The present invention is related to the subject matter of the following commonly owned, co-pending U.S. patent application, having Ser. No. 12/259,047 and filed on even date herewith.
1. Field of the Invention
The illustrative embodiment of the present invention relates generally to cue sticks and specifically to an improved cue stick, cue stick handle and design thereof.
2. Description of the Related Art
A cue stick for playing pool or billiards or similar games in that genre is an elongated tapered shaft with a handle at one end and a tip at the other end. The cue stick can be integrally formed or made of two or more members engaged together along a linear axis. For example, the cue stick may be made of a cue shaft portion, complete with a tip for striking the balls, and a base or handle portion to provide the length and balance to the shaft portion. The two portions are secured at a joint, which allows the user to separate the two portions for ease in carrying and storing the cue stick. Typically, joints are bolt-type couplings with a screw mechanism (or pin), allowing the handle to be readily engaged and disengaged from the cue shaft.
One common fault observed in this existing design is the weakness of the joint at which the cue shaft connects to the handle. With conventional two or three piece cue sticks, the joint connecting the shaft to the handle are typically weak and are prone to breaking or splitting when exposed to lateral or bending stress.
In order to provide optimum performance, a cue stick needs to have a rigid handle section and have a preferably perfectly straight axis. It is also desirable for the cue stick to generate minimal vibration when striking a cue ball, and to provide a radially consistent “feel” and performance regardless of the orientation or rotation of the cue stick in the player's hand. However, another fault common to most conventional cue sticks is the lack of sufficient rigidity in the handle between the cue shaft and the point at which the player holds the handle. This lack of rigidity occurs because, generally, most professional grade cue sticks and/or cue handles are made of hardwood, such as hard maple, which tends to be less rigid than would be optimal for the cue handle.
Most design improvements in cue sticks have focused on improving the cue shaft, since it is the shaft that strikes the balls and needs to exhibit certain bend and response characteristics when the ball is struck. Consequently, most cue shafts are light weight and have a certain amount of flexion at the tip end in order to provide for better playability on the cue ball.
However, several of the performance characteristics of importance to a cue stick, e.g., weight and balance (or center of gravity) and rigidity, are determined by the handle. These characteristics also add to the good “feel” of a cue stick. Given the desire for a lighter cue shaft, characteristics of weight and balance and rigidity are primarily addressed in the cue handle. Several designs exist that enable a user to add weight to the cue stick after the stick is manufactured. For example, U. S. Patent Application 2002/0072423 provides a cue stick with a “weight slot” in the handle segment in which removable weights may be added to adjust the overall weight of the stick. Still other methods exist, such as sliding and/or attaching weight rings on to the outer circumference of the handle, to enable addition of a desired weight to the cue stick. Changes to the weight, balance, flex and overall operational characteristics of a cue stick are conventionally accomplished by insertion of weights, stiffening members such as inlays or spliced-in “points” in the forearm, and spacer material.
While these prior art methods enable the addition of weight to the cue stick, the weight is typically added in a manner that results in a weight distribution and a center of mass that are less desirable. Additionally, the single focus on adding weight to the stick requires a post-manufacture “fix” or enhancement of the cue stick to attempt to slightly improve the overall playability of the cue stick.
Disclosed are an improved cue stick, cue stick handle (cue handle) and a method and system for making the improved cue stick and cue handle. The cue stick handle comprises: an exterior casing comprising one or more rigid, conical members; an inner core within the external casing and which is confined between the ends of the exterior casing. The inner core comprises a rigid segment (rigid inner core) that provides rigidity to at least a forearm section of the cue handle. The rigid segment of the inner core is made of a material with very high rigidity, while other segments/sections of the inner core exhibit different functional characteristics. The cue handle construction provides rigidity to the cue handle, as well as optimal weight and balance, with effective mass distribution for an optimal effective center of mass, to a resulting cue stick, which is assembled by adjoining the cue handle to a cue shaft.
In a first embodiment, the inner core includes: at least one rigid component providing a first end and a second end opposed to the first end; and a joint pin having a first end securely inserted into the second (anterior) end of the rigid segment of the inner core. The joint pin has a second end extending externally from the second end of the rigid segment of the inner core and is utilized as a connection mechanism for adjoining a cue shaft to the cue handle. A pair of collars is coupled to each end of the inner core to secure the inner core inside of the exterior casing.
