This application relates to puzzles for personal amusement and recreation, and more specifically to those puzzles presenting geometric and color-based challenges.
Several puzzles challenge a user to solve various geometric riddles with a number of two- or three-dimensional pieces. The most basic of these is a set of small cubes for small children that can be stacked. Other puzzles present color- or picture-based tests of a user's mental acuity. Color- or picture-based puzzles are frequently integrated with individual square or cubic blocks by placing a color or partial pattern on a plurality of the blocks and directing a user to arrange these pieces into a larger geometric shape with different colors on each surface. Some puzzles include mechanical connections between the geometric shapes. One of the most famous and well-known three-dimensional puzzles that integrates geometric and color challenges is the “Spatial Logical Toy,” described in U.S. Pat. No. 4,378,116.
A puzzle unit for an amusement device comprises a first puzzle unit assembly, a second puzzle unit assembly, a third removable unit face, and a fourth removable unit face. The first puzzle unit assembly includes a first support member and a second support member projecting from a first inner surface of the first unit assembly, and a first triangular unit face on an outer surface of the first unit assembly. A space between the first support member and the second support member define a first linear slot. The second puzzle unit assembly is geometrically identical to the first unit assembly, including a third support member and a fourth support member projecting from a second inner surface of the second unit assembly, and a second triangular unit face on an outer surface of the second unit assembly. A space between the third support member and the fourth support member define a second linear slot, with the second unit assembly rotated relative to the first unit assembly such that the second linear slot aligns with the first linear slot. A portion of the first support member overlaps with a portion of the fourth support member, a portion of the second support member overlaps with a portion of the third support member, and a common edge defines an angle of about 60° between the first unit face and the second unit face. The third removable unit face engages with the first support member or the fourth support member such that the third unit face occupies a plane substantially parallel to planes occupied by overlapping first and fourth support members. A fourth removable unit face engages with the second support member or the third support member such that the fourth unit face occupies a plane substantially parallel to planes occupied by overlapping second and third support members.
A puzzle unit pair comprises a first tetrahedral puzzle unit with faces marked in a first color progression, a second tetrahedral puzzle unit with faces marked in a second color progression, and a connector. The second puzzle unit is a geometric mirror image of the first puzzle unit and both puzzle units are marked according to a predetermined color code. The connector has a first linkage attached to a first surface on an interior volume of the first puzzle unit, and a second linkage attached to a second surface on an interior volume of the second puzzle unit. The connector is repositionable between a first corner and a second corner of the respective puzzle units without detaching or disassembling the connector.
U.S. Pat. No. 5,322,284, issued to the applicant, discloses a puzzle with a single chain of three-dimensional puzzle units. In the '284 patent, units along the chain have two solid arms extending from two unit corners joined at a single pivot point outside the connected units, such as in a ball and socket configuration. Hemispherical heads are pressed into a void on the interior of each unit in the chain through a bore. The previous puzzle is solved by turning and reorienting the units to fold the chain into a complex three-dimensional structure. Such chains have limited solutions and adjusting the order or number of units required disassembly.
Embodiments of the amusement device described herein can provide challenge and amusement to users with widely varying levels of aptitude and skill. Embodiments also can include a resilient, flexible, and repositionable connector that links two mirror image puzzle units into a pair. The paired units are then configured into blocks, which themselves are oriented into larger shapes to solve one or more puzzle challenges. The puzzle units can be built with an interchangeable and modular structure, allowing them to be disassembled and reassembled by the player to create a personalized set of puzzle units.
Challenges can be solved with a partial set, a complete set or multiple sets. In certain embodiments, puzzle unit faces can be colored or marked according to a code. Such colors can also be indicated on one or more opposing corners of the puzzle units. These unit pairs can be grouped into sets such that a single set or subset can be manipulated into a wide variety of different solutions having both color and geometric elements. The amusement device can additionally or alternatively include virtual puzzle blocks, which are geometric representations of various blocks, partial solutions, or complete solutions made from one or more of the mirror image puzzle units as described below. In certain embodiments, virtual blocks can be combined with colored puzzle units to create hybrid solutions. In certain other embodiments, a set of virtual blocks alone can be oriented into solutions without colored puzzle units.
The figures are generally organized into four groups in this specification.
Large hybrid cube 12 is an example of a major hybrid puzzle solution encompassing many aspects of the amusement device described herein. In this description, a hybrid puzzle solution is one in which a combination of colored tetrahedral puzzle units and virtual puzzle blocks 40 are required to complete the challenge.
Geometrically, large cube 12, has sides with lengths of about 3*L. This example solution is a combination of twenty-seven smaller cubes, each having sides with lengths of about L. As will be described in certain examples below, each smaller cube is built with three colored blocks 24 (shown in FIGS. 2B and 4A-4D) or their geometric equivalents (shown in
In this example, large hybrid cube 12 is built using all four subsets of puzzle unit pairs marked with example Color Code 1 (described below). However, it should be noted that there are only forty-eight total puzzle unit pairs 30 in a Color Code 1 set available to be configured into a total of forty-eight colored blocks 24. Thus, a Color Code 1 set does not itself have enough properly colored mirror image puzzle unit pairs 30 to form a 3*L cube using only colored blocks 24. However, virtual puzzle blocks 40 (described in detail in
Starting with small colored cube 22, one instance is located at each of the eight major corners 16 of large cube 12. Small cube 22 is one of several examples of a basic solution. Basic solutions are formed by orienting two or more colored puzzle blocks into a basic geometric shape, such as a cube or pyramid. As will be seen in more detail later, multiple instances of basic solutions can be integrated in many different ways to create larger and/or more complex challenges involving geometry, color, or both.
In this case, small cube 22 is a combination of three small square base colored blocks 24 joined as shown in
Moving on to the virtual puzzle blocks 40 that are visible on major faces 14, large cube 12 includes six virtual blocks 40 at the center of each major face 14 and a seventh virtual block (not visible) at the center of large hybrid cube 12. As will be shown and described in reference to
Finally, recall that twelve hybrid cubes 23 with sides of length L complete large hybrid cube 12. Small hybrid cubes 23 are located at the center of each of the twelve major edges 18, between two colored small cubes 22 at corners 16. Like small colored cubes 22, they include three blocks, each having a shape and volume equivalent to square-base blocks 24. However, only two instances of these blocks are colored blocks 24. The third instance is an alternate embodiment of virtual block 40. As briefly mentioned above, virtual blocks 40 are equivalent in shape and volume to various integer combinations of puzzle units 30A and/or 30B. In this case, the embodiments of virtual blocks 40 used in small hybrid cube 23 have a shape and volume equivalent to square base puzzle block 24. The example embodiment of virtual block 40 used in small hybrid cube 23 is seen in more detail as virtual block 100 in
However, blocks 40 do not have any distinguishing colors or markings on their outer surfaces. This readily permits geometric, but not color substitution of virtual blocks 40 for colored puzzle blocks matching the reference shape. Substitution or addition of virtual puzzle blocks 40 is helpful in several situations. Using the example of large hybrid cube 12, certain faces of some units 30 may face the interior of the puzzle solution and thus its color may not be necessary to solving a particular challenge. This reduces the number of units dedicated to a particular solution, and makes available those remaining units in the set to create additional puzzle solutions. Another reason for substituting virtual blocks 40 can include using them to expand the number of solutions available for a predetermined color code, such as was done here.
