Claims
- 1. A curable film-forming composition comprising (i) 10 to 90 percent by weight based on the total weight of resin solids in the film-forming composition of a crosslinking agent; (ii) 10 to 90 percent by weight based on the total weight of resin solids in the film-forming composition of a polymer containing a plurality of functional groups reactive with the crosslinking agent; and (iii) 5 to 85 percent by volume based on the total volume of the film-forming composition of particles having a mean particle size less than 100 nm, having an index of refraction (n) that is greater than or less than that of the mixture of crosslinking agent (i) and polymer (ii) by an amount equal to or less than Δnmax, wherein Δnmax is determined by the equation:
- 2. The film-forming composition of claim 1 wherein H is less than 133.
- 3. The film-forming composition of claim 2 wherein H is less than 41.
- 4. The film-forming composition of claim 1 wherein the polymer is present in the film-forming composition in amounts of 25 to 75 percent by weight, based on the total weight of resin solids in the film-forming composition.
- 5. The film-forming composition of claim 1 wherein the crosslinking agent is present in the film-forming composition in amounts of 25 to 75 percent by weight, based on the total weight of resin solids in the film-forming composition.
- 6. The film-forming composition of claim 1 wherein the particles are present in the film-forming composition in amounts of 25 to 85 percent by volume, based on the total volume of the film-forming composition.
- 7. The film-forming composition of claim 1 wherein the particles comprise 1 to 75 percent by weight, based on the total weight of the particles, zinc oxide, 1 to 70 percent by weight, based on the total weight of the particles, zirconium oxide and 10 to 90 percent by weight, based on the total weight of the particles, silica.
- 8. The film-forming composition of claim 1 wherein the particles comprise 1 to 75 percent by weight, based on the total weight of the particles, cerium oxide, 1 to 70 percent by weight, based on the total weight of the particles, zirconium oxide and 10 to 90 percent by weight, based on the total weight of the particles, silica.
- 9. The film-forming composition of claim 1 wherein the particles comprise 1 to 75 percent by weight, based on the total weight of the particles, iron oxide, 1 to 70 percent by weight, based on the total weight of the particles, zirconium oxide and 10 to 90 percent by weight, based on the total weight of the particles, silica.
- 10. The film-forming composition of claim 1, wherein the particles comprise at least one ultraviolet light absorbing metal oxide and at least one ultraviolet light transparent metal oxide and wherein the ratio of ultraviolet light absorbing metal oxide to ultraviolet light transparent metal oxide is such that the index of refraction of the particle is in the range of 1.5 to 1.6.
- 11. The film-forming composition of claim 10 wherein the particles comprise 1 to 44 percent by weight, based on the total weight of the particles, zinc oxide, 1 to 34 percent by weight, based on the total weight of the particles, zirconium oxide, and 55 to 87 percent by weight, based on the total weight of the particles, silica.
- 12. The film-forming composition of claim 10 wherein the particles comprise 1 to 48 percent by weight, based on the total weight of the particles, cerium oxide, 1 to 34 percent by weight, based on the total weight of the particles, zirconium oxide, and 51 to 80 percent by weight, based on the total weight of the particles, silica.
- 13. The film-forming composition of claim 10 wherein the particles comprise 1 to 18 percent by weight, based on the total weight of the particles, iron oxide, 1 to 34 percent by weight, based on the total weight of the particles, zirconium oxide, and 65 to 94 percent by weight, based on the total weight of the particles, silica.
- 14. The film-forming composition of claim 1 wherein the particles have a mean particle size less than 50 nm.
- 15. The film-forming composition of claim 14 wherein the particles have a mean particle size less than 20 nm.
- 16. The film-forming composition of claim 1 wherein the particles have an index of refraction between 1.50 and 1.60.
- 17. The film-forming composition of claim 1 wherein the composition is in a liquid medium.
- 18. The film-forming composition of claim 17 wherein the particles have an affinity for the medium sufficient to keep the particles suspended therein, said affinity of the particles for the medium being greater than the affinity of the particles for each other, thereby preventing agglomeration of the particles within the medium.
- 19. A multi-component composite coating composition comprising a pigmented film-forming composition serving as a base coat and a clear film-forming composition serving as a transparent topcoat over the base coat wherein the transparent topcoat is a curable film-forming composition comprising (i) 10 to 90 percent by weight based on the total weight of resin solids in the clear film-forming composition of a crosslinking agent; (ii) 10 to 90 percent by weight based on the total weight of resin solids in the clear film-forming composition of a polymer containing a plurality of functional groups reactive with the crosslinking agent; and (iii) 5 to 85 percent by volume based on the total volume of the film-forming composition of particles having a mean particle size less than 100 nm, having an index of refraction (n) that is greater than or less than that of the mixture of crosslinking agent (i) and polymer (ii) by an amount less than Δnmax, wherein Δnmax is determined by the equation:
- 20. The film-forming composition of claim 19 wherein H is less than 133.
- 21. The film-forming composition of claim 20 wherein H is less than 41.
- 22. The multi-component composite coating composition of claim 19 wherein the polymer is present in the clear film-forming composition in amounts of 25 to 75 percent by weight, based on the total-weight of resin solids in the clear film-forming composition.
- 23. The multi-component composite coating composition of claim 19 wherein the crosslinking agent is present in the clear film-forming composition in amounts of 25 to 75 percent by weight, based on the total weight of resin solids in the clear film-forming composition.
- 24. The multi-component composite coating composition of claim 19 wherein the particles are present in the clear film-forming composition in amounts of 25 to 85 percent by volume, based on the total volume of the clear film-forming composition.
- 25. The multi-component composite coating composition of claim 19 wherein the particles comprise at least one ultraviolet light absorbing metal oxide and at least one ultraviolet light transparent metal oxide and wherein the ratio of ultraviolet light absorbing metal oxide to ultraviolet light transparent metal oxide is such that the index of refraction of the particle is in the range of 1.5 to 1.6.
- 26. The multi-component composite coating composition of claim 25 wherein the particles comprise 1 to 44 percent by weight, based on the total weight of the particles, zinc oxide, 1 to 34 percent by weight, based on the total weight of the particles, zirconium oxide and 55 to 87 percent by weight, based on the total weight of the particles, silica.
- 27. The multi-