1. Field of the Invention
The present invention relates to a novel veterinary device or instrument useful in medication, antiseptic, culture collection, and artificial insemination processes utilized in animal husbandry. More particularly, the present invention relates to a veterinary instrument and sealed holder having improvements to the cap and the holding tube that make the device function more effectively and lower the cost and time of manufacturing.
2. Discussion of the Related Art
U.S. Pat. No. 4,586,604 to Alter and entitled “Culture Collection Instrument and Sealed Swab Holder Therefor” discloses one device in the prior art. U.S. Pat. No. 4,457,313 to Alter entitled “Shield Protector for Artificial Insemination and Culture Collection Instruments” discloses another. The disclosure of each of these patents in its entirety is hereby expressly incorporated by reference into the present application for the purposes of indicating the background of the present invention and illustrating the state of the art.
As is known to those skilled in the art, the collection of a sample from the cervix of animal requires that the culture collection device must first pass through the vulva and/or cervical canal of the animal. Of course, these are not sterile and generally contain bacteria or diseased germs, such as vaginal or uterine infections or microplasa. Thus, previously recognized problems have been that when the instrument is inserted into the animal the culture collection instrument can transport infectious contaminants from the vulva and/or cervical canal into the cervix of the animal, or the element that will ultimately collect the sample can be prematurely contaminated before reaching the area that is the actual subject of the culture collection. Needless to say, it is worthwhile to have a culture collection instrument that reduces the contamination of both the cervix of the animal and the culture collection element while the instrument is being inserted into the animal. The same can be said for artificial insemination instrumentation.
Despite past improvements in the art, prior designs did not completely eliminate the contamination problems associated with collecting a culture of insemination. While some devices did solve the problem of how to protect the element delegated to take the culture, they left room for material improvement in mitigating the threat of contamination of the cervix by the transportation of contaminants from outer parts of the animal's reproductive tract. Specifically in some prior art devices, the protective cap or tip on the end of the device was scored on the outside surface so as to allow the protected and sterile inner members to break through the protective cap once the instrument had reached the area where the sample was to be taken from. The scoring on the outside of the cap provided groves or channels that, in effect, acted as areas of entrapment for foreign material that could entrap material during both insertion and before the device was used. The scoring of the protective cap had been necessarily located on the outside of the cap because of the method of manufacture. The cap was produced by hand utilizing a repetitive dipping process and then later hand scoring the cap on the outside with a razor or similar instrument. The method of manufacturer of this cap resulted in a further disadvantage in that the hand made nature of the process was costly, time consuming, and unable to be automated, which all led to increased costs for the final culture collection device product.
These prior methods of production also led to a further undesired characteristic of the instruments in that the force required to push the inner members through the protective cap varied substantially among individual devices. This situation was a direct result of the fact that the method of manufacture of the hand produced caps led to variations in material thickness and depth of scoring among the caps. The inconsistent force required to employ the sample taking element frustrated ease of use because product purchasers could never become familiar with a consistent method of use.
What is needed, therefore, is a protective cap that does not have areas of entrapment of foreign material on the outside of cap and that has a consistent thickness and depth of scoring or perforation. Achieving these desired cap characteristics requires a new method of cap manufacturing that is consistent and that would ideally be cheaper, less time intensive, and compatible with automation.
An additional limitation of the prior art is that the devices could be prematurely deployed. For example, the inner members could break through the protective cap during transportation or handling prior to being inserted into an animal to collect a culture. When this occurs, the device is effectively useless because the sample collecting element is not sufficiently protected from contamination once the protected cap is breached.
Therefore, what is further needed is a method to prevent the inner elements from breaching the protective cap until that time as when the device user is ready to deploy the device to collect a sample.
A primary object of the invention is to provide an improved culture collection device or insemination instrument that isolates and protects the inner portion of the device upon its insertion into or removal from the interior of the body or cervix of an animal and to sealingly retain this element for subsequent handling and transport to the analysis laboratory. Another objective of the invention is to incorporate a manufactured cap in the instrument that lessens the chance of contamination to the sample or tube and inner areas of the animal by eliminating areas of entrapment of foreign material on the device's protective cap and also makes collection of a sample easier by providing a protective cap medium that requires a consistent force to be breached when the swab is being applied to the sample area inside the animal. Another object of the invention is to make manufacture of such devices cheaper and more efficient by use of incorporating the manufactured cap into the device. A further object of the invention is to make transport, handling, and storage of the device safer by including at least one safety pin in the device, which prevents premature deployment of the sample taking members.
In one embodiment of the invention a first inner member, comprised of a swab at the first end attached to an elongated tube or rod, is inside a second inner member. The second inner member is further inside an outer member that is sealed at the first end with a protective cap perforated on the inside. The perforations are predetermined thin sections, such as in the shape of an “X”, incorporated into the piece with all slits or indentations located on the inside surface of the cap. Consequently, the outside of the cap is a smooth, continuous surface lacking any areas of entrapment that could possibly collect foreign matter before or while the instrument is inserted past the vulva lining and through the cervical canal and then transport it to the cervix or other sample area. To deploy the device and take the sample, the second inner member with the first inner member's swab end inside, is pushed forward so that the first end of the second inner member breaches the cap of the outer member. The first inner member is then pushed forward through the open first end of the second inner member so that the swab extends past the first end of the second inner member, thereby being introduced to the environment to be sampled.
