The present invention relates to an apparatus which can be manipulated into different configurations. The apparatus comprises a plurality of sub-units connected and held together by one or more connecting members. The sub-units may be rotated so as to be in different relative orientations while remaining in the same physical locations. Furthermore, the sub-units may be pulled apart and moved so as to be in different physical locations relative to each other.
The present inventor has realized that it would be desirable to create a medium for constructing spatial constructions, sculptural assemblages which can combine aesthetic appeal and fun. The present inventor has also realized that such a combination of aesthetics and play will have a particular appeal to children, encouraging them to experiment with sculpture and architectonics to increase visual and spatial awareness, manual dexterity, and logical and creative thinking.
Certain embodiments of the present invention may provide a puzzle in a similar manner to the well known Rubik's Cube™. However, applications for the present invention are numerous. For example, embodiments of the present invention may be used to create 3-dimensional line drawings, 3-dimensional canvases or be used to construct poems or texts in 3-dimensions. Certain embodiments may also provide a glow lamp or glow stick which can be manipulated into different configurations. Certain embodiments may also be used to build structures such as reconfigurable modular buildings for use in space, underwater, on the moon, on earth and other planets and to form reconfigurable cities of the future. Other embodiments may be utilised to form computing, entertainment and telecommunication devices which may be reconfigured by the user.
Many other applications have been envisaged, some of which are discussed in more detail later in this specification.
It is already known to provide an apparatus in the form of a puzzle which comprises a plurality of sub-units which can be manipulated relative to each other. Such apparatus may comprise a target structure to be achieved by a user. The well known Rubik's Cube™ has already been mentioned as an example of such a puzzle. A standard Rubik's Cube™ comprises twenty six cube shaped sub-units arranged into a cube shaped structure, each edge of which comprises three sub-units and each face of which comprises nine sub-units. Individual sub-units cannot be rotated on their own. Rather, in order to manipulate the sub-units, a face of the cube is rotated in order to move the sub-units in that face/layer. The central sub-unit of each face of the cube remains in a fixed position, merely rotating about its central axis.
Variants of the Rubik's Cube™ are also known which comprise sub-units having a non-cubic shape. For example, a Rubik's Twist™ comprises wedge/prism shaped sub-units which are individually rotatable relative to each other in order to form different shapes as illustrated in
A known alternative to Rubik's arrangements discussed above comprises a plurality of cube shaped sub-units connected together by a flexible elongate elastic member. The flexible elongate elastic member is fixedly attached to end members of the plurality of cube shaped sub-units and extends through holes provided in the sub-units disposed between the end members. The cube shaped sub-units can be rotated relative to each other but, as with the previously described Rubik's Snake type arrangement, the opposing faces of adjacent sub-units do not change. That is, adjacent sub-units can be rotated relative to each other about a longitudinal axis of the flexible elongate elastic member passing between adjacent sub-units but cannot be moved relative to each other such that one of the blocks moves from one face to another face of its adjacent sub-unit.
An arrangement comprising a plurality of cube shaped blocks with a flexible elongate elastic member is illustrated in
One problem with the apparatus illustrated in
The aforementioned problem has been solved in accordance with another prior art arrangement, the Naef Cublex™ illustrated in
Similar problems are apparent from educational toys and puzzles disclosed in U.S. Pat. No. 5,525,089 and U.S. Pat. No. 3,514,893. In both of these puzzles it has been recognised that rotation of adjacent subunits can be a problem, and means to prevent rotation of adjacent subunits relative to one another have been included. However, these configurations still begin to fall apart under the weight of the apparatus as a whole, such that semi-permanent and/or permanent structures are not possible.
One object of certain embodiments of the present invention is to provide an apparatus which is an improvement over the aforementioned arrangements. Another object of certain embodiments of the present invention is to adapt the aforementioned prior art arrangements such that they are capable of forming semi-permanent or permanent structures. This will allow for a much wider range of applications for such apparatus.