Since hybrid cubes 23 in the middle of each major edge 18 only have two colored blocks 24, hybrid cubes 23 are placed with the correct colored unit faces directed outward to match the color arrangement on major faces 14 required to solve the particular challenge. In this example, the challenge is to have a single unique color on each major face 14.
Regardless of the relative number of colored versus virtual puzzle blocks used, the blocks must be held together in some fashion to give the solution a degree of structural stability. In this example, a plurality of magnets hold pieces against metalized portions of adjacent surfaces, as described in detail below.
As described above, large cube 12 presents a color-based challenge as well as a geometric one. Excluding virtual blocks 40, large cube 12 has a single color unique to each major face 14, resulting from correctly orienting cubes 22, 23, and 40. As will be described primarily with reference to
It will be apparent that the puzzle can be readily modified to create variations on large hybrid cube 12. For example, one or more small virtual cubes 40 (114 in
While large cube 12 is built using Color Code 1, other color codes can cause the color arrangement to differ from large hybrid cube 12 shown in
As will be seen in this specification, a virtually unlimited variety of geometric and color-based challenges are possible with different embodiments of this amusement device. Geometrically, the puzzle is modular and scalable, providing challenges to players having a wide range of skill levels. Pairs of mirror image puzzle units 30 are configured into open or closed blocks, such as puzzle blocks 24, 28, or 29. The blocks can then be combined with one another to make basic solutions. Each set of puzzle unit pairs can be configured into enough blocks for different basic solutions, such as small cube 22 and/or pyramid 26. Basic solutions can define their own solution or can be combined in different ways for more complex solutions. Complex solutions can also include multiple puzzle sets to build larger or more intricate shapes. Sets can also be integrated with virtual blocks 40 to create hybrid solutions such as large hybrid cube 12.
Other elements discussed below and used in cube 12 include construction of modular mirror image puzzle units 30A and 30B having a plurality of interchangeable faces. Elements also include a unit connection system with embedded magnets, metalized unit faces, and a flexible and repositionable connector. Other elements of the puzzle include two example Color Codes for marking puzzle unit pairs 30, as well as a color indicator on one or more unit corners that corresponds to colors or designs on unit faces.
Puzzle block 24 is a closed configuration of puzzle unit pair 30 with five corners and five outer surfaces, including square base 50. To configure block 24, a large unit face of one puzzle unit 30A is placed flush against a large unit face of a geometric mirror image puzzle unit 30B as seen in
In certain embodiments, magnets 52 (not visible in
Different configurations of blocks 28 are seen in
Like blocks 24, triangle-base blocks 28 can engage with each other via magnets 52 (not shown in
It will be apparent from the description that four blocks 24 can alternatively be oriented into pyramid 26 because they both involve two instances of puzzle units alternating between 30A and 30B. It will also be apparent that four instances of blocks 28 can alternatively be arranged into a pyramid having rhombic base and four side surfaces. Four triangles on two blocks 28, each with sides L, SQRT(2)*L and SQRT (3)*L, are oriented with the right angles of these triangles defining the center of the rhombic base. Such triangles are equivalent to a large unit face such as faces 42 or 44 discussed below. Those two instances of block 28 also define a lower portion of each of the four side surfaces of the rhombic pyramid, while the remaining two instances of blocks 28 define the remaining upper portions of the four side surfaces. Thus, in these embodiments, the rhombic base pyramid will have sides of length SQRT (3)*L and a height of SQRT(2)*L.
While
In another example,
For example, advanced or experienced players can use a single set of paired and colored units 30 to create multiple instances of basic solutions according to an advanced or coordinated color challenge. Such a challenge can include a plurality of geometrically identical basic solutions built according to matching and/or mirror image color patterns as shown and described below. Other examples include using the puzzle set to build more complex structures, several of which also can include a color challenge. Examples of such solutions utilizing a single puzzle set are shown in
The most advanced players can combine multiple sets to solve challenges with even higher levels of difficulty. Solutions involving more than one set of puzzle units can be used as building blocks for much larger and more complex geometric challenges, such as those shown in
Modularity and scalability of the puzzle game results in part from the geometry of puzzle unit pair 30, which is the geometric foundation of the amusement device. Units 30A and 30B are geometric mirror image versions of a tetrahedral solid. Tetrahedral solids are unique three-dimensional structures having four triangular faces converging at only four corners. It can be seen in
Symmetry of units 30 also serves to simplify explanation and description of the puzzle's construction and various solutions. As noted, unit 30B is a geometric minor image of unit 30A. When connector 60 is in its home position at corners 32A and 32B, the corners and faces of unit 30B are thus numbered in the same progression as unit 30A. In other words, each face and corner of unit 30B is in a location that is a mirror image of its corresponding element on unit 30A. For example, face 42B is in the mirror image location relative to face 42A.
Right angle corners 32 and 34 are each defined by the convergence of three unit faces. Two pairs of unit faces each meet at an edge, and the three edges, like the three unit faces, converge at the right angle corners at a particular set of angles. In
While edge 32-34 between right angle corners 32 and 34 define a right angle edge, sharp corners 36 and 38 make up the remaining two corners of units 30. In this example, at corner 36, large face 44 and small face 48 are at a right angle, large face 42 and small face 48 define an approximate 45° angle, while the third angle of approximately 60° at corner 36 is located between large faces 42 and 44. At sharp corner 38, the right angle is defined between large face 42 and small face 46, the approximate 60° angle is between large faces 42 and 44, while large face 44 and small face 46 define the approximate 45° angle.
As will be clear from the description, there can be slight variations in the different angles and dimensions described above depending on the manufacturing process. However, tighter manufacturing tolerances will generally permit less displacement and imbalance of units 30A and 30B as they are configured into blocks, and as the blocks are oriented into solutions. Tighter tolerances allow for much greater scalability of the puzzle into larger solutions.
Symmetry reflected by the reference numbers above can also be exploited to identify colors or designs on unit faces that are not always visible. Indicators 49 are on each respective corner 32, 34, 36, and 38 of units 30A and 30B, and correspond to the color or design on opposing faces 42, 44, 46, and 48. In one example, indicator 49 on corner 38A of unit 30A is red, which communicates to the player that unit face 48A, disposed opposite corner 38A, is also red. This can be helpful when unit face 48A is not visible, such as when it is part of a solution in progress. Indicators 49 can also work in reverse. If only unit face 48A is visible, indicators 49 can be seen on corners 32A, 34A, and 36A, thereby revealing the colors on unit faces 42A, 44A, and 46A respectively. Thus indicators 49 exploit the geometry of puzzle units 30A and 30B, allowing a player to immediately identify all four colors based on seeing only a single unit face.
