP
L
167
68.392
25.708
−26.753
1.00
23.48


ATOM
N
SER
L
168
69.675
24.277
−25.597
1.00
27.95


ATOM
CA
SER
L
168
70.860
25.120
−25.625
1.00
29.28


ATOM
CB
SER
L
168
71.831
24.670
−24.531
1.00
28.03


ATOM
OG
SER
L
168
71.341
24.844
−23.243
1.00
28.54


ATOM
C
SER
L
168
71.554
25.200
−26.987
1.00
31.24


ATOM
O
SER
L
168
72.477
25.993
−27.164
1.00
33.45


ATOM
N
LYS
L
169
71.122
24.369
−27.935
1.00
32.30


ATOM
CA
LYS
L
169
71.692
24.370
−29.287
1.00
32.24


ATOM
CB
LYS
L
169
71.975
22.947
−29.796
1.00
33.42


ATOM
CG
LYS
L
169
73.305
22.207
−29.102
1.00
41.01


ATOM
CD
LYS
L
169
72.677
21.620
−27.743
1.00
50.52


ATOM
CE
LYS
L
169
71.807
20.369
−27.899
1.00
53.08


ATOM
NZ
LYS
L
169
70.996
20.036
−26.688
1.00
53.75


ATOM
C
LYS
L
169
70.744
25.064
−30.261
1.00
31.01


ATOM
O
LYS
L
169
71.098
26.081
−30.867
1.00
30.68


ATOM
N
ASP
L
170
69.534
24.522
−30.407
1.00
28.81


ATOM
CA
ASP
L
170
68.577
25.097
−31.337
1.00
25.15


ATOM
CB
ASP
L
170
67.953
24.024
−32.229
1.00
26.91


ATOM
CG
ASP
L
170
67.157
22.996
−31.460
1.00
28.83


ATOM
OD1
ASP
L
170
66.590
23.320
−30.406
1.00
30.B3


ATOM
OD2
ASP
L
170
67.082
21.846
−31.927
1.00
33.97


ATOM
C
ASP
L
170
67.515
26.027
−30.786
1.00
25.54


ATOM
O
ASP
L
170
66.600
26.397
−31.512
1.00
25.89


ATOM
N
SER
L
171
67.607
26.368
−29.504
1.00
24.11


ATOM
CA
SER
L
171
66.662
27.300
−28.878
1.00
25.64


ATOM
CB
SER
L
171
66.966
28.712
−29.391
1.00
25.56


ATOM
OG
SER
L
171
68.371
28.936
−29.352
1.00
28.30


ATOM
C
SER
L
171
65.175
26.947
−29.074
1.00
23.90


ATOM
O
SER
L
171
64.279
27.800
−29.011
1.00
25.67


ATOM
N
THR
L
172
64.929
25.653
−29.168
1.00
23.05


ATOM
CA
THR
L
172
63.609
25.103
−29.394
1.00
22.83


ATOM
CB
THR
L
172
63.769
24.085
−30.562
1.00
24.46


ATOM
OG1
THR
L
172
62.989
24.482
−31.695
1.00
28.40


ATOM
CG2
THR
L
172
63.498
22.695
−30.140
1.00
18.05


ATOM
C
THR
L
172
63.030
24.465
−28.099
1.00
23.36


ATOM
O
THR
L
172
63.743
24.308
−27.094
1.00
20.90


ATOM
N
TYR
L
173
61.735
24.141
−28.123
1.00
23.45


ATOM
CA
TYR
L
173
61.033
23.508
−26.999
1.00
21.92


ATOM
CB
TYR
L
173
59.935
24.431
−26.453
1.00
22.23


ATOM
CG
TYR
L
173
60.430
25.740
−25.917
1.00
24.83


ATOM
CD1
TYR
L
173
61.023
25.808
−24.664
1.00
25.38


ATOM
CE1
TYR
L
173
61.483
26.991
−24.161
1.00
24.43


ATOM
CD2
TYR
L
173
60.311
26.912
−26.659
1.00
25.09


ATOM
CE2
TYR
L
173
60.774
28.115
−26.160
1.00
26.35


ATOM
CZ
TYR
L
173
61.559
28.143
−24.903
1.00
25.86


ATOM
OH
TYR
L
173
61.799
29.324
−24.366
1.00
26.61


ATOM
C
TYR
L
173
60.325
22.231
−27.463
1.00
20.70


ATOM
O
TYR
L
173
60.063
22.049
−28.648
1.00
18.08


ATOM
N
SER
L
174
60.025
21.354
−26.515
1.00
18.47


ATOM
CA
SER
L
174
59.275
20.134
−26.785
1.00
17.88


ATOM
CB
SER
L
174
60.178
18.904
−26.831
1.00
15.91


ATOM
OG
SER
L
174
60.833
18.848
−28.095
1.00
17.19


ATOM
C
SER
L
174
58.212
20.047
−25.692
1.00
17.46


ATOM
O
SER
L
174
58.445
20.462
−24.555
1.00
16.26


ATOM
N
LEU
L
175
57.035
19.548
−26.036
1.00
17.03


ATOM
CA
LEU
L
175
55.952
19.487
−25.076
1.00
17.80


ATOM
CB
LEU
L
175
54.352
20.613
−25.378
1.00
16.17


ATOM
CG
LEU
L
175
53.705
20.835
−24.513
1.00
19.25


ATOM
CD1
LEU
L
175
53.316
22.301
−24.587
1.00
19.61


ATOM
CD2
LEU
L
175
52.537
19.964
−24.943
1.00
18.86


ATOM
C
LEU
L
175
55.233
18.154
−25.138
1.00
18.23


ATOM
O
LEU
L
175
55.153
17.549
−26.207
1.00
18.92


ATOM
N
SER
L
176
54.150
17.691
−23.985
1.00
17.34


ATOM
CA
SER
L
176
53.983
16.460
−23.912
1.00
16.51


ATOM
CB
SER
L
176
54.722
15.383
−23.107
1.00
16.81


ATOM
OG
SER
L
176
54.108
15.643
−21.710
1.00
18.80


ATOM
C
SER
L
176
52.648
16.785
−23.236
1.00
18.21


ATOM
O
SER
L
176
52.599
17.593
−22.291
1.00
17.16


ATOM
N
SER
L
177
51.563
16.269
−23.804
1.00
16.60


ATOM
CA
SER
L
177
50.242
16.426
−23.221
1.00
15.84


ATOM
CB
SER
L
177
49.266
17.107
−24.170
1.00
17.29


ATOM
OG
SER
L
177
47.980
17.148
−23.580
1.00
18.53


ATOM
C
SER
L
177
49.830
14.986
−22.963
1.00
16.07


ATOM
O
SER
L
177
49.953
14.120
−23.843
1.00
15.65


ATOM
N
THR
L
178
49.399
14.706
−21.740
1.00
15.55


ATOM
CA
THR
L
178
49.039
13.355
−21.395
1.00
14.30


ATOM
CB
THR
L
178
50.000
12.811
−20.331
1.00
15.61


ATOM
OG1
THR
L
178
51.350
12.944
−20.813
1.00
15.71


ATOM
CG2
THR
L
178
49.686
11.333
−20.008
1.00
15.89


ATOM
C
THR
L
178
47.626
13.286
−20.905
1.00
16.11


ATOM
O
THR
L
178
47.253
14.017
−19.981
1.00
14.99


ATOM
N
LEU
L
179
46.843
12.431
−21.562
1.00
16.21


ATOM
CA
LEU
L
179
45.428
12.195
−21.247
1.00
17.85


ATOM
CB
LEU
L
179
44.639
12.046
−22.551
1.00
16.22


ATOM
CG
LEU
L
179
43.152
11.701
−22.489
1.00
16.81


ATOM
CD1
LEU
L
179
42.374
12.854
−21.907
1.00
15.95


ATOM
CD2
LEU
L
179
42.664
11.397
−23.890
1.00
17.04


ATOM
C
LEU
L
179
45.305
10.909
−20.424
1.00
19.34


ATOM
O
LEU
L
179
45.805
9.862
−20.843
1.00
19.74


ATOM
N
THR
L
180
44.686
10.984
−19.245
1.00
19.39


ATOM
CA
THR
L
180
44.528
9.800
−18.402
1.00
20.40


ATOM
CB
THR
L
180
45.074
10.010
−16.980
1.00
21.84


ATOM
OG1
THR
L
180
46.378
10.611
−17.036
1.00
22.46


ATOM
CG2
THR
L
180
45.181
8.668
−16.261
1.00
20.50


ATOM
C
THR
L
180
43.061
9.406
−18.294
1.00
23.01


ATOM
O
THR
L
180
42.192
10.237
−17.975
1.00
21.76


ATOM
N
LEU
L
181
42.797
8.132
−18.553
1.00
23.18


ATOM
CA
LEU
L
181
41.456
7.579
−18.503
1.00
24.23


ATOM
CB
LEU
L
181
40.928
7.330
−19.917
1.00
25.07


ATOM
CG
LEU
L
181
40.619
8.578
−20.729
1.00
26.14


ATOM
CD1
LEU
L
181
40.168
8.204
−22.132
1.00
28.53


ATOM
CD2
LEU
L
181
39.545
9.361
−19.998
1.00
30.01


ATOM
C
LEU
L
181
41.504
6.256
−17.784
1.00
24.92


ATOM
O
LEU
L
181
42.558
5.637
−17.691
1.00
25.25


ATOM
N
SER
L
182
40.364
5.848
−17.237
1.00
27.27


ATOM
CA
SER
L
182
40.250
4.567
−16.563
1.00
25.98


ATOM
CB
SER
L
182
38.940
4.502
−15.780
1.00
28.54


ATOM
OG
SER
L
182
37.810
4.674
−16.630
1.00
27.58


ATOM
C
SER
L
182
40.176
3.594
−17.715
1.00
26.31


ATOM
O
SER
L
182
39.793
3.991
−18.826
1.00
25.06


ATOM
N
LYS
L
183
40.556
2.341
−17.477
1.00
25.27


ATOM
CA
LYS
L
183
40.489
1.336
−18.526
1.00
29.03


ATOM
CB
LYS
L
183
40.914
−0.032
−17.992
1.00
30.64


ATOM
CG
LYS
L
183
40.694
−1.155
−18.969
1.00
32.86


ATOM
CD
LYS
L
183
41.393
−2.411
−18.519
1.00
38.66


ATOM
CE
LYS
L
183
41.157
−3.533
−19.526
1.00
43.79


ATOM
NZ
LYS
L
183
42.049
−4.722
−19.316
1.00
50.95


ATOM
C
LYS
L
183
39.049
1.276
−19.027
1.00
31.27


ATOM
O
LYS
L
183
38.800
1.120
−20.227
1.00
32.73


ATOM
N
ALA
L
184
38.110
1.419
−18.093
1.00
32.33


ATOM
CA
ALA
L
184
36.683
1.402
−18.389
1.00
32.00


ATOM
CB
ALA
L
184
35.885
1.598
−17.112
1.00
32.27


ATOM
C
ALA
L
184
36.316
2.476
−19.395
1.00
31.78


ATOM
O
ALA
L
184
35.759
2.179
−20.453
1.00
34.22


ATOM
N
ASP
L
185
36.660
3.719
−19.086
1.00
31.26


ATOM
CA
ASP
L
185
36.335
4.827
−19.976
1.00
33.90


ATOM
CB
ASP
L
185
36.558
6.151
−19.268
1.00
38.89


ATOM
CG
ASP
L
185
35.528
6.392
−18.184
1.00
45.46


ATOM
OD1
ASP
L
185
34.316
6.444
−18.507
1.00
48.98


ATOM
OD2
ASP
L
185
35.919
6.493
−17.006
1.00
50.41


ATOM
C
ASP
L
185
37.042
4.801
−21.315
1.00
32.24


ATOM
O
ASP
L
185
36.468
5.185
−22.333
1.00
31.83


ATOM
N
TYR
L
186
38.283
4.327
−21.311
1.00
31.61


ATOM
CA
TYR
L
186
39.078
4.226
−22.520
1.00
28.14


ATOM
CB
TYR
L
186
40.493
3.754
−22.174
1.00
24.69


ATOM
CG
TYR
L
186
41.352
3.542
−23.390
1.00
21.62


ATOM
CD1
TYR
L
186
41.837
4.623
−24.114
1.00
22.76


ATOM
CE1
TYR
L
186
42.592
4.437
−25.250
1.00
20.71


ATOM
CD2
TYR
L
186
41.652
2.260
−23.841
1.00
20.70


ATOM
CE2
TYR
L
186
42.411
2.064
−24.981
1.00
20.68


ATOM
CZ
TYR
L
186
42.874
3.164
−25.673
1.00
20.70


ATOM
OH
TYR
L
186
43.646
2.996
−26.787
1.00
26.48


ATOM
C
TYR
L
186
38.420
3.256
−23.500
1.00
30.06


ATOM
O
TYR
L
186
38.380
3.506
−24.708
1.00
27.70


ATOM
N
GLU
L
187
37.885
2.157
−22.973
1.00
33.21


ATOM
CA
GLU
L
187
37.236
1.147
−23.803
1.00
35.81


ATOM
CB
GLU
L
187
37.307
−0.211
−23.122
1.00
37.97


ATOM
CG
GLU
L
187
38.738
−0.704
−23.053
1.00
43.63


ATOM
CD
GLU
L
187
38.909
−1.895
−22.158
1.00
47.42


ATOM
OE1
GLU
L
187
39.179
−2.736
−22.466
1.00
49.65


ATOM
OE2
GLU
L
187
38.185
−1.984
−21.143
1.00
50.40


ATOM
C
GLU
L
187
35.816
1.495
−24.207
1.00
35.32


ATOM
O
GLU
L
187
35.171
0.766
−24.948
1.00
35.82


ATOM
N
LYS
L
188
35.361
2.650
−23.747
1.00
36.88


ATOM
CA
LYS
L
188
34.034
3.159
−24.049
1.00
36.72


ATOM
CB
LYS
L
188
33.581
4.028
−22.867
1.00
40.35


ATOM
CG
LYS
L
188
32.390
4.606
−22.957
1.00
48.51


ATOM
CD
LYS
L
188
31.859
5.399
−21.684
1.00
55.80


ATOM
CE
LYS
L
188
30.375
5.811
−21.620
1.00
58.80


ATOM
NZ
LYS
L
188
29.969
6.745
−22.711
1.00
61.10


ATOM
C
LYS
L
188
34.121
4.004
−25.333
1.00
35.19


ATOM
O
LYS
L
188
33.099
4.440
−25.875
1.00
33.77


ATOM
N
HIS
L
189
35.338
4.222
−25.832
1.00
31.64


ATOM
CA
HIS
L
189
35.517
5.062
−27.014
1.00
30.51


ATOM
CB
HIS
L
189
35.936
6.465
−26.585
1.00
31.61


ATOM
CG
HIS
L
189
35.092
7.012
−25.479
1.00
33.55


ATOM
CD2
HIS
L
189
35.356
7.192
−24.162
1.00
34.11


ATOM
ND1
HIS
L
189
33.766
7.340
−25.652
1.00
33.12


ATOM
CE1
HIS
L
189
33.246
7.690
−24.489
1.00
34.25


ATOM
NE2
HIS
L
189
34.190
7.608
−23.570
1.00
35.58


ATOM
C
HIS
L
189
36.447
4.525
−28.081
1.00
29.17


ATOM
O
HIS
L
189
37.263
3.650
−27.821
1.00
26.39


ATOM
N
LYS
L
190
36.310
5.087
−29.283
1.00
30.68


ATOM
CA
LYS
L
190
37.075
4.672
−30.455
1.00
32.94


ATOM
CB
LYS
L
190
36.120
4.481
−31.650
1.00
36.49


ATOM
CG
LYS
L
190
36.776
4.064
−32.983
1.00
39.14


ATOM
CD
LYS
L
190
37.615
2.800
−32.838
1.00
41.61


ATOM
CE
LYS
L
190
36.773
1.619
−32.404
1.00
43.23


ATOM
NZ
LYS
L
190
37.611
0.436
−32.111
1.00
44.23


ATOM
C
LYS
L
190
38.240
5.571
−30.867
1.00
31.98


ATOM
O
LYS
L
190
39.395
5.159
−30.759
1.00
32.68


ATOM
N
VAL
L
191
37.956
6.776
−31.363
1.00
29.70


ATOM
CA
VAL
L
191
39.040
7.635
−31.805
1.00
27.93


ATOM
CB
VAL
L
191
38.770
8.312
−33.177
1.00
27.89


ATOM
CG1
VAL
L
191
37.581
7.663
−33.876
1.00
30.46


ATOM
CG2
VAL
L
191
38.601
9.791
−33.042
1.00
30.08


ATOM
C
VAL
L
191
39.569
8.620
−30.783
1.00
25.97


ATOM
O
VAL
L
191
38.816
9.303
−30.081
1.00
25.01


ATOM
N
TYR
L
192
40.891
8.605
−30.668
1.00
25.08


ATOM
CA
TYR
L
192
41.644
9.461
−29.756
1.00
21.91


ATOM
CB
TYR
L
192
42.505
8.596
−28.825
1.00
19.53


ATOM
CG
TYR
L
192
41.653
7.806
−27.853
1.00
20.50


ATOM
CD1
TYR
L
192
41.307
8.349
−26.619
1.00
21.28


ATOM
CE1
TYR
L
192
40.415
7.714
−25.773
1.00
20.30


ATOM
CD2
TYR
L
192
41.082
6.575
−28.211
1.00
22.35


ATOM
CE2
TYR
L
192
40.176
5.930
−27.359
1.00
21.21


ATOM
CZ
TYR
L
192
39.853
6.517
−26.144
1.00
23.15


ATOM
OH
TYR
L
192
38.963
5.935
−25.280
1.00
26.13


ATOM
C
TYR
L
192
42.478
10.352
−30.665
1.00
19.39


ATOM
O
TYR
L
192
43.240
9.869
−31.490
1.00
16.16


ATOM
N
ALA
L
193
42.243
11.652
−30.574
1.00
17.37


ATOM
CA
ALA
L
193
42.925
12.609
−31.416
1.00
1
.38


ATOM
CB
ALA
L
193
41.951
13.200
−32.422
1.00
14.68


ATOM
C
ALA
L
193
43.546
13.714
−30.591
1.00
19.81


ATOM
O
ALA
L
193
42.991
14.144
−29.568
1.00
19.87


ATOM
N
CYS
L
194
44.721
14.143
−31.029
1.00
19.00


ATOM
CA
CYS
L
194
45.446
15.212
−30.390
1.00
20.02


ATOM
C
CYS
L
194
45.533
16.306
−31.451
1.00
22.09


ATOM
O
CYS
L
194
46.104
16.099
−32.526
1.00
23.10


ATOM
CB
CYS
L
194
46.836
14.736
−29.982
1.00
20.62


ATOM
SG
CYS
L
194
47.887
16.076
−29.359
1.00
27.82


ATOM
N
GLU
L
195
44.897
17.438
−31.198
1.00
21.48


ATOM
CA
GLU
L
195
44.922
18.522
−32.155
1.00
26.37


ATOM
CB
GLU
L
195
43.508
19.070
−32.380
1.00
30.62


ATOM
CG
GLU
L
195
43.452
20.166
−33.425
1.00
39.13


ATOM
CD
GLU
L
195
42.043
20.556
−33.786
1.00
46.06


ATOM
OE1
GLU
L
195
41.281
20.924
−32.866
1.00
49.26


ATOM
OE2
GLU
L
195
41.697
20.467
−34.992
1.00
50.81


ATOM
C
GLU
L
195
45.870
19.607
−31.669
1.00
25.13


ATOM
O
GLU
L
195
45.711
20.140
−30.571
1.00
24.45


ATOM
N
VAL
L
196
46.825
19.965
−32.519
1.00
24.78


ATOM
CA
VAL
L
196
47.839
20.960
−32.187
1.00
26.26


ATOM
CB
VAL
L
196
49.255
20.369
−32.373
1.00
23.55


ATOM
CG1
VAL
L
196
50.325
21.443
−32.160
1.00
23.61


ATOM
CG2
VAL
L
196
49.454
19.172
−31.429
1.00
20.96


ATOM
C
VAL
L
196
47.749
22.271
−32.965
1.00
28.29


ATOM
O
VAL
L
196
47.776
22.287
−34.200
1.00
28.62


ATOM
N
THR
L
197
47.664
23.369
−32.225
1.00
28.72


ATOM
CA
THR
L
197
47.612
24.694
−32.820
1.00
31.05


ATOM
CB
THR
L
197
46.441
25.524
−32.232
1.00
30.50


ATOM
OG1
THR
L
197
45.202
24.869
−32.519
1.00
31.44


ATOM
CG2
THR
L
197
46.399
26.909
−32.834
1.00
30.89


ATOM
C
THR
L
197
48.952
25.356
−32.472
1.00
32.18


ATOM
O
THR
L
197
49.396
25.309
−31.313
1.00
31.68


ATOM
N
HIS
L
198
49.612
25.938
−33.468
1.00
32.23


ATOM
CA
HIS
L
198
50.884
26.602
−33.225
1.00
32.28


ATOM
CB
HIS
L
198
52.018
25.577
−33.141
1.00
31.15


ATOM
CG
HIS
L
198
53.331
26.168
−32.727
1.00
30.40


ATOM
CD2
HIS
L
198
53.626
26.466
−31.500
1.00
29.70


ATOM
ND1
HIS
L
198
54.299
26.545
−33.635
1.00
27.78


ATOM
CE1
HIS
L
198
55.332
27.052
−32.984
1.00
29.10


ATOM
NE2
HIS
L
198
55.071
27.014
−31.688
1.00
28.06


ATOM
C
HIS
L
198
51.186
27.622
−34.313
1.00
33.18


ATOM
O
HIS
L
198
50.840
27.421
−35.471
1.00
33.74


ATOM
N
GLN
L
199
51.877
28.691
−33.933
1.00
35.27


ATOM
CA
GLN
L
199
52.247
29.767
−34.846
1.00
36.38


ATOM
CB
GLN
L
199
53.225
30.727
−34.156
1.00
37.34


ATOM
CG
GLN
L
199
53.508
31.989
−34.964
1.00
43.51


ATOM
CD
GLN
L
199
54.222
33.074
−34.174
1.00
45.57


ATOM
OE1
GLN
L
199
54.997
33.848
−34.733
1.00
47.22


ATOM
NE2
GLN
L
199
53.943
33.153
−32.879
1.00
46.45


ATOM
C
GLN
L
199
52.833
29.255
−36.162
1.00
35.85


ATOM
O
GLN
L
199
52.477
29.725
−37.233
1.00
36.61


ATOM
N
GLY
L
200
53.706
28.263
−36.083
1.00
35.48


ATOM
CA
GLY
L
200
54.310
27.734
−37.291
1.00
35.01


ATOM
C
GLY
L
200
53.403
26.833
−38.102
1.00
35.20


ATOM
O
GLY
L
200
53.837
26.247
−39.087
1.00
35.29


ATOM
N
LEU
L
201
52.152
26.699
−37.682
1.00
35.81


ATOM
CA
LEU
L
201
51.198
25.857
−38.393
1.00
36.05


ATOM
CB
LEU
L
201
50.543
24.862
−37.433
1.00
33.90


ATOM
CG
LEU
L
201
51.478
23.925
−36.668
1.00
33.97


ATOM
CD1
LEU
L
201
50.674
23.147
−35.641
1.00
32.30


ATOM
CD2
LEU
L
201
52.204
22.978
−37.632
1.00
31.98


ATOM
C
LEU
L
201
50.133
26.743
−39.033
1.00
36.97


ATOM
O
LEU
L
201
49.499
27.558
−38.346
1.00
36.27


ATOM
N
SER
L
202
49.968
26.609
−40.349
1.00
38.32


ATOM
CA
SER
L
202
48.973
27.388
−41.085
1.00
40.35


ATOM
CB
SER
L
202
49.179
27.229
−42.588
1.00
39.68


ATOM
OG
SER
L
202
49.055
25.874
−42.981
1.00
43.15


ATOM
C
SER
L
202
47.580
26.907
−40.688
1.00
41.57


ATOM
O
SER
L
202
46.599
27.656
−40.750
1.00
43.86


ATOM
N
SER
L
203
47.512
25.653
−40.261
1.00
40.52


ATOM
CA
SER
L
203
46.269
25.049
−39.824
1.00
40.76


ATOM
CB
SER
L
203
45.526
24.478
−41.028
1.00
42.78


ATOM
OG
SER
L
203
46.420
23.731
−41.838
1.00
50.38


ATOM
C
SER
L
203
46.623
23.942
−38.834
1.00
39.15


ATOM
O
SER
L
203
47.654
23.273
−38.992
1.00
38.36


ATOM
N
PRO
L
204
45.801
23.774
−37.778
1.00
37.58


ATOM
CD
PRO
L
204
44.653
24.641
−37.453
1.00
36.52


ATOM
CA
PRO
L
204
45.983
22.764
−36.731
1.00
36.27


ATOM
CB
PRO
L
204
44.648
22.806
−35.989
1.00
36.27


ATOM
CG
PRO
L
204
44.336
24.256
−36.011
1.00
37.26


ATOM
C
PRO
L
204
46.274
21.379
−37.270
1.00
34.75


ATOM
O
PRO
L
204
45.661
20.931
−38.238
1.00
33.73


ATOM
N
VAL
L
205
47.260
20.733
−36.663
1.00
34.45


ATOM
CA
VAL
L
205
47.652
19.390
−37.047
1.00
31.64


ATOM
CB
VAL
L
205
49.170
19.203
−36.935
1.00
29.36


ATOM
CG1
VAL
L
205
49.545
17.778
−37.215
1.00
28.96


ATOM
CG2
VAL
L
205
49.855
20.097
−37.919
1.00
31.43


ATOM
C
VAL
L
205
46.952
18.438
−36.099
1.00
31.45


ATOM
O
VAL
L
205
46.809
18.732
−34.919
1.00
31.91


ATOM
N
THR
L
206
46.480
17.315
−36.618
1.00
30.31


ATOM
CA
THR
L
206
45.812
16.348
−35.776
1.00
27.81


ATOM
CB
THR
L
206
44.286
16.304
−36.030
1.00
28.22


ATOM
OG1
THR
L
206
43.699
17.541
−35.612
1.00
30.85


ATOM
CG2
THR
L
206
43.639
15.180
−35.227
1.00
25.07


ATOM
C
THR
L
206
46.403
14.969
−35.954
1.00
26.65


ATOM
O
THR
L
206
46.585
14.49B
−37.075
1.00
26.93


ATOM
N
LYS
L
207
46.801
14.375
−34.834
1.00
26.50


ATOM
CA
LYS
L
207
47.340
13.013
−34.803
1.00
24.40


ATOM
CB
LYS
L
207
48.719
12.976
−34.138
1.00
22.17


ATOM
CG
LYS
L
207
49.800
13.584
−35.000
1.00
22.70


ATOM
CD
LYS
L
207
49.682
13.080
−36.420
1.00
25.39


ATOM
CE
LYS
L
207
50.876
13.490
−37.283
1.00
27.96


ATOM
NZ
LYS
L
207
50.979
14.962
−37.448
1.00
32.56


ATOM
C
LYS
L
207
46.332
12.152
−34.041
1.00
21.89


ATOM
O
LYS
L
207
45.836
12.552
−32.990
1.00
29.91


ATOM
N
SER
L
208
46.002
10.986
−34.573
1.00
20.67


ATOM
CA
SER
L
208
45.023
10.160
−33.895
1.00
22.53


ATOM
CB
SER
L
208
43.607
10.641
−34.229
1.00
23.05


ATOM
OG
SER
L
208
43.309
10.503
−35.605
1.00
22.35


ATOM
C
SER
L
208
45.152
8.692
−34.236
1.00
21.41


ATOM
O
SER
L
208
45.917
8.323
−35.128
1.00
23.53


ATOM
N
PHE
L
209
44.414
7.867
−33.503
1.00
20.17


ATOM
CA
PHE
L
209
44.384
6.428
−33.709
1.00
19.98


ATOM
CB
PHE
L
209
45.499
5.733
−32.917
1.00
27.21


ATOM
CG
PHE
L
209
45.340
5.830
−31.421
1.00
17.15


ATOM
CG1
PHE
L
209
45.980
6.838
−30.705
1.00
15.87


ATOM
CD2
PHE
L
209
44.544
4.926
−30.735
1.00
14.47


ATOM
CE1
PHE
L
209
45.826
6.945
−29.335
1.00
13.72


ATOM
CE2
PHE
L
209
44.379
5.024
−29.363
1.00
15.39


ATOM
CZ
PHE
L
209
45.024
6.039
−28.659
1.00
15.16


ATOM
C
PHE
L
209
43.027
5.919
−33.241
1.00
20.93


ATOM
O
PHE
L
209
42.326
6.582
−32.474
1.00
20.26


ATOM
N
ASN
L
210
42.643
4.745
−33.709
1.00
23.29


ATOM
CA
ASN
L
210
41.384
4.167
−33.285
1.00
25.15


ATOM
CB
ASN
L
210
40.588
3.627
−34.469
1.00
27.36


ATOM
CG
ASN
L
210
40.138
4.709
−35.406
1.00
28.83


ATOM
OG1
ASN
L
210
39.666
5.761
−34.986
1.00
30.55


ATOM
ND2
ASN
L
210
40.284
4.459
−36.691
1.00
32.86


ATOM
C
ASN
L
210
41.735
3.020
−32.361
1.00
25.95


ATOM
O
ASN
L
210
42.595
2.177
−32.691
1.00
23.37


ATOM
N
ARG
L
211
41.107
3.016
−31.190
1.00
24.99


ATOM
CA
ARG
L
211
41.310
1.973
−30.200
1.00
26.72


ATOM
CB
ARG
L
211
40.272
2.126
−29.096
1.00
29.08


ATOM
CG
ARG
L
211
40.439
1.203
−27.920
1.00
32.37


ATOM
CD
ARG
L
211
39.260
1.337
−26.982
1.00
38.35


ATOM
NE
ARG
L
211
38.303
0.250
−27.164
1.00
44.72


ATOM
CZ
ARG
L
211
37.227
0.300
−27.942
1.00
47.51


ATOM
NE1
ARG
L
211
36.934
1.387
−28.635
1.00
50.78


ATOM
NH2
ARG
L
211
36.460
−0.770
−28.060
1.00
52.10


ATOM
C
ARG
L
211
41.086
0.649
−30.920
1.00
27.05


ATOM
O
ARG
L
211
40.070
0.488
−31.598
1.00
25.38


ATOM
N
GLY
L
212
42.075
−0.240
−30.863
1.00
25.25


ATOM
CA
GLY
L
212
41.935
−1.528
−31.512
1.00
27.36


ATOM
C
GLY
L
212
42.467
−1.669
−32.931
1.00
28.73


ATOM
O
GLY
L
212
42.374
−2.753
−33.500
1.00
30.55


ATOM
N
GLU
L
213
43.013
−0.603
−33.519
1.00
28.63


ATOM
CA
GLU
L
213
43.559
−0.706
−34.878
1.00
28.38


ATOM
CB
GLU
L
213
43.809
0.676
−35.485
1.00
27.47


ATOM
CG
GLU
L
213
44.767
1.547
−34.702
1.00
30.90


ATOM
CD
GLU
L
213
45.140
2.811
−35.442
1.00
32.32
.