According to one embodiment, the inner core is made up of: at least one rigid tube composed of a hard, tensile material that provides steel-like characteristics, including rigidity/stiffness; and a pin holder composed of a strong composite or plastic material, having a high tensile and high bending strength, and which is adhesively coupled via a first extended surface inside a first end of the tube. The pin holder also provides a second, extended surface opposed to the first extended surface, and which extends in an axial direction away from the tube. The first end of the joint pin is securely inserted within the pin holder (longitudinally from the second extended surface through the first extended surface).
In one embodiment, the rigid tube (composed of hard, tensile material) is perforated (with holes) to reduce the effects of weight due to the density of the material, while providing effective mass distribution for an optimal, effective center of mass. The perforated design of the tube enables greater control in the weight per section of the tube and ultimately enables the cue handle to be designed with different exterior material, and provides greater flexibility in providing balance of the cue stick, with effective mass distribution for an optimal, effective center of mass, and other functional benefits, while maintaining the rigidity of the forearm section.
In yet another embodiment, a vibration damping material is inserted into the inner bore of the rigid tube, thereby reducing vibrations along the longitudinal plane when the cue stick is utilized to strike a cue ball.
All objects, features, and advantages of the present invention will become apparent in the following detailed written description.
This invention is described with illustrative embodiments in the following specification with reference to the drawings, in which like numbers represent the same or similar elements, as follows:
The illustrative embodiments provide a method, system and cue handle design that provides optimal weight and balance to the cue stick, including effective mass distribution for an optimal center of mass, while ensuring other desired qualities, including: a high level of rigidity in the forearm; increased strength in the joint that connects the cue handle to the cue shaft to prevent or substantially eliminated/reduce breakage at the joint; vibration-dampening within the handle itself, predictable weight and center of gravity; and ease of assembly during manufacture. These and other beneficial properties are associated with the cue handle and cue stick described herein.
In the following detailed description of exemplary embodiments of the invention, specific exemplary embodiments in which the invention may be practiced are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that architectural, mechanical, and other changes may be made without departing from the spirit or scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
Within the descriptions of the figures, similar elements are provided similar names and reference numerals as those of the previous figure(s). Where a later figure utilizes the element in a different context or with different functionality, the element is provided a different leading numeral representative of the figure number (e.g, 1xx for
It is understood that the use of specific component, material, device and/or parameter names are for example only and not meant to imply any limitations on the invention. The invention may thus be implemented with different nomenclature/terminology utilized to describe the components/material/devices/parameters herein, without limitation. Each term utilized herein is to be given its broadest interpretation given the context in which that terms is utilized.
Several descriptive terms are utilized to describe certain functional characteristics of cue sticks. To facilitate the understanding of the described embodiments of the present invention described below, the following terminology will be used as described below.
Additionally, in describing the cue stick handle, relative locations of components are described in terms of a first end at which the joint screw/pin is attached and a second end at which the rubber bumper may be inserted. For clarification, several other terms may also utilized interchangeably with the first end and second end, respectively, as follows: (a) first end, joint pin end, and anterior end all referencing the same general location of the cue handle; and (b) second end, bumper end, and posterior end referencing the same general location of the cue handle. The second or posterior end typically has a larger circumference than the first or anterior end, due to tapering of the cue handle's exterior casing. The first end and second end are described as opposed to each other, meaning that along the longitudinal direction of the cue handle, one end is located at the opposite terminating point/end of the length of the cue handle, pointing in a first direction, relative to the other end, which is located at the next terminating point/end pointing in a second opposite direction. Also, the forearm section of the cue handle is defined as the location along the cue handle, closer to the first/anterior point) end. Specifically, the forearm is the portion of the length of the cue stick handle extending from approximately the joint (pin holder) toward the cue butt, up to the grip hand section (i.e., the location at which the cue handle is typically gripped by a user of the cue stick). The length of the forearm can vary roughly from 40% of the handle length up to 60%, and a substantial portion of the forearm is reinforced with a rigid inner core, according to the described embodiments. However, in alternate embodiments, a different length of the cue handle may be considered the forearm in some cue handle constructions and/or a different length of the cue handle may be provided with a rigid inner core, regardless of the definition of the forearm is such cue handle construction.