The present inventor has recognised that the aforementioned arrangement as illustrated in
A further problem with the prior art arrangements is that as a user tries to manipulate the sub-units in order to achieve a desired shape, movement of one sub-unit can cause movement of other sub-units in the arrangement, which is frustrating and can lead to difficulties in achieving the desired shape. Again, this problem can be alleviated to some extent by adjusting the tension of the elastic biasing member. However, the tension must still be sufficiently low to allow manipulation of the sub-units. As such, there is always an unsatisfactory compromise between providing a sufficiently high tension in the elastic biasing member to hold the sub-units together in a desired configuration, while also providing a sufficiently low tension in the elastic biasing member to allow manipulation of the sub-units into a desired shape in the first place.
When, this compressive force is aided by the anti-rotation systems disclosed in U.S. Pat. No. 5,525,089 and U.S. Pat. No. 3,514,893 this may help to a certain degree, but rotation is not the only problem faced when semi-permanent and/or permanent structures are desired. In such structures, disengagement of adjacent subunits can lead to collapse of the structure even where rotation is prevented.
In light of the above problems, it is evident that the prior art arrangements are not ideally suited for forming semi-permanent structures which can be at least temporarily fixed/locked in a desired configuration. A desired configuration may be achieved using the prior art arrangements. However, if a user or a passer-by knocks the configuration then the sub-units can readily rotate relative to each other, or disengage, so as to move out of the desired configuration. As such, the apparatus must be periodically re-adjusted if the desired configuration is to be achieved and maintained.
In circumstances when it is desired to create a configuration with the apparatus which then has some further use, for example as a sculpture, building structure, model, furniture, lamp, jewellery, glow stick, or other accessory, then the present inventor has realised that it would be desirable to provide an apparatus which can be effectively locked into a desired configuration. As such, if a user or a passer-by knocks the configuration then the sub-units cannot readily rotate relative to each other or disengage to move out of the desired configuration.
The present inventor has solved these problems in accordance with a first aspect of the present invention by providing an apparatus comprising: a plurality of sub-units; and one or more connecting members for connecting the plurality of sub-units together in a chain, wherein the plurality of sub-units is held together in the chain by the one or more connecting members disposed between the sub-units, wherein each sub-unit comprises at least one groove through which the connecting member, or one of the connecting members, is movable to allow adjacent sub-units to be rotated around at least one rotational axis relative to each other by a user, and wherein the apparatus further comprises a locking mechanism to lock adjacent sub-units together resisting rotation, and resisting disengagement.
Providing a groove in a sub-unit allows an associated connecting member to be orientated such that it passes through different faces of the sub-unit in a manner similar to that described in the background section. As such, adjacent sub-units can be rotated relative to each other such that different faces of adjacent sub-units abut each other. Each groove preferably extends across the entire width of a face of its sub-unit and has a depth of approximately one half the depth of the sub-unit, more precisely, one half the depth of the sub-unit plus the radius of the connecting member.
In contrast with the prior art arrangements described above, the apparatus of the present invention is provided with a locking mechanism to lock adjacent sub-units together resisting rotation and disengagement. It is preferred that the locking mechanism is automatically released when the sub-units are pulled apart such that adjacent sub-units can be rotated relative to each other. The locking mechanism may then re-engage when the sub-units are released to lock adjacent sub-units together to resist further rotation and disengagement. It is to be noted that the sub-units remain connected by the one or more connecting members when in a pulled-apart configuration.
The one or more connecting members may comprise a flexible elongate biasing member. The plurality of sub-units may be held together in the chain by the flexible elongate biasing member under tension. It is to be noted that while such a flexible elongate biasing member holds the sub-units together under tension it does not function as a locking mechanism as the sub-units can still be freely rotated around a longitudinal axis of the flexible elongate biasing mechanism. The locking mechanism of the present invention resists such rotation and resists disengagement, when the sub-units are not in a pulled-apart configuration.
In the present context, the term ‘resist disengagement’ means that the subunits may not be separated under their own weight, or under the weight of the structure as a whole, when in any configuration. The user must actively work to disengage the sub-units, such that the structure is stable when locked in a configuration. The locking mechanism may comprise one or more engagement means present on a sub-unit and adapted to engage with an engagement means on an adjacent sub-unit. This may be, for example, in the form of a projections and an adjacent recess or hole adapted to receive the one or more projections (male/female engagement means), or some other means such as a snap-fit mechanism. This will be described in more detail below. Whilst the user would need to work to disengage the sub-units, the engagement means may be designed such that the user does not need to work to engage the sub-units, or alternatively the design may require the user to put in work to facilitate engagement (such as by guiding and/or pushing).