ATOM
OE1
GLU
L
213
44.256
3.660
−35.697
1.00
28.43


ATOM
OE2
GLU
L
213
46.337
2.951
−35.777
1.00
38.75


ATOM
C
GLU
L
213
44.848
−1.545
−34.912
1.00
27.34


ATOM
O
GLU
L
213
45.340
−1.905
−35.984
1.00
27.73


ATOM
N
CYS
L
214
45.386
−1.824
−33.730
1.00
23.79


ATOM
CA
CYS
L
214
46.588
−2.617
−33.568
1.00
24.14


ATOM
CB
CYS
L
214
47.832
−1.793
−33.929
1.00
21.09


ATOM
SG
CYS
L
214
49.402
−2.696
−33.720
1.00
21.16


ATOM
C
CYS
L
214
46.655
−3.098
−32.113
1.00
25.60


ATOM
O
CYS
L
214
46.497
−4.317
−31.886
1.00
26.55


ATOM
OXT
CYS
L
214
46.812
−2.250
−31.208
1.00
25.04


ATOM
CB
GLN
H
1
89.041
17.551
−11.026
1.00
38.73


ATOM
CG
GLN
H
1
89.504
16.894
−12.327
1.00
43.69


ATOM
CD
GLN
H
1
90.587
17.700
−13.054
1.00
47.34


ATOM
OEl
GLN
H
1
91.700
17.172
−13.322
1.00
49.92


ATOM
NE2
GLN
H
1
90.284
18.983
−13.367
1.00
44.36


ATOM
C
GLN
H
1
89.366
17.829
−8.582
1.00
32.86


ATOM
O
GLN
H
1
89.282
16.917
−7.752
1.00
32.27


ATOM
N
GLN
H
1
90.700
16.216
−9.797
1.00
36.03


ATOM
CA
GLN
H
1
90.081
17.570
−9.909
1.00
35.50


ATOM
N
VAL
H
2
88.863
19.049
−8.385
1.00
31.14


ATOM
CA
VAL
H
2
88.124
19.398
−7.168
1.00
27.15


ATOM
CB
VAL
H
2
88.139
20.922
−6.901
1.00
28.34


ATOM
CG1
VAL
H
2
87.231
21.267
−5.723
1.00
25.54


ATOM
CG2
VAL
H
2
89.545
21.385
−6.600
1.00
31.24


ATOM
C
VAL
H
2
86.677
18.955
−7.400
1.00
24.53


ATOM
O
VAL
H
2
86.089
19.295
−8.435
1.00
23.94


ATOM
N
THR
H
3
86.120
18.198
−6.452
1.00
20.44


ATOM
CA
THR
H
3
84.749
17.696
−6.557
1.00
21.79


ATOM
CB
THR
H
3
84.695
16.180
−7.087
1.00
21.21


ATOM
OG1
THR
H
3
85.135
15.276
−6.066
1.00
24.96


ATOM
CG2
THR
H
3
85.595
15.968
−8.301
1.00
19.19


ATOM
C
THR
H
3
84.047
17.771
−5.198
1.00
19.89


ATOM
O
THR
H
3
84.687
17.698
−4.146
1.00
20.44


ATOM
N
LEU
H
4
82.737
17.982
−5.222
1.00
21.46


ATOM
CA
LEU
H
4
81.932
18.026
−3.996
1.00
21.29


ATOM
CB
LEU
H
4
81.412
19.433
−3.711
1.00
20.12


ATOM
CG
LEU
H
4
82.224
20.719
−3.514
1.00
23.52


ATOM
CD1
LEU
H
4
82.836
20.766
−2.153
1.00
21.59


ATOM
CD2
LEU
H
4
83.219
20.968
−4.618
1.00
22.05


ATOM
C
LEU
H
4
80.726
17.137
−4.299
1.00
20.12


ATOM
O
LEU
H
4
80.291
17.071
−5.447
1.00
20.31


ATOM
N
ARG
H
5
80.207
16.432
−3.299
1.00
19.84


ATOM
CA
ARG
H
5
79.032
15.574
−3.504
1.00
19.68


ATOM
CB
ARG
H
5
79.
57
14.128
−3.746
1.00
25.17


ATOM
CG
ARG
H
5
78.424
13.305
−4.463
1.00
29.51


ATOM
CD
ARG
H
5
78.626
11.812
−4.206
1.00
38.74


ATOM
NE
ARG
H
5
78.217
11.422
−2.851
1.00
46.80


ATOM
CZ
ARG
H
5
79.055
11.063
−1.879
1.00
49.80


ATOM
NH1
ARG
H
5
80.369
11.032
−2.093
1.00
51.08


ATOM
NH2
ARG
H
5
78.574
10.751
−0.682
1.00
51.13


ATOM
C
ARG
H
5
78.100
15.618
−2.301
1.00
15.95


ATOM
O
ARG
H
5
78.504
15.298
−1.190
1.00
15.47


ATOM
N
GLU
H
6
76.842
15.968
−2.533
1.00
16.47


ATOM
CA
GLU
H
6
75.860
16.042
−1.450
1.00
15.47


ATOM
CB
GLU
H
6
74.865
17.196
−1.654
1.00
15.61


ATOM
CG
GLU
H
6
75.459
18.549
−1.986
1.00
13.15


ATOM
CD
GLU
H
6
75.769
18.732
−3.474
1.00
14.34


ATOM
OE1
GLU
H
6
75.679
17.763
−4.264
1.00
14.15


ATOM
OE2
GLU
H
6
76.100
19.869
−3.860
1.00
16.39


ATOM
C
GLU
H
6
75.077
14.735
−1.382
1.00
14.85


ATOM
O
GLU
H
6
74.811
14.095
−2.405
1.00
13.49


ATOM
N
SER
H
7
74.730
14.335
−0.169
1.00
16.74


ATOM
CA
SER
H
7
73.953
13.131
0.045
1.00
16.80


ATOM
CB
SER
H
7
74.876
11.897
0.097
1.00
18.29


ATOM
OG
SER
H
7
75.885
12.018
1.085
1.00
20.20


ATOM
C
SER
H
7
73.087
13.260
1.302
1.00
14.45


ATOM
O
SER
H
7
73.379
14.039
2.220
1.00
12.60


ATOM
N
GLY
H
8
71.972
12.556
1.292
1.00
13.11


ATOM
CA
GLY
H
8
71.061
12.581
2.411
1.00
13.45


ATOM
C
GLY
H
8
69.796
11.883
1.963
1.00
15.80


ATOM
O
GLY
H
8
69.751
11.362
0.840
1.00
16.91


ATOM
N
PRO
H
9
68.786
11.766
2.827
1.00
15.87


ATOM
CD
PRO
H
9
68.706
12.263
4.210
1.00
16.52


ATOM
CA
PRO
H
9
67. 36
11.105
2.419
1.00
16.14


ATOM
CB
PRO
H
9
66.747
11.050
3.718
1.00
15.96


ATOM
CG
PRO
H
9
67.217
12.297
4.431
1.00
19.96


ATOM
C
PRO
H
9
66.820
11.970
1.378
1.00
16.98


ATOM
O
PRO
H
9
66.961
13.204
1.366
1.00
15.45


ATOM
N
ALA
H
10
66.069
11.337
0.491
1.00
16.97


ATOM
CA
ALA
H
10
65.359
12.091
−0.536
1.00
17.03


ATOM
CB
ALA
H
10
65.148
11.232
−1.762
1.00
17.55


ATOM
C
ALA
H
10
64.016
12.627
−0.042
1.00
16.22


ATOM
O
ALA
H
10
63.475
13.574
−0.607
1.00
14.92


ATOM
N
LEU
H
11
63.517
12.059
1.049
1.00
16.76


ATOM
CA
LEU
H
11
62.231
12.444
1.590
1.00
17.28


ATOM
CB
LEU
H
11
61.224
11.333
1.282
1.00
20.63


ATOM
CG
LEU
H
11
59.722
11.535
1.042
1.00
23.90


ATOM
CD1
LEU
H
11
59.037
10.144
1.116
1.00
17.36


ATOM
CD2
LEU
H
11
59.111
12.498
2.054
1.00
26.18


ATOM
C
LEU
H
11
62.409
12.524
3.083
1.00
18.81


ATOM
O
LEU
H
11
63.081
11.682
3.670
1.00
20.70


ATOM
N
VAL
H
12
61.817
13.535
3.697
1.00
18.51


ATOM
CA
VAL
H
12
61.890
13.700
5.137
1.00
19.38


ATOM
CB
VAL
H
12
63.009
14.740
5.513
1.00
21.22


ATOM
CG1
VAL
H
12
62.819
16.018
4.757
1.00
22.31


ATOM
CG2
VAL
H
12
63.045
15.008
6.991
1.00
22.98


ATOM
C
VAL
H
12
60.472
14.120
5.559
1.00
17.45


ATOM
O
VAL
H
12
59.737
14.698
4.769
1.00
19.16


ATOM
N
LYS
H
13
60.044
13.757
6.753
1.00
16.45


ATOM
CA
LYS
H
13
S8.70S
14.125
7.193
1.00
19.16


ATOM
CB
LYS
H
13
58.119
13.002
8.045
1.00
19.92


ATOM
CG
LYS
H
13
57.944
11.718
7.279
1.00
21.38


ATOM
CD
LYS
H
13
57.493
10.592
8.168
1.00
23.63


ATOM
CE
LYS
H
13
57.213
9.342
7.3S0
1.00
26.68


ATOM
NZ
LYS
H
13
55.952
9.380
6.548
1.00
29.7S


ATOM
C
LYS
H
13
58.678
15.447
7.959
1.00
21.82


ATOM
O
LYS
H
13
59.659
15.813
8.630
1.00
23.05


ATOM
N
PRO
H
14
57.564
16.202
7.852
1.00
20.98


ATOM
CD
PRO
H
14
56.341
15.940
7.068
1.00
20.16


ATOM
CA
PRO
H
14
57.468
17.480
8.564
1.00
20.48


ATOM
CB
PRO
H
14
55.980
17.813
8.457
1.00
20.21


ATOM
CG
PRO
H
14
55.622
17.275
7.117
1.00
19.19


ATOM
C
PRO
H
14
57.908
17.318
10.020
1.00
19.76


ATOM
O
PRO
H
14
57.703
16.263
10.616
1.00
19.05


ATOM
N
THR
H
15
58.572
18.345
10.543
1.00
22.03


ATOM
CA
THR
H
15
59.089
18.410
11.917
1.00
22.23


ATOM
CB
THR
H
15
58.010
18.048
13.007
1.00
22.84


ATOM
OG1
THR
H
15
57.795
16.628
13.049
1.00
21.55


ATOM
CG2
THR
H
15
56.672
18.786
12.719
1.00
23.91


ATOM
C
THR
H
15
60.356
17.613
12.182
1.00
22.65


ATOM
O
THR
H
15
61.010
17.825
13.208
1.00
21.92


ATOM
N
GLN
H
16
60.695
16.687
11.284
1.00
22.77


ATOM
CA
GLN
H
16
61.911
15.889
11.442
1.00
20.54


ATOM
CB
GLN
H
16
61.865
14.639
10.571
1.00
22.36


ATOM
CG
GLN
H
16
60.807
13.651
11.000
1.00
25.78


ATOM
CD
GLN
H
16
60.906
12.346
10.260
1.00
26.82


ATOM
OE1
GLN
H
16
61.223
12.305
9.063
1.00
26.33


ATOM
NE2
GLN
H
16
60.636
11.262
10.962
1.00
27.32


ATOM
C
GLN
H
16
63.178
16.681
11.141
1.00
18.94


ATOM
O
GLN
H
16
63.131
17.828
10.702
1.00
16.50


ATOM
N
THR
H
17
64.318
16.077
11.435
1.00
19.96


ATOM
CA
THR
H
17
65.582
16.737
11.197
1.00
20.38


ATOM
CB
THR
H
17
66.533
16.591
12.400
1.00
22.26


ATOM
OG1
THR
H
17
65.940
17.211
13.549
1.00
24.95


ATOM
CG2
THR
H
17
67.886
17.266
12.106
1.00
24.40


ATOM
C
THR
H
17
66.244
16.162
9.969
1.00
19.47


ATOM
O
THR
H
17
66.210
14.940
9.746
1.00
21.06


ATOM
N
LEU
H
18
66.776
17.056
9.141
1.00
17.08


ATOM
CA
LEU
H
18
67.481
16.660
7.934
1.00
18.72


ATOM
CB
LEU
H
18
67.118
17.590
6.771
1.00
16.71


ATOM
CG
LEU
H
18
67.911
17.343
5.481
1.00
17.37


ATOM
CD1
LEU
H
18
67.516
16.008
4.874
1.00
17.23


ATOM
CD2
LEU
H
18
67.684
18.478
4.489
1.00
16.91


ATOM
C
LEU
H
18
68.993
16.734
8.176
1.00
17.32


ATOM
O
LEU
H
18
69.488
17.704
8.724
1.00
16.61


ATOM
N
THR
H
19
69.707
15.683
7.803
1.00
18.33


ATOM
CA
THR
H
19
71.157
15.663
7.923
1.00
17.82


ATOM
CB
THR
H
19
71.628
14.541
8.862
1.00
18.17


ATOM
OG1
THR
H
19
71.181
14.838
10.188
1.00
19.18


ATOM
CG2
THR
H
19
73.162
14.394
8.833
1.00
16.07


ATOM
C
THR
H
19
71.728
15.472
6.511
1.00
17.19


ATOM
O
THR
H
19
71.464
14.460
5.846
1.00
17.03


ATOM
N
LEU
H
20
72.412
16.503
6.023
1.00
15.96


ATOM
CA
LEU
H
20
73.021
16.477
4.705
1.00
16.02


ATOM
CB
LEU
H
20
72.693
17.760
3.935
1.00
12.09


ATOM
CG
LEU
H
20
71.242
17.974
3.533
1.00
14.01


ATOM
CG1
LEU
H
20
71.021
19.422
3.324
1.00
15.03


ATOM
CG2
LEU
H
20
70.877
17.173
2.312
1.00
14.28


ATOM
C
LEU
H
20
74.531
16.353
4.858
1.00
16.97


ATOM
O
LEU
H
20
75.122
16.960
5.754
1.00
17.31


ATOM
N
THR
H
21
75.151
15.586
3.972
1.00
15.60


ATOM
CA
THR
H
21
76.587
15.414
4.024
1.00
16.81


ATOM
CB
THR
H
21
76.941
13.958
4.332
1.00
15.79


ATOM
OG1
THR
H
21
76.304
13.571
5.561
1.00
14.35


ATOM
OG2
THR
H
21
78.458
13.798
4.472
1.00
14.58


ATOM
C
THR
H
21
77.219
15.863
2.714
1.00
15.76


ATOM
O
THR
H
21
76.689
15.595
1.646
1.00
15.65


ATOM
N
CYS
H
22
78.292
16.635
2.806
1.00
15.22


ATOM
CA
CYS
H
22
79.007
17.100
1.624
1.00
16.61


ATOM
C
CYS
H
22
80.386
16.462
1.661
1.00
17.70


ATOM
O
CYS
H
22
81.212
16.808
2.509
1.00
17.86


ATOM
CB
CYS
H
22
79.164
18.622
1.624
1.00
16.86


ATOM
SG
CYS
H
22
80.150
19.286
0.243
1.00
14.84


ATOM
N
THR
H
23
80.609
15.512
0.760
1.00
18.33


ATOM
CA
THR
H
23
81.879
14.812
0.670
1.00
19.26


ATOM
CB
THR
H
23
81.662
13.312
0.509
1.00
19.33


ATOM
OG1
THR
H
23
80.879
12.853
1.613
1.00
22.21


ATOM
CG2
THR
H
23
82.974
12.586
0.528
1.00
22.05


ATOM
C
THR
H
23
82.640
15.389
−0.495
1.00
18.33


ATOM
O
THR
H
23
82.122
15.497
−1.610
1.00
17.83


ATOM
N
PHE
H
24
83.875
15.782
−0.236
1.00
19.13


ATOM
CA
PHE
H
24
84.656
16.408
−1.288
1.00
22.34


ATOM
CB
PHE
H
24
84.806
17.918
−0.994
1.00
21.75


ATOM
CG
PHE
H
24
85.421
18.218
0.347
1.00
20.43


ATOM
CD1
PHE
H
24
86.808
18.263
0.496
1.00
22.58


ATOM
CD2
PHE
H
24
84.623
18.387
1.467
1.00
19.58


ATOM
CE1
PHE
H
24
87.383
18.462
1.743
1.00
21.78


ATOM
CE2
PHE
H
24
85.182
18.585
2.713
1.00
18.19


ATOM
CZ
PHE
H
24
86.564
18.621
2.859
1.00
21.55


ATOM
C
PHE
H
24
86.020
15.778
−1.498
1.00
23.38


ATOM
O
PHE
H
24
86.434
14.911
−0.743
1.00
24.19


ATOM
N
SER
H
25
86.685
16.209
−2.559
1.00
25.12


ATOM
CA
SER
H
25
88.021
15.754
−2.885
1.00
27.58


ATOM
CB
SER
H
25
88.004
14.355
−3.510
1.00
25.80


ATOM
OG
SER
H
25
87.469
14.384
−4.822
1.00
28.75


ATOM
C
SER
H
25
88.628
16.788
−3.837
1.00
28.21


ATOM
O
SER
H
25
87.931
17.666
−4.365
1.00
26.90


ATOM
NH
GLY
H
26
89.936
16.692
−4.035
1.00
30.76


ATOM
CA
GLY
H
26
90.625
17.627
−4.900
1.00
27.87


ATOM
C
GLY
H
26
91.146
18.782
−4.070
1.00
29.61


ATOM
O
GLY
H
26
91.781
19.678
−4.611
1.00
30.97


ATOM
N
PHE
H
27
90.888
18.761
−2.761
1.00
26.72


ATOM
CA
PHE
H
27
91.332
19.830
−1.884
1.00
27.11


ATOM
CB
PHE
H
27
90.600
21.166
−2.190
1.00
27.71


ATOM
CG
PHE
H
27
89.159
21.233
−1.700
1.00
26.87


ATOM
CD1
PHE
H
27
88.858
21.733
−0.431
1.00
24.48


ATOM
CD2
PHE
H
27
88.110
20.820
−2.513
1.00
27.17


ATOM
CE1
PHE
H
27
87.537
21.817
0.020
1.00
25.75


ATOM
CE2
PHE
H
27
86.787
20.905
−2.067
1.00
25.89


ATOM
CZ
PHE
H
27
86.506
21.402
−0.801
1.00
24.60


ATOM
C
PHE
H
27
91.133
19.435
−0.438
1.00
26.87


ATOM
O
PHE
H
27
90.467
18.439
−0.150
1.00
27.66


ATOM
N
SER
H
28
91.714
20.223
0.464
1.00
26.42


ATOM
CA
SER
H
28
91.612
19.970
1.890
1.00
24.77


ATOM
CB
SER
H
28
92.976
19.626
2.481
1.00
21.30


ATOM
OG
SER
H
28
92.934
19.678
3.901
1.00
22.82


ATOM
C
SER
H
28
91.053
21.162
2.625
1.00
25.66


ATOM
O
SER
H
28
91.508
22.292
2.433
1.00
27.14


ATOM
N
LEU
H
29
90.131
20.888
3.540
1.00
26.30


ATOM
CA
LEU
H
29
89.508
21.926
4.334
1.00
26.90


ATOM
CB
LEU
H
29
88.237
21.399
5.013
1.00
27.65


ATOM
CG
LEU
H
29
86.958
22.199
4.723
1.00
27.49


ATOM
CD1
LEU
H
29
85.790
21.609
5.467
1.00
25.56


ATOM
CD2
LEU
H
29
87.123
23.664
5.097
1.00
26.24


ATOM
C
LEU
H
29
90.478
22.442
5.378
1.00
28.20


ATOM
O
LEU
H
29
90.104
23.243
6.225
1.00
30.84


ATOM
N
SER
H
30
91.699
21.917
5.381
1.00
29.52


ATOM
CA
SER
H
30
92.696
22.371
6.336
1.00
30.23


ATOM
CB
SER
H
30
93.591
21.223
6.779
1.00
32.80


ATOM
OG
SER
H
30
92.878
20.324
7.605
1.00
40.53


ATOM
C
SER
H
30
93.533
23.473
5.719
1.00
28.60


ATOM
O
SER
H
30
94.197
24.228
6.426
1.00
30.68


ATOM
N
THR
H
31
93.507
23.553
4.399
1.00
25.79


ATOM
CA
THR
H
31
94.251
24.574
3.689
1.00
25.17


ATOM
CB
THR
H
31
94.168
24.342
2.185
1.00
22.82


ATOM
OG1
THR
H
31
94.642
23.026
1.884
1.00
21.22


ATOM
CG2
THR
H
31
94.992
25.387
1.430
1.00
25.49


ATOM
C
THR
H
31
93.706
25.975
4.008
1.00
26.42


ATOM
O
THR
H
31
92.515
26.265
3.804
1.00
25.36


ATOM
N
SER
H
32
94.586
26.835
4.510
1.00
25.43


ATOM
CA
SER
H
32
94.243
28.204
4.846
1.00
22.79


ATOM
CB
SER
H
32
95.532
29.001
5.032
1.00
25.70


ATOM
OG
SER
H
32
95.273
30.390
5.103
1.00
28.76


ATOM
C
SER
H
32
93.391
28.837
3.744
1.00
21.57


ATOM
O
SER
H
32
93.675
28.691
2.548
1.00
17.71


ATOM
N
GLY
H
33
92.324
29.510
4.160
1.00
20.10


ATOM
CA
GLY
H
33
91.419
30.167
3.225
1.00
18.48


ATOM
C
GLY
H
33
90.306
29.308
2.637
1.00
18.96


ATOM
O
GLY
H
33
89.391
29.840
1.992
1.00
17.36


ATOM
N
MET
H
34
90.367
27.993
2.846
1.00
18.43


ATOM
CA
MET
H
34
89.353
27.091
2.301
1.00
21.06


ATOM
CB
MET
H
34
89.896
25.660
2.232
1.00
23.04


ATOM
CG
MET
H
34
89.583
24.932
0.932
1.00
24.08


ATOM
SD
MET
H
34
90.321
25.677
−0.522
1.00
29.23


ATOM
CE
MET
H
34
91.809
24.779
−0.645
1.00
28.50


ATOM
C
MET
H
34
88.032
27.140
3.088
1.00
20.35


ATOM
O
MET
H
34
88.023
27.277
4.321
1.00
20.61


ATOM
N
SER
H
35
86.921
27.022
2.367
1.00
18.89


ATOM
CA
SER
H
35
85.595
27.082
2.970
1.00
17.02


ATOM
CB
SER
H
35
85.119
28.554
2.963
1.00
16.91


ATOM
OG
SER
H
35
83.744
28.731
3.303
1.00
15.81


ATOM
C
SER
H
35
84.630
26.226
2.148
1.00
16.42