Additionally, as utilized herein and in the appended claims, the term “wood” is defined to include naturally fibrous materials such as, but not limited to, hardwoods and bamboo, as well as synthetic fibrous materials having properties similar to wood. Also, the usage of the term “rigid inner core” by itself describes that portion of the complete inner core that is comprised of one single member or of two or more adjoining members, where at least one member exhibits high-rigidity characteristics, similar to steel. The rigid member(s) of the inner core terminate at opposed ends of the cue handle with some mechanism/component (e.g., a joint pin holder and/or a weight-and-balance pin holder) for enabling connectivity to other components at the joint pin end and bumper end of the cue handle. The assembly that includes the connecting mechanism is referred to as a “complete inner core” or “inner core” (see
With reference now to the figures,
The combination of the above materials in the manner described provides an external appearance of a cue handle 100 that is constructed of solid wood, separated by decorative spacers. As described above, the external casing could also be constructed from a single piece of wood without decorative rings or from multiple pieces/segments of wood. Thus, description of the casing as having three segments with two rings interspaced at the segment's connecting points is provided solely for illustration, and the number of segments (from one to any finite number) and rings (from zero to another finite number) are only relevant to the design/manufacture of the cue handle, with respect to enabling accurate calculation of the weight attributable to the components of the exterior casing components, as well as a determination of the resultant cue stick's center of gravity and effective mass distribution and center of mass when the exterior casing is placed around an interior core structure to form the cue handle.
Turning now to
As further illustrated by
Two different designs of cue handles are provided by the described embodiments, based primarily on the type and/or construction of the inner core section of the cue handle. Generally, the embodiments are directed to either a first-type cue handle or a second type cue handle, which relates to a corresponding first-type inner core construction and a second-type inner core construction. The below description is thus separated into two main sections, Section A, which describes the first-type cue handle and Section B, which describes the second-type cue handle. The method steps described below are primarily directed to the second-type inner core construction.
As introduced above, the embodiments generally provide a cue stick handle having a longitudinal length extending from a joint screw end to a butt end, where the cue stick handle comprises: a hollow exterior casing comprising one or more rigid, conical members extending along a substantial portion of the longitudinal length; and an inner core that includes a rigid inner core (segment) confined within the hollow exterior casing for a first length between the joint screw end and the butt end. The rigid inner core has certain structural characteristics, including a rigidity that is similar to steel. With these characteristics exhibited by the rigid inner core, the cue handle itself exhibits similar structural characteristics in at least a forearm section of the cue handle. Additional characteristics, such as weight and balance (center of gravity), mass distribution to provide an optimal effective center of mass, as well as joint strength, of the various embodiments of the cure handle are controlled, based on the design of the cue handle and particularly the complete inner core.
A) First-Type Cue Handle (Two-Member Rigid Core Construction)
In the first embodiment, which is illustrated by
Turning now to
As with the descriptions of
Within the description of
When the individual components of the external casing are assembled together, they create an external shaft having a longitudinal cavity disposed between the first end 220 and the second end 230, through which the complete inner core 400 extends. The length of the longitudinal cavity may vary, depending on certain desired characteristics (such as overall weight, balance, and feel) of the cue handle (or cue stick assembled with the cue handle and a cue shaft). With this consideration of desired characteristics, the length and type of the various materials used for each component is factored into the design analysis, as described further below.