The flexible elongate biasing member may not be inherently elastic along its entire length but may have one or more elastic portions of elastic members to provide a biasing force. For example, the flexible elongate biasing member may comprise an inelastic string/wire connected to one or more springs which provide the biasing force. The springs may be located in end member sub-units of the chain or in one or more intermediate sub-units.
Other embodiments may utilize an inelastic connecting member or a plurality of inelastic connecting members functioning without any springs or tensioning mechanism. Such an arrangement would rely solely on interference or other locking between the sub-units to resist disengagement and to maintain semi-permanent configurations.
The connecting member(s) may have the function of firstly preventing the sub-units from becoming dispersed or losing their sequence, and secondly ensuring that only a limited number of sub-units is ‘in play’ (i.e. are disengaged) at any one time.
Each sub-unit may comprise a hole through which the flexible elongate biasing member extends, the flexible elongate biasing member extending though a plurality of the sub-units and connected to end members of the plurality of sub-units under tension thereby holding the plurality of sub-units together in compression.
Alternatively, a plurality of connecting members may be provided, each connecting adjacent sub-units together.
The locking mechanism may be constructed wherein each sub-unit comprises at least one projection and/or at least one recess which is complementary to the at least one projection whereby at least one projection of a sub-unit is received in at least one recess of an adjacent sub-unit to lock adjacent sub-units together resisting rotation.
According to the invention, the projections and recesses are configured to hold adjacent sub-units together whilst they are in the engaged state as well as resist rotation. For example, the projections may fit tightly into the complementary recesses such that the projections are held or gripped by the complementary recesses. The projections may completely fill the recesses to form a vacuum seal to resist disengagement. Such interference between the projections and recesses will complement an elastic biasing member in resisting the disengagement of the sub-units.
Each sub-unit may comprise a plurality of recesses and/or a plurality of projections. Alternating sub-units in the chain may comprise only recesses or only projections. Alternatively, each sub-unit in the chain may comprise both at least one recess and at least one projection. For example, each sub-unit may comprise at least one recess in one of its faces and at least one projection on each of its other faces. Alternatively, each sub-unit may comprise at least one projection on one of its faces and at least one recess in each of its other faces. Other patterns of projections and recesses may also be provided.
As an alternative to the aforementioned locking mechanisms, the locking mechanism can be constructed wherein adjacent sub-units comprise projections and a separate locking member is disposed between adjacent sub-units, the locking member having recesses which are complementary to the projections whereby the projections of the adjacent sub-units are received in the recesses of the locking member to lock the adjacent sub-units together resisting rotation and resisting disengagement.
Alternatively still, the locking mechanism can be constructed wherein adjacent sub-units comprise recesses and a separate locking member is disposed between adjacent sub-units, the locking member having projections which are complementary to the recesses whereby the projections of the locking member are received in the recesses of the adjacent sub-units to lock the adjacent sub-units together resisting rotation and resisting disengagement.
Yet another possibility would be to have a separate locking member which includes at least one recess and at least one projection which cooperate with complimentary projections and recesses on adjacent sub-units to lock the adjacent sub-units together resisting rotation and resisting disengagement.
As an alternative, or in addition to the aforementioned locking mechanism arrangements, the locking mechanism may comprise one or more of a snap-fit connection between adjacent sub-units, a magnetic locking mechanism (e.g. using magnets or magnetic pins), an electromagnetic locking mechanism, a shape memory alloy locking mechanism, a shape memory polymer locking mechanism, a muscle wire locking mechanism, a velcro-type locking mechanism, and a temporary adhesive locking mechanism.
The locking mechanism may alternatively or additionally comprise a semi-permanent or permanent fixing mechanism. For example, once the apparatus has been configured into a design which the user wishes to keep, glue, fastening screws, or other permanent fixing mechanism can be used to permanently fix the apparatus in a desired configuration.
Preferably, adjacent sub-units are rotatable around at least two rotational axes. The adjacent sub-units may be rotated by moving the sub-units such that different faces of the sub-units abut each other. The adjacent sub-units may also be rotated around a longitudinal axis of the connecting member.