ATOM
O
SER
H
35
84.839
26.014
0.954
1.00
13.99


ATOM
N
VAL
H
35A
83.609
25.695
2.813
1.00
17.17


ATOM
CA
VAL
H
35A
82.561
24.928
2.145
1.00
18.21


ATOM
CB
VAL
H
35A
82.627
23.410
2.457
1.00
10.71


ATOM
CG1
VAL
H
35A
81.375
22.712
1.965
1.00
19.97


ATOM
CG2
VAL
H
35A
83.834
22.791
1.780
1.00
19.38


ATOM
C
VAL
H
35A
81.230
25.524
2.621
1.00
17.91


ATOM
O
VAL
H
35A
81.013
25.716
3.821
1.00
17.18


ATOM
N
GLY
H
35B
80.400
25.934
1.668
1.00
19.58


ATOM
CA
GLY
H
35B
79.101
26.501
1.997
1.00
17.30


ATOM
C
GLY
H
35B
77.953
25.659
1.464
1.00
13.26


ATOM
O
GLY
H
35B
78.140
24.770
0.641
1.00
7.81


ATOM
N
TRP
H
36
76.760
25.939
1.961
1.00
16.00


ATOM
CA
TRP
H
36
75.554
25.254
1.546
1.00
14.93


ATOM
CB
TRP
H
36
74.910
24.504
2.711
1.00
12.98


ATOM
CG
TRP
H
36
75.636
23.264
3.120
1.00
14.47


ATOM
CD2
TRP
H
36
75.431
21.931
2.608
1.00
14.01


ATOM
CE2
TRP
H
36
76.264
21.066
3.353
1.00
12.94


ATOM
CE3
TRP
H
36
74.619
21.388
1.598
1.00
11.52


ATOM
CD1
TRP
H
36
76.574
23.150
4.115
1.00
14.35


ATOM
NEl
TRP
H
36
76.945
21.834
4.262
1.00
15.17


ATOM
CZ2
TRP
H
36
76.311
19.687
3.123
1.00
13.17


ATOM
CZ3
TRP
H
36
74.666
20.008
1.367
1.00
14.14


ATOM
CH2
TRP
H
36
75.508
19.176
2.130
1.00
13.90


ATOM
C
TRP
H
36
74.587
26.298
0.998
1.00
15.07


ATOM
O
TRP
H
36
74.433
27.393
1.569
1.00
14.43


ATOM
N
ILE
H
37
73.999
25.957
−0.145
1.00
14.15


ATOM
CA
ILE
H
37
73.028
26.769
−0.862
1.00
14.19


ATOM
CB
ILE
H
37
73.644
27.357
−2.191
1.00
13.79


ATOM
CG2
ILE
H
37
72.623
28.239
−2.912
1.00
10.80


ATOM
CG1
ILE
H
37
74.924
28.157
−1.906
1.00
12.98


ATOM
CD1
ILE
H
37
76.391
27.361
−2.001
1.00
9.84


ATOM
C
ILE
H
37
71.857
25.834
−1.255
1.00
14.48


ATOM
O
ILE
H
37
72.059
24.660
−1.573
1.00
14.48


ATOM
N
ARG
H
38
70.632
26.337
−1.187
1.00
15.05


ATOM
CA
ARG
H
38
69.490
25.537
−1.594
1.00
13.99


ATOM
CB
ARG
H
38
68.654
25.107
−0.400
1.00
12.72


ATOM
CG
ARG
H
38
67.837
26.195
0.206
1.00
11.35


ATOM
CD
ARG
H
38
66.955
25.629
1.271
1.00
12.76


ATOM
NE
ARG
H
38
66.226
26.687
1.942
1.00
17.72


ATOM
CZ
ARG
H
38
65.375
26.498
2.942
1.00
16.18


ATOM
NH1
ARG
H
38
65.136
25.280
3.392
1.00
9.66


ATOM
NH2
ARG
H
38
64.786
27.544
3.501
1.00
14.95


ATOM
C
ARG
H
38
68.622
26.289
−2.601
1.00
13.81


ATOM
O
ARG
H
38
68.718
27.514
−2.765
1.00
11.23


ATOM
N
GLN
H
39
67.776
25.544
−3.285
1.00
12.87


ATOM
CA
GLN
H
39
66.919
26.147
−4.265
1.00
14.66


ATOM
CB
GLN
H
39
67.527
26.167
−5.612
1.00
16.19


ATOM
CG
GLN
H
39
66.876
26.910
−6.694
1.00
15.68


ATOM
CD
GLN
H
39
67.681
27.024
−7.956
1.00
15.98


ATOM
OE1
GLN
H
39
67.798
28.106
−8.538
1.00
17.80


ATOM
NE2
GLN
H
39
68.259
25.910
−8.390
1.00
16.85


ATOM
C
GLN
H
39
65.600
25.396
−4.367
1.00
15.76


ATOM
O
GLN
H
39
65.556
24.249
−4.835
1.00
14.34


ATOM
N
PRO
H
40
64.512
26.015
−3.868
1.00
17.06


ATOM
CD
PRO
H
40
64.495
27.302
−3.152
1.00
15.97


ATOM
CA
PRO
H
40
63.173
25.436
−3.899
1.00
15.94


ATOM
CB
PRO
H
40
62.335
26.497
−3.198
1.00
16.60


ATOM
CG
PRO
H
40
63.286
27.140
−2.272
1.00
17.11


ATOM
C
PRO
H
40
62.768
25.339
−5.350
1.00
17.70


ATOM
O
PRO
H
40
63.214
26.134
−6.162
1.00
16.65


ATOM
N
PRO
H
41
61.958
24.334
−5.710
1.00
20.76


ATOM
CD
PRO
H
41
61.398
23.245
−4.889
1.00
22.23


ATOM
CA
PRO
H
41
61.336
24.210
−7.108
1.00
20.87


ATOM
CB
PRO
H
41
60.416
23.185
−7.025
1.00
22.27


ATOM
CG
PRO
H
41
60.893
22.279
−5.936
1.00
23.84


ATOM
C
PRO
H
41
61.017
25.555
−7.609
1.00
20.24


ATOM
O
PRO
H
41
60.256
26.225
−6.917
1.00
22.84


ATOM
N
GLY
H
42
61.540
25.993
−8.744
1.00
21.26


ATOM
CA
GLY
H
42
61.119
27.248
−9.331
1.00
20.76


ATOM
C
GLY
H
42
61.459
28.521
−8.583
1.00
21.38


ATOM
O
GLY
H
42
60.877
29.562
−8.877
1.00
23.41


ATOM
N
LYS
H
43
62.367
28.474
−7.614
1.00
21.11


ATOM
CA
LYS
H
43
62.721
29.693
−6.885
1.00
21.46


ATOM
CB
LYS
H
43
62.341
29.597
−5.402
1.00
24.52


ATOM
CG
LYS
H
43
60.863
29.358
−5.133
1.00
26.93


ATOM
CD
LYS
H
43
60.568
29.524
−3.660
1.00
33.74


ATOM
CE
LYS
H
43
59.089
29.328
−3.340
1.00
38.50


ATOM
NZ
LYS
H
43
58.826
29.556
−1.884
1.00
39.74


ATOM
C
LYS
H
43
64.210
29.976
−7.021
1.00
20.27


ATOM
O
LYS
H
43
64.348
29.184
−7.599
1.00
20.32


ATOM
N
ALA
H
44
64.646
31.106
−6.487
1.00
19.41


ATOM
CA
ALA
H
44
66.051
31.491
−6.557
1.00
19.41


ATOM
CB
ALA
H
44
66.189
32.990
−6.372
1.00
19.26


ATOM
C
ALA
H
44
66.925
30.764
−5.538
1.00
19.34


ATOM
O
ALA
H
44
66.435
30.088
−4.620
1.00
19.44


ATOM
N
LEU
H
45
68.232
30.901
−5.717
1.00
17.25


ATOM
CA
LEU
H
45
69.196
30.299
−4.815
1.00
15.89


ATOM
CB
LEU
H
45
70.620
30.447
−5.373
1.00
10.63


ATOM
CD
LEU
H
45
70.953
29.865
−6.735
1.00
12.90


ATOM
CD1
LEU
H
45
72.289
30.431
−7.221
1.00
8.13


ATOM
CD2
LEU
H
45
71.013
28.351
−6.645
1.00
10.96


ATOM
C
LEU
H
45
69.105
31.048
−3.488
1.00
24.70


ATOM
O
LEU
H
45
68.854
32.254
−3.465
1.00
17.03


ATOM
N
GLU
H
46
69.320
30.326
−2.398
1.00
15.19


ATOM
CA
GLU
H
46
69.317
30.877
−1.058
1.00
14.24


ATOM
CB
GLU
H
46
68.054
30.488
−0.307
1.00
13.44


ATOM
CG
GLU
H
46
68.093
30.929
1.136
1.00
14.99


ATOM
CD
GLU
H
46
66.813
30.604
1.879
1.00
20.34


ATOM
OE1
GLU
H
46
66.322
29.460
1.784
1.00
20.65


ATOM
OE2
GLU
H
46
66.295
31.499
2.563
1.00
22.75


ATOM
C
GLU
H
46
70.504
30.332
−0.300
1.00
13.87


ATOM
O
GLU
H
46
70.608
29.121
−0.094
1.00
14.81


ATOM
N
TRP
H
47
71.368
31.228
0.161
1.00
15.80


ATOM
CA
TRP
H
47
72.548
30.846
0.923
1.00
15.32


ATOM
CB
TRP
H
47
73.496
32.034
1.070
1.00
15.93


ATOM
CG
TRP
H
47
74.728
31.714
1.868
1.00
18.77


ATOM
CD2
TRP
H
47
74.966
32.053
3.238
1.00
18.77


ATOM
CE2
TRP
H
47
76.256
31.564
3.575
1.00
19.72


ATOM
CE3
TRP
H
47
74.221
32.729
4.215
1.00
16.45


ATOM
CG1
TRP
H
47
75.848
31.041
1.435
1.00
17.15


ATOM
NE1
TRP
H
47
76.767
30.952
2.459
1.00
19.64


ATOM
CZ2
TRP
H
47
76.814
31.733
4.846
1.00
16.17


ATOM
CZ3
TRP
H
47
74.783
32.895
5.476
1.00
18.48


ATOM
CH2
TRP
H
47
76.067
32.398
5.777
1.00
17.28


ATOM
C
TRP
H
47
72.095
30.349
2.293
1.00
15.44


ATOM
O
TRP
H
47
71.236
30.960
2.922
1.00
14.94


ATOM
N
LEU
H
48
72.674
29.240
2.742
1.00
13.88


ATOM
CA
LEU
H
48
72.311
28.639
4.021
1.00
14.64


ATOM
CB
LEU
H
48
72.057
27.151
3.829
1.00
15.18


ATOM
CG
LEU
H
48
70.642
26.595
3.685
1.00
19.59


ATOM
CD1
LEU
H
48
69.668
27.639
3.236
1.00
19.86


ATOM
CD2
LEU
H
48
70.658
25.396
2.779
1.00
14.67


ATOM
C
LEU
H
48
73.348
28.813
5.122
1.00
16.42


ATOM
O
LEU
H
48
73.030
29.297
6.217
1.00
16.87


ATOM
N
ALA
H
49
74.588
28.416
4.834
1.00
17.65


ATOM
CA
ALA
H
49
75.660
28.485
5.819
1.00
15.42


ATOM
CB
ALA
H
49
75.326
27.536
7.008
1.00
10.92


ATOM
C
ALA
H
49
77.000
28.083
5.197
1.00
15.85


ATOM
O
ALA
H
49
77.051
27.654
4.046
1.00
11.51


ATOM
N
ASP
H
50
78.085
28.311
5.941
1.00
17.23


ATOM
CA
ASP
H
50
79.427
27.915
5.526
1.00
19.09


ATOM
CB
ASP
H
50
80.068
28.898
4.515
1.00
21.53


ATOM
CG
ASP
H
50
80.480
30.247
5.125
1.00
28.53


ATOM
OD1
ASP
H
50
80.865
30.328
6.307
1.00
32.68


ATOM
OD2
ASP
H
50
80.448
31.257
4.392
1.00
31.09


ATOM
C
ASP
H
50
80.315
27.663
6.746
1.00
18.22


ATOM
O
ASP
H
50
79.981
28.049
7.867
1.00
17.40


ATOM
N
ILE
H
51
81.426
26.982
6.525
1.00
18.70


ATOM
CA
ILE
H
51
82.3,6
126.68
37.588
1.00
18.57


ATOM
CB
ILE
H
51
82.191
25.214
8.098
1.00
16.66


ATOM
CG2
ILE
H
51
82.568
24.215
6.992
1.00
15.80


ATOM
CG1
ILE
H
51
83.005
24.994
9.387
1.00
14.81


ATOM
CD1
ILE
H
51
82.725
23.688
10.108
1.00
10.85


ATOM
C
ILE
H
51
83.757
26.900
6.994
1.00
20.10


ATOM
O
ILE
H
51
84.028
26.479
5.850
1.00
20.16


ATOM
N
TRP
H
52
84.613
27.592
7.750
1.00
17.80


ATOM
CA
TRP
H
52
85.976
27.885
7.322
1.00
18.52


ATOM
CB
TRP
H
52
86.438
29.230
7.882
1.00
17.60


ATOM
CG
TRP
H
52
85.852
30.427
7.186
1.00
18.48


ATOM
CD2
TRP
H
52
86.315
31.773
7.275
1.00
18.83


ATOM
CE2
TRP
H
52
85.460
32.568
6.470
1.00
17.83


ATOM
CE3
TRP
H
52
87.372
32.393
7.960
1.00
20.10


ATOM
CD1
TRP
H
52
84.765
30.454
6.346
1.00
18.77


ATOM
NE1
TRP
H
52
84.525
31.739
5.915
1.00
19.18


ATOM
CZ2
TRP
H
52
85.628
33.943
6.336
1.00
17.47


ATOM
CZ3
TRP
H
52
87.536
33.759
7.823
1.00
16.79


ATOM
CH2
TRP
H
52
86.668
34.520
7.018
1.00
17.22


ATOM
C
TRP
H
52
86.951
26.806
7.758
1.00
20.38


ATOM
O
TRP
H
52
86.658
26.004
8.640
1.00
18.84


ATOM
N
TRP
H
52A
88.135
26.830
7.159
1.00
23.43


ATOM
CA
TRP
H
52A
89.203
25.877
7.463
1.00
24.45


ATOM
CB
TRP
H
52A
90.459
26.230
6.661
1.00
23.73


ATOM
CG
TRP
H
52A
91.148
27.485
7.136
1.00
23.91


ATOM
CD2
TRP
H
52A
90.769
28.845
6.861
1.00
22.37


ATOM
CE2
TRP
H
52A
91.713
29.677
7.500
1.00
24.65


ATOM
CE3
TRP
H
52A
89.731
29.437
6.132
1.00
21.82


ATOM
CG1
TRP
H
52A
92.266
27.551
7.912
1.00
25.27


ATOM
NE1
TRP
H
52A
92.612
28.863
8.134
1.00
26.22


ATOM
CZ2
TRP
H
52A
91.652
31.068
7.435
1.00
21.13


ATOM
CZ3
TRP
H
52A
89.669
30.822
6.066
1.00
22.40


ATOM
CH2
TRP
H
52A
90.627
31.622
6.716
1.00
24.82


ATOM
C
TRP
H
52A
89.537
25.895
8.952
1.00
25.32


ATOM
O
TRP
H
52A
89.974
24.886
9.509
1.00
27.89


ATOM
N
ASP
H
52B
89.338
27.046
9.584
1.00
24.77


ATOM
CA
ASP
H
52B
89.624
27.204
10.998
1.00
26.84


ATOM
CB
ASP
H
52B
90.186
28.606
11.274
1.00
27.51


ATOM
CG
ASP
H
52B
89.193
29.722
10.979
1.00
31.35


ATOM
OG1
ASP
H
52B
87.991
29.447
10.793
1.00
31.83


ATOM
OG2
ASP
H
52B
89.619
30.898
10.942
1.00
33.88


ATOM
C
ASP
H
52B
88.418
26.911
11.893
1.00
27.40


ATOM
O
ASP
H
52B
88.410
27.245
13.072
1.00
26.88


ATOM
N
ASP
H
52C
87.392
26.313
11.305
1.00
28.03


ATOM
CA
ASP
H
52C
86.163
25.955
11.998
1.00
26.36


ATOM
CB
ASP
H
52C
86.446
25.160
13.274
1.00
28.42


ATOM
CG
ASP
H
52C
85.327
24.180
13.603
1.00
33.76


ATOM
OD1
ASP
H
52C
84.868
24.153
14.764
1.00
36.60


ATOM
OD2
ASP
H
52C
84.902
23.430
12.697
1.00
34.49


ATOM
C
ASP
H
52C
85.184
27.093
12.269
1.00
25.03


ATOM
O
ASP
H
52C
84.178
26.896
12.958
1.00
26.18


ATOM
N
LYS
H
53
85.440
28.274
11.713
1.00
23.11


ATOM
CA
LYS
H
53
84.492
29.376
11.893
1.00
24.05


ATOM
CB
LYS
H
53
85.050
30.712
11.388
1.00
25.09


ATOM
CG
LYS
H
53
84.286
31.929
11.912
1.00
24.49


ATOM
CD
LYS
H
53
84.751
33.225
11.245
1.00
25.32


ATOM
CE
LYS
H
53
84.428
33.243
9.741
1.00
27.10


ATOM
NZ
LYS
H
53
82.961
33.405
9.382
1.00
25.06


ATOM
C
LYS
H
53
83.237
29.016
11.078
1.00
24.81


ATOM
O
LYS
H
53
83.328
28.634
9.900
1.00
22.11


ATOM
N
LYS
H
54
82.076
29.153
11.706
1.00
24.62


ATOM
CA
LYS
H
54
80.798
28.831
11.085
1.00
23.21


ATOM
CB
LYS
H
54
80.045
27.879
11.995
1.00
20.83


ATOM
CG
LYS
H
54
80.861
26.659
12.357
1.00
20.72


ATOM
CG
LYS
H
54
80.211
25.853
13.454
1.00
20.64


ATOM
CE
LYS
H
54
81.055
24.631
13.802
1.00
22.89


ATOM
NZ
LYS
H
54
82.409
25.036
14.297
1.00
23.84


ATOM
C
LYS
H
54
79.975
30.090
10.870
1.00
23.07


ATOM
O
LYS
H
54
79.984
30.988
11.704
1.00
24.80


ATOM
N
ASP
H
55
79.286
30.171
9.740
1.00
23.45


ATOM
CA
ASP
H
55
78.452
31.331
9.448
1.00
23.61


ATOM
CB
ASP
H
55
79.083
32.190
8.358
1.00
29.01


ATOM
CG
ASP
H
55
78.710
33.653
8.481
1.00
33.21


ATOM
OD1
ASP
H
55
79.219
34.452
7.674
1.00
36.92


ATOM
OD2
ASP
H
55
77.911
34.015
9.375
1.00
37.49


ATOM
C
ASP
H
55
77.085
30.801
9.028
1.00
22.55


ATOM
O
ASP
H
55
77.000
29.775
8.357
1.00
22.79


ATOM
N
TYR
H
56
76.023
31.495
9.418
1.00
21.97


ATOM
CA
TYR
H
56
74.675
31.022
9.154
1.00
22.29


ATOM
CB
TYR
H
56
74.051
30.491
10.449
1.00
19.74


ATOM
CG
TYR
H
56
74.749
29.308
11.084
1.00
18.86


ATOM
CG1
TYR
H
56
74.608
28.034
10.554
1.00
19.13


ATOM
CE1
TYR
H
56
75.211
26.947
11.141
1.00
19.36


ATOM
CD2
TYR
H
56
75.522
29.462
12.227
1.00
14.87


ATOM
CE2
TYR
H
56
76.127
28.379
12.821
1.00
15.48


ATOM
CZ
TYR
H
56
75.971
27.126
12.281
1.00
17.68


ATOM
OH
TYR
H
56
76.565
26.031
12.868
1.00
20.54


ATOM
C
TYR
H
56
73.736
32.071
8.662
1.00
22.36


ATOM
O
TYR
H
56
73.833
33.228
9.047
1.00
22.95


ATOM
N
ASN
H
57
72.780
31.643
7.849
1.00
24.93


ATOM
CA
ASN
H
57
71.742
32.543
7.357
1.00
27.64


ATOM
CB
ASN
H
57
70.862
31.833
6.315
1.00
28.33


ATOM
CG
ASN
H
57
69.825
32.756
5.693
1.00
29.14


ATOM
OD1
ASN
H
57
68.986
33.312
6.385
1.00
31.07


ATOM
ND2
ASN
H
57
69.874
32.909
4.386
1.00
29.86


ATOM
C
ASN
H
57
70.929
32.879
8.617
1.00
27.04


ATOM
O
ASN
H
57
70.524
31.981
9.357
1.00
23.79


ATOM
N
PRO
H
58
70.762
34.176
8.921
1.00
28.56


ATOM
CD
PRO
H
58
71.297
35.280
8.113
1.00
28.44


ATOM
CA
PRO
H
58
70.025
34.708
10.077
1.00
29.68


ATOM
CB
PRO
H
58
70.043
36.205
9.816
1.00
31.68


ATOM
CG
PRO
H
58
71.336
36.388
9.102
1.00
32.72


ATOM
C
PRO
H
58
68.595
34.207
10.165
1.00
30.03


ATOM
O
PRO
H
58
68.138
33.842
11.241
1.00
32.06


ATOM
N
SER
H
59
67.902
34.203
9.028
1.00
30.81


ATOM
CA
SER
H
59
66.521
33.739
8.924
1.00
33.61


ATOM
CB
SER
H
59
66.045
33.796
7.464
1.00
33.98


ATOM
OG
SER
H
59
66.414
35.012
6.825
1.00
42.18


ATOM
C
SER
H
59
66.398
32.292
9.371
1.00
34.64


ATOM
O
SER
H
59
65.354
31.878
9.882
1.00
37.21


ATOM
N
LEU
H
60
67.461
31.521
9.142
1.00
34.74


ATOM
CA
LEU
H
60
67.485
30.100
9.463
1.00
33.58


ATOM
CB
LEU
H
60
67.896
29.314
8.205
1.00
32.72


ATOM
CG
LEU
H
60
66.922
28.895
7.093
1.00
34.81


ATOM
CD1
LEU
H
60
65.565
29.513
7.313
1.00
36.52


ATOM
CD2
LEU
H
60
67.479
29.259
5.716
1.00
30.66


ATOM
C
LEU
H
60
68.406
29.661
10.606
1.00
34.55


ATOM
O
LEU
H
60
68.276
28.523
11.082
1.00
32.36


ATOM
N
LYS
H
61
69.321
30.539
11.062
1.00
35.17


ATOM
CA
LYS
H
61
70.2
2
30.163
12.092
1.00
35.08


ATOM
CB
LYS
H
61
70.959
31.376
12.750
1.00
36.66


ATOM
CG
LYS
H
61
72.030
30.921