When puzzle units 30A and 30B are manufactured according to a predetermined color code, indicators 49 can be placed on the respective corners during production. In embodiments where users can modify units and create their own predefined color code, indicators 49 can accordingly be made removable and/or replaceable. This can be done, for example, by small stickers or inserts, which would accommodate changes to the color progression made by the player to a given puzzle unit. It will be apparent that, to be effective, indicator 49 need only correspond to the color or design on the opposing face. They need not match so long as indicator 49 readily communicates the status of the opposing face.
Symmetry of units 30A and 30B also informs how they are linked by a single connector 60. As will be seen below with respect to example Color Codes, puzzle units 30A and 30B are geometric mirror images of each other but are not necessarily color mirror images. Connector 60 includes flexible filament 62 which allows the units 30A and 30B to be freely translatable and rotatable relative to each other.
In certain embodiments, units 30A and 30B, and connector 60 can include other components described with reference to
As shown in
Joining a set of units 30A and 30B into individual puzzle unit pairs 30 can not only increase the possible number of solutions, it can introduce additional challenges compared to a single long chain. For example, a single chain of units inherently communicates the next unit to be placed in the puzzle. While the player must still decide the location and orientation of the next unit in the chain, one element of strategy and challenge is not available. Further, pairing mirror image units with a single connector 60 also adds other strategic or recreational elements to the puzzle game. The single connector can be made to move between corners instead of being locked to a single corner, such as corners 32A and 32B, adding flexibility and many additional solutions. It also enables creation of color codes, such as those examples described below. Codes permit various solutions such as cube-based solutions, pyramid-based solutions, as well as other complex solutions to be created from the same set or subset of puzzle units.
Using single connector 60 to link units 30A and 30B also limits the number of ways a user can arrive at a given solution with a given set of puzzle units. This creates an additional challenge compared to selecting the correct units 30A or 30B out of a set of individual unlinked units. While a particular unit in one instance of pair 30 may appear to have correct unit faces for a particular solution, its mirror image counterpart unit may not be appropriate for the particular solution. A player must instead identify and arrange the correct puzzle units pair 30. Therefore, strategy and patience are required to select the correct puzzle unit pair 30 from a set, configure them into the correct block, and orient the blocks according to the various challenges.
Creating a puzzle with separate unit pairs 30 also allows partial sets with varying quantities of units 30A and 30B to be used. In contrast, a fixed number of units in a chain will require that all solutions have the same number of units or that parts of the chain be repeatedly separated and rejoined. In one example, a 48-unit chain will result in every possible puzzle solutions having the same volume, unless puzzle solutions involving fewer units include vestigial remnants of unused units in the chain. Leaving these remnants attached reduces aesthetic enjoyment and satisfaction inherent in solving a challenging puzzle, while detaching or disassembling the connector introduces unwanted and unnecessary stress on the components.
Magnets 52 can be included as part of the connection system to hold units 30A and 30B in place. Units can be held as blocks, as well as against other units, blocks or solutions. With magnets 52, blocks or even large portions of a puzzle solution can be added, reconfigured, or easily reassembled to help the player solve larger or more complex puzzle challenges. In contrast, linking large numbers of units into a chain severely restricts movement and adaptability of units while the puzzle is being solved. For example, translating a part of the chain can cause movement in remote parts of the chain, potentially disrupting the partially completed solution. This affects structural integrity of the puzzle being solved, with the effects being multiplied when working on larger-scale solutions involving several puzzle sets. Placement and numbers of magnets 52 in each unit are discussed further with reference to
This puzzle design also makes the puzzle accessible to a much greater range of player skill levels. Challenges can be designed to take advantage of the modular and scalable design of various embodiments of the amusement device. As described above, single basic solutions with primarily geometric solutions can serve as a satisfactory challenge for young and/or novice players. Multiple basic solutions or more complex solutions can be created from a single puzzle set with various color challenges for moderately-skilled players. Larger scale solutions provide challenges using multiple sets, including the introduction of hybrid puzzle solutions for more advanced players. The most advanced players can create their own codes with examples of modular and interchangeable units 30A and 30B shown in
Various ways of configuring puzzle unit pair 30 into blocks 24, 28, and 29 are explained with reference to
To configure unit pair 30 into block 24, large unit faces 44A and 44B are placed flush against each other. In some embodiments, faces 44A and 44B are held together by the interaction of magnets 52 (not visible in
Block 24 has five total surfaces, one of which is square base 50 with sides of length L. Square base 50 is the combination of two small unit faces 48A and 48B. The 90° angles on small faces 48A and 48B form two opposing corners of square base 50. The remaining four surfaces of block 24 are four sides of units 30A and 30B. Large faces 44A and 44B, having dimensions L, SQRT(2)*L and SQRT(3)*L are the two front surfaces of block 24 in
An example will illustrate the different color patterns possible by repositioning connector 60. In this example, puzzle unit 30A has a color progression of YGWB. As described later, this means large unit face 42A is yellow, large unit face 44A is green, small unit face 46A is white and small unit face 48A is blue. Unit 30B has a color progression of WRBG (white, red, blue, green). In
Positioning connector 60 at corners other than 32A and 32B will change the faces visible on outer surfaces of block 24. This can cause up to four different color patterns on block 24 where one end of connector 60 is repositioned between corners 32A and 34A on unit 30A and where 30B are marked with different colors or designs. In other words, with the pair of colored puzzle units 30A and 30B, block 24 will have the same geometry, but a different color pattern based on the position of connector 60. Changes to this example pattern are seen in
In a second example embodiment of block 24 shown in
With connector 60 now represented by the black circle at corners 34A and 34B, large faces 42A and 42B are flush against each other at the center of colored block 24, while the second pair of large faces 44A and 44B are on the outside of block 24. This is the reverse configuration of large unit faces seen in
To illustrate the effect of changing the position of connector 60 to corners 34A and 34B, recall the example puzzle unit pair 30 from
Two additional examples of blocks 24 with different possible color patterns are also shown in
Square base block 24 in
In
As seen in
Formation of blocks 24 can generally be described as placing a large unit face (42 or 44) from each of units 30A and 30B together at its center. Triangle-base blocks 28 and 29 can similarly be described as placing small unit faces (46 or 48) from each of units 30A and 30B together. As seen by arrows 5A-5D, forming block 28 entails placing the rear small faces of block 24 into contact, while forming blocks 29 is done by placing the bottom small faces into contact, as shown by arrows 6A-6D.
In addition to the closed configurations shown in
As discussed above, arrow 5A in
Four outer surfaces of tetrahedral block 28 define four corners and include two identical right triangles at the rear, an isosceles triangle at base 51, and a right isosceles triangle in the front. The two identical right triangles at the rear are individually defined by large unit faces 44A and 44B, with edges having lengths L, SQRT (2)*L and SQRT (3)*L. Finally, base 51 includes small faces 48A and 48B arranged into an isosceles right triangle with sides having lengths of about SQRT(2)*L, SQRT(2)*L, and 2*L.