Each sub-unit may comprise two grooves whereby adjacent sub-units can be rotated around three rotational axes relative to each other. The two grooves may be perpendicular to each other whereby adjacent sub-units can be rotated around three perpendicular rotational axes relative to each other. The two grooves may be provided on different faces of each sub-unit.
Alternatively, the two grooves may be provided on the same face of each sub-unit. The grooves allow the flexible elongate biasing member to be orientated such that it passes through different faces of a sub-unit.
Each sub-unit may be cube shaped. However, it is envisaged that other three dimensional shapes for the sub-units may be utilised in accordance with certain embodiments of the present invention. Thus, any platonic solid may be employed, and especially any platonic solid with three rotational degrees of symmetry. Icosahedra and rhombicuboctahedral are employed in some embodiments.
The flexible elongate biasing member may be a simple piece of elastic. Alternatively, it may any kind of elongate string-like or wire-like material or composite structure which can function to connect the plurality of sub-units together applying a compressive elastic force to the sub-units to hold them under compression. The elastic force should be weak enough such that the sub-units can be pulled apart by a user to re-orientate the sub-units relative to each other. The elastic force may be strong enough such that when released, the flexible elongate biasing member pulls the sub-units together into a locked arrangement with the one or more projections from one sub-unit engaging with the one or more recesses in an adjacent sub-unit.
One key principle of certain embodiments is that only one (or at most two) of the connections between adjacent sub-units is live/in-play/extended at any one time. The connection(s)/biasing member(s) can be optimized to achieve this effect.
The sub-units may be made of a transparent or semi-transparent material and a light source can be mounted in one or more of the sub-units thereby providing a glow lamp which can be manipulated into different configurations. One or more conducting members may be provided which extend through the plurality of sub-units and connect to the light source. The sub-units may alternatively, or additionally, comprise a light emissive material such as a fluorescent or phosphorous material to form a glow stick.
Embodiments of the present invention may be used to create 3-dimensional line drawings, 3-dimensional canvases or be used to construct poems or texts in 3-dimensions.
Embodiments may also be used to build structures such as reconfigurable modular buildings.
Certain embodiments may also be used to construct game boards such as for chess. Certain embodiments may also include an array of reflective mirrors for directing light, for example laser light, through the interior of the apparatus along its length so as to function as an optical cable. Such embodiments could also be used as a periscope or similar viewing apparatus.
Embodiments of the present invention will now be described by way of example only with reference to the accompanying drawings in which:
a shows another prior art arrangement in which 8 sub-units are provided with perpendicular grooves in opposite faces which allow the sub-units to be rotated around three perpendicular rotational axes relative to each other;
b shows a sub-unit of the prior art arrangement of
a to 4d show various views of an embodiment of the present invention;
a shows various views of a hollow sub-unit according to an embodiment of the present invention;
b shows various views of a hollow sub-unit according to another embodiment of the present invention;
a and 18b show embodiments which comprise double cube sub-units with a separate locking member disposed between adjacent sub-units;
a to 4d show a first embodiment of the present invention. The apparatus comprises a chain of sixty four sub-units connected together by an elastic biasing member passing through holes in the sub-units and being attached to end members of the chain. The elastic biasing member is under tension such that the sub-units are held together under compressive loading by the end members.
Each sub-unit is generally cubic in shape. Two perpendicular grooves are provided in a top face of each sub-unit forming a cross-shaped opening which extends down through the sub-unit to approximately half the height of the sub-unit. The sub-unit also comprises a hole which extends up from a bottom face and intersects the cross-shaped opening at a central point of the sub-unit.
Each sub-unit further comprises a square-shaped recess in a bottom face. Square-shaped projections are provided on each of the side faces and in the top face. These square shaped projections are complementary in shape to the square-shaped recess in the bottom surface. The grooves extend through the square-shaped projections such that the square-shaped projection on the top face is split into four smaller square-shaped sub-projections while the square-shaped projections on the side surfaces appear U-shaped.
When the chain is arranged in a vertical linear configuration, the projection on the top face of one sub-unit fits neatly into the recess on the bottom face of the next sub-unit. The elastic biasing member holds the projection in the recess and the complementary fit between the projection and the recess prevents the sub-units from rotating relative to each other and resists disengagement.