13.748
1.00
42.58


ATOM
CD
LYS
H
61
72.964
32.023
14.233
1.00
47.58


ATOM
CE
LYS
H
61
74.154
31.417
15.007
1.00
48.86


ATOM
NZ
LYS
H
61
75.157
32.426
15.480
1.00
51.14


ATOM
C
LYS
H
61
69.830
29.172
13.163
1.00
34.17


ATOM
O
LYS
H
61
70.520
28.174
13.423
1.00
29.94


ATOM
N
SER
H
62
68.646
29.426
13.726
1.00
30.94


ATOM
CA
SER
H
62
68.051
28.597
14.770
1.00
28.25


ATOM
CB
SER
H
62
66.650
29.117
15.072
1.00
30.62


ATOM
CG
SER
H
62
65.918
29.317
13.866
1.00
33.57


ATOM
C
SER
H
62
67.946
27.110
14.440
1.00
28.84


ATOM
O
SER
H
62
68.078
26.252
15.317
1.00
28.71


ATOM
N
ARG
H
63
67.708
26.807
13.171
1.00
26.01


ATOM
CA
ARG
H
63
67.528
25.432
12.743
1.00
23.24


ATOM
CB
ARG
H
63
66.394
25.407
11.739
1.00
24.03


ATOM
CG
ARG
H
63
65.149
26.109
12.252
1.00
27.07


ATOM
CD
ARG
H
63
64.142
26.336
11.146
1.00
30.24


ATOM
NE
ARG
H
63
63.910
25.102
10.417
1.00
29.49


ATOM
CZ
ARG
H
63
63.630
25.049
9.127
1.00
24.96


ATOM
NH1
ARG
H
63
63.535
26.166
8.415
1.00
23.27


ATOM
ND2
ARG
H
63
63.471
23.873
8.556
1.00
24.48


ATOM
C
ARG
H
63
68.741
24.751
12.145
1.00
22.40


ATOM
O
ARG
H
63
68.731
23.546
11.929
1.00
21.50


ATOM
N
LEU
H
64
69.804
25.518
11.941
1.00
22.16


ATOM
CA
LEU
H
64
71.023
25.034
11.296
1.00
21.65


ATOM
CB
LEU
H
64
71.466
26.058
10.243
1.00
19.30


ATOM
CG
LEU
H
64
70.890
26.155
8.832
1.00
20.78


ATOM
CD1
LEU
H
64
69.545
25.524
8.719
1.00
20.71


ATOM
CD2
LEU
H
64
70.879
27.617
8.396
1.00
15.66


ATOM
C
LEU
H
64
72.234
24.732
12.156
1.00
19.31


ATOM
O
LEU
H
64
72.564
25.472
13.070
1.00
20.05


ATOM
N
THR
H
65
72.941
23.676
11.785
1.00
19.59


ATOM
CA
THR
H
65
74.185
23.294
12.442
1.00
20.65


ATOM
CB
THR
H
65
73.998
22.193
13.493
1.00
20.20


ATOM
OG1
THR
H
65
72.990
22.595
14.428
1.00
24.09


ATOM
CG2
THR
H
65
75.315
21.946
14.225
1.00
19.32


ATOM
C
THR
H
65
75.144
22.768
11.378
1.00
19.21


ATOM
O
THR
H
65
74.857
21.778
10.702
1.00
21.02


ATOM
N
ILE
H
66
76.262
23.452
11.204
1.00
19.16


ATOM
CA
ILE
H
66
77.254
23.021
10.240
1.00
17.30


ATOM
CB
ILE
H
66
77.546
24.145
9.217
1.00
16.44


ATOM
CG2
ILE
H
66
78.223
25.316
9.884
1.00
17.96


ATOM
CG1
ILE
H
66
78.367
23.611
8.048
1.00
16.66


ATOM
CD1
ILE
H
66
78.283
24.492
6.803
1.00
16.98


ATOM
C
ILE
H
66
78.509
22.541
10.984
1.00
17.84


ATOM
O
ILE
H
66
78.856
23.062
12.040
1.00
18.17


ATOM
N
SER
H
67
79.131
21.486
10.482
1.00
18.11


ATOM
CA
SER
H
67
80.321
20.948
11.105
1.00
20.14


ATOM
CB
SER
H
67
79.934
19.982
12.222
1.00
19.34


ATOM
OG
SER
H
67
79.148
18.916
11.722
1.00
22.34


ATOM
C
SER
H
67
81.129
20.235
10.042
1.00
21.51


ATOM
O
SER
H
67
80.617
19.939
8.963
1.00
23.77


ATOM
N
LYS
H
68
82.389
19.945
10.326
1.00
22.37


ATOM
CA
LYS
H
68
83.220
19.276
9.337
1.00
24.76


ATOM
CB
LYS
H
68
84.170
20.268
8.653
1.00
24.88


ATOM
CG
LYS
H
68
85.243
20.860
9.600
1.00
26.98


ATOM
CD
LYS
H
68
86.178
21.863
8.913
1.00
24.59


ATOM
CE
LYS
H
68
87.077
22.575
9.923
1.00
25.04


ATOM
NZ
LYS
H
68
87.950
21.660
10.691
1.00
22.91


ATOM
C
LYS
H
68
84.065
18.220
9.995
1.00
2
.60


ATOM
O
LYS
H
68
84.222
18.194
11.211
1.00
26.90


ATOM
N
ASP
H
69
84.609
17.350
9.162
1.00
30.57


ATOM
CA
ASP
H
69
85.497
16.301
9.603
1.00
32.63


ATOM
CB
ASP
H
69
84.751
14.987
9.808
1.00
32.99


ATOM
CG
ASP
H
69
85.630
13.919
10.414
1.00
34.81


ATOM
OD1
ASP
H
69
85.157
13.155
11.274
1.00
36.75


ATOM
OD2
ASP
H
69
86.800
13.839
10.027
1.00
31.40


ATOM
C
ASP
H
69
86.530
16.184
8.487
1.00
34.03


ATOM
O
ASP
H
69
86.370
15.392
7.547
1.00
32.76


ATOM
N
THR
H
70
87.571
17.008
8.594
1.00
36.91


ATOM
CA
THR
H
70
88.660
17.047
7.624
1.00
38.63


ATOM
CB
THR
H
70
89.797
17.966
8.100
1.00
37.90


ATOM
OG1
THR
H
70
89.244
19.134
8.721
1.00
40.53


ATOM
CG2
THR
H
70
90.630
18.400
6.924
1.00
41.19


ATOM
C
THR
H
70
89.193
15.640
7.441
1.00
39.84


ATOM
O
THR
H
70
89.470
15.209
6.323
1.00
40.13


ATOM
N
SER
H
71
89.243
14.904
8.546
1.00
40.90


ATOM
CA
SER
H
71
89.711
13.526
8.543
1.00
42.40


ATOM
CB
SER
H
71
89.550
12.917
9.938
1.00
42.28


ATOM
OG
SER
H
71
89.247
13.928
10.895
1.00
46.77


ATOM
C
SER
H
71
88.900
12.714
7.539
1.00
42.54


ATOM
O
SER
H
71
89.441
11.844
6.858
1.00
45.17


ATOM
N
LYS
H
72
87.610
13.028
7.429
1.00
39.45


ATOM
CA
LYS
H
72
86.728
12.317
6.517
1.00
36.17


ATOM
CB
LYS
H
72
85.4.5
411.88
67.253
1.00
35.09


ATOM
C
LYS
H
72
86.394
13.122
5.253
1.00
34.32


ATOM
O
LYS
H
72
85.624
12.670
4.404
1.00
36.05


ATOM
N
ASN
H
73
86.985
14.303
5.110
1.00
30.90


ATOM
CA
ASN
H
73
86.725
15.122
3.935
1.00
28.57


ATOM
CB
ASN
H
73
87.339
14.479
2.698
1.00
30.95


ATOM
CG
ASN
H
73
88.753
14.930
2.459
1.00
32.43


ATOM
OD1
ASN
H
73
89.410
15.448
3.356
1.00
33.76


ATOM
ND2
ASN
H
73
89.217
14.781
1.231
1.00
33.57


ATOM
C
ASN
H
73
85.235
15.368
3.706
1.00
27.51


ATOM
O
ASN
H
73
84.723
15.252
2.581
1.00
24.45


ATOM
N
GLN
H
74
84.535
15.700
4.783
1.00
26.55


ATOM
CA
GLN
H
74
83.120
15.977
4.680
1.00
25.83


ATOM
CB
GLN
H
74
82.305
14.693
4.841
1.00
27.06


ATOM
CG
GLN
H
74
82.244
14.191
6.232
1.00
29.34


ATOM
CD
GLN
H
74
81.624
12.830
6.295
1.00
32.28


ATOM
OE1
GLN
H
74
81.764
12.043
5.367
1.00
29.45


ATOM
NE2
GLN
H
74
80.935
12.535
7.398
1.00
32.68


ATOM
C
GLN
H
74
82.649
17.068
5.638
1.00
23.47


ATOM
O
GLN
H
74
83.254
17.328
6.684
1.00
19.87


ATOM
N
VAL
H
75
81.633
17.784
5.185
1.00
20.78


ATOM
CA
VAL
H
75
81.016
18.858
5.934
1.00
18.65


ATOM
CG
VAL
H
75
81.073
20.188
5.119
1.00
19.56


ATOM
CG1
VAL
H
75
80.267
21.297
5.808
1.00
17.72


ATOM
CG2
VAL
H
75
82.528
20.639
4.948
1.00
16.40


ATOM
C
VAL
H
75
79.583
18.378
6.069
1.00
17.42


ATOM
O
VAL
H
75
79.042
17.751
5.185
1.00
18.13


ATOM
N
VAL
H
76
78.982
18.619
7.242
1.00
17.43


ATOM
CA
VAL
H
76
77.615
18.177
7.491
1.00
17.51


ATOM
CB
VAL
H
76
77.579
17.122
8.652
1.00
18.76


ATOM
CG1
VAL
H
76
76.140
16.849
9.115
1.00
16.58


ATOM
CG2
VAL
H
76
78.239
15.822
8.202
1.00
16.10


ATOM
C
VAL
H
76
76.753
19.363
7.872
1.00
16.23


ATOM
O
VAL
H
76
77.217
20.261
8.559
1.00
16.73


ATOM
N
LEU
H
77
75.523
19.387
7.375
1.00
15.92


ATOM
CA
LEU
H
77
74.573
20.441
7.701
1.00
17.74


ATOM
CB
LEU
H
77
74.182
21.259
6.454
1.00
17.08


ATOM
CG
LEU
H
77
73.669
22.718
6.499
1.00
18.21


ATOM
CD1
LEU
H
77
72.305
22.832
5.904
1.00
18.50


ATOM
CD2
LEU
H
77
73.717
23.340
7.886
1.00
20.05


ATOM
C
LEU
H
77
73.347
19.700
8.233
1.00
19.52


ATOM
O
LEU
H
77
72.890
18.745
7.606
1.00
18.14


ATOM
N
LYS
H
78
72.894
20.072
9.432
1.00
19.66


ATOM
CA
LYS
H
78
71.709
19.478
10.039
1.00
21.64


ATOM
CB
LYS
H
78
72.019
18.898
11.420
1.00
24.63


ATOM
CG
LYS
H
78
72.773
17.585
11.372
1.00
29.51


ATOM
CD
LYS
H
78
72.910
17.009
12.771
1.00
35.12


ATOM
CE
LYS
H
78
73.805
15.761
12.808
1.00
38.85


ATOM
NZ
LYS
H
78
73.139
14.504
12.308
1.00
43.57


ATOM
C
LYS
H
78
70.667
20.580
10.147
1.00
18.69


ATOM
O
LYS
H
78
70.941
21.647
10.687
1.00
21.34


ATOM
N
VAL
H
79
69.498
20.338
9.573
1.00
18.22


ATOM
CA
VAL
H
79
68.408
21.305
9.561
1.00
17.88


ATOM
CB
VAL
H
79
67.869
21.543
8.126
1.00
15.85


ATOM
CG1
VAL
H
79
66.903
22.712
8.117
1.00
18.65


ATOM
CG2
VAL
H
79
69.058
21.782
7.149
1.00
13.37


ATOM
C
VAL
H
79
67.288
20.688
10.373
1.00
19.10


ATOM
O
VAL
H
79
66.766
19.628
10.020
1.00
19.43


ATOM
N
THR
H
80
66.910
21.343
11.455
1.00
20.81


ATOM
CA
THR
H
80
65.866
20.808
12.315
1.00
21.37


ATOM
CB
THR
H
80
66.162
21.141
13.782
1.00
17.57


ATOM
OG1
THR
H
80
66.408
22.543
13.898
1.00
20.71


ATOM
CG2
THR
H
80
67.380
20.380
14.248
1.00
21.24


ATOM
C
THR
H
80
64.476
21.295
11.945
1.00
18.46


ATOM
O
THR
H
80
64.323
22.234
11.161
1.00
18.70


ATOM
N
ASN
H
81
63.480
20.594
12.471
1.00
19.47


ATOM
CA
ASN
H
81
62.081
20.917
12.263
1.00
20.71


ATOM
CB
ASN
H
81
61.693
22.053
13.203
1.00
23.15


ATOM
CG
ASN
H
81
60.208
22.296
13.243
1.00
26.34


ATOM
OD1
ASN
H
81
59.409
21.384
13.099
1.00
28.57


ATOM
ND2
ASN
H
81
59.830
23.541
13.429
1.00
28.83


ATOM
C
ASN
H
81
61.728
21.235
10.800
1.00
20.55


ATOM
O
ASN
H
81
61.222
22.316
10.475
1.00
18.95


ATOM
N
MET
H
82
61.995
20.268
9.925
1.00
19.37


ATOM
CA
MET
H
82
61.731
20.396
8.500
1.00
19.90


ATOM
CB
MET
H
82
62.119
19.104
7.775
1.00
20.79


ATOM
CG
MET
H
82
63.643
18.886
7.651
1.00
19.47


ATOM
SD
MET
H
82
64.499
20.227
6.746
1.00
21.79


ATOM
CE
MET
H
82
64.228
19.776
5.039
1.00
15.01


ATOM
C
MET
H
82
60.276
20.755
8.216
1.00
22.71


ATOM
O
MET
H
82
59.360
20.168
8.793
1.00
24.24


ATOM
N
ASP
H
83
60.080
21.683
7.284
1.00
22.76


ATOM
CA
ASP
H
83
58.759
22.184
6.888
1.00
23.77


ATOM
CB
ASP
H
83
58.714
23.696
7.144
1.00
25.06


ATOM
CG
ASP
H
83
57.367
24.298
6.842
1.00
28.59


ATOM
OD1
ASP
H
83
56.478
24.190
7.701
1.00
32.41


ATOM
OD2
ASP
H
83
57.178
24.852
5.742
1.00
29.90


ATOM
C
ASP
H
83
58.596
21.944
5.395
1.00
22.22


ATOM
O
ASP
H
83
59.590
21.841
4.699
1.00
23.36


ATOM
N
PRO
H
84
57.350
21.834
4.882
1.00
20.50


ATOM
CD
PRO
H
84
56.066
21.715
5.600
1.00
20.73


ATOM
CA
PRO
H
84
57.143
21.619
3.446
1.00
18.92


ATOM
CB
PRO
H
84
55.641
21.822
3.305
1.00
18.31


ATOM
CG
PRO
H
84
55.129
21.194
4.526
1.00
18.56


ATOM
C
PRO
H
84
57.916
22.652
2.619
1.00
19.61


ATOM
O
PRO
H
84
58.437
22.349
1.553
1.00
20.74


ATOM
N
ALA
H
85
58.004
23.872
3.132
1.00
19.68


ATOM
CA
ALA
H
85
58.720
24.946
2.465
1.00
21.18


ATOM
CB
ALA
H
85
58.457
26.256
3.166
1.00
22.00


ATOM
C
ALA
H
85
60.235
24.709
2.362
1.00
22.08


ATOM
O
ALA
H
85
60.949
25.498
1.735
1.00
24.05


ATOM
N
ASP
H
86
60.740
23.682
3.032
1.00
18.30


ATOM
CA
ASP
H
86
62.152
23.379
2.952
1.00
17.61


ATOM
CB
ASP
H
86
62.664
22.784
4.262
1.00
16.88


ATOM
CG
ASP
H
86
62.547
23.752
5.417
1.00
22.66


ATOM
OD1
ASP
H
86
62.032
23.343
6.483
1.00
19.55


ATOM
OD2
ASP
H
86
62.954
24.932
5.257
1.00
24.22


ATOM
C
ASP
H
86
62.415
22.421
1.791
1.00
17.63


ATOM
O
ASP
H
86
63.568
22.018
1.574
1.00
17.70


ATOM
N
THR
H
87
61.360
22.018
1.074
1.00
15.36


ATOM
CA
THR
H
87
61.526
21.122
−0.066
1.00
14.35


ATOM
CB
THR
H
87
60.183
20.740
−0.680
1.00
13.84


ATOM
OG1
THR
H
87
59.454
19.945
0.257
1.00
15.44


ATOM
CG2
THR
H
87
60.387
19.913
−1.948
1.00
15.26


ATOM
C
THR
H
87
62.370
21.895
−1.069
1.00
15.26


ATOM
O
THR
H
87
62.031
23.023
−1.444
1.00
12.69


ATOM
N
ALA
H
88
63.507
21.317
−1.446
1.00
16.68


ATOM
CA
ALA
H
88
64.422
21.994
−2.352
1.00
16.96


ATOM
CB
ALA
H
88
64.946
23.281
−1.663
1.00
15.82


ATOM
C
ALA
H
88
65.
01
21.115
−2.711
1.00
15.92


ATOM
O
ALA
H
88
65.736
19.998
−2.218
1.00
15.04


ATOM
N
THR
H
89
66.429
21.627
−3.610
1.00
14.79


ATOM
CA
THR
H
89
67.655
20.971
−4.010
1.00
14.63


ATOM
CB
THR
H
89
67.923
21.180
−5.485
1.00
15.26


ATOM
OG1
THR
H
89
66.989
20.403
−6.232
1.00
17.61


ATOM
CG2
THR
H
89
69.360
20.774
−5.854
1.00
13.56


ATOM
C
THR
H
89
68.738
21.675
−3.190
1.00
14.21


ATOM
O
THR
H
89
68.802
22.907
−3.156
1.00
14.78


ATOM
N
TYR
H
90
69.651
20.894
−2.494
1.00
15.66


ATOM
CA
TYR
H
90
70.605
21.418
−1.638
1.00
13.86


ATOM
CB
TYR
H
90
70.527
20.751
−0.254
1.00
12.67


ATOM
CG
TYR
H
90
69.304
21.132
0.547
1.00
11.49


ATOM
CD1
TYR
H
90
68.Q35
20.632
0.227
1.00
12.32


ATOM
CE1
TYR
H
90
66.907
21.050
0.926
1.00
12.25


ATOM
CD2
TYR
H
90
69.405
22.037
1.585
1.00
8.94


ATOM
CE2
TYR
H
90
68.293
22.458
2.286
1.00
13.05


ATOM
CZ
TYR
H
90
67.053
21.967
1.951
1.00
13.38


ATOM
OH
TYR
H
90
65.981
22.433
2.651
1.00
16.83


ATOM
C
TYR
H
90
71.966
21.156
−2.262
1.00
14.93


ATOM
O
TYR
H
90
72.273
20.023
−2.664
1.00
12.21


ATOM
N
TYR
H
91
72.778
22.211
−2.319
1.00
14.42


ATOM
CA
TYR
H
91
74.122
22.158
−2.893
1.00
13.29


ATOM
CB
TYR
H
91
74.260
23.169
−4.047
1.00
13.73


ATOM
CG
TYR
H
91
73.312
23.032
−5.214
1.00
15.62


ATOM
CD1
TYR
H
91
72.169
23.826
−5.309
1.00
17.17


ATOM
CE1
TYR
H
91
71.343
23.766
−6.438
1.00
17.39


ATOM
CD2
TYR
H
91
73.600
22.168
−6.271
1.00
14.12


ATOM
CE2
TYR
H
91
72.774
22.102
−7.402
1.00
14.64


ATOM
CZ
TYR
H
91
71.662
22.899
−7.471
1.00
17.01


ATOM
OH
TYR
H
91
70.867
22.826
−8.572
1.00
19.82


ATOM
C
TYR
H
91
75.189
22.562
−1.881
1.00
11.93


ATOM
O
TYR
H
91
74.949
23.392
−1.016
1.00
11.94


ATOM
N
CYS
H
92
76.375
21.990
−1.989
1.00
12.26


ATOM
CA
CYS
H
92
77.470
22.439
−1.144
1.00
12.39


ATOM
C
CYS
H
92
78.467
22.930
−2.191
1.00
13.50


ATOM
O
CYS
H
92
78.452
22.480
−3.358
1.00
11.63


ATOM
CB
CYS
H
92
78.043
21.338
−0.249
1.00
12.10


ATOM
SG
CYS
H
92
78.729
19.877
−1.079
1.00
15.31


ATOM
N
ALA
H
93
79.242
23.935
−1.826
1.00
14.24


ATOM
CA
ALA
H
93
80.178
24.503
−2.755
1.00
15.22


ATOM
CB
ALA
H
93
79.506
25.690
−3.505
1.00
12.31


ATOM
C
ALA
H
93
81.456
24.952
−2.051
1.00
15.72


ATOM
O
ALA
H
93
81.436
25.311
−0.872
1.00
14.75


ATOM
N
ARG
H
94
82.559
24.936
−2.795
1.00
16.63


ATOM
CA
ARG
H
94
83.849
25.353
−2.268
1.00
15.90


ATOM
CB
ARG
H
94
84.963
24.513
−2.909
1.00
15.45


ATOM
CG
ARG
H
94
86.371
24.681
−2.281
1.00
13.98


ATOM
CD
ARG
H
94
87.148
25.873
−2.794
1.00
13.40


ATOM
NE
ARG
H
94
87.492
25.804
−4.213
1.00
16.03


ATOM
CZ
ARG
H
94
88.506
25.108
−4.717
1.00
18.37


ATOM
NH1
ARG
H
94
89.289
24.390
−3.932
1.00
18.16


ATOM
NH2
ARG
H
94
88.783
25.180
−6.006
1.00
18.51


ATOM
C
ARG
H
94
84.089
26.850
−2.519
1.00
13.99


ATOM
O
ARG
H
94
83.743
27.379
−3.576
1.00
13.67


ATOM
N
SER
H
95
84.679
27.521
−1.536
1.00
16.14


ATOM
CA
SER
H
95
85.011
28.939
−1.639
1.00
15.68


ATOM
CB
SER
H
95
84.065
29.810
−0.780
1.00
15.30


ATOM
OG
SER
H
95
82.715
29.760
−1.213
1.00
13.60


ATOM
C
SER