Triangle base 51 has two sides of length SQRT (2)*L and a hypotenuse of length 2*L, with both ends of connector 60 at its midpoint. The other isosceles triangle at the front of block 28 is not a right triangle, and has two sides of length SQRT(3)*L and a third side of length 2*L defined by a combination of large unit faces 44A and 44B. Continuing the example color progressions on unit 30A (YGWB) and 30B (WRBG), block 28 will also have a certain color pattern resulting from the position of connector 60 at corners 32A and 32B. The large front outer surface of block 28 in
Next,
This configuration in
In
As described above, four instances of blocks 28 (or 29 as seen in
As described above in the example shown in
For example, assume that pyramid 26 (shown in
Block 29 in
Block 29 in
Comparing block 29 in
Moving to
Similar to the relationship between block 28 in
In
Finally, block 29 in
In the examples described above, connector 60 is repositionable between two or more corners on units 30A and 30B creating various blocks in closed configurations as shown throughout
In one example, connector 60 is temporarily fixed at corners 32A and 32B. In those other embodiments, the only relevant versions of blocks 24, 28, and 29 are in
In certain embodiments, connector 60 is one part of a unit connection system that can also include magnets 52 (not shown in
It will be apparent that magnets 52 can be placed such that units, blocks, and partial solutions can also readily be removed and rearranged using the connection system. For example, magnets 52 allow large portions of solutions to be removed with minimal force, preventing damage or disconnection of other portions of partially solved puzzles. In other embodiments, a number of additional magnets 52 can alternatively be substituted for metalized unit faces and positioned such that the units and blocks remain together only when magnets 52 with opposing polarities on various unit faces are correctly oriented to solve a given challenge.
Certain embodiments of the connection system that can include connector 60, embedded magnets 52, and metalized unit faces give the device a very high degree of scalability and flexibility. To further increase this flexibility of the puzzle game, units 30A and 30B can also be built with one or more modular structures that permit changing the various unit faces. Modular structures for units 30A and 30B also can include linking of repositionable connector 60 to an interior surface of modular units 30A and/or 30B without various structural and connector components interfering with one another.
Small unit faces 46A and 48A are removed from unit 30A and small faces 46B and 48B are removed from unit 30B to illustrate how one end of connector 60 travels along right angle edge 32A-34A and an opposing end moves along right angle edge 32B-34B without connector 60 being disassembled or detached from units 30A and 30B. In these examples, small unit faces 46A and 48A are held to unit 30A via apertures 58A on support members 54A (not visible in
Flexible portion 62 of connector 60 moves along linear slots 56A and 56B. As will be seen in more detail in
In
Apertures 58A on support members 54A and 55A receive pins 59A on small unit face 46A. In this example, pins 59A are formed out of a semi-rigid elastic material to facilitate engagement with apertures 58A. The elastic material, such as commonly available polyethylene or polypropylene, temporarily deforms when pressed into apertures 58A. The pressure around the edges of apertures 58A holds pins 59A into place.
Face 46A is also metalized such that one or more magnets 52 in those adjacent unit faces will simultaneously engage with unit 30A. Alternatively, multiple instances of unit faces 46A and/or 48A can include only one of magnets 52 or a metalized portion of the face. The particular distribution of various faces having either a magnet 52 or a metalized portion could be chosen such that only the correct solution would yield the correct combination of unit faces and magnets 52. Magnets 52 and potential alternatives are also included on or proximate embodiments of large unit faces and virtual puzzle blocks as described in more detail below.
In certain embodiments, the geometry of small face 48A is substantially identical to small face 46A. In some embodiments, this identity of faces 46A and 48A also extends to the location of magnet 52 and pins 59A. Uniformity of faces 46A and 48A simplifies manufacturing, and makes small unit faces interchangeable as well as removable. Alternatively, pins 59A can be located according to a plurality of different layouts corresponding to layouts of apertures 58A. Multiple pin patterns on different faces 46A and/or 48A can then indicate, in conjunction with complementary arrangements of apertures 58A whether the player is correctly installing faces for a given color code or other puzzle set.
In certain embodiments, interchangeable unit faces are also coded with a color or design, and a player can recombine the interchangeable faces from different puzzle units to change the color progression on puzzle units 30A or 30B. The player can then disassemble and recombine a plurality of these units to create his or her own codes and corresponding solutions.
In some embodiments, unit 30A includes support members 54A and 55A as part of puzzle unit assemblies 41A and 43A. In one example, shown in
However, the mirror image relationship of small unit faces 46A and 46B does not extend to placement of magnet 52. It can be seen from comparing
The components shown in
Slider 70 has ends 72, cylinder 74, and passage 75. Slider 70 is installed within unit 30 to help facilitate movement of connector 60 between corners, such as corners 32 and 34. In certain embodiments, such as shown in
Coupling 68 rotatably links springs 64 to flexible section 62, reducing wear and tear and simplifying manipulation of puzzle unit pair 30. Coupling 68 includes eyes 76 at either end of swivel 78. With swivel coupling 68, units 30A and 30B are free to rotate relative to connector 60 a virtually unlimited number of times, with the twisting motion absorbed by swivel coupling 68. Eyes 76 are freely rotatable within coupling 68, thus reducing torsional stresses on flexible portion 62. If unit 30A or 30B is rotated repeatedly in the same direction without coupling 68, these forces can cause unwanted detachment of connector 60, or cause damage to linkages 66 or spring 64 at either end of connector 60, such as from unwinding or overwinding.
Alternative embodiments of connector 60 can include a greater or lesser number of the above components, including springs 64, couplings 68, and sliders 70. It will also be apparent that flexible section 62 need not be a single string, filament or other flexible apparatus as shown. Flexible section 62 can alternatively be a plurality of flexible elements between other elements of connector 60 as needed to increase the distance between units 30A and 30B or to prevent interference among the several components of connector 60. For example, a portion of flexible section 62 can be disposed between spring 64 and linkage 66, which could simplify removal of slider 70 from channel 80 when faces of units 30A and 30B are reconfigured to create additional color codes. Similarly, a portion of flexible section 62 can also be used to join swivel coupling 68 and slider 70. In that example, and passage 75 would be replaced by two connection points on the outside of slider body 72 for fixing flexible section 62 to slider 70.
As noted above, adapting puzzle unit pair 30 to include repositionable connector 60 allows different combinations of unit faces to be visible on outer surfaces of colored blocks 24, 28, and 29. When connector 60 is positionable at more than one corner of unit 30A or 30B, a greater variety of puzzle challenges can be presented, as well as raising the level of difficulty by introducing an element of misdirection, especially to more experienced players. Repositionable connector 60 can also make it simpler to develop new color or design code schemes with fewer pieces by increasing the available permutations of the available colors or designs.