In order to rotate the sub-units relative to each other, the sub-units are pulled apart (disengaged) such that the projection of one sub-unit no longer extends into the recess of its adjacent sub-unit. Once pulled apart in this manner, the sub-units are still connected together by the elastic biasing member which is stretched between the two adjacent sub-units. In this pulled-apart configuration, the two sub-units can be rotated relative to each other around any one of three perpendicular axes. These rotational movements are described below for a simple example comprising two adjacent sub-units disposed one on top of the other.
For two adjacent sub-units disposed one on top of the other, if the top sub-unit is rotated around a vertical axis then the top face of the bottom sub-unit remains facing the bottom face of the top sub-unit. The top sub-unit may be rotated by 90°, 180°, 270° or 360° relative to the bottom sub-unit. When released, the elastic biasing member pulls the two sub-units back together with the square-shaped projection on the top face of the bottom sub-unit re-engaging with the square-shaped recess in the bottom face of the top sub-unit. Such a manipulation is illustrated in the Figures.
Alternatively, if the top sub-unit is rotated 90° relative to the bottom sub-unit around a horizontal rotational axis passing through the centre of the bottom sub-unit then the bottom face of the top sub-unit will oppose a side face of the bottom sub-unit. When released, the elastic biasing member pulls the two sub-units back together with the square-shaped projection on the side face of the bottom sub-unit engaging with the square-shaped recess in the bottom face of the top sub-unit (although the term “top sub-unit” is used here for consistency, the “top sub-unit” will now be disposed on the side of the bottom sub-unit). Such a manipulation is illustrated in the Figures.
A similar 90° rotational manipulation to that described above may be performed clockwise or anticlockwise around either of two perpendicular horizontal rotational axes passing through the centre of the bottom sub-unit and being aligned with the cross-shaped grooves in the bottom sub-unit. As such, the two adjacent sub-units can be rotated about three perpendicular rotational axes: two horizontal and one vertical. In so doing, the bottom face of the top sub-unit can be located against any one of the top or side faces of the bottom sub-unit.
Particular preferred chain lengths are those which can be folded into a cube and include eight (a 2×2×2 cube), twenty seven (a 3×3×3 cube), sixty four (a 4×4×4 cube), 125 (a 5×5×5 cube), 216 (a 6×6×6 cube), and so on.
It has been found that a chain comprising sixty four sub-units is particularly useful for allowing a wide diversity of structures to be realized. If each cube face is provided with a different pattern or colour, an upper bound on the number of permutations is approximately 1083 which is greater than the number of atoms in the observable universe and far exceeds the number of permutations for a standard Rubik's Cube™ which has approximately 1020 possible permutations.
It has been found that embodiments of the present invention can be made with more sub-units than prior art arrangements discussed above. This is because chains having a relatively large number of sub-units are increased in weight. This increase in weight causes prior art arrangements to fall out of a desired configuration under their own weight because adjacent sub-units of the prior art arrangements do not have any locking mechanism to impede rotation, and disengagement, of the sub-units. In contrast, the complementary projections and recesses of embodiments of the present invention effectively lock the sub-units against rotation when they are not pulled apart by a user. Furthermore, the projections are gripped by the recesses to resist disengagement. As such, embodiments having more than eight or twenty seven sub-units can be realised.
The sub-units can also be made hollow to reduce weight. This can be very important, particularly for large embodiments, to help prevent the apparatus collapsing under its own weight. In such embodiments, each sub-unit can comprise an internal cavity. The cavity may be substantially cubic in shape, spherical, or some other suitable shape.
Embodiments of the present invention can provide “semi-permanent” structures. By “semi-permanent” we mean that a structure is effectively locked in its current configuration and remains in this configuration even when the structure is knocked into. Furthermore, the structure can be moved as a whole from one location to another without the structure moving out of its current configuration. The structure is not fully permanent because the structure can be reconfigured by a user pulling apart the sub-units and manipulating the sub-units in accordance with the previously described movements to achieve a new structure. However, only when a user pulls apart, and holds apart, the sub-units can the sub-units be rotated so as to move into a different configuration. As such, the structures are best described as “semi-permanent” and may remain in a specific configuration, for example as a sculpture, for any amount of time desired. Embodiments may also be provided with permanent fixing mechanism in addition to the temporary locking mechanism which resists rotation and disengagement. For example, once the apparatus has been configured into a design which the user wishes to keep, glue, fastening screws, or other permanent fixing mechanism can be used to permanently fix the apparatus in a desired configuration.