H
95
86.451
29.119
−1.144
1.00
15.90


ATOM
O
SER
H
95
86.965
28.290
−0.372
1.00
15.38


ATOM
N
MET
H
96
87.095
30.191
−1.599
1.00
17.08


ATOM
CA
MET
H
96
88.465
30.527
−1.201
1.00
19.15


ATOM
CB
MET
H
96
89.439
30.332
−2.370
1.00
19.64


ATOM
CG
MET
H
96
89.701
28.849
−2.678
1.00
25.79


ATOM
SD
MET
H
96
90.549
28.511
−4.238
1.00
29.25


ATOM
CE
MET
H
96
91.543
27.150
−3.780
1.00
30.33


ATOM
C
MET
H
96
88.418
31.977
−0.727
1.00
16.53


ATOM
O
MET
H
96
88.319
32.907
−1.522
1.00
17.07


ATOM
N
ILE
H
97
88.419
32.128
0.593
1.00
16.76


ATOM
CA
ILE
H
97
88.320
33.415
1.268
1.00
14.34


ATOM
CB
ILE
H
97
88.410
33.245
2.802
1.00
13.83


ATOM
CG2
ILE
H
97
88.001
34.513
3.491
1.00
10.54


ATOM
CG1
ILE
H
97
87.524
32.085
3.272
1.00
16.40


ATOM
CD1
ILE
H
97
86.055
32.197
2.875
1.00
16.82


ATOM
C
ILE
H
97
89.381
34.388
0.774
1.00
15.53


ATOM
O
ILE
H
97
90.555
34.047
0.695
1.00
:6.36


ATOM
N
THR
H
98
88.917
35.599
0.466
1.00
14.74


ATOM
CA
THR
H
98
89.661
36.739
−0.068
1.00
12.35


ATOM
CB
THR
H
98
90.976
37.091
0.680
1.00
10.22


ATOM
OG1
THR
H
98
92.000
36.156
0.326
1.00
10.30


ATOM
CG2
THR
H
98
90.766
37.122
2.191
1.00
7.62


ATOM
C
THR
H
98
89.923
36.565
−1.556
1.00
13.74


ATOM
O
THR
H
98
90.549
37.415
−2.187
1.00
17.87


ATOM
N
ASN
H
99
89.402
35.481
−2.124
1.00
14.64


ATOM
CA
ASN
H
99
89.551
35.205
−3.541
1.00
15.20


ATOM
CB
ASN
H
99
90.448
33.998
−3.760
1.00
16.40


ATOM
CG
ASN
H
99
91.902
34.344
−3.591
1.00
17.20


ATOM
OD1
ASN
H
99
92.388
35.290
−4.214
1.00
15.38


ATOM
ND2
ASN
H
99
92.594
33.626
−2.720
1.00
15.23


ATOM
C
ASN
H
99
88.213
35.049
−4.259
1.00
17.88


ATOM
O
ASN
H
99
87.855
35.899
−5.083
1.00
18.92


ATOM
N
TRP
H
100
87.441
34.017
−3.928
1.00
17.14


ATOM
CA
TRP
H
100
86.145
33.834
−4.591
1.00
18.19


ATOM
CB
TRP
H
100
86.341
33.387
−6.047
1.00
19.31


ATOM
CG
TRP
H
100
87.406
32.345
−6.185
1.00
19.32


ATOM
CD2
TRP
H
100
88.710
32.538
−6.722
1.00
19.62


ATOM
CE2
TRP
H
100
89.396
31.306
−6.597
1.00
22.56


ATOM
CE3
TRP
H
100
89.373
33.635
−7.294
1.00
17.80


ATOM
CD1
TRP
H
100
87.343
31.044
−5.773
1.00
19.51


ATOM
NE1
TRP
H
100
88.531
30.415
−6.011
1.00
21.48


ATOM
CZ2
TRP
H
100
90.729
31.131
−7.027
1.00
21.08


ATOM
CZ3
TRP
H
100
90.690
33.470
−7.722
1.00
20.58


ATOM
CH2
TRP
H
100
91.356
32.218
−7.583
1.00
23.10


ATOM
C
TRP
H
100
85.183
32.874
−3.908
1.00
16.39


ATOM
O
TRP
H
100
85.584
31.928
−3.245
1.00
15.36


ATOM
N
TYR
H
100A
83.901
33.129
−4.105
1.00
15.37


ATOM
CA
TYR
H
100
82.862
32.289
−3.555
1.00
16.59


ATOM
CB
TYR
H
100
81.656
33.136
−3.135
1.00
16.72


ATOM
CG
TYR
H
100
81.746
33.717
−1.749
1.00
22.50


ATOM
CD1
TYR
H
100
81.600
35.098
−1.553
1.00
23.43


ATOM
CE1
TYR
H
100
81.645
35.637
−0.273
1.00
22.21


ATOM
CD2
TYR
H
100
81.744
32.883
−0.626
1.00
24.26


ATOM
CE2
TYR
H
100
81.793
33.405
0.659
1.00
27.56


ATOM
CZ
TYR
H
100
81.840
34.783
0.829
1.00
29.81


ATOM
OH
TYR
H
100
81.860
35.292
2.103
1.00
34.18


ATOM
C
TYR
H
100
82.385
31.279
−4.587
1.00
14.72


ATOM
O
TYR
H
100
82.272
31.596
−5.772
1.00
14.44


ATOM
N
PHE
H
100B
82.115
30.070
−4.118
1.00
14.18


ATOM
CA
PHE
H
100
81.552
28.985
−4.923
1.00
15.04


ATOM
CB
PHE
H
100
80.018
29.135
−4.968
1.00
11.93


ATOM
CG
PHE
H
100
79.433
29.732
−3.719
1.00
10.44


ATOM
CD1
PHE
H
100
78.547
30.789
−3.798
1.00
12.27


ATOM
CD2
PHE
H
100
79.803
29.258
−2.469
1.00
10.01


ATOM
CE1
PHE
H
100
78.027
31.378
−2.647
1.00
14.34


ATOM
CE2
PHE
H
100
79.304
29.823
−1.308
1.00
10.04


ATOM
CZ
PHE
H
100
78.411
30.889
−1.386
1.00
13.85


ATOM
C
PHE
H
100
82.095
28.814
−6.341
1.00
16.03


ATOM
O
PHE
H
100
81.350
28.924
−7.316
1.00
16.54


ATOM
N
ASP
H
101
83.381
28.510
−6.459
1.00
15.78


ATOM
CA
ASP
H
101
83.966
28.305
−7.776
1.00
17.03


ATOM
CB
ASP
H
101
85.467
28.643
−7.788
1.00
16.29


ATOM
CG
ASP
H
101
86.280
27.761
−6.876
1.00
17.74


ATOM
OD1
ASP
H
101
87.419
27.421
−7.233
1.00
23.19


ATOM
OD2
ASP
H
101
85.815
27.429
−5.782
1.00
18.97


ATOM
C
ASP
H
101
83.710
26.868
−8.224
1.00
17.89


ATOM
O
ASP
H
101
83.770
26.569
−9.414
1.00
18.15


ATOM
N
VAL
H
102
83.420
25.977
−7.277
1.00
16.57


ATOM
CA
VAL
H
102
83.120
24.589
−7.613
1.00
18.26


ATOM
CB
VAL
H
102
84.332
23.662
−7.370
1.00
17.45


ATOM
CG1
VAL
H
102
84.069
22.280
−7.969
1.00
15.35


ATOM
CG2
VAL
H
102
85.804
24.285
−7.957
1.00
16.60


ATOM
C
VAL
H
102
81.940
24.118
−6.753
1.00
18.17


ATOM
O
VAL
H
102
81.984
24.245
−5.532
1.00
19.18


ATOM
N
TRP
H
103
80.908
23.565
−7.392
1.00
17.66


ATOM
CA
TRP
H
103
79.695
23.070
−6.714
1.00
16.97


ATOM
CB
TRP
H
103
78.450
23.733
−7.307
1.00
14.66


ATOM
CG
TRP
H
103
78.402
25.206
−7.217
1.00
13.16


ATOM
CD2
TRP
H
103
77.335
25.990
−6.683
1.00
13.16


ATOM
CE2
TRP
H
103
77.674
27.346
−6.885
1.00
11.97


ATOM
CE3
TRP
H
103
76.116
25.680
−6.053
1.00
14.23


ATOM
CG1
TRP
H
103
79.327
26.091
−7.698
1.00
12.35


ATOM
NE1
TRP
H
103
78.897
27.374
−7.503
1.00
10.43


ATOM
CZ2
TRP
H
103
76.839
28.396
−6.485
1.00
11.68


ATOM
CZ3
TRP
H
103
75.287
26.723
−5.652
1.00
12.59


ATOM
CH2
TRP
H
103
75.652
28.066
−5.870
1.00
12.82


ATOM
C
TRP
H
103
79.470
21.562
−6.876
1.00
18.07


ATOM
O
TRP
H
103
79.944
20.953
−7.839
1.00
19.15


ATOM
N
GLY
H
104
78.716
20.973
−5.950
1.00
16.51


ATOM
CA
GLY
H
104
78.372
19.568
−6.057
1.00
15.81


ATOM
C
GLY
H
104
77.235
19.521
−7.080
1.00
17.22


ATOM
O
GLY
H
104
76.809
20.561
−7.578
1.00
16.55


ATOM
N
ALA
H
105
76.699
18.340
−7.373
1.00
18.21


ATOM
CA
ALA
H
105
75.623
18.238
−8.359
1.00
15.09


ATOM
CB
ALA
H
105
75.555
16.842
−8.906
1.00
17.38


ATOM
C
ALA
H
105
74.283
18.634
−7.752
1.00
15.46


ATOM
O
ALA
H
105
73.356
19.008
−8.470
1.00
15.25


ATOM
N
GLY
H
106
74.202
18.570
−6.425
1.00
13.51


ATOM
CA
GLY
H
106
72.984
18.921
−5.713
1.00
14.41


ATOM
C
GLY
H
106
72.153
17.692
−5.417
1.00
14.89


ATOM
O
GLY
H
106
72.152
16.742
−6.204
1.00
16.09


ATOM
N
THR
H
107
71.498
17.668
−4.261
1.00
15.25


ATOM
CA
THR
H
107
70.647
16.531
−3.907
1.00
12.89


ATOM
CB
THR
H
107
71.260
15.655
−2.764
1.00
12.03


ATOM
OG1
THR
H
107
70.529
14.434
−2.627
1.00
14.85


ATOM
CG2
THR
H
107
71.265
16.380
−1.449
1.00
14.04


ATOM
C
THR
H
107
69.269
17.071
−3.563
1.00
13.69


ATOM
O
THR
H
107
69.136
18.102
−2.898
1.00
12.77


ATOM
N
THR
H
108
68.251
16.402
−4.094
1.00
14.91


ATOM
CA
THR
H
108
66.861
16.767
−3.896
1.00
14.31


ATOM
CB
THR
H
108
65.998
16.259
−5.054
1.00
16.49


ATOM
OG1
THR
H
108
66.604
16.644
−6.288
1.00
23.43


ATOM
CG2
THR
H
108
64.614
16.876
−5.002
1.00
18.43


ATOM
C
THR
H
108
66.287
16.220
−2.598
1.00
13.70


ATOM
O
THR
H
108
66.414
15.027
−2.291
1.00
11.70


ATOM
N
VAL
H
109
65.670
17.119
−1.836
1.00
12.30


ATOM
CA
VAL
H
109
65.026
16.784
−0.582
1.00
14.43


ATOM
CB
VAL
H
109
65.729
17.472
0.619
1.00
14.88


ATOM
CG1
VAL
H
109
65.026
17.122
1.920
1.00
13.86


ATOM
CG2
VAL
H
109
67.193
17.060
0.672
1.00
10.78


ATOM
C
VAL
H
109
63.568
17.258
−0.672
1.00
16.33


ATOM
O
VAL
H
109
63.292
18.397
−1.089
1.00
16.26


ATOM
N
THR
H
110
62.645
16.340
−0.382
1.00
16.17


ATOM
CA
THR
H
110
61.216
16.641
−0.371
1.00
14.13


ATOM
CB
THR
H
110
60.426
15.726
−1.325
1.00
13.82


ATOM
OG1
THR
H
110
60.771
16.028
−2.678
1.00
10.99


ATOM
CG2
THR
H
110
58.529
15.931
−1.147
1.00
12.81


ATOM
C
THR
H
110
60.707
16.415
1.050
1.00
13.72


ATOM
O
THR
H
110
61.045
15.409
1.680
1.00
14.07


ATOM
N
VAL
H
111
59.395
17.404
1.585
1.00
14.52


ATOM
CA
VAL
H
111
59.414
17.308
2.913
1.00
22.91


ATOM
CB
VAL
H
111
59.539
18.632
3.659
1.00
13.54


ATOM
CG1
VAL
H
111
59.004
18.481
5.091
1.00
12.26


ATOM
CG2
VAL
H
111
61.003
19.060
3.675
1.00
12.73


ATOM
C
VAL
H
111
57.946
16.927
2.735
1.00
23.85


ATOM
O
VAL
H
111
57.115
17.748
2.328
1.00
12.86


ATOM
N
SER
H
112
57.635
15.664
3.000
1.00
13.52


ATOM
CA
SER
H
112
56.277
15.186
2.825
1.00
14.65


ATOM
CB
SER
H
112
56.067
14.741
1.369
1.00
13.71


ATOM
OG
SER
H
112
54.733
14.274
1.173
1.00
16.01


ATOM
C
SER
H
112
55.895
14.049
3.757
1.00
25.63


ATOM
O
SER
H
112
56.743
13.287
4.216
1.00
16.01


ATOM
N
SER
H
113
54.594
13.929
3.998
1.00
17.91


ATOM
CA
SER
H
113
54.044
12.883
4.851
1.00
19.30


ATOM
CB
SER
H
113
52.757
13.394
5.523
1.00
20.59


ATOM
OG
SER
H
113
52.993
14.594
6.251
1.00
22.75


ATOM
C
SER
H
113
53.763
11.611
4.016
1.00
18.16


ATOM
O
SER
H
113
53.570
10.527
4.555
1.00
19.67


ATOM
N
ALA
H
114
53.747
11.757
2.698
1.00
17.12


ATOM
CA
ALA
H
114
53.492
10.633
1.808
1.00
16.60


ATOM
CB
ALA
H
114
53.203
11.129
0.405
1.00
15.09


ATOM
C
ALA
H
114
54.709
9.708
1.809
1.00
17.50


ATOM
O
ALA
H
114
55.829
10.144
2.067
1.00
27.91


ATOM
N
SER
H
115
54.489
8.442
1.491
1.00
16.28


ATOM
CA
SER
H
115
55.570
7.478
1.489
1.00
19.52


ATOM
CB
SER
H
115
55.079
6.132
2.064
1.00
19.19


ATOM
OG
SER
H
115
54.606
5.275
1.047
1.00
27.19


ATOM
C
SER
H
115
56.242
7.290
0.127
1.00
18.16


ATOM
O
SER
H
115
55.718
7.698
−0.910
1.00
17.69


ATOM
N
THR
H
116
57.435
6.711
0.158
1.00
18.51


ATOM
CA
THR
H
116
58.225
6.436
−1.034
1.00
17.26


ATOM
CB
THR
H
116
59.628
5.914
−0.630
1.00
15.24


ATOM
OG1
THR
H
116
60.286
6.915
0.161
1.00
16.91


ATOM
CG2
THR
H
116
60.471
5.593
−1.848
1.00
10.10


ATOM
C
THR
H
116
57.514
5.381
−1.880
1.00
18.11


ATOM
O
THR
H
116
56.921
4.448
−1.334
1.00
17.85


ATOM
N
LYS
H
117
57.535
5.566
−3.202
1.00
15.14


ATOM
CA
LYS
H
117
56.928
4.625
−4.138
1.00
14.76


ATOM
CB
LYS
H
117
55.487
5.047
−4.448
1.00
11.84


ATOM
CG
LYS
H
117
54.753
4.082
−5.354
1.00
11.64


ATOM
CG
LYS
H
117
53.331
4.533
−5.609
1.00
13.39


ATOM
CE
LYS
H
117
52.618
3.541
−6.493
1.00
14.85


ATOM
NZ
LYS
H
117
52.517
2.187
−5.850
1.00
19.06


ATOM
C
LYS
H
117
57.774
4.596
−5.429
1.00
15.11


ATOM
O
LYS
H
117
58.127
5.650
−5.977
1.00
16.09


ATOM
N
GLY
H
118
58.155
3.400
−5.867
1.00
14.77


ATOM
CA
GLY
H
118
58.963
3.255
−7.067
1.00
13.25


ATOM
C
GLY
H
118
58.079
3.364
−8.279
1.00
13.95


ATOM
O
GLY
H
118
56.894
3.074
−8.202
1.00
16.47


ATOM
N
PRO
H
119
58.625
3.759
−9.426
1.00
15.62


ATOM
CG
PRO
H
119
60.035
4.122
−9.637
1.00
19.10


ATOM
CA
PRO
H
119
57.860
3.915
−10.664
1.00
15.67


ATOM
CB
PRO
H
119
58.772
4.812
−11.495
1.00
15.38


ATOM
CG
PRO
H
119
60.120
4.281
−11.169
1.00
16.10


ATOM
C
PRO
H
119
57.538
2.660
−11.451
1.00
14.47


ATOM
O
PRO
H
119
58.185
1.611
−11.304
1.00
14.94


ATOM
N
SER
H
120
56.558
2.791
−12.328
1.00
13.35


ATOM
CA
SER
H
120
56.178
1.714
−13.232
1.00
15.97


ATOM
CB
SER
H
120
54.668
1.481
−13.221
1.00
18.07


ATOM
OG
SER
H
120
54.260
0.992
−11.952
1.00
22.46


ATOM
C
SER
H
120
56.608
2.310
−14.556
1.00
14.66


ATOM
O
SER
H
120
56.604
3.525
−14.702
1.00
16.58


ATOM
N
VAL
H
121
57.044
1.486
−15.497
1.00
14.09


ATOM
CA
VAL
H
121
57.502
2.004
−16.775
1.00
15.16


ATOM
CB
VAL
H
121
59.038
1.826
−16.919
1.00
13.34


ATOM
CD1
VAL
H
121
59.524
2.468
−18.215
1.00
14.30


ATOM
CG2
VAL
H
121
59.755
2.411
−15.710
1.00
11.15


ATOM
C
VAL
H
121
56.753
1.298
−17.902
1.00
16.62


ATOM
O
VAL
H
121
56.621
0.064
−17.905
1.00
18.28


ATOM
N
PHE
H
122
56.211
2.086
−18.821
1.00
15.27


ATOM
CA
PHE
H
122
55.444
1.553
−19.935
1.00
16.26


ATOM
CB
PHE
H
122
53.971
1.986
−19.827
1.00
13.75


ATOM
CG
PHE
H
122
53.328
1.608
−18.525
1.00
17.83


ATOM
CD1
PHE
H
122
53.066
0.272
−18.225
1.00
16.34


ATOM
CD2
PHE
H
122
53.022
2.577
−17.578
1.00
17.41


ATOM
CE1
PHE
H
122
52.520
−0.088
−17.010
1.00
15.75


ATOM
CE2
PHE
H
122
52.472
2.217
−16.349
1.00
17.96


ATOM
CZ
PHE
H
122
52.224
0.883
−16.071
1.00
16.23


ATOM
C
PHE
H
122
56.028
2.100
−21.211
1.00
16.57


ATOM
O
PHE
H
122
56.629
3.222
−21.244
1.00
18.33


ATOM
N
PRO
H
123
55.989
1.309
−22.281
1.00
15.62


ATOM
CD
PRO
H
123
55.570
−0.103
−22.354
1.00
14.76


ATOM
CA
PRO
H
123
56.530
1.768
−23.555
1.00
14.94


ATOM
CB
PRO
H
123
56.649
0.472
−24.337
1.00
17.14


ATOM
CG
PRO
H
123
55.456
−0.323
−23.836
1.00
16.17


ATOM
C
PRO
H
123
55.648
2.735
−24.319
1.00
16.60


ATOM
O
PRO
H
123
54.411
2.680
−24.245
1.00
17.55


ATOM
N
LEU
H
124
56.286
3.650
−25.031
1.00
13.37


ATOM
CA
LEU
H
124
55.561
4.556
−25.890
1.00
14.24


ATOM
CB
LEU
H
124
55.994
6.013
−25.655
1.00
15.79


ATOM
CG
LEU
H
124
55.665
6.606
−24.265
1.00
17.62


ATOM
CD1
LEU
H
124
56.269
7.985
−24.102
1.00
13.09


ATOM
CD2
LEU
H
124
54.153
6.660
−24.041
1.00
18.38


ATOM
C
LEU
H
124
56.077
3.994
−27.221
1.00
16.57


ATOM
O
LEU
H
124
57.307
4.426
−27.742
1.00
15.81


ATOM
N
ALA
H
125
55.420
2.937
−27.697
1.00
16.47


ATOM
CA
ALA
H
125
55.828
2.245
−28.920
1.00
15.66


ATOM
CB
ALA
H
125
54.977
1.002
−29.140
1.00
10.29


ATOM
C
ALA
H
125
55.819
3.109
−30.154
1.00
17.52


ATOM
O
ALA
H
125
54.968
3.984
−30.318
1.00
21.55


ATOM
N
PRO
H
126
56.789
2.892
−31.042
1.00
20.30


ATOM
CD
PRO
H
126
57.897
1.929
−30.946
1.00
20.63


ATOM
CA
PRO
H
126
56.878
3.667
−32.279
1.00
22.95


ATOM
CB
PRO
H
126
58.198
3.188
−32.886
1.00
21.13


ATOM
CG
PRO
H
126
58.302
1.785
−32.395
1.00
22.39


ATOM
C
PRO
H
126
55.700
3.375
−33.193
1.00
27.03


ATOM
O
PRO
H
126
55.427
2.226
−33.504
1.00
27.46


ATOM
N
SER
H
127
54.992
4.430
−33.577
1.00
34.03


ATOM
CA
SER
H
127
53.833
4.346
−34.460
1.00
39.73


ATOM
CB
SER
H
127
53.179
5.724
−34.629
1.00
43.44


ATOM
OG
SER
H
127
52.642
5.910
−35.940
1.00
42.93


ATOM
C
SER
H
127
54.300
3.881
−35.803
1.00
42.00


ATOM
O
SER
H
127
53.500
3.580
−36.684
1.00
43.71


ATOM
N
SER
H
128
55.597
3.962
−36.008
1.00
44.63


ATOM
CA
SER
H
128
56.137
3.532
−37.262
1.00
48.81


ATOM
CB
SER
H
128