Returning now to
A second collar 112 is affixed at the anterior end of the third segment 108, furthest away from the point of contact with the second spacer/ring 111 and/or the second segment 107. The second collar 112 may be made from the third material, which may again be similar to (or the same as the second material). Protruding from the second end 130 of the cue handle 100 is a metal pin or screw, with connecting means for inserting the tip of the pin into a receptacle or hole, such as exists at the mating end of a cue shaft (see
As introduced above and illustrated by
Extending from the first end (220) to a first connecting joint 206 is wood core segment 205, made of wood or other material exhibiting similar performance characteristics. Wood core segment 205 may be solid or hollow. At the end proximate to the first end 220 of cue handle 200, wood core segment 205 is coupled to a first collar 104 via a coupling mechanism, such as a first-type threading surface (e.g., male threads), rotatably mated to a second-type threading surface(e.g., female thread),
The wood core segment 205 is joined and/or affixed (e.g., threaded and glued) at the first joint 206 to a hollow rod/tube made of a hard, tensile material. In the described embodiment, the rod/tube (207) is made from a metal, such as steel, or other metallic substance exhibiting characteristics similar to steel, or other rigid/stiff metal. For simplicity, the rod/tube is referred to herein as a metal tube 207. Metal tube 207 has a first end, which is adhesively coupled/attached to wood core segment 205 at first joint 206.
Use of this tube in the manner illustrated and described provides a level of stiffness extending from the second joint to the point at which a user holds the cue handle. The level of stiffness is on the order of four times the relative stiffness of a conventional wooden handle, with a wood core. In yet another embodiment, a carbon fiber composite is utilized in place of the metal tube. The metal tube 207 has a length Y, which according to the illustrative embodiments, is less than the full length of the inner core 400.
At the second end of the metal tube 207, disposed longitudinally from the first joint 206 and corresponding to the second end 230 of cue handle 200, metal tube 207 is coupled at a second joint 208 to a very strong fiber glass epoxy material (i.e., a strong composite material) via a coupling means (e.g., use of a strong bonding agent placed on one or more connecting surfaces).
Pin holder 213 also provides an extended end (opposed to the end couple to the metal tube) to which second collar 112 may be coupled. An exposed end of the joint pin 114 protrudes from pin holder 213 of complete inner core 400. The exposed end of joint pin 114 is provides a joint screw at which a cue shaft may be readily engaged and disengaged (or permanently affixed —with adhesives) from/to the cue handle 200, and vice versa.
In one embodiment, the metal tube 207 includes therein a (pliable) filling substance/material 211 extending from the first joint 207 to the second joint 208. The (pliable) filling substance/material 211 doubles as a vibration-dampening material. The filling material 211 preferably has a high surface area that diffuses reflections and attenuates the linear vibrations (up and down the length of the metal tube) as the vibrations reflect off the surface. The filling material also has a rubber-like consistency, and the material also has significant mass. Given these characteristics, filling material may be preferably made of a relatively heavy foam rubber. A non-exhaustive list of possible filling material 211, includes, but is not limited to, cork, foam, sponge, rubber and balsa wood.
The second collar 212 may be made of similar material as the first collar 204 and is screwed and glued on to the exposed threading of the pin holder 213. The second collar 212 is also substantially cylindrical with an inner cylindrical bore provided through the second collar 212, with dimensions to fit over the exposed threading of the pin holder 213, when affixed thereto.
In yet another embodiment, the cue stick may be designed with multiple segments, each have different characteristics. As an example, the cue stick may comprise four quadrants, with one quadrant within the cue handle, representing the forearm portion of the cue stick, being made of the rigid material (or having a rigid inner core) with the characteristics of the metal tube 207, as described herein.
With reference now to
To maintain structural integrity along the longitudinal axis, the holes are arranged in a set pattern relative to each other. As illustrated with tube 607a, representing a first embodiment, substantially one half of the holes are arranged at 0, 90, 180, and 270 degrees, relative to a 0 degree (start) reference point. The remaining holes (i.e., the second half of the holes) are arranged (or made) at 45, 135, 225, and 305 degrees relative to the 0 degree reference point. In tube 607b, which providing a second embodiment, the holes are drilled at a smaller spacing around the diameter of the tube 607b. Thus, substantially one half of the holes in tube 607b are arranged (made) at 0, 45, 90, 135, 180, 225, 270, and 315 degrees, relative to a 0 degree (start) reference point. The remaining holes are arranged (or made) at 22.5, 67.5, 112.5, 157.5, 202.5, 247.5, and 292.5, and 337.5 degrees relative to the 0 degree reference point. The number of holes and the hole positions relative to each other is a design factor that is variable.