a shows various views of a hollow sub-unit similar to the sub-units of the embodiment illustrated in
b shows a similar hollow sub-unit to that illustrated in
It should perhaps be emphasised that the hollowness of sub-units can be extremely important for the functioning of certain embodiments of the present invention, particularly large and/or long embodiments which would otherwise collapse under the weight of the apparatus as a whole if constructed with essentially solid sub-units.
The alternate version of the sub-unit shown in
The alternative version of the sub-unit shown in
In the arrangement illustrated in
In the arrangement illustrated in
In the embodiment illustrated in
Other configurations for the projections and recesses can be envisaged. The size and shape of the projections and recesses can be selected according to a desired use. Long projections and deep recesses can provide a stronger locking mechanism resulting in very rigid structures. However, the sub-units must then be pulled further apart in order to de-couple the projections and recesses in order to manipulate the chain into a different configuration. As such, an increase in rigidity can be obtained but at the cost of a reduction in the ease of manipulation. Shorter projections and shallower recesses are easy to decouple in order to manipulate the chain but are more likely to de-couple “accidentally” when the chain is in a desired configuration.
This balance between ease of manipulation and resistance to “accidental” decoupling of the projections and recesses is also dependent on the amount of tension in the elastic biasing member. If the tension in the elastic biasing member is high, the sub-units are held together more firmly making any structural configuration of the sub-units stronger. However, it is then more difficult to pull the sub-units apart and manipulate them into a different structural configuration. In contrast, if the tension in the elastic biasing member is low, the sub-units can be easily pulled apart so as to be manipulated into a new configuration. However, the sub-units are then held less firmly together making any structural configuration of the sub-units weaker. The locking member will in any event resist disengagement, and its level of resistance can be tailored to the tension in the biasing member to optimise structural integrity.
A suitable balance can be achieved between the size of the projections/recesses and the strength of the elastic biasing member. Alternatively, it is possible to provide an adjusting mechanism for adjusting the tension in the elastic biasing member. For example, one or both of the end members of a chain may be provided with such a mechanism. The mechanism may take the form of a screw type arrangement which is connected to the end of the elastic biasing member. For example, screwing the mechanism outwards may increase the length, and therefore tension, in the elastic biasing member, whilst screwing the mechanism inwards may decrease the length, and therefore tension, in the elastic biasing member. Using such a mechanism, the tension of the elastic biasing member can be decreased for ease of manipulation to achieve a desired configuration. When the desired configuration has been achieved, the tension of the elastic biasing member can be increased to increase the strength of the desired configuration such that it cannot be accidentally knocked out of this configuration even when dropped or thrown about. These mechanisms also allow the possibility of using a non-elastic wire or nylon string as the connecting member. Alternatively, an elastic member may be used but incorporating some inelastic strands or wire to limit maximum extension or to add strength to prevent the elastic member tearing catastrophically.
Another possibility for the connecting member would be to use a “muscle wire” comprising a shape memory alloy wire or shape-memory polymer wire/string.
Other tension adjusting mechanisms can be envisaged. For example, a ratchet mechanism, a twisting mechanism, a push button mechanism, or an electrical or electro-mechanical mechanism.
Other embodiments may utilize an inelastic connecting member or a plurality of inelastic connecting members functioning without any springs or tensioning mechanism. For example, certain arrangements may utilize a normal piece of string without any springs or tightening mechanism. Such an arrangement would rely solely on interference or other locking between the sub-units to resist disengagement and to maintain semi-permanent configurations. The connecting member(s) have the function of firstly preventing the sub-units from becoming dispersed or losing their sequence, and secondly ensuring that only a limited number of sub-units is ‘in play’ (i.e. are disengaged) at any one time.
Previous embodiments have been described for use with a single flexible elongate biasing member which extends along the chain of sub-units and holds the sub-units together in compression. However, it is also possible to provide arrangements which comprise a plurality of connecting members, each of the connecting members being disposed between adjacent sub-units along the chain.