Any repositionable connector may be used to configure puzzle unit pairs 30 into the example blocks shown in
Further, because example connector 60 is rather unobtrusive, it is less likely to interfere with adjacent parts of the puzzle that have already been placed. Units 30A and 30B can be freely translated while reducing the risk of accidentally knocking over or pulling apart the wrong sections of a partially solved puzzle. Magnets 52, described below, also allow large portions of solutions to be readily disassembled and repositioned without undoing a significant amount of work, none of which can be done with units fixed into a chain.
These elements also contribute to making example connector 60 more resilient than other connectors, and solving larger puzzles. For example, a rigid connector with a single pivot point can protrude from the puzzle at odd angles, complicating formation of the desired geometric shape. A small, thin, flexible filament, such as flexible section 62, is unobtrusive and can be concealed easily between the two mirror image faces of units 30. Spring 64 also allows a substantial portion of flexible section 62 to be stored on the interior volumes of the respective puzzle units when spring 64 is unloaded, while still keeping additional length available when needed for rotating and repositioning the units. Coupling 68 and slider 70 also contribute to free motion of puzzle unit pair 30. All of these elements of connector 60 can be readily integrated with a modular and interchangeable construction of units 30A and 30B, shown in
As seen at the front of
Returning to
Also shown in phantom are magnets 52 proximate either longitudinal end of channel sections 82A. In certain embodiments, these magnets 52 can serve dual duty. Magnets 52 attract and hold a metalized end 74 of slider 70 to help retain slider 70 and thus the corresponding end of connector 60 at a selected corner of unit 30A. Magnets 52 can also be a component of the unit connection system described above where they hold unit 30A flush against a metalized portion of other puzzle units 30A or 30B, or against a metalized fastener located in or proximate an outer surface of a virtual puzzle block 40. Channel sections 82 are seen in more detail in
Also seen in
To facilitate overlap of the two pairs of support members, support member 54A can be set back further from edge 34A-36A than support member 55A disposed along edge 34A-38A. This setback is better illustrated in
In certain embodiments, such as in the example shown in
Support members 54A and 55A project from inner surface 53A proximate edges 34A-36A and edge 34A-38A respectively. Support member 55A extends substantially perpendicular from an inner surface of face 42A, while support member 54A extends at an angle of about 45°. This provides surfaces for engagement of small faces 46A and 48A. They are substantially the same size as each other and are proportional and parallel to faces 46A and 48A. Overlapping support members 54A and 55A on assemblies 41A and 43A are oriented in substantially parallel planes to the respective faces to allow face 46A and/or 48A to sit flush against them, such as when pins 59A engage apertures 58A (shown in
To further secure assemblies 41A and 43A, attachment apertures 58A are laid out on support members 54A, 55A to align with the layout of pins 59A, such as those on inner surfaces of unit faces 46A and 48A (shown in
Certain embodiments of interchangeable units 30, such as the examples described above, inner surfaces of faces 42, 44, 46, or 48 include mitered edges. Edges are mitered, such as by machining or molding, into angles of approximately half the angle between the adjacent unit faces. For example, faces 42A and 44A, which form a 60° angle, include mitered edge 36A-38A on or near inner surfaces 53A, at opposing angles of about 30°. This allows faces 42A and 44A to fit tightly together when assemblies 41A and 43A are engaged as in
In yet other embodiments, such as those with example repositionable connector 60, one or more unit faces are additionally beveled along one or more common edges, causing such unit faces to have dimensions slightly less than the nominal dimensions of the unit face. In one example, small unit faces 46 and 48 are right triangles having a height slightly less than L to accommodate movement of connector 60 between right angle corners 32 and 34. The total reduction in the height of unit faces 46 and 48 approximate a cross-sectional dimension, such as the diameter, of flexible section 62. In any case, the reduction is small enough to retain the substantially tetrahedral shape of units 30A and 30B. In other embodiments where connector 60 moves beyond corners 32 and 34, other corresponding faces and edges can be similarly modified.
The relative dimensions and symmetry of the tetrahedral puzzle shape, with the uniform and mirror image geometry of assemblies 41 and 43, as well as small unit faces 46 and 48, also simplifies manufacturing of puzzle unit pair 30. Unit faces and assemblies can be constructed using most conventional material processing techniques. For example, large and small unit faces can be constructed by forming the basic triangle shape out of a readily available inexpensive thermoplastic such as polyethylene by conventional heat-assisted molding or pressing. This step can include formation of pins 59A and/or inner surface 53A as well. A thin metal sheet is then placed over what will eventually become the colored face. Holes for magnets are then bored or drilled through the thermoplastic and the metal sheet, and the magnet is inserted flush with the outer surface. This surface can be further processed to be flat and even. Edges of the triangle are mitered and/or beveled as described above. Another thin thermoplastic sheet can then be wrapped over the metal and magnet and affixed to the inner surface near the outer edges of the triangle. The final plastic sheet can be colored or marked with the desired design either before or after placement. In one example, the final plastic sheet is two separate sheets, a strong clear thermoplastic to secure the elements including magnet 52, and a second thin colored sheet to mark the unit face with the selected color. Alternatively, the unit face and inner surface 53A can be molded or otherwise formed as a single entity with colored thermoplastic pellets or other raw material.
As described above, support members 54A and 55A are fixed to inner surfaces 53A. They can alternatively or additionally be adapted and fixed to other surfaces, such as unit faces 46A and/or 48A. Puzzle unit assembly 41A can be fabricated as a single entity or be made separately and later assembled. For example, support members 54A and 55A can be formed as part of a single mold with unit face 42A and/or inner surface 53A. Alternatively, support members 54A and 55A are made in a separate mold and bonded later to inner surface 53A. This increases the number of parts for manufacturing, but may be preferable based on individualized manufacturing considerations such as cost, speed, existing equipment, quantity, tolerance, etc.
Another alternative embodiment includes large unit face 42A being separable from the puzzle unit assembly 41A. It will be apparent that unit face 42A can be adapted to be removable from the rest of assembly 41A, such as face 42A being engaged via pins into apertures in a manner similar small unit faces 46A, 48A engaged with support members 54A, 55A. Yet other embodiments have all four faces being held to a single integral support structure via pins. In these embodiments, a complete set of interchangeable unit faces eliminates the need to detach connector 60, allowing it to be permanently fixed to unit 30A or the support structure.
As seen in
Next,
Alternatively, connector 60 can be joined to unit 30A in several other ways. For example, connector mount 88 can also or alternatively be included in the structure of face 44A. In some other examples, connector mount 88 is disposed on only one surface of face 42A (or 44A). Hook 66 can semi-permanently attach spring 64 to units 30 while attachment and detachment of connector 60 is done by disconnecting coupling 68 from spring 64. Also, as noted above, hook 66 need not be integral with spring 64, and can instead be a separate component. Also noted above are alternative embodiments where connector 60 includes a single spring 64 and/or coupling 68 instead of two as shown in example connector 60 of
As can be seen in
Magnets 52 are embedded into holes bored or otherwise created in inner surface 53A. Alternatively, holes can be created during manufacturing, such as being integrated into an injection mold of assembly 41A or face 42A. Magnets 52 are secured to assembly 41A by any number of means, including adhesive bonding. Alternatively, they can be secured by reducing the effective diameter of the hole after insertion of magnet 52, such as by adding a thermoplastic or rubber insert around the circumference to partially or completely enclose magnet 52.