57.449
4.268
−37.540
1.00
50.45


ATOM
OG
SER
H
128
57.252
5.678
−37.548
1.00
48.06


ATOM
C
SER
H
128
56.315
2.023
−37.164
1.00
50.25


ATOM
O
SER
H
128
55.845
1.393
−36.207
1.00
49.98


ATOM
N
LYS
H
129
56.944
1.443
−38.175
1.00
49.86


ATOM
CA
LYS
H
129
57.180
0.014
−38.191
1.00
49.05


ATOM
CB
LYS
H
129
55.874
−0.722
−38.414
1.00
49.61


ATOM
C
LYS
H
129
58.151
−0.266
−39.320
1.00
48.36


ATOM
O
LYS
H
129
59.112
−1.022
−39.152
1.00
44.64


ATOM
NZ
LYS
H
129
51.040
−1.190
−37.021
0.00
0.00


ATOM
CE
LYS
H
129
52.290
−0.431
−36.870
0.00
0.00


ATOM
CD
LYS
H
129
53.427
−0.974
−37.734
0.00
0.00


ATOM
CG
LYS
H
129
54.730
−0.196
−37.554
0.00
0.00


ATOM
N
SER
H
130
57.862
0.364
−40.464
1.00
48.61


ATOM
CA
SER
H
130
58.643
0.255
−41.703
1.00
47.96


ATOM
CB
SER
H
130
57.736
0.583
−42.898
1.00
47.61


ATOM
C
SER
H
130
59.875
1.176
−41.704
1.00
48.17


ATOM
O
SER
H
130
60.004
2.065
−40.830
1.00
48.15


ATOM
N
THR
H
131
60.739
0.991
−42.701
0.01
47.53


ATOM
CA
THR
H
131
61.974
1.757
−42.843
0.01
47.59


ATOM
CB
THR
H
131
63.005
0.935
−43.613
0.01
46.60


ATOM
C
THR
H
131
61.827
3.143
−43.476
0.01
47.59


ATOM
O
THR
H
131
62.023
4.157
−42.811
0.01
47.36


ATOM
N
SER
H
132
61.563
3.181
−44.778
0.01
48.07


ATOM
CA
SER
H
132
61.404
4.433
−45.510
0.01
48.10


ATOM
CB
SER
H
132
61.123
4.153
−46.979
0.01
48.72


ATOM
C
SER
H
132
60.313
5.324
−44.927
0.01
47.75


ATOM
O
SER
H
132
59.137
5.192
−45.270
0.01
48.15


ATOM
N
GLY
H
133
60.717
6.221
−44.035
0.01
46.82


ATOM
CA
GLY
H
133
59.778
7.138
−43.419
0.01
45.30


ATOM
C
GLY
H
133
60.485
8.243
−42.661
0.01
43.62


ATOM
O
GLY
H
133
59.855
8.993
−41.914
0.01
44.14


ATOM
N
GLY
H
134
61.792
8.371
−42.878
1.00
42.62


ATOM
CA
GLY
H
134
62.547
9.392
−42.187
1.00
37.35


ATOM
C
GLY
H
134
62.780
9.112
−40.710
1.00
34.73


ATOM
O
GLY
H
134
63.626
8.277
−40.355
1.00
32.41


ATOM
N
THR
H
135
61.982
9.751
−39.859
1.00
33.59


ATOM
CA
THR
H
135
62.140
9.647
−38.406
1.00
32.75


ATOM
CB
THR
H
135
62.648
11.011
−37.859
1.00
34.16


ATOM
OG1
THR
H
135
63.967
11.256
−38.361
1.00
36.29


ATOM
CG2
THR
H
135
62.691
11.031
−36.355
1.00
37.02


ATOM
C
THR
H
135
60.920
9.202
−37.598
1.00
29.09


ATOM
O
THR
H
135
59.800
9.638
−37.832
1.00
31.07


ATOM
N
ALA
H
136
61.164
8.374
−36.597
1.00
25.01


ATOM
CA
ALA
H
136
60.105
7.878
−35.744
1.00
23.72


ATOM
CB
ALA
H
136
60.022
6.363
−35.859
1.00
24.23


ATOM
C
ALA
H
136
60.388
8.260
−34.297
1.00
22.99


ATOM
O
ALA
H
136
61.545
8.331
−33.884
1.00
22.43


ATOM
N
ALA
H
137
59.338
8.518
−33.529
1.00
21.07


ATOM
CA
ALA
H
137
59.520
8.836
−32.125
1.00
19.57


ATOM
CB
ALA
H
137
58.811
10.101
−31.763
1.00
18.29


ATOM
C
ALA
H
137
58.991
7.686
−31.293
1.00
20.25


ATOM
O
ALA
H
137
58.015
7.025
−31.664
1.00
20.92


ATOM
N
LEU
H
138
59.678
7.422
−30.194
1.00
19.10


ATOM
CA
LEU
H
138
59.317
6.375
−29.258
1.00
15.77


ATOM
CB
LEU
H
138
60.036
5.075
−29.618
1.00
16.18


ATOM
CG
LEU
H
138
61.569
5.057
−29.693
1.00
14.59


ATOM
CD1
LEU
H
138
62.140
4.576
−28.386
1.00
16.58


ATOM
CD2
LEU
H
138
61.983
4.113
−30.775
1.00
15.53


ATOM
C
LEU
H
138
59.760
6.897
−27.899
1.00
15.97


ATOM
O
LEU
H
138
60.466
7.904
−27.818
1.00
16.00


ATOM
N
GLY
H
139
59.338
6.252
−26.827
1.00
15.65


ATOM
CA
GLY
H
139
59.737
6.721
−25.523
1.00
14.54


ATOM
C
GLY
H
139
59.295
5.785
−24.437
1.00
15.97


ATOM
O
GLY
H
139
58.892
4.647
−24.709
1.00
16.46


ATOM
N
CYS
H
140
59.326
6.290
−23.209
1.00
15.70


ATOM
CA
CYS
H
140
58.925
5.539
−22.035
1.00
14.57


ATOM
C
CYS
H
140
58.121
6.419
−21.085
1.00
13.88


ATOM
O
CYS
H
140
58.457
7.592
−20.881
1.00
11.51


ATOM
CB
CYS
H
140
60.153
5.011
−21.302
1.00
16.76


ATOM
SO
CYS
H
140
60.792
3.452
−21.985
1.00
16.67


ATOM
N
LEU
H
141
57.003
5.873
−20.604
1.00
14.15


ATOM
CA
LEU
H
141
56.138
6.532
−19.637
1.00
11.75


ATOM
CB
LEU
H
141
54.664
6.189
−19.886
1.00
12.89


ATOM
CG
LEU
H
141
53.621
6.757
−18.916
1.00
11.36


ATOM
CD1
LEU
H
141
53.620
8.316
−18.934
1.00
9.80


ATOM
CD2
LEU
H
141
52.248
6.198
−19.277
1.00
10.76


ATOM
C
LEU
H
141
56.590
5.992
−18.276
1.00
13.36


ATOM
O
LEU
H
141
56.578
4.788
−18.037
1.00
13.78


ATOM
N
VAL
H
142
57.044
6.905
−17.421
1.00
14.52


ATOM
CA
VAL
H
142
57.542
6.601
−16.086
1.00
13.75


ATOM
CB
VAL
H
142
58.923
7.264
−15.872
1.00
12.16


ATOM
CG1
VAL
H
142
59.516
6.856
−14.542
1.00
9.59


ATOM
CG2
VAL
H
142
59.866
6.851
−17.005
1.00
10.00


ATOM
C
VAL
H
142
56.527
7.183
−15.125
1.00
15.66


ATOM
O
VAL
H
142
56.541
8.384
−14.850
1.00
15.64


ATOM
N
LYS
H
143
55.616
6.348
−14.630
1.00
17.91


ATOM
CA
LYS
H
143
54.600
6.875
−13.752
1.00
17.78


ATOM
CB
LYS
H
143
53.271
7.025
−14.502
1.00
22.02


ATOM
CG
LYS
H
143
52.450
5.788
−14.689
1.00
23.22


ATOM
CD
LYS
H
143
51.228
6.108
−15.557
1.00
27.56


ATOM
CE
LYS
H
143
50.239
7.105
−14.929
1.00
28.88


ATOM
NZ
LYS
H
143
49.292
6.527
−13.914
1.00
29.43


ATOM
C
LYS
H
143
54.384
6.264
−12.390
1.00
15.32


ATOM
O
LYS
H
143
54.827
5.144
−12.106
1.00
11.57


ATOM
N
ASP
H
144
53.786
7.102
−11.538
1.00
15.37


ATOM
CA
ASP
H
144
53.392
6.800
−10.166
1.00
15.38


ATOM
CB
ASP
H
144
52.338
5.686
−10.153
1.00
18.41


ATOM
CG
ASP
H
144
51.111
6.029
−10.984
1.00
19.01


ATOM
OD1
ASP
H
144
50.851
7.224
−11.190
1.00
18.51


ATOM
OD2
ASP
H
144
50.409
5.101
−11.444
1.00
22.72


ATOM
C
ASP
H
144
54.518
6.499
−9.191
1.00
13.76


ATOM
O
ASP
H
144
54.548
5.453
−8.542
1.00
12.14


ATOM
N
TYR
H
145
55.434
7.451
−9.075
1.00
14.87


ATOM
CA
TYR
H
145
56.557
7.312
−8.164
1.00
11.80


ATOM
CB
TYR
H
145
57.880
7.176
−8.936
1.00
12.15


ATOM
CG
TYR
H
145
58.300
8.405
−9.722
1.00
13.86


ATOM
CD1
TYR
H
145
57.996
8.535
−11.083
1.00
10.29


ATOM
CE1
TYR
H
145
58.360
9.682
−11.778
1.00
10.58


ATOM
CD2
TYR
H
145
58.980
9.452
−9.089
1.00
10.94


ATOM
CE2
TYR
H
145
59.344
10.597
−9.772
1.00
10.46


ATOM
CZ
TYR
H
145
59.036
10.709
−11.104
1.00
10.53


ATOM
OH
TYR
H
145
59.414
11.855
−11.742
1.00
12.24


ATOM
C
TYR
H
145
56.560
8.543
−7.272
1.00
11.16


ATOM
O
TYR
H
145
55.919
9.561
−7.591
1.00
9.37


ATOM
N
PHE
H
146
57.271
8.440
−6.157
1.00
11.54


ATOM
CA
PHE
H
146
57.397
9.518
−5.199
1.00
10.60


ATOM
CB
PHE
H
146
56.155
9.580
−4.292
1.00
12.01


ATOM
CG
PHE
H
146
56.050
10.860
−3.486
1.00
10.87


ATOM
CD1
PHE
H
146
56.420
10.888
−2.145
1.00
9.67


ATOM
CD2
PHE
H
146
55.620
12.047
−4.095
1.00
10.37


ATOM
CE1
PHE
H
146
56.376
12.071
−1.422
1.00
7.13


ATOM
CE2
PHE
H
146
55.569
13.239
−3.387
1.00
11.35


ATOM
CZ
PHE
H
146
55.950
13.259
−2.045
1.00
10.49


ATOM
C
PHE
H
146
58.603
9.165
−4.351
1.00
11.66


ATOM
O
PHE
H
146
58.849
7.993
−4.102
1.00
13.17


ATOM
N
PRO
H
147
59.475
10.144
−4.061
1.00
15.11


ATOM
CD
PRO
H
147
60.393
10.039
−2.903
1.00
11.77


ATOM
CA
PRO
H
147
59.374
11.538
−4.512
1.00
12.86


ATOM
CD
PRO
H
147
59.920
12.318
−3.301
1.00
11.39


ATOM
CG
PRO
H
147
61.014
11.442
−2.810
1.00
13.59


ATOM
C
PRO
H
147
60.293
11.691
−5.721
1.00
11.82


ATOM
O
PRO
H
147
60.710
10.694
−6.331
1.00
10.54


ATOM
N
GLU
H
148
60.563
12.933
−6.100
1.00
13.23


ATOM
CA
GLU
H
148
61.502
13.210
−7.172
1.00
12.55


ATOM
CB
GLU
H
148
61.467
14.700
−7.516
1.00
13.76


ATOM
CG
GLU
H
148
60.350
15.097
−8.443
1.00
16.65


ATOM
CD
GLU
H
148
60.705
14.890
−9.894
1.00
18.85


ATOM
OE1
GLU
H
148
60.868
15.905
−10.600
1.00
20.04


ATOM
OE2
GLU
H
148
60.816
13.720
−10.333
1.00
20.68


ATOM
C
GLU
H
148
62.873
12.884
−6.537
1.00
12.83


ATOM
O
GLU
H
148
63.027
12.967
−5.306
1.00
13.72


ATOM
N
PRO
H
149
63.889
12.558
−7.358
1.00
13.44


ATOM
CD
PRO
H
149
65.297
12.743
−6.955
1.00
9.52


ATOM
CA
PRO
H
149
63.793
12.483
−8.813
1.00
12.75


ATOM
CB
PRO
H
149
64.933
13.390
−9.233
1.00
13.35


ATOM
CG
PRO
H
149
66.009
12.955
−8.279
1.00
11.58


ATOM
C
PRO
H
149
64.003
11.072
−9.379
1.00
11.79


ATOM
O
PRO
H
149
64.357
10.138
−8.672
1.00
13.53


ATOM
N
VAL
H
150
63.802
10.957
−10.677
1.00
11.06


ATOM
CA
VAL
H
150
64.017
9.726
−11.415
1.00
16.43


ATOM
CB
VAL
H
150
62.641
9.208
−12.035
1.00
17.41


ATOM
CG1
VAL
H
150
62.438
9.689
−13.470
1.00
15.21


ATOM
CG2
VAL
H
150
62.540
7.717
−11.953
1.00
19.94


ATOM
C
VAL
H
150
65.002
10.163
−12.527
1.00
16.34


ATOM
O
VAL
H
150
65.097
11.351
−12.825
1.00
16.73


ATOM
N
THR
H
151
65.834
9.262
−13.031
1.00
16.34


ATOM
CA
THR
H
151
66.702
9.616
−14.150
1.00
15.33


ATOM
CB
THR
H
151
68.214
9.492
−13.860
1.00
16.67


ATOM
OG1
THR
H
151
68.521
8.147
−13.507
1.00
19.39


ATOM
CG2
THR
H
151
68.638
10.415
−12.762
1.00
18.99


ATOM
C
THR
H
151
66.364
8.607
−15.232
1.00
15.33


ATOM
O
THR
H
151
65.975
7.474
−14.927
1.00
15.10


ATOM
N
VAL
H
152
66.463
9.024
−16.489
1.00
15.67


ATOM
CA
VAL
H
152
66.186
8.130
−17.593
1.00
15.90


ATOM
CB
VAL
H
152
64.840
8.463
−18.298
1.00
16.43


ATOM
CG1
VAL
H
152
64.559
7.429
−19.389
1.00
17.02


ATOM
CG2
VAL
H
152
63.687
8.514
−17.289
1.00
12.53


ATOM
C
VAL
H
152
67.304
8.188
−18.631
1.00
15.46


ATOM
O
VAL
H
152
67.725
9.273
−19.044
1.00
15.77


ATOM
N
SER
H
153
67.823
7.025
−19.010
1.00
15.40


ATOM
CA
SER
H
153
68.846
6.961
−20.048
1.00
17.96


ATOM
CB
SER
H
153
70.220
6.517
−19.500
1.00
19.47


ATOM
CG
SER
H
153
70.209
5.207
−18.971
1.00
19.50


ATOM
C
SER
H
153
68.321
5.993
−21.100
1.00
17.07


ATOM
O
SER
H
153
67.328
5.298
−20.857
1.00
16.03


ATOM
N
TRP
H
154
68.
51
5.983
−22.271
1.00
16.08


ATOM
CA
TRP
H
154
68.550
5.122
−23.369
1.00
16.39


ATOM
CB
TRP
H
154
68.061
5.975
−24.556
1.00
15.81


ATOM
CG
TRP
H
154
66.678
6.533
−24.338
1.00
16.04


ATOM
CD2
TRP
H
154
65.446
5.855
−24.584
1.00
15.49


ATOM
CE2
TRP
H
154
64.406
6.704
−24.147
1.00
15.24


ATOM
CE3
TRP
H
154
65.117
4.606
−25.127
1.00
13.01


ATOM
CG1
TRP
H
154
66.343
7.750
−23.788
1.00
16.52


ATOM
NE1
TRP
H
154
64.980
7.852
−23.666
1.00
14.13


ATOM
CZ2
TRP
H
154
63.061
6.338
−24.239
1.00
13.45


ATOM
CZ3
TRP
H
154
63.781
4.250
−25.215
1.00
11.20


ATOM
CH2
TRP
H
154
62.773
5.110
−24.774
1.00
11.53


ATOM
C
TRP
H
154
69.743
4.288
−23.792
1.00
19.86


ATOM
O
TRP
H
154
70.850
4.819
−23.995
1.00
18.11


ATOM
N
ASN
H
155
69.536
2.978
−23.886
1.00
19.14


ATOM
CA
ASN
H
155
70.595
2.051
−24.284
1.00
18.51


ATOM
CB
ASN
H
155
70.884
2.203
−25.773
1.00
16.21


ATOM
CG
ASN
H
155
69.744
1.697
−26.624
1.00
14.90


ATOM
OD1
ASN
H
155
68.890
0.968
−26.132
1.00
15.81


ATOM
ND2
ASN
H
155
69.734
2.045
−27.902
1.00
14.10


ATOM
C
ASN
H
155
71.854
2.231
−23.424
1.00
21.54


ATOM
O
ASN
H
155
72.986
2.289
−23.926
1.00
21.60


ATOM
N
SER
H
156
71.618
2.307
−22.114
1.00
23.82


ATOM
CA
SER
H
156
72.657
2.477
−21.097
1.00
25.32


ATOM
CB
SER
H
156
73.478
1.194
−20.947
1.00
23.36


ATOM
OG
SER
H
156
72.655
0.122
−20.528
1.00
23.97


ATOM
C
SER
H
156
73.569
3.678
−21.339
1.00
26.35


ATOM
O
SER
H
156
74.757
3.628
−21.021
1.00
26.24


ATOM
N
GLY
H
157
73.001
4.756
−21.888
1.00
24.38


ATOM
CA
GLY
H
157
73.763
5.966
−22.160
1.00
21.04


ATOM
C
GLY
H
157
74.256
6.104
−23.590
1.00
23.32


ATOM
O
GLY
H
157
74.639
7.183
−24.016
1.00
23.51


ATOM
N
ALA
H
158
74.194
5.020
−24.352
1.00
23.69


ATOM
CA
ALA
H
158
74.666
5.015
−25.727
1.00
17.48


ATOM
CB
ALA
H
158
74.790
3.588
−26.228
1.00
17.39


ATOM
C
ALA
H
158
73.797
5.822
−26.668
1.00
13.71


ATOM
O
ALA
H
158
74.243
6.195
−27.753
1.00
13.65


ATOM
N
LEU
H
159
72.544
6.058
−26.281
1.00
18.26


ATOM
CA
LEU
H
159
71.636
6.827
−27.127
1.00
19.74


ATOM
CB
LEU
H
159
70.335
6.056
−27.370
1.00
18.94


ATOM
CG
LEU
H
159
69.576
6.197
−28.689
1.00
19.52


ATOM
CD1
LEU
H
159
68.134
5.790
−28.448
1.00
16.51


ATOM
CD2
LEU
H
159
69.649
7.583
−29.248
1.00
23.06


ATOM
C
LEU
H
159
71.322
8.107
−26.384
1.00
18.47


ATOM
O
LEU
H
159
70.659
8.083
−25.357
1.00
18.48


ATOM
N
THR
H
160
71.791
9.229
−26.904
1.00
23.36


ATOM
CA
THR
H
160
71.554
10.499
−26.250
1.00
23.65


ATOM
CB
THR
H
160
72.826
10.963
−25.546
1.00
21.22


ATOM
OG1
THR
H
160
73.915
10.925
−26.475
1.00
22.67


ATOM
CG2
THR
H
160
73.148
10.037
−24.385
1.00
23.98


ATOM
C
THR
H
160
71.050
11.574
−27.202
1.00
23.49


ATOM
O
THR
H
160
70.370
12.512
−26.785
1.00
19.91


ATOM
N
SER
H
161
71.344
11.442
−28.487
1.00
23.44


ATOM
CA
SER
H
161
70.887
12.454
−29.421
1.00
24.43


ATOM
CB
SER
H
161
71.613
12.343
−30.769
1.00
25.80


ATOM
CG
SER
H
161
71.513
11.035
−31.312
1.00
36.45


ATOM
C
SER
H
161
69.385
12.371
−29.615
1.00
23.52


ATOM
O
SER
H
161
68.837
11.284
−29.794
1.00
26.83


ATOM
N
GLY
H
162
68.718
13.515
−29.511
1.00
22.52


ATOM
CA
GLY
H
162
67.287
13.574
−29.719
1.00
19.26


ATOM
C
GLY
H
162
66.453
13.105
−28.558
1.00
18.67


ATOM
O
GLY
H
162
65.263
12.867
−28.727
1.00
19.57


ATOM
N
VAL
H
163
67.069
12.956
−27.392
1.00
18.18


ATOM
CA
VAL
H
163
66.344
12.514
−26.209
1.00
18.28


ATOM
CB
VAL
H
163
67.252
11.766
−25.184
1.00
16.13


ATOM
CG1
VAL
H
163
66.465
11.412
−23.930
1.00
15.25


ATOM
CG2
VAL
H
163
67.799
10.503
−25.794
1.00
16.95


ATOM
C
VAL
H
163
65.763
13.728
−25.521
1.00
18.72


ATOM
O
VAL
H
163
66.399
14.777
−25.452
1.00
21.28


ATOM
N
HIS
H
164
64.541
13.586
−25.031
1.00
17.35


ATOM
CA
HIS
H
164
63.871
14.649
−24.313
1.00
16.94


ATOM
CB
HIS
H
164
62.817
15.341
−25.182
1.00
19.00


ATOM
CG
HIS
H
164
63.372
16.361
−26.128
1.00
18.12


ATOM
CG2
HIS
H
164
63.975
17.549
−25.898
1.00
16.70


ATOM
ND1
HIS
H
164
63.256
16.251
−27.497
1.00
18.61


ATOM
CE1
HIS
H
164
63.753
17.331
−28.068
1.00
14.03


ATOM
NE2
HIS
H
164
64.194
18.133
−27.119
1.00
18.56


ATOM
C
HIS
H
164
63.175
13.985
−23.152
1.00
17.34


ATOM