Recesses are provided in the interior wall of the cavity, the recesses having a complementary shape to that of the bulb. As such, when two adjacent sub-units are pulled together by the spring, the bulb is received in a recess and locks the two adjacent sub-units together. The interior cavity is preferably spherical in shape to allow the connecting member to slide around the interior wall of the cavity when the sub-units are being moved relative to each other.
In
It is also possible to envisage a version of the sub-units similar to that shown in
One advantage of the proboscis arrangements discussed above is that the apparatus cannot physically come apart (allowing for child or adult strength) if, for instance, the elastic snaps. As such, it is possible to make the apparatus more robust.
The previously described arrangements comprise sub-units which are substantially cubic in shape. However, this is not a strict requirement. For example, the arrangement shown in
The arrangement shown in
Other configuration for the grooves can be envisaged. One, two or more grooves may be provided depending on the shape of the sub-units and the desired freedom of motion required for particular applications.
In previously described arrangements, structures formed using the apparatus may be described as semi-permanent in that the sub-units are locked together to resist relative rotation but can be pulled apart so as to be manipulated into new configurations if desired.
The aforementioned arrangements can be adapted to provide structures which may be described as permanent by including fixing members. The fixing members may, for example, be provided by screws and corresponding screw holes which can be used to fix the apparatus after it has been manipulated into a desired configuration.
In previously described arrangements, each sub-unit of the chain comprises both at least one projection and at least one recess. As such, in a single chain all the sub-units can be made the same. However, it is envisaged that different sub-units can be provided in a single chain. For example, the sub-units may alternate between sub-units which have only recesses and sub-units which have only projections.
The sub-units may be any shape. For example, cube, cuboid, tetrahedron, sphere, pyramid, prism, polyhedral, rhomboid, rhombicuboctahedron, and tesseract hypercube shapes may be used. They may be made of suitable material including wood, metal, glass, foam, plastic, rubber, composites, steel reinforced concrete, and pre-stressed concrete depending on the desired use. The sub-units may be solid or hollow.
Some general points regarding the internal structure of the sub-units are worth highlighting. Hollow sub-units are advantageous since they impart lightness to the apparatus, which may allow larger structures to be constructed with a large number of sub units to. If the sub-units are small, or low in number, hollow sub-units are not as desired. The tension in the biasing member should be as close as possible to being equal in all configurations. This enables improved functioning and manoeuvring between configurations (smooth, unimpeded, flow through the sub-units is much more pleasant for the user). The channels (grooves and tubes formed in the material around/through which biasing member passes) may simultaneously fulfil several functions, especially in our hollow sub-unit versions: they may guide and/or support the biasing member so that it flows smoothly (freely and/or unimpeded) through approximately the centre point of every (sub-unit) to aid in maintaining nearly equal tension in all configurations; they may aid structurally (such as in reinforcement) dealing with resisting, transmitting and distributing one or more of compressive forces, loads, stresses and strains etc; they improve manufacturability, particularly for plastic injection moulding of hollow versions. A filet may be employed on the edges of internal structures to ensure smooth flow of biasing member. It may also be advantageous to provide a lubricant, such as a silicone based lubricant, or a self-lubricating material such a nylon or graphite. A dry lubricant such as graphite powder may be advantageous. The end caps may be concealed—i.e. fixed so as to be visible as a separate part only from the bottom view when a sub-unit is disengaged and not visible at all when in engaged state (avoiding visible join line).
The flexible elongate biasing member may comprise a conductive material so as to provide an electrical connection. Light sources may be mounted in one or more of the sub-units and connected to the power cable. For example, the sub-units may be made of a semi-transparent coloured plastic (e.g. a semi-transparent red plastic material) and a helical wire may be coiled along the length of the flexible elongate biasing member (e.g. inside the flexible elongate biasing member to protect the wire), and connected to a light source such as an LED light source within each sub-unit. A helical arrangement for the cable/wire allows the cable/wire to be extended in length when manipulating the sub-units of the apparatus. Alternatively, electrical connections may be provided in each of the individual sub-units to provide a conductive path through the chain for powering lighting elements. Such configuration may provide a glow lamp which can be manipulated into different configurations and may be utilised as a lamp.