As described above, magnet 52 proximate channel 80A serves dual purposes. Magnets 52 can hold large unit face 42A of unit 30A to a similarly sized face on an adjacent unit 30A or 30B. This adjacent unit can be the counterpart puzzle unit 30B linked by connector 60. The adjacent unit can also be one that is part of other colored puzzle blocks 24 or 28, or a part of an even larger solution. In certain embodiments, magnets 52 can also engage with fasteners on virtual puzzle blocks 40, examples of which are shown in
Magnet 52 also holds slider 70 at either end of channel 80, helping to retain connector 60 at selected corner 32A or 34A. Slider 70 is located in radial channel section 82 and moves along channel 80. One side of channel 80 is located proximate face 42A, while the other side is located proximate face 44A (not shown in
Recall that unit assembly 41B, shown in
However, in certain embodiments, channel 80 does not include a full radius due to axial connector conduits 86. Connector conduits 86 provide an axial path along channel 80 for flexible portion 62 of connector 60 to move along with slider 70. In one example, each of the two radial channel sections 82 occupies about 170° of the circumferences of channel 80, leaving about 10° for each connector conduit 86. But given a flexible filament 62 with a sufficiently small diameter and/or made from a friction resistant material, each connector conduit 86 occupies between about 1° and about 5° of the circumference, allowing channel sections 82 to each be between about 175° and about 179°. In certain embodiments, each conduit 86 need only occupy less than about 1° of the radius, leaving between 179° and 180° for each channel section 82. Further, in some embodiments, edges of channel sections 82 defining the limits of connector conduit 86 can be rounded or beveled to prevent premature wearing or damage to connector 60.
As described above, with connector 60 repositionable between two corners of each unit 30A and 30B, there are four possible combinations of locations where connector 60 can be readily fixed in a single unit pair 30. This compares to a single version of blocks 24, 28, or 29 with a fixed connector. Linking units 30A and 30B into pairs makes the puzzle more challenging than separate units because it requires both units 30A and 30B be a part of the solution. This also improves the flexibility, challenge, and amusement provided by the puzzle because a greater variety of faces are available on blocks 24 and 28, and 29, seen in
Uniformity of faces and other components of units 30, including unit assemblies 41, 43, unit faces 46, 48, support members 54, 55, and channel 80, simplifies manufacturing by requiring a minimal number of distinct components. This reduces the number of dies or molds required. Uniformity also reduces tolerance between unit faces by ensuring dimensions closely track the example multiples of 6 described above. In more complex puzzle solutions, such as large hybrid cube 12, significant departure in dimensions can cause misalignment of unit pairs 30 and virtual blocks, leading to out-of-balance solutions.
The connection system is also resilient and adaptable. By incorporating the above features into the support assembly, space is also saved inside each puzzle unit, making them readily adaptable to include connector 60. Slider 70 and channel 80 facilitate a single movable link to reposition connector 60 within units 30A and 30B without detaching or disassembling the connector. Magnets 52 and metalized unit faces allow sets of different unit pairs 30 or blocks to be reconfigured into different geometries or color patterns without substantial effort and wear.
The unit faces are modular and interchangeable, allowing a player to readily disassemble and reassemble units to create his or her own puzzle codes and solutions. It also permits integration of certain embodiments of the unit connection system by providing room and stable connections for magnets 52 and other components of connector 60 in units 30A and 30B. The examples above describe adjacent units 30 as being held together by magnets 52 disposed within or proximate metalized faces 42, 44, 46, and 48.
Puzzle units can alternatively be held together in ways other than by magnets 52. This is determined in part by the composition of the material comprising units 30A and 30B. In one example, if unit faces are substantially formed from a flexible thermoplastic or other similar material, portions of faces and/or edges can include interlocking elements to secure puzzle units.
Other alternative structures include modifying puzzle unit pair 30 and connector 60 such that connector 60 is not limited to corners 32 and 34. In one alternative, slider 70 is a substantially spherical metal bearing on flexible section 62. Unit 30A and/or 30B then include at least two additional channels 80 to guide slider 70 to corners 36 and 38. Channels 80 can also include a substantially spherical transition area proximate one corner with one or more connector conduits to allow slider 70 to traverse channel 80 along at least three edges of unit 30A or 30B.
The geometry of puzzle unit pairs 30 and connector 60 all contribute to scalability and flexibility of the puzzle. In certain embodiments, larger or more complex puzzles can be held in place using one or more virtual puzzle blocks as support structures. In other embodiments, those support structures can also become part of the puzzle solution, such as was seen in
As described above, puzzle units 30A and 30B can be oriented into a wide variety of geometric shapes. And as will be described below, those puzzle unit pairs 30 can be marked with colors or designs according to a predetermined code such that those geometric shapes also have a color pattern when a user takes some or all of the unit pairs 30 in a set and correctly orients them into various color arrangements. In solving such puzzles, a user may want to solve a complex geometric challenge first, or may need additional structural support for a larger puzzle solution. Virtual puzzle blocks can be created to match those reference shapes and volumes, which are substantially geometrically equivalent to reference combinations of an integer quantity of at least one of each puzzle unit 30A and 30B. Virtual blocks have a continuous volume substantially geometrically equivalent to combinations of the above-described units 30.
In the examples shown in
The exact number and distribution of fasteners in a virtual puzzle block is determined according to the number and orientation of potential virtual and hybrid puzzle solutions available in a given puzzle set. In many cases, such as in block 100 as well as the following examples, virtual puzzle blocks will include at least one, and potentially several additional bores due to the large number of possible combinations of units 30 and virtual puzzle blocks. Magnets 104 and metalized surfaces 102 of virtual blocks can alternatively be distributed in a pattern on the outer surfaces such that they engage only when oriented into a correct predetermined puzzle solution.
As can be seen in
In
As noted above, there may be additional bores 105 to provide room for fasteners for multiple solutions. Additional bores 105 can also introduce an element of misdirection, particularly when the fasteners can be removed and replaced in different bores 105 as part of the puzzle challenge. Bores 105 can also be arranged in a grid or concentric circle patterns, such as example unit 114 in
Virtual blocks can be built from any relatively low cost material. One material includes as sheets of molded plastic cut into shapes of the outer surfaces and bonded along each edge such that the blocks are hollow in the center, taking advantage of its durability, low cost, and ease of manufacture. A harder material provides heavier and more durable virtual blocks, offering sufficient structural support for various large scale hybrid and virtual blocks. In one example, virtual blocks are made from a hard polyacrylate material. In such embodiments, the weight of such a material can be reduced by introducing additional bores 105 to reduce the total volume of material. It will also be recognized that a virtual puzzle block can alternatively be a plurality of puzzle units 30A and 30B permanently bonded together at one or more unit faces.