O
HIS
H
164
62.250
13.191
−23.347
1.00
16.54


ATOM
N
THR
H
165
63.663
14.252
−21.952
1.00
17.07


ATOM
CA
THR
H
165
63.049
13.703
−20.752
1.00
16.08


ATOM
CB
THR
H
165
64.097
13.062
−19.842
1.00
15.02


ATOM
OG1
THR
H
165
64.689
11.978
−20.559
1.00
14.53


ATOM
CG2
THR
H
165
63.475
12.517
−18.570
1.00
13.69


ATOM
C
THR
H
165
62.325
14.853
−20.083
1.00
13.93


ATOM
O
THR
H
165
62.933
15.766
−19.533
1.00
12.69


ATOM
N
PHE
H
166
61.011
14.828
−20.218
1.00
13.31


ATOM
CA
PHE
H
166
60.151
15.860
−19.676
1.00
11.35


ATOM
CB
PHE
H
166
58.715
15.647
−20.176
1.00
11.84


ATOM
CG
PHE
H
166
58.554
15.834
−21.666
1.00
13.49


ATOM
CD1
PHE
H
166
58.575
14.738
−22.528
1.00
16.51


ATOM
CD2
PHE
H
166
58.389
17.106
−22.205
1.00
14.83


ATOM
CH1
PHE
H
166
58.437
14.903
−23.904
1.00
15.29


ATOM
CE2
PHE
H
166
58.251
17.283
−23.576
1.00
14.45


ATOM
CZ
PHE
H
166
58.275
16.181
−24.427
1.00
15.22


ATOM
C
PHE
H
166
60.172
15.945
−18.154
1.00
12.15


ATOM
O
PHE
H
166
60.378
14.945
−17.466
1.00
9.27


ATOM
N
PRO
H
167
60.059
17.175
−17.619
1.00
13.86


ATOM
CD
PRO
H
167
60.046
18.419
−18.415
1.00
15.57


ATOM
CA
PRO
H
167
60.040
17.482
−16.190
1.00
11.73


ATOM
CB
PRO
H
167
59.691
18.962
−16.170
1.00
12.97


ATOM
CG
PRO
H
167
60.362
19.470
−17.371
1.00
17.36


ATOM
C
PRO
H
167
58.873
16.727
−15.611
1.00
12.24


ATOM
O
PRO
H
167
57.799
16.701
−16.234
1.00
13.95


ATOM
N
ALA
H
168
59.057
16.122
−14.439
1.00
12.11


ATOM
CA
ALA
H
168
57.976
15.386
−13.793
1.00
12.13


ATOM
CB
ALA
H
168
58.475
14.688
−12.552
1.00
8.32


ATOM
C
ALA
H
168
56.858
16.345
−13.423
1.00
13.78


ATOM
O
ALA
H
168
57.081
17.544
−13.234
1.00
15.51


ATOM
N
VAL
H
169
55.645
15.831
−13.371
1.00
12.89


ATOM
CA
VAL
H
169
54.506
16.635
−12.988
1.00
15.57


ATOM
CB
VAL
H
169
53.612
16.990
−14.232
1.00
16.84


ATOM
CG1
VAL
H
169
52.333
17.668
−13.794
1.00
19.49


ATOM
CG2
VAL
H
169
54.368
17.932
−15.193
1.00
17.39


ATOM
C
VAL
H
169
53.761
15.763
−11.980
1.00
15.66


ATOM
O
VAL
H
169
53.637
14.553
−12.179
1.00
17.42


ATOM
N
LEU
H
170
53.393
16.347
−10.844
1.00
15.29


ATOM
CA
LEU
H
170
52.668
15.627
−9.804
1.00
15.27


ATOM
CB
LEU
H
170
52.716
16.381
−8.461
1.00
12.42


ATOM
CG
LEU
H
170
52.125
15.662
−7.235
1.00
13.03


ATOM
CD1
LEU
H
170
53.065
14.595
−6.769
1.00
13.43


ATOM
CD2
LEU
H
170
51.929
16.616
−6.109
1.00
18.10


ATOM
C
LEU
H
170
51.220
15.507
−10.249
1.00
18.26


ATOM
O
LEU
H
170
50.696
16.503
−10.610
1.00
18.33


ATOM
N
GLN
H
171
50.721
14.276
−10.277
1.00
19.12


ATOM
CA
GLN
H
171
49.349
13.976
−10.672
1.00
18.69


ATOM
CB
GLN
H
171
49.243
12.496
−11.041
1.00
15.23


ATOM
CG
GLN
H
171
50.154
12.095
−12.186
1.00
18.70


ATOM
CD
GLN
H
171
50.341
10.594
−12.300
1.00
21.99


ATOM
OE1
GLN
H
171
50.953
9.969
−11.436
1.00
22.59


ATOM
NE2
GLN
H
171
49.852
10.011
−13.385
1.00
21.12


ATOM
C
GLN
H
171
48.437
14.260
−9.479
1.00
21.17


ATOM
O
GLN
H
171
48.901
14.416
−8.335
1.00
18.05


ATOM
N
SER
H
172
47.131
14.270
−9.730
1.00
24.36


ATOM
CA
SER
H
172
46.177
14.508
−8.657
1.00
24.61


ATOM
CB
SER
H
172
44.760
14.628
−9.222
1.00
28.12


ATOM
OG
SER
H
172
44.475
13.541
−10.090
1.00
35.60


ATOM
C
SER
H
172
46.275
13.373
−7.629
1.00
23.66


ATOM
O
SER
H
172
45.942
13.572
−6.464
1.00
26.39


ATOM
N
SER
H
173
46.758
12.201
−8.050
1.00
19.22


ATOM
CA
SER
H
173
46.938
11.055
−7.151
1.00
18.61


ATOM
CB
SER
H
173
47.319
9.825
−7.961
1.00
19.87


ATOM
OG
SER
H
173
48.551
10.027
−8.630
1.00
23.71


ATOM
C
SER
H
173
48.027
11.307
−6.101
1.00
17.92


ATOM
O
SER
H
173
48.162
10.562
−5.125
1.00
18.89


ATOM
N
GLY
H
174
48.800
12.367
−6.309
1.00
17.55


ATOM
CA
GLY
H
174
49.869
12.711
−5.389
1.00
16.52


ATOM
C
GLY
H
174
51.158
12.016
−5.774
1.00
15.28


ATOM
O
GLY
H
174
52.121
12.031
−5.011
1.00
15.34


ATOM
N
LEU
H
175
51.189
11.425
−6.966
1.00
12.52


ATOM
CA
LEU
H
175
52.373
10.715
−7.436
1.00
12.10


ATOM
CB
LEU
H
175
52.034
9.252
−7.725
1.00
11.95


ATOM
CG
LEU
H
175
51.598
8.371
−6.561
1.00
13.01


ATOM
CG1
LEU
H
175
51.038
7.035
−7.062
1.00
12.11


ATOM
CD2
LEU
H
175
52.778
8.189
−5.608
1.00
15.83


ATOM
C
LEU
H
175
52.835
11.377
−8.712
1.00
11.41


ATOM
O
LEU
H
175
52.012
11.899
−9.452
1.00
12.88


ATOM
N
TYR
H
176
54.149
11.379
−8.959
1.00
12.75


ATOM
CA
TYR
H
176
54.715
11.984
−10.169
1.00
9.90


ATOM
CB
TYR
H
176
56.186
12.344
−9.977
1.00
6.99


ATOM
CG
TYR
H
176
56.437
13.446
−8.977
1.00
9.80


ATOM
CD1
TYR
H
176
56.298
14.786
−9.332
1.00
9.18


ATOM
CE1
TYR
H
176
56.529
15.796
−8.404
1.00
8.22


ATOM
CD2
TYR
H
176
56.812
13.145
−7.670
1.00
9.26


ATOM
CE2
TYR
H
176
57.039
14.139
−6.746
1.00
10.18


ATOM
CZ
TYR
H
176
56.900
15.461
−7.115
1.00
8.46


ATOM
OH
TYR
H
176
57.141
16.439
−6.181
1.00
9.44


ATOM
C
TYR
H
176
54.617
11.068
−11.365
1.00
9.94


ATOM
O
TYR
H
176
54.491
9.855
−11.230
1.00
13.21


ATOM
N
SER
H
177
54.755
11.661
−12.536
1.00
10.40


ATOM
CA
SER
H
177
54.729
10.927
−13.787
1.00
13.02


ATOM
CB
SER
H
177
53.276
10.688
−14.232
1.00
12.24


ATOM
OG
SER
H
177
53.214
9.929
−15.425
1.00
15.89


ATOM
C
SER
H
177
55.462
11.760
−14.833
1.00
11.43


ATOM
O
SER
H
177
55.457
12.991
−14.759
1.00
13.35


ATOM
N
LEU
H
178
56.133
11.085
−15.761
1.00
10.36


ATOM
CA
LEU
H
178
56.826
11.750
−16.849
1.00
12.46


ATOM
CB
LEU
H
178
58.150
12.364
−16.371
1.00
11.05


ATOM
CG
LEU
H
178
59.297
11.492
−15.880
1.00
7.67


ATOM
CG1
LEU
H
178
60.068
10.867
−17.044
1.00
8.40


ATOM
CD2
LEU
H
178
60.216
12.376
−15.113
1.00
8.48


ATOM
C
LEU
H
178
57.090
10.782
−17.995
1.00
12.58


ATOM
O
LEU
H
178
56.963
9.584
−17.827
1.00
13.76


ATOM
N
SER
H
179
57.403
11.325
−19.167
1.00
14.34


ATOM
CA
SER
H
179
57.763
10.541
−20.351
1.00
14.75


ATOM
CB
SER
H
179
56.769
10.762
−21.504
1.00
14.23


ATOM
OG
SER
H
179
55.540
10.086
−21.291
1.00
15.49


ATOM
C
SER
H
179
59.155
11.009
−20.803
1.00
14.23


ATOM
O
SER
H
179
59.560
12.141
−20.548
1.00
12.08


ATOM
N
SER
H
180
59.888
10.108
−21.437
1.00
14.48


ATOM
CA
SER
H
180
61.219
10.376
−21.985
1.00
13.43


ATOM
CB
SER
H
180
62.301
9.565
−21.280
1.00
12.19


ATOM
OG
SER
H
180
63.564
9.759
−21.901
1.00
14.67


ATOM
C
SER
H
180
61.046
9.835
−23.383
1.00
13.99


ATOM
O
SER
H
180
60.680
8.671
−23.571
1.00
15.36


ATOM
N
VAL
H
181
61.257
10.690
−24.358
1.00
15.02


ATOM
CA
VAL
H
181
61.078
10.307
−25.735
1.00
15.74


ATOM
CB
VAL
H
181
59.957
11.166
−26.398
1.00
15.83


ATOM
CG1
VAL
H
181
58.639
10.960
−25.647
1.00
12.76


ATOM
CG2
VAL
H
181
60.357
12.647
−26.430
1.00
15.72


ATOM
C
VAL
H
181
62.377
10.488
−26.475
1.00
17.47


ATOM
O
VAL
H
181
63.265
11.199
−26.000
1.00
15.89


ATOM
N
VAL
H
182
62.496
9.801
−27.607
1.00
17.14


ATOM
CA
VAL
H
182
63.679
9.890
−28.453
1.00
13.84


ATOM
CB
VAL
H
182
64.781
8.846
−28.048
1.00
16.69


ATOM
CG1
VAL
H
182
64.312
7.417
−28.260
1.00
14.43


ATOM
CG2
VAL
H
182
66.050
9.117
−28.818
1.00
17.22


ATOM
C
VAL
H
182
63.226
9.693
−29.900
1.00
21.36


ATOM
O
VAL
H
182
62.267
8.963
−30.161
1.00
23.83


ATOM
N
THR
H
183
63.805
10.447
−30.823
1.00
13.93


ATOM
CA
THR
H
183
63.450
10.295
−32.227
1.00
21.38


ATOM
CB
THR
H
183
63.218
11.664
−32.950
1.00
21.63


ATOM
OG1
THR
H
183
64.273
12.570
−32.639
1.00
24.70


ATOM
CG2
THR
H
183
61.890
12.294
−32.534
1.00
23.70


ATOM
C
THR
H
183
64.595
9.514
−32.857
1.00
21.52


ATOM
O
THR
H
183
65.764
9.774
−32.565
1.00
23.10


ATOM
N
VAL
H
184
64.259
8.488
−33.628
1.00
23.35


ATOM
CA
VAL
H
184
65.259
7.652
−34.266
1.00
19.98


ATOM
CB
VAL
H
184
65.373
6.269
−33.537
1.00
21.07


ATOM
CG1
VAL
H
184
65.755
6.479
−32.084
1.00
23.71


ATOM
CG2
VAL
H
184
64.059
5.439
−33.668
1.00
17.17


ATOM
C
VAL
H
184
64.959
7.437
−35.756
1.00
22.10


ATOM
O
VAL
H
184
63.900
7.836
−36.253
1.00
21.90


ATOM
N
PRO
H
185
65.898
6.821
−36.495
1.00
22.12


ATOM
CD
PRO
H
185
67.247
6.371
−36.096
1.00
23.90


ATOM
CA
PRO
H
185
65.669
6.580
−37.923
1.00
23.15


ATOM
CB
PRO
H
185
66.988
5.933
−38.365
1.00
22.25


ATOM
CG
PRO
H
185
67.988
6.449
−37.377
1.00
21.22


ATOM
C
PRO
H
185
64.522
5.584
−38.097
1.00
23.63


ATOM
O
PRO
H
185
64.509
4.542
−37.439
1.00
24.96


ATOM
N
SER
H
186
63.579
5.864
−38.992
1.00
24.50


ATOM
CA
SER
H
186
62.472
4.932
−39.208
1.00
26.40


ATOM
CB
SER
H
186
61.556
5.427
−40.309
1.00
23.78


ATOM
OG
SER
H
186
60.922
6.625
−39.929
1.00
31.60


ATOM
C
SER
H
186
63.008
3.566
−39.596
1.00
26.90


ATOM
O
SER
H
186
62.520
2.530
−39.132
1.00
28.22


ATOM
N
SER
H
187
64.055
3.578
−40.411
1.00
25.91


ATOM
CA
SER
H
187
64.671
2.352
−40.884
1.00
24.43


ATOM
CB
SER
H
187
65.803
2.698
−41.846
1.00
25.38


ATOM
OG
SER
H
187
66.663
3.674
−41.269
1.00
32.83


ATOM
C
SER
H
187
65.387
1.464
−39.764
1.00
22.75


ATOM
O
SER
H
187
65.330
0.257
−39.942
1.00
23.52


ATOM
N
SER
H
188
65.441
2.048
−38.600
1.00
22.42


ATOM
CA
SER
H
188
65.971
1.274
−37.489
1.00
21.39


ATOM
CB
SER
H
188
66.727
2.186
−36.518
1.00
24.28


ATOM
OG
SER
H
188
65.870
3.153
−35.929
1.00
24.35


ATOM
C
SER
H
188
64.919
0.478
−36.737
1.00
19.89


ATOM
O
SER
H
188
65.252
−0.418
−35.967
1.00
21.67


ATOM
N
LEU
H
189
63.656
0.819
−36.931
1.00
19.37


ATOM
CA
LEU
H
189
62.572
0.120
−36.250
1.00
21.16


ATOM
CB
LEU
H
189
61.215
0.740
−36.620
1.00
22.65


ATOM
CG
LEU
H
189
60.574
1.843
−35.769
1.00
24.15


ATOM
CD1
LEU
H
189
61.486
2.396
−34.677
1.00
21.90


ATOM
CD2
LEU
H
189
60.117
2.929
−36.689
1.00
20.64


ATOM
C
LEU
H
189
62.567
−1.358
−36.594
1.00
20.08


ATOM
O
LEU
H
189
62.342
−1.726
−37.741
1.00
21.74


ATOM
N
GLY
H
190
62.405
−2.204
−35.586
1.00
22.92


ATOM
CA
GLY
H
190
62.376
−3.638
−35.815
1.00
23.25


ATOM
C
GLY
H
190
63.359
−4.270
−35.860
1.00
25.44


ATOM
O
GLY
H
190
63.889
−5.489
−35.736
1.00
24.73


ATOM
N
THR
H
191
64.396
−3.451
−36.039
1.00
27.60


ATOM
CA
THR
H
191
66.159
−3.958
−36.098
1.00
28.13


ATOM
CB
THR
H
191
66.858
−3.649
−37.469
1.00
29.33


ATOM
OG1
THR
H
191
66.835
−2.246
−37.749
1.00
34.09


ATOM
CG2
THR
H
191
66.345
−4.368
−38.597
1.00
32.02


ATOM
C
THR
H
191
67.001
−3.468
−34.931
1.00
27.84


ATOM
O
THR
H
191
67.686
−4.254
−34.293
1.00
29.90


ATOM
N
GLN
H
192
66.937
−2.183
−34.620
1.00
26.52


ATOM
CA
GLN
H
192
67.721
−1.670
−33.505
1.00
26.83


ATOM
CB
GLN
H
192
68.092
−0.204
−33.751
1.00
27.16


ATOM
CG
GLN
H
192
69.541
0.149
−33.391
1.00
36.31


ATOM
CD
GLN
H
192
69.792
0.041
−31.908
1.00
38.23


ATOM
OE1
GLN
H
192
70.777
−0.544
−31.457
1.00
36.83


ATOM
NE2
GLN
H
192
68.870
0.584
−31.132
1.00
44.67


ATOM
C
GLN
H
192
66.946
−1.821
−32.193
1.00
25.50


ATOM
O
GLN
H
192
65.771
−1.483
−32.121
1.00
26.11


ATOM
N
THR
H
193
67.585
−2.373
−31.173
1.00
23.13


ATOM
CA
THR
H
193
66.946
−2.531
−29.876
1.00
23.22


ATOM
CB
THR
H
193
67.600
−3.679
−29.086
1.00
25.71


ATOM
OG1
THR
H
193
67.396
−4.909
−29.794
1.00
27.62


ATOM
CG2
THR
H
193
67.012
−3.794
−27.692
1.00
27.67


ATOM
C
THR
H
193
67.023
−1.216
−29.080
1.00
23.94


ATOM
O
THR
H
193
68.081
−0.588
−28.981
1.00
23.16


ATOM
N
TYR
H
194
65.889
−0.783
−28.545
1.00
21.58


ATOM
CA
TYR
H
194
65.823
0.444
−27.774
1.00
18.67


ATOM
CB
TYR
H
194
64.901
1.445
−28.442
1.00
18.25


ATOM
CG
TYR
H
194
65.447
1.934
−29.754
1.00
18.87


ATOM
CD1
TYR
H
194
66.497
2.842
−29.782
1.00
17.22


ATOM
CE1
TYR
H
194
66.999
3.310
−30.971
1.00
20.86


ATOM
CD2
TYR
H
194
64.908
1.497
−30.969
1.00
19.91


ATOM
CE2
TYR
H
194
65.401
1.963
−32.180
1.00
20.11


ATOM
CZ
TYR
H
194
66.450
2.875
−32.176
1.00
22.81


ATOM
OH
TYR
H
194
66.949
3.387
−33.355
1.00
21.52


ATOM
C
TYR
H
194
65.325
0.114
−26.397
1.00
18.70


ATOM
O
TYR
H
194
64.280
−0.533
−26.231
1.00
18.91


ATOM
N
ILE
H
195
66.100
0.535
−25.407
1.00
15.98


ATOM
CA
ILE
H
195
65.782
0.268
−24.025
1.00
15.14


ATOM
CB
ILE
H
195
66.731
−0.820
−23.489
1.00
14.19


ATOM
CG2
ILE
H
195
66.476
−1.079
−22.032
1.00
14.73


ATOM
CG1
ILE
H
195
66.594
−2.082
−24.339
1.00
17.52


ATOM
CD1
ILE
H
195
67.386
−3.252
−23.844
1.00
21.62


ATOM
C
ILE
H
195
65.932
1.533
−23.183
1.00
16.46


ATOM
O
ILE
H
195
66.932
2.239
−23.308
1.00
14.40


ATOM
N
CYS
H
196
64.910
1.866
−22.392
1.00
15.74


ATOM
CA
CYS
H
196
65.020
3.026
−21.504
1.00
15.04


ATOM
C
CYS
H
196
65.414
2.433
−20.151
1.00
15.47


ATOM
O
CYS
H
196
64.961
1.344
−19.799
1.00
17.09


ATOM
CB
CYS
H
196
63.720
3.839
−21.418
1.00
11.99


ATOM
SO
CYS
H
196
62.289
2.978
−20.709
1.00
15.97


ATOM
N
ASN
H
197
66.369
3.080
−19.479
1.00
14.76


ATOM
CA
ASN
H
197
66.881
2.639
−18.185
1.00
15.71


ATOM
CB
ASN
H
197
68.424
2.530
−18.227
1.00
13.36


ATOM
CG
ASN
H
197
68.955
2.061
−19.583
1.00
14.38


ATOM
OD1
ASN
H
197
69.482
2.855
−20.369
1.00
12.39


ATOM
ND2
ASN
H
197
68.618
0.772
−19.864
1.00
14.64


ATOM
C
ASN
H
197
66.436
3.704
−17.173
1.00
17.43


ATOM
O
ASN
H
197
66.676
4.862
−17.212
1.00
17.96


ATOM
N
VAL
H
198
65.532
3.314
−16.294
1.00
15.31


ATOM
CA
VAL
H
198
64.973
4.220
−15.318
1.00
15.22


ATOM
CB
VAL
H
198
63.412
4.109
−15.323
1.00
16.02


ATOM
CG1
VAL
H
198
62.776
5.110
−14.359
1.00
15.86


ATOM
CG2
VAL
H
198
62.866
4.306
−16.761
1.00
12.38


ATOM
C
VAL
H
198
65.520
3.951
−13.934
1.00
15.38


ATOM
O
VAL
H
198
65.449
2.831
−13.425
1.00
18.68


ATOM
N
ASN
H
199
66.057
4.985
−13.305
1.00
15.30


ATOM
CA
ASN
H
199
66.604
4.828
−11.970
1.00
15.88


ATOM
CB
ASN
H
199
68.122
5.034
−12.009
1.00
17.62


ATOM
CG
ASN
H
199
68.789
4.716
−10.708
1.00
19.95


ATOM
OD1
ASN
H
199
69.967
4.990
−10.544
1.00
24.61


ATOM
ND2
ASN
H
199
68.063
4.113
−9.782
1.00
22.49


ATOM
C
ASN
H
199