1. Example Method for Constructing a First-Type Cue Handle
A method of making the above cue handle and cue stick and certain components thereof comprises a series of steps, which entails manufacturing the above handle in portions and then connecting or affixing and/or gluing the various portions together. According to one embodiment, and as illustrated by
Once manufactured, the components of the complete inner core are assembled as shown in
One example method by which the first-type cue handle described herein is manufactured is now presented. With the inner core dimensions established (length, diameter, weight, and circumference), the piece(s) of wood utilized to create the external casing is/are drilled to create an internal bore with consistent circumference. According to the illustrative embodiments, the longitudinal, external diameter (D-δ; where D represents diameter and δ represents a delta that is subtracted from the value of D) of the inner core is minimally smaller than the longitudinal inner diameter (D) of the external casing. This is required so that the external casing may be placed over the inner core during assembly, but with just enough space to allow the connection between the inner core's external surface and the internal surface of the external casing is completed with little or no gaps between the surfaces. In one embodiment, for example, the external diameter of the inner core may be in the range of 95-97% of the inner diameter of the external casing. Finally, the first and second collars are placed over/on the first end of the wood core and the protruding extended end of the pin holder, respectively.
In one embodiment, the external, longitudinal surface of the inner core, and the internal, longitudinal surface of the exterior casing components are coated with an adhesive, such as epoxy resins, polyvinyl acetates, or polyurethane, for example. This non-exhaustive list of adhesives is provided solely for example, and not intended to limit the implementation of the method described herein to these small list of example adhesives. With the inner surface wet with the adhesive, the component parts of the external casing are slid on to the inner core, and then the first and second collars are screwed on to the respective threaded ends and tightened. The top collar and bottom collar are rotated to a tightness at which all connecting surfaces are flush against each other and extra adhesive is pressed out of the joints. All connecting pieces are squared relative to each other, and specifically the adjacent, connected pieces. The extra adhesive is wiped off of the external casing. The cue handle is then left for the adhesive to cure.
Once the adhesive cures, the external casing is rounded into the required shape using a lathe or other cutting or sanding tool to provide smooth consistency in the tapering of the various adjoining components of the external casing. The diameter of the components may be decreased by the use of a lathe to a predetermine size and to provide a substantially smooth exterior surface. Once the cue handle reaches the desired shape, weight, look, and consistency, the rubber bumper is inserted (pressed or screwed) into the internal anchoring space in the exposed end of the wood core segment. In one embodiment, the cue handle may be additionally covered by an outer veneer or sleeve comprising decorative material.
It should be understood that the above method is one embodiment of many which may be utilized to manufacture and/or construct a cue handle having the characteristics described herein. The description of one such method is therefore not intended to be limiting on the invention, which generally covers all cue handles which exhibit the features described herein, and particularly the rigidity of the forearm by inserting a rigid inner core as a part of a complete inner core, which extends through the cue handle and multiple, different portions that each exhibit different characteristics and/or functionality. The invention this covers any such cue handle, regardless of the type of manufacture/construction method(s) utilized.
In one embodiment, the rubber bumper and spacers/rings may be provided solely for cosmetic purposes or aesthetic appeal. In another embodiment, given the potential to create different weight and balance points for the cue handle based on selected design characteristic, the location and or color of the spacers and/or the color of the rubber bumper may be utilized to provide/described additional functional features of the cue handle and/or cue stick, while providing aesthetic appeal. For example, different colors may be used for the rubber bumpers, where the color of the inserted rubber bumper defines the play characteristics such as weight and balance of the cue handle. This distinction would then be based on design controls, which is influenced by the types of materials utilized, the length of the metallic tube relative to the total length of the cue handle or to the inner wooden core, and the weight of the wood utilized for the external casing, among other design parameters and/or factors.
B) Second-Type Cue Handle (Single Member Rigid Core Construction)
According to a first embodiment, the rigid inner core of the second-type cue handle is a single-member inner tube, made of a hard, tensile material that provides steel-like characteristics, including rigidity. In one implementation the inner tube is a metal tube, and in one embodiment of that implementation, the metal tube is a steel tube. Thus, the inner core comprises a single rigid, metal tube with a first end disposed proximate to the posterior end of the cue stick handle and a second, opposing end disposed proximate to the anterior end of the cue stick handle.