Virtual puzzle blocks can have several functions when used in conjunction with unit pairs 30. For example, virtual blocks can be used as a support structure or space filler. With a proper arrangement of magnets 104 and metal contacts 102, a virtual block can fill an otherwise hollow space beneath supporting groups of colored puzzle units 30, to build large scale hybrid solutions. For example, cube 116 can be used in place of cube 130 in
Referring back to
Virtual puzzle blocks are also useful in planning complex solutions involving a large number of puzzle unit pairs 30. With a set of virtual blocks, a user can first solve the geometric challenge. The player can determine which puzzle unit pairs 30 are required to be configured into the appropriate blocks (e.g., blocks 24, 28) with the appropriate color patterns to solve the color challenge. Since they geometrically represent many combinations of puzzle units 30A and 30B, multiple instances of one or more types of virtual puzzle blocks can be combined to form larger support structures or into their own group of virtual solutions.
Virtual puzzle blocks can also be grouped into a set that corresponds to various solutions using different combinations of units 30. Table 1 summarizes one such example set with the quantity of puzzle units 30A and 30B represented by each block, as well as the total number of equivalent units 30 represented by virtual puzzle blocks in the example set. Virtual blocks can be selected, such as from the example set in Table 1, and oriented into solutions without colored puzzle units 30A or 30B.
The description has focused on geometric aspects of the puzzle, including the structure of interchangeable and modular units 30A and 30B, linking the units into pairs with connector 60, arranging the units into blocks and the blocks into basic solutions, as well as various embodiments of virtual puzzle blocks. The remainder will describe how color can also be integrated into the puzzle game by adding colors to one or more faces of puzzle unit pairs 30.
The following
Faces of units 30A and 30B can include a plurality of distinct colors or designs, referred to as a color code. For simplicity and by manner of example only, the following example color codes include six distinct colors or designs in a set. To further simplify the description, the following examples use a basic rainbow color progression of white (W), red (R), orange (O), yellow (Y), green (G) and blue (B). This rainbow progression is one helpful clue and factor in creating color codes and solving corresponding puzzle challenges utilizing these color codes. It will be apparent that other colors or features can be added, deleted, or substituted for one or more colors such that the total number need not equal six.
One example system using the above six colors is Color Code 1, having a total of 96 three-dimensional units 30A and 30B. In certain embodiments, Color Code 1 can be divided into four subsets each having twelve unit pairs 30A and 30B. In these embodiments, Subset I includes a total of twelve unit pairs marked according to Table 2. Table 2 also indicates which basic solutions can be built with a given unit pair 30. Table 2 is split into two major columns, one for unit 30A and one for unit 30B. Units 30A and 30B are paired together across each row, and linked typically by connector 60. Other columns (Cube ID and Pyramid ID) are explained further with respect to certain example puzzle solutions shown and described in more detail below with respect to
The listed units can be numbered in any order, but are numbered in the order above for convenience according to their use in these particular basic solutions. In certain embodiments with interchangeable units 30A and 30B, these unit and face identifications can be included on an inner surface of the components to facilitate re-creation of the original set. Alternatively, a version of the corresponding table(s) is included with the set(s).
To differentiate the faces on each of the puzzle units in the subset while retaining consistent descriptions, each face of each unit 30A and 30B requires a uniform nomenclature. The first unit 30A in each example Color Code (Unit ID) is designated A1, while the unit paired to A1 is designated as B1. Successive unit identification in Tables 2 and 3 refers to subsequent units in the set (e.g., units A2 and B2 are the second pair of units in the subset). The subset number (here, Subset I) is then appended to the unit ID.
Referring to
It can be seen in Table 2 that in example Color Code 1, each unit 30A having a first color progression, also has a corresponding unit 30B in the same subset with a mirror image color progression. This can be seen by looking at the mirror image unit for an adjacent unit pair. For example, unit A1 in Subset I has a color progression of YGWB. Unit B2 also has a color progression of YGWB. Similarly, the color progression of unit A2 is the same as B1 (WRBG). This pattern of alternating mirror image pairs holds true throughout certain predetermined Color Codes, such as Color Code 1. This color symmetry, is one factor in the wide variety of possible solutions, can helping a player determine the correct configuration of puzzle unit pair 30 into various blocks. It can also generally help a player or designer define new color codes by exploiting the relationship as one criterion of a new code.
The remaining columns in Table 2 identify certain example solutions. One example, shown in
As seen in
In Table 2, the number listed under the Cube ID column corresponds to the subscript of the particular cube 122 (e.g., cube 122.1 is formed from units A1, B1, A5, B5, A9, and B9.) Therefore, to form cube 122.1, units A1, B1, A5, B5, A9, and B9 are first arranged into blocks 24 with square bases 50, each base 50 having a single color. Starting with units A1 and B1, there are four small faces (A1γ, A1δ, B1γ, B1δ) between them, and only one common color among them. Faces A1δ and B1γ are both blue, and therefore will define square base 50 of the first puzzle block 24. The first colored block 24 can be formed with a blue square base 50 by ensuring that faces A1δ and B1γ, corresponding to general reference numbers 48A and 46B, are on the bottom of block 24. This arrangement corresponds to
The remaining two blocks 24, are configurations of unit pairs A5/B5 and A9/B9. Units A5 and B5 have common small faces that are yellow (A5δ and B5γ). These faces also happen to correspond to
In addition to the set of cubes described above, units 30 in Subset I can be arranged into other groups of geometrically identical shapes, several of which also include coordinated color arrangements. One example shape is shown in
Diamonds 124A and 124B can be created by orienting six colored blocks 24. In one example, diamonds 124A and 12413 can also be formed by rearranging components of one small cube onto another small cube 22. Diamonds 124 each begin with a completed small cube 22 having a single color on each face. Three colored blocks 24 are placed on cube 22, with square bases 50 against a square face of cube 22. Blocks 24 are arranged so that the top of each block 24, opposite square base 50, defines an outer corner. Tops of diamonds 124 are defined by front corners of blocks 24 (e.g. corners 36A, 36B in
To integrate these coordinated color arrangements between the two diamonds 124A and 124B, cube 122.2, having a single color on each face as shown in
Subset I also forms other intermediate solutions including a plurality of pyramids 126.