Once the sample is taken, the swab is retracted back into the second inner member and the second inner member, with the first inner member inside, is retracted back to its original position inside the outer member. After the swab and second inner member are again isolated inside the outer member, the entire device is removed from the animal. The swab, now containing the sample, is then preserved for testing by removing the second inner member and the enclosed first inner member from the outer tube and then capping the open first end of the second inner member, which is no longer enclosed by the outer member. The second inner member, which protects the swab of the first inner member, has a scored section, located bellow the point where the swab inside is positioned, that completely circumvents the second inner member and allows for the second inner member to be easily and cleanly broken at the scored section. The enclosed elongated tube or rod of the first inner member also has a scored section that is aligned with the scored section of the second inner member while the device is in its retracted position, and this scored section allows the first inner member to break contemporaneously with, and at the same point, as the second inner member when second inner member is broken. The broken end of the second inner member is then capped on the broken end so that it is now capped on both ends and contains the broken off end of the first inner member and its swab element inside. The user now has a sealed and sanitary holder for the swab element that prevents contamination of the sample and facilitates transportation and storage for later testing.
Additionally, a preferred embodiment also can have one or more safety pins that prevent the first inner member, second inner member, and outer member from moving longitudinally in relation to each other before the safety pins are removed. These pins are meant to protect from the inner members shifting in a manner that would permit the second inner member, and enclosed first inner member, to breach the outer member's protective cap before the user is ready to deploy the device to collect a sample. The use of these safety pins makes shipping and handling of the items safer and ensures the device cannot be employed until the pins are removed. This feature is important as the device is only good for one use, and the device must be discarded if the protective cap is breached while the instrument is outside of the animal.
In another embodiment of the invention, the device may be used as an artificial insemination instrument. In this embodiment the swab element of the first inner member is not present and the first inner member is simply a tube or solid rod, which is substantially the same size as the inner diameter of the second inner member. The semen sample is placed inside the second inner member in the cavity which exists between the end of the first inner member and the end of the second inner member. Once the device is fully inserted into the animal and the second inner member breaks through the protective cap, the first inner member is pushed forward to at least the end of the second inner member, thereby discharging the semen sample into the cervix of the animal. The device is then withdrawn from the animal and discarded.
In another embodiment of the invention, the cap on the end of the outer member is a molded plastic cap manufactured in a mold process, such as an injection molding process, with predetermined perforations, such as in the shape of an “X”, incorporated into the cap. The mold is designed so that any slits or indentations of the perforations are molded onto the inside surface of the cap, thereby leaving the outer surface of the cap a smooth, continuous surface. The cap can be manufactured in a reproducible process that assures consistent thickness of the normal and the perforated sections of the cap. The precise manufacturing method of the protective cap, and the uniform perforations that result, ensure that the force required to push the second inner member through the cap is consistent between different devices.
In another embodiment of the invention, the one or two safety pins consist of a loop sufficient in size to accommodate a human finger and a pin like projection extending from that ring. Preferably, the first inner member, second inner member, and outer member all have a pair of identical holes that are oriented perpendicular to the axis of the members and are located in such a manner that on each member each hole directly opposes its paired hole. When the instrument is in its predeployed state all three pairs of the holes align collinearly so that the pin's projection, which is longer than the diameter of the outer member, can pass through all three pairs of holes, thereby physically preventing the members from shifting longitudinally in relation to each other. To enable the instrument for use the user must remove the pin or pins by first removing the pin tab, located near the end of pin projection, that prevents the pin from being removed and then grab hold of or slip his finger into the pin ring and pull the safety pin away from the instrument until it is removed.
In another embodiment of the invention, the ring of the first safety pin is connected to the projection of the safety pin so that the plane of the ring is at about a forty-five degree angle in relation to the projection. This configuration allows the operator of the device to grip and use the device like a syringe when pushing the second inner member through the protective cap. The user puts his thumb through the pin ring and then puts his index and middle fingers on the first flange so that the device is between the two fingers. By bringing his thumb and index and middle fingers together as if using a syringe, the operator can more easily force the second inner member to break through the protective end cap while deploying the device. This embodiment is especially useful when the device is for artificial insemination.
In one method of using the device, the device must be removed from a gas sterilized package before it is employed.
In another method of using the device, the device is first unwrapped from a gas sterilized package and then the safety pin or pins are removed. Subsequently the instrument is inserted into the cervical canal of a mare and when the device is in the desired spot the second inner member is pushed through the cap perforated with an “X”. The swab element is then pushed about two inches beyond the first end of the second inner member to collect the sample.