Another possible embodiment involves incorporating a light-emissive material such as a fluorescent or phosphorescent material into the plastic material of the sub-units in the apparatus. This may avoid any complex wiring as described previously in relation to the lamp embodiment. While such an embodiment may not function as well as a lamp compared with a wire/LED arrangement, it would still provide a glow-in-the-dark glow stick.
Another alternative would be to provide a power source, such as a battery, and a light source in one or more of the sub-units so as to avoid the need for a power cable extending between the sub-units.
The sub-units may be made (or partly made of) conductive material such as metal or conductive polymer.
Another possible application is to provide an apparatus which floats for use in a swimming pool. This may be achieved by using suitable plastic, wood or foam material for the sub-units of the apparatus. Other arrangements may be utilized in space or other low gravity environments.
Yet another possible application is as fencing or temporary building structures. A suitably sized apparatus, or a plurality of such apparatus, can be used to fence off areas of various shapes or form temporary walls, platforms or the like. This type of apparatus may be particularly useful for temporary structures at social, sporting or music events. The apparatus can then readily be re-configured into a more compact structure for transportation between events.
Other embodiments may be used as re-configurable buildings in architectural models and as real life full-scale modular buildings for use in space, underwater, on the moon, on earth and other planets and to form reconfigurable cities of the future.
Other embodiments of the present invention may be used to create 3-dimensional line drawings, 3-dimensional canvases or be used to construct poems or texts in 3-dimensions.
Embodiments may also be used to construct furniture such as chairs or tables. Further embodiments may be used to construct a ladder or rope.
Two or more apparatus according to the present invention may be configured to be connected together to form a structure comprising a plurality of chains. For example, end member sub-units may be configured to connect to another chain. Alternatively, or additionally, one or more intermediate sub-units may be configured to connect to another chain. The apparatus may also be configured to include several chains which are permanently connected together. Alternatively, the apparatus may have each end connected together to form, for example, a necklace, bracelet or bangle and/or be made of a suitable precious metal such as gold. Alternatively ‘multi-headed’ (or ‘multi-tailed’) apparatus may be provided. In the typical embodiments, the apparatus is linear with a head and a tail, but in some circumstances apparatus that have two heads and one tail or two heads and two tails (or three or more heads and/or three or more tails) may also be desirable. These multi-headed devices may, for example, be cross shaped (e.g. plus sign, Maltese cross, 3D cross, double plus sign etc.).
The sub-units may have different coloured faces, patterns, pictures, numbers or letters thereon to form a puzzle or puzzles to be solved by the user. The apparatus may be provided in a kit with one or more target structures, patterns, pictures or words to be formed by a user. A target pattern, picture, number or word may be achieved by manipulating the apparatus into a certain configuration. Certain embodiments may also be used to form magic squares, magic cubes, word squares or word cubes. More than one different design/puzzle may be contained/concealed within a single apparatus. The apparatus may also comprise ball-bearings which can be moved around the sub-units by tilting the apparatus to form a ball-bearing type puzzle comprising grooves and holes.
The apparatus may light-up, make a sound, and/or vibrate when certain configurations are achieved. Different coloured lights or different sounds or music may be associated with different configurations of the apparatus. This may be achieved, for example, by providing different electrical connections on each face of the sub-units. A processor may be provided to analyse the electrical connections between the plurality of sub-units and control a lighting unit, a speaker, a vibrating unit, or some other apparatus according to the configuration of the apparatus. It is also envisaged that other types of connections may be utilized for providing this control function, e.g. optical.
Other embodiments may be used as a 3-dimensional ruler and may comprise a suitable scale for measuring distances in 3-dimensions.
A processor may be provided in the apparatus and configured to communicate with a computer and/or other equipment via Wi-Fi, Bluetooth, etc.
While the previous embodiments have been described as being manipulated by a user by hand, other embodiments may be provided with a mechanical/motorized mechanism allowing remotely controlled reconfiguration of the apparatus.
Other potential uses for embodiments of the present invention include:
There is also a huge potential for users to build/assemble their own apparatus by providing a kit or kits to be assembled by a user. A kit may comprise one or more connecting members and a selection of sub-units which may be the same or different.
While this invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
1004125.9 | Mar 2010 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/053732 | 3/11/2011 | WO | 00 | 11/7/2012 |