Analogous to cubes 122, pyramids 126 are a combination of a plurality of colored blocks 28 as shown in
Table 2 can offer insight into configuration of unit pairs 30 into correct blocks 28. Table 2 shows units A1-A4 and B1-B4 from Subset I are used in pyramid 126.X. Triangle bases 51 on each block 28 will be blue and green to match a blue and green base of pyramid 126.X. Table 2 shows that unit pairs A1/B1 and A3/B3 each have between them a blue small unit face and a green small unit face (γ or δ). Unit pairs A1/B1 and A3/B3 are configured into two blocks 28 as seen in
However, when the blocks 28 are all in a closed configuration as described in the previous paragraph, each side surface has two colors instead of one. For example, the two side surfaces defined by unit pairs A1/B1 and A2/B2 would each be yellow and white. Each of the other two side surfaces (from units A3/B3 and A4/B4) each include both red and orange. The base of pyramid 126.X would also appear as four alternating squares instead of the two correct contiguous blue and green triangles.
To solve the challenge correctly, some blocks 28 must therefore be in an open configuration like block 28′ in
By arranging unit pairs A1/B1 into an open block 28′, closed block 24 made from unit pairs A2/B2 can be placed into the space between the respective open blocks as described above, and defining a half pyramid with solid yellow and white side surfaces. With pair A3/B3 also configured into block 28′ and pair A4/B4 forming block 24, the second half of pyramid 126.X is completed with red and orange side surfaces. It will be apparent that the remaining unit pairs in Subset I can be configured in a similar manner to build pyramids 126.Y and 126.Z.
Pyramids can vary in their geometry as well as their coordinated color arrangements, such as including a rhombic base. Rhombic pyramids are narrower and taller than square base pyramids 126, with the sides of the rhombic base about SQRT (3)*L, and a height of about SQRT(2)*L. Subset I can include up to three such pyramids, each having two or four colors on the four side surfaces. In rhombic pyramids with only two colors on the side surfaces, each pair of opposing surfaces have the same color. The rhombic base can include either two or four colors using this or other subsets of Color Code 1.
Table 3 shows the remaining subsets of Color Code 1. Each Subset II, III, and IV can be used to substitute or supplement Subset I according to the above descriptions. Subsets II, III, and IV follow the same geometry and general descriptions of the color arrangements as those using Subset I above, but the exact colors in a given solution can differ from the example solutions in
In this example, units from subsets I and II are joined to form cube 130 having sides with lengths of about 2*L. Cube 130 is shown with six colors, and a different color on each surface. Any two of the above subsets can be combined to form alternative embodiments of cube 130. Examples of alternative embodiments can include a different arrangement of the six colors on cube 130, as well as embodiments with only three, four, or five total colors. In certain of those embodiments, with cubes having less than six total colors, colors can match each other on one more pairs of opposing surfaces.
In
In addition to cube 130, two complete subsets can have many other challenges. It will be recognized that a full Color Code 1 set can produce two cubes 130. In certain embodiments, the two cubes can have identical or mirror image color arrangements. For example,
Cube 130 and pyramids 140 can be integrated with other solutions into 12-surface rhombie structure 150, shown in
Since the inner cube is not visible in
Other combinations of four subsets and a plurality of virtual puzzle blocks can also result in added solutions.
This challenge is a large scale version of the challenge used to build smaller square-base pyramids 140 shown in
But since pyramid 160 is a hybrid puzzle solution, a number of virtual blocks are also used in this structure. For example, the color arrangement for this instance of pyramid 160 does not require specific colors on the base. Here, nearly the entire base consists of virtual blocks except the perimeter. Recall that large cube 12 in
In addition, a complete set need not include one each of Subsets I, II, III, and IV to create large scale challenges. For example, with certain virtual block configurations, a hybrid 3*L cube can be built with two pairs of subsets from Color Code 1 (e.g., two sets each of Subsets I and II). This alternative to 3*L hybrid cube 12 can be built with no virtual blocks on the outer surfaces and as few as forty-five linked puzzle unit pairs 30, or ninety puzzle units 30A and 30B.
It will also be apparent that virtual blocks can replace or supplement puzzle unit pairs 30A and 30B to create countless other hybrid puzzle solutions. Further, it will be noted that several example solutions can be combined or modified into other interesting shapes such as houses or spacecraft, among others.
In addition to the 96-unit example Color Code 1, additional solutions can be made with a set using example Color Code 2. Table 4 lists eighteen units in an example set along with possible solutions for each unit pair. As described above, a set organized according to Color Code 2 can include several puzzle challenges similar to those for single subsets of Color Code 1.
One example challenge includes building square base pyramids similar to pyramids 126 seen in
A group of cubes with coordinated color arrangements can also be created from a set of Color Code 2 units. Certain cube solutions are similar to those for single subsets of Color Code 1. For example, cubes 1 and 2, as identified by the cube ID number in Table 4, have identical first color arrangements, while cube 3 has a second color arrangement that is a mirror image of the first. Similar to cubes 122, each cube has a single unique color on each surface.
Other solutions using a Color Code 1 set can also be adapted to Color Code 2. For example, units in Color Code 2 can be oriented into diamond shapes like diamonds 124 in
For example, Table 4 indicates that diamond 1 includes unit pairs A2/B2, A3/B3, A5/B5, A6/B6, A8/B8, and A9/B9. As described above with respect to
Other example solutions using all nine pairs in a Color Code 2 set are shown in
In another example challenge shown in
Players will find a smaller handheld puzzle useful for amusement while traveling. A puzzle set according to example Color Code 2, or another color code having similar numbers of units, can be readily made into a portable and/or handheld device. Transportability of the puzzle can be enhanced by sizing the units such that the set fits into a small box or container.
Generally, with the example puzzle units described herein, a six-color system offers flexibility in puzzle design while providing a manageable number of puzzle solutions and ease of use for the puzzle user. However, the number of colors can be adjusted based on the number of faces on the subject puzzle units and the desired level of difficulty. It should also be apparent that faces need not be created with solid colors. Rather, it will be quickly recognized that any combination of unique colors, patterns, letters, numbers, symbols, photographs, or other features can be placed on unit faces without departing from the scope or spirit of the invention.
The above described solutions are only a small fraction of the interesting shapes and challenges that can be created. For example, one or more groups of pyramids and cubes can be combined into shapes resembling houses, spacecraft, or other large complex structures. And it will be apparent that color arrangements of the smaller solutions can be coordinated such that the larger solutions have a coherent color arrangement as well. In addition, the example solutions described are not limited to being built with sets organized using Color Code 1 or Color Code 2, but rather any code or organization for paired geometric mirror image puzzle units.
It will also be apparent that pyramids 26, or other example solutions described herein are not limited to the ratios of the faces on units 30A and 30B. For example, geometric mirror image puzzle units 30A and 30B can alternatively be created in the shape of blocks 28, which are also tetrahedrons. These can be linked by a similar connector, and be configurable into various larger blocks. In such a case, it will be apparent that only two of these large tetrahedral blocks can be used to build pyramids 26 or their related colored puzzle solutions.
It should be noted that other color codes are possible apart from the two disclosed codes. A manufacturer or designer can build sets using their own color code. A user can create a color code of his or her own by disassembling and reassembling puzzle sets organized into an existing color code. Alternatively, the user can create new codes and/or solutions by mixing and matching components from multiple sets organized by other criteria (e.g. by size, color, etc.).
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.