In describing the preferred embodiment of the invention which is illustrated in the drawings, specific terminology will be resorted to for the sake of clarity. However, it is not intended that the invention be limited to the specific terms so selected and it is to be understood that each specific term includes all technical equivalents which operate in a similar manner to accomplish a similar purpose. For example, the word attached or terms similar thereto are often used. They are not limited to direct connection but include connection through other elements where such connection is recognized as being equivalent by those skilled in the art.
The present invention and the various features and advantageous details thereof are explained more fully with reference to the non-limiting embodiments described in detail in the following description.
The construction of a culture collection device, such as disclosed in the present inventor's prior U.S. Pat. No. 4,586,604 and U.S. Pat. No. 4,457,313 is well-known to those skilled in the art and therefore a detailed description thereof is not necessary to fully understand the present invention, which is directed to novel improvements in the construction of the protective cap 16 and the addition of one or more elements, specifically on or more safety pins 30 and 31.
The invention is shown in
Preferably, the culture collection device 100 is approximately 30 inches long and with a diameter of 1 inch. In the preferred embodiment, the outer member 11 is approximately 22 inches in length, the second inner member 12 is approximately 25 inches in length, and the first inner member 14 is approximately 30 inches in length. Preferably, the plastic used for the first inner member 14, second inner member 12, and outer member 11 is a softer PVC plastic and the swab element 18 is a polystyrene cotton swab.
As shown in
To prepare for use of the device, the culture collection device 100 must first be removed from gas sterilized packaging (not shown). Next, the one or two safety pins 30 and 31 must be removed so that the first inner member 14, the second inner member 12, and the outer member 11 can all move longitudinally in relation to each other, as is required for the device to be deployed. The first pin 30 passes through the first inner member 14 and the second inner member 12 and is located forward of the flange 46 at the second end of the second inner member 12 and behind the flange 44 of the outer member 11, as shown in
The process to remove a pin is the same for the first pin 30 and the second pin 31. To remove the first safety pin 30, the pin tab 42, located near the end of the pin projection 43 of the safety pin 30, must first be broken off or otherwise removed. With the pin tab 42 removed, the user then grabs hold of the pin ring 38 and pulls the pin ring 38 away from the culture collection device 10 so that the pin projection 40 travels through the collinearly aligned holes 52, 53, 54, and 55. The first safety pin 30 is fully removed from the culture collection device 100 when the end of the pin projection 43 passes through hole 55. Once pins 30 and 31 are removed, the culture collection device 11 is ready to be inserted into the animal in order to take a sample.
In one embodiment of the invention, the ring 47 of an alternate version of the first safety pin 45 is connected to the projection 49 of the safety pin 45 so that the plane of the ring 47 is at a forty-five degree angle in relation to the projection 49, as shown in
When the cultural collection device 100 is fully inserted into the cervix of an animal (not shown), the first inner member 14 is moved forward to engage the protective cap 16, which has an “X” shaped perforation 24 on the inner surface 20 of the cap 16, that breaks open upon engagement by the first end 13 of the second inner member 12, as shown in
Referring to
The second inner member 12, containing the first inner member 14, is now withdrawn from the outer member 11, the position as partially shown in
Upon the manual flexing of the second inner member 12, the second inner member 12 readily and predeterminately breaks and separates at its scored section 26. As the flexing force translates through to the first inner member 14, the elongated rod element 19 of the first inner member 14 also readily and predeterminately breaks at its scored section 28, as shown in
In the embodiment of the invention for use as an artificial insemination instrument, the swab element 18 of the first inner member 14 is not present and the first inner member 14 is simply the elongated rod 19, which is substantially the same size as the inner diameter of the second inner member 12, as shown in
A substantial, novel improvement of this invention over the prior art results from the superior method of manufacturing the protective cap 16. Instead of being produced by hand in an open mold, as in the prior art, the culture collection device 10 of the present invention uses a manufactured protective cap 16 that is created in a closed molding process, such as an injection molding process. In the injection molding process, the mold 56 consists of a mold, made an outer shell 58 that defines the structure of the outer surface 22 of the cap 16 and a solid inner mold piece 62 that defines the structure of the inner surface 20 of the cap 16, as best seen in
The incorporation of the manufactured protective cap 16 results in superior performance of the culture collection device 100 for two reasons as discussed in the summary. First, the resulting smooth outer surface 22 of the cap 16 does not contain any slits or channels that can entrap foreign matter and then transport it into the cervix of the animal. Second, because of the precise nature of the molding process, the thickness of the cap 16 and the depth on the perforation 24 in the inner surface 20 of the cap 16 are uniform between devices, so that the user is required to apply the same force in order to breach the protective cap 16 with each use of a device, which promotes efficiency and ease of use. Further, the molding process for manufacturing the protective cap 16 is advantageous because it is cheaper than producing the protective cap in an open mold process and the closed mold process can be automated and easily reproduced, which further reduces the costs and time of manufacture and increases product performance
The above-illustrated specific embodiments of the present invention are capable of variation and modification, and, therefore, the examples are intended merely to facilitate an understanding of ways in which the present invention may be practiced and to further enable those of skill in the art to practice the present invention. Accordingly, the examples should not be construed as limiting the scope of the present invention.