65.925
5.821
−11.029
1.00
15.25


ATOM
O
ASN
H
199
65.808
7.003
−11.356
1.00
14.39


ATOM
N
HIS
H
200
65.353
5.293
−9.947
1.00
12.48


ATOM
CA
HIS
H
200
64.670
6.081
−8.921
1.00
15.53


ATOM
CB
HIS
H
200
63.185
5.663
−8.790
1.00
14.60


ATOM
CG
HIS
H
200
62.378
6.502
−7.830
1.00
15.76


ATOM
CD2
HIS
H
200
62.211
7.843
−7.734
1.00
14.93


ATOM
ND1
HIS
H
200
61.591
5.954
−6.835
1.00
16.92


ATOM
CE1
HIS
H
200
60.976
6.919
−6.171
1.00
14 09


ATOM
NE2
HIS
H
200
61.339
8.074
−6.696
1.00
13.32


ATOM
C
HIS
H
200
65.447
5.843
−7.624
1.00
14.98


ATOM
O
HIS
H
200
65.119
4.978
−6.805
1.00
13.34


ATOM
N
LYS
H
201
66.526
6.595
−7.479
1.00
15.91


ATOM
CA
LYS
H
201
67.
80
6.488
−6.310
1.00
18.09


ATOM
CB
LYS
H
201
68.496
7.515
−6.381
1.00
19.93


ATOM
CG
LYS
H
201
69.484
7.233
−7.489
1.00
28.78


ATOM
CD
LYS
H
201
70.774
8.000
−7.249
1.00
34.66


ATOM
CE
LYS
H
201
71.815
7.701
−8.301
1.00
38.20


ATOM
NZ
LYS
H
201
73.115
8.340
−7.925
1.00
43.65


ATOM
G
LYS
H
201
66.627
6.591
−4.989
1.00
17.71


ATOM
O
LYS
H
201
66.927
5.840
−4.053
1.00
16.20


ATOM
N
PRO
H
202
65.637
7.512
−4.884
1.00
16.23


ATOM
CD
PRO
H
202
65.277
8.587
−5.828
1.00
12.43


ATOM
CA
PRO
H
202
64.862
7.663
−3.644
1.00
14.45


ATOM
CB
PRO
H
202
63.777
8.643
−4.056
1.00
13.02


ATOM
CG
PRO
H
202
64.516
9.552
−4.928
1.00
14.37


ATOM
C
PRO
H
202
64.261
6.357
−3.091
1.00
14.39


ATOM
O
PRO
H
202
64.013
6.259
−1.895
1.00
16.85


ATOM
N
SER
H
203
64.055
5.359
−3.949
1.00
15.31


ATOM
CA
SER
H
203
63.502
4.057
−3.545
1.00
17.23


ATOM
CD
SER
H
203
62.151
3.798
−4.231
1.00
14.94


ATOM
CG
SER
H
203
62.302
3.553
−5.635
1.00
15.74


ATOM
C
SER
H
203
64.444
2.909
−3.920
1.00
18.91


ATOM
O
SER
H
203
64.077
1.735
−3.796
1.00
19.89


ATOM
N
ASN
H
204
65.619
3.247
−4.446
1.00
19.73


ATOM
CA
ASN
H
204
66.589
2.245
−4.867
1.00
21.67


ATOM
CD
ASN
H
204
67.081
1.459
−3.649
1.00
24.42


ATOM
CG
ASN
H
204
68.422
0.782
−3.881
1.00
26.57


ATOM
OD1
ASN
H
204
69.212
1.197
−4.734
1.00
28.87


ATOM
ND2
ASN
H
204
68.693
−0.257
−3.103
1.00
27.26


ATOM
C
ASN
H
204
66.004
1.293
−5.927
1.00
23.47


ATOM
O
ASN
H
204
66.334
0.109
−5.956
1.00
23.25


ATOM
N
THR
H
205
65.129
1.818
−6.784
1.00
23.37


ATOM
CA
THR
H
205
64.492
1.037
−7.845
1.00
24.11


ATOM
CD
THR
H
205
62.955
1.294
−7.917
1.00
25.63


ATOM
OG1
THR
H
205
62.321
0.840
−6.717
1.00
28.17


ATOM
CG2
THR
H
205
62.332
0.567
−9.101
1.00
26.85


ATOM
C
THR
H
205
65.063
1.389
−9.210
1.00
24.23


ATOM
O
THR
H
205
65.224
2.566
−9.526
1.00
22.91


ATOM
N
LYS
H
206
65.340
0.362
−10.016
1.00
23.89


ATOM
CA
LYS
H
206
65.866
0.510
−11.374
1.00
24.37


ATOM
CB
LYS
H
206
67.286
−0.037
−11.478
1.00
29.60


ATOM
CG
LYS
H
206
68.294
0.567
−10.528
1.00
33.86


ATOM
CD
LYS
H
206
69.653
−0.045
−10.797
1.00
41.22


ATOM
CE
LYS
H
206
70.686
0.392
−9.786
1.00
45.98


ATOM
NZ
LYS
H
206
71.959
−0.336
−10.034
1.00
50.69


ATOM
C
LYS
H
206
64.988
−0.341
−12.266
1.00
23.86


ATOM
O
LYS
H
206
64.677
−1.478
−11.913
1.00
25.27


ATOM
N
VAL
H
207
64.627
0.175
−13.434
1.00
21.70


ATOM
CA
VAL
H
207
63.771
−0.552
−14.363
1.00
18.59


ATOM
CB
VAL
H
207
62.285
−0.056
−14.268
1.00
18.43


ATOM
CG1
VAL
H
207
61.415
−0.781
−15.279
1.00
17.97


ATOM
CG2
VAL
H
207
61.727
−0.264
−12.878
1.00
16.57


ATOM
C
VAL
H
207
64.241
−0.337
−15.806
1.00
18.98


ATOM
O
VAL
H
207
64.441
0.797
−16.224
1.00
17.46


ATOM
N
ASP
H
208
64.515
−1.412
−16.536
1.00
18.90


ATOM
CA
ASP
H
208
64.879
−1.263
−17.938
1.00
21.28


ATOM
CB
ASP
H
208
66.054
−2.146
−18.334
1.00
24.33


ATOM
CG
ASP
H
208
67.309
−1.813
−17.583
1.00
27.92


ATOM
OD1
ASP
H
208
67.899
−2.730
−16.991
1.00
32.30


ATOM
OD2
ASP
H
208
67.704
−0.637
−17.569
1.00
27.86


ATOM
C
ASP
H
208
63.642
−1.722
−18.671
1.00
20.84


ATOM
O
ASP
H
208
63.037
−2.736
−18.312
1.00
22.22


ATOM
N
LYS
H
209
63.230
−0.960
−19.668
1.00
20.63


ATOM
CA
LYS
H
209
62.047
−1.305
−20.429
1.00
19.95


ATOM
CB
LYS
H
209
60.912
−0.320
−20.125
1.00
20.48


ATOM
CG
LYS
H
209
59.709
−0.423
−21.045
1.00
22.51


ATOM
CD
LYS
H
209
59.031
−1.791
−20.990
1.00
23.59


ATOM
CE
LYS
H
209
58.585
−2.147
−19.585
1.00
24.09


ATOM
NZ
LYS
H
209
57.765
−3.385
−19.580
1.00
23.79


ATOM
C
LYS
H
209
62.371
−1.277
−21.899
1.00
21.05


ATOM
O
LYS
H
209
62.857
−0.263
−22.411
1.00
19.10


ATOM
N
ARG
H
210
62.159
−2.409
−22.565
1.00
22.99


ATOM
CA
ARG
H
210
62.407
−2.490
−23.996
1.00
23.52


ATOM
CB
ARG
H
210
62.569
−3.951
−24.432
1.00
25.36


ATOM
CG
ARG
H
210
63.135
−4.115
−25.838
1.00
34.19


ATOM
CD
ARG
H
210
63.578
−5.558
−26.136
1.00
41.11


ATOM
NE
ARG
H
210
64.549
−6.110
−25.172
1.00
45.70


ATOM
CZ
ARG
H
210
65.558
−6.917
−25.506
1.00
45.18


ATOM
NH1
ARG
H
210
65.738
−7.255
−26.778
1.00
45.60


ATOM
NH2
ARG
H
210
66.357
−7.428
−24.571
1.00
44.97


ATOM
C
ARG
H
210
61.225
−1.822
−24.715
1.00
22.56


ATOM
O
ARG
H
210
60.064
−1.975
−24.314
1.00
21.94


ATOM
N
VAL
H
211
61.523
−1.042
−25.745
1.00
20.28


ATOM
CA
VAL
H
211
60.488
−0.355
−26.506
1.00
19.78


ATOM
CB
VAL
H
211
60.659
1.195
−26.412
1.00
16.83


ATOM
CG1
VAL
H
211
59.537
1.891
−27.110
1.00
11.98


ATOM
CG2
VAL
H
211
60.714
1.628
−24.960
1.00
14.99


ATOM
C
VAL
H
211
60.627
−0.837
−27.943
1.00
20.10


ATOM
O
VAL
H
211
61.671
−0.677
−28.561
1.00
22.07


ATOM
N
GLU
H
212
59.578
−1.449
−28.474
1.00
22.41


ATOM
CA
GLU
H
212
59.615
−1.993
−29.831
1.00
22.33


ATOM
CB
GLU
H
212
59.888
−3.486
−29.741
1.00
24.22


ATOM
CG
GLU
H
212
58.992
−4.175
−28.714
1.00
30.31


ATOM
CD
GLU
H
212
59.156
−5.688
−28.681
1.00
36.52


ATOM
OE1
GLU
H
212
58.119
−6.380
−28.685
1.00
42.79


ATOM
OE2
GLU
H
212
60.302
−6.195
−28.638
1.00
38.30


ATOM
C
GLU
H
212
58.278
−1.780
−30.509
1.00
21.74


ATOM
O
GLU
H
212
57.274
−1.487
−29.844
1.00
23.29


ATOM
N
PRO
H
213
58.239
−1.885
−31.844
1.00
20.03


ATOM
CG
PRO
H
213
59.332
−2.079
−32.808
1.00
19.08


ATOM
CA
PRO
H
213
56.966
−1.695
−32.536
1.00
18.93


ATOM
CB
PRO
H
213
57.345
−1.935
−34.001
1.00
18.96


ATOM
CG
PRO
H
213
58.748
−1.473
−34.068
1.00
17.26


ATOM
C
PRO
H
213
55.994
−2.757
−32.005
1.00
18.93


ATOM
O
PRO
H
213
56.412
−3.857
−31.628
1.00
18.24


ATOM
N
LYS
H
214
54.717
−2.409
−31.924
1.00
19.00


ATOM
CA
LYS
H
214
53.706
−3.332
−31.410
1.00
19.14


ATOM
CB
LYS
H
214
52.483
−2.552
−30.924
1.00
16.91


ATOM
CG
LYS
H
214
51.526
−3.410
−30.161
1.00
17.14


ATOM
CD
LYS
H
214
50.262
−2.680
−29.811
1.00
20.10


ATOM
CE
LYS
H
214
49.434
−3.588
−28.931
1.00
24.84


ATOM
NZ
LYS
H
214
48.149
−2.977
−28.549
1.00
28.31


ATOM
C
LYS
H
214
53.222
−4.400
−32.394
1.00
19.27


ATOM
O
LYS
H
214
53.060
−4.132
−33.577
1.00
20.70


ATOM
N
SER
H
215
52.998
−5.614
−31.902
1.00
21.20


ATOM
CA
SER
H
215
52.459
−6.677
−32.744
1.00
21.88


ATOM
CB
SER
H
215
52.848
−8.059
−32.209
1.00
21.65


ATOM
OG
SER
H
215
52.273
−9.089
−33.001
1.00
19.53


ATOM
C
SER
H
215
50.931
−6.494
−32.683
1.00
21.88


ATOM
O
SER
H
215
50.308
−6.622
−31.615
1.00
20.22


ATOM
N
CYS
H
216
50.340
−6.142
−33.813
1.00
21.67


ATOM
CA
CYS
H
216
48.902
−5.919
−33.871
1.00
23.98


ATOM
C
CYS
H
216
48.066
−7.189
−33.695
1.00
27.00


ATOM
O
CYS
H
216
48.470
−8.289
−34.111
1.00
26.45


ATOM
CB
CYS
H
216
48.538
−5.216
−35.174
1.00
18.31


ATOM
SG
CYS
H
216
49.561
−3.741
−35.453
1.00
18.30


ATOM
N
ASP
H
217
46.945
−7.040
−32.990
1.00
31.27


ATOM
CA
ASP
H
217
46.009
−8.136
−32.750
1.00
33.27


ATOM
CB
ASP
H
217
45.320
−7.991
−31.392
1.00
33.17


ATOM
CG
ASP
H
217
44.278
−9.088
−31.123
1.00
36.31


ATOM
OD1
ASP
H
217
43.634
−9.600
−32.069
1.00
32.97


ATOM
OD2
ASP
H
217
44.085
−9.424
−29.935
1.00
37.95


ATOM
C
ASP
H
217
44.977
−8.004
−33.849
1.00
36.08


ATOM
O
ASP
H
217
44.272
−6.989
−33.945
1.00
37.14


ATOM
N
LYS
H
218
44.896
−9.035
−34.679
1.00
36.90


ATOM
CA
LYS
H
218
43.951
−9.047
−35.772
1.00
37.91


ATOM
CB
LYS
H
218
44.203
−7.863
−36.721
1.00
41.24


ATOM
CG
LYS
H
218
45.634
−7.710
−37.172
1.00
41.93


ATOM
CD
LYS
H
218
45.801
−6.602
−38.194
1.00
45.62


ATOM
CE
LYS
H
218
45.758
−5.216
−37.587
1.00
45.59


ATOM
NZ
LYS
H
218
45.929
−4.191
−38.654
1.00
46.72


ATOM
C
LYS
H
218
44.039
−10.359
−36.519
1.00
37.04


ATOM
O
LYS
H
218
44.749
−11.268
−36.108
1.00
33.26


ATOM
N
THR
H
219
43.284
−10.447
−37.604
1.00
38.01


ATOM
CA
THR
H
219
43.248
−11.628
−38.450
1.00
39.39


ATOM
CB
THR
H
219
41.948
−11.656
−39.246
1.00
42.48


ATOM
OG1
THR
H
219
41.822
−10.426
−39.989
1.00
47.38


ATOM
CG2
THR
H
219
40.770
−11.783
−38.286
1.00
39.71


ATOM
C
THR
H
219
44.432
−11.539
−39.390
1.00
38.37


ATOM
O
THR
H
219
44.447
−10.745
−40.343
1.00
36.99


ATOM
N
HIS
H
220
45.435
−12.349
−39.089
1.00
36.18


ATOM
CA
HIS
H
220
46.672
−12.372
−39.862
1.00
34.59


ATOM
CB
HIS
H
220
47.858
−12.471
−38.889
1.00
33.40


ATOM
CG
HIS
H
220
47.890
−11.347
−37.893
1.00
32.87


ATOM
CD2
HIS
H
220
47.558
−11.302
−36.580
1.00
30.42


ATOM
ND1
HIS
H
220
48.Z80
−10.067
−38.231
1.00
31.96


ATOM
CE1
HIS
H
220
48.196
−9.282
−37.170
1.00
27.03


ATOM
NE2
HIS
H
220
47.759
−10.006
−36.156
1.00
29.87


ATOM
C
HIS
H
220
46.656
−13.500
−40.894
1.00
32.03


ATOM
O
HIS
H
220
46.005
−13.277
−41.939
1.00
33.00


ATOM
OXT
HIS
H
220
47.241
−14.578
−40.662
1.00
26.67








Claims
  • 1. A method of identifying a Synagis binding compound, comprising the step of using a three-dimensional structural representation of Synagis, Synagis Fab, or a fragment thereof comprising a Synagis antigen binding site, to computationally screen a candidate compound for an ability to bind the Synagis antigen binding site.
  • 2. The method of claim 1 further including the steps of: synthesizing the candidate compound; and screening the candidate compound for Synagis binding activity.
  • 3. A method of identifying a Synagis binding compound, comprising the steps of (a) using a three-dimensional structural representation of Synagis, Synagis Fab, or a fragment thereof comprising a Synagis antigen binding site, to computationally screen a candidate compound for an ability to bind the Synagis antigen binding site, (b) synthesizing the candidate compound; and (c) screening the candidate compound for Synagis binding activity, wherein the structural information comprises the atomic structure coordinates of residues comprising a Synagis CDR.
  • 4. The method of claim 3 in which the Synagis CDR is L1, L2, L3, H1, H2 or H3.
  • 5. The method of claim 4 in which the structural information comprises the antigen binding site of Synagis.
  • 6. The method of claim 5 in which the structural information comprises the Fv fragment of Synagis.
  • 7. The method of claim 6 in which the structural information comprises the Fab fragment of Synagis.
  • 8. A method of identifying a Synagis binding compound comprising the step of using a three-dimensional structural representation of Synagis, Synagis Fab, or a fragment thereof comprising a Synagis antigen binding site, to computationally design a synthesizable candidate compound that binds Synagis.
  • 9. The method of claim 8 in which the computational design comprises the steps of: identifying chemical entities or fragments capable of associating with the Synagis binding site; and assembling the chemical entities or fragments into a single molecule to provide the structure of the candidate compound.
  • 10. The method of claim 9 further including the steps of: synthesizing the candidate compound; and screening the candidate compound for Synagis binding activity.
  • 11. A method of identifying a Synagis binding compound comprising the step of using a three-dimensional structural representation of Synagis, Synagis Fab, or a fragment thereof comprising a Synagis antigen binding site, to computationally design a synthesizable candidate compound that binds Synagis, wherein the structural information comprises the atomic structure coordinates of residues comprising a Synagis CDR.
  • 12. The method of claim 11 in which the Synagis CDR is L1, L2, L3, H1, H2 or H3.
  • 13. The method of claim 11 in which the structural information comprises the antigen binding site of Synagis.
  • 14. The method of claim 11 in which the structural information comprises the Fv fragment of Synagis.
  • 15. The method of claim 12 in which the structural information comprises the Fab fragment of Synagis.
  • 16. The method of claim 11 in which the computational design comprises the steps of: identifying chemical entities or fragments capable of associating with the Synagis binding site; and assembling the chemical entities or fragments into a single molecule to provide the structure of the candidate compound.
  • 17. The method of claim 16 further including the steps of: synthesizing the candidate compound; and screening the candidate compound for Synagis binding activity.
1. CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. § 119 of copending provisional application No. 60/288,005, filed May 1, 2001, the content of which is hereby incorporated by reference in its entirety.

US Referenced Citations (3)
Number Name Date Kind
5994511 Lowman et al. Nov 1999 A
6113898 Anderson et al. Sep 2000 A
6129914 Weiner et al. Oct 2000 A
Foreign Referenced Citations (3)
Number Date Country
WO 9640252 Dec 1996 WO
WO 0061618 Oct 2000 WO
PCTUS 0213583 Apr 2003 WO
Related Publications (1)
Number Date Country
20030097974 A1 May 2003 US
Provisional Applications (1)
Number Date Country
60288005 May 2001 US