With reference now to
In one embodiment, the metal tube is a steel tube that is manufactured with a specific bore and with specific dimensions for utilization as the inner core of the second-type cue handle. As shown, the longitudinal cross section of second-type cue handle 300 comprises the connected segments/components of external casing and a single rigid tube-like inner core, which is coupled to different connecting mechanisms at opposed ends of the cue handle. The combination of the connecting mechanisms coupled at respective ends to the single member, rigid inner core is collectively referred to herein as a complete inner core. However, portions of the connecting mechanisms protrude beyond the point at which the rigid inner core stops. In the illustrative embodiment, both of the connecting mechanisms extend laterally past the external casing.
As illustrated by
While shown as extending a significant length of cue handle, other embodiments of the second-type cue handle may provide for a much shorted length of metal tube (340), extending primarily within the forearm section of cue handle. The remaining length of inner core may then be replaced with a rigid/hard wood segment or an extension provided by some other material other than tube (340). In one alternate embodiment, the metal tube 340 is designed to act as a through bolt with grooved/threaded ends that enable a screw-on cap to be threaded on to the butt end and a pin holder to be screwed-on to the joint end.
Turning now to
Metal tube 340 is drilled with a lathe or other cutting device to remove a substantial portion of the wall thickness and weight. This enables control of the total weight and center of mass (and mass distribution) during the design/manufacturing process. In one implementation, the resulting metal tube may have an outside diameter of 0.75 inches and an internal diameter of 0.68 inches. Of course, embodiments of the invention may be implemented with metal tubes having different inner and outer diameters, and the above example diameter measurements are provided solely for illustration and not intended to limit the invention. According to the illustrative embodiment, and as further depicted by
The resulting decrease in weight of the metal tube 340 (after cutting or scurrying away wall thickness) within the design process enables greater control of the weight of the cue handle, and further enables weight and balance (and mass distribution for an optimal center of mass) determinations to be made post manufacture/design. Looking again at
According to one implementation and as shown by
C) Cue Stick and Play Characteristics
When constructed in either of the above manners, both first-type and second-type cue handles provide an inner core construction that provides a rigidity that is on the range of 5 times more rigid than hardwood maple or ash, which are commonly utilized within convention cue handle designs.
As shown in
Further, given the specific designs of the cue handle, the cue stick would exhibit several desired functional characteristics, such as: (a) predictable and/or optimal weight and balance (or center of gravity) and mass distribution; (b) radial consistency (feel and performance); (c) vibration dampening; (d) high tensile strength; (e) stiffness/rigidity along the forearm section of the cue handle; and (f) simplicity of assembly. Further, regardless of the specific design of the cue handle, the handle provides the look and feel of solid wood, while playing with the strength and durability and other functional characteristics (typically attributable to metallic substances, such as steel) that are desired, but only attainable using the designed described herein.
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular system, device or component thereof to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another.
While the invention has been particularly shown and described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention.
The present application claims benefit of U.S. Provisional Application Ser. No. 60/982,881, filed Oct. 26, 2007, titled “Cue Stick, Cue Stick Handle And Method Of Making The Same,” the contents of which is incorporated herein by referenced in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
711906 | Lyon | Oct 1902 | A |
951453 | Ransom | Mar 1910 | A |
1007668 | Barrows | Nov 1911 | A |
1505609 | Barach et al. | Aug 1924 | A |
1527748 | Rambow | Feb 1925 | A |
1702292 | Barrett | Feb 1929 | A |
3372932 | Molis | Mar 1968 | A |
4949964 | Jolly | Aug 1990 | A |
5112046 | Thorpe | May 1992 | A |
5643095 | Probst | Jul 1997 | A |
20020072423 | Pot | Jun 2002 | A1 |
20020072424 | Yu | Jun 2002 | A1 |
20030153393 | Chang | Aug 2003 | A1 |
20030224865 | Lai | Dec 2003 | A1 |
20050043107 | Kuo | Feb 2005 | A1 |
20060205525 | Owen | Sep 2006 | A1 |
20070123362 | Marino | May 2007 | A1 |
20080026861 | Costain et al. | Jan 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20090111595 A1 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
60982881 | Oct 2007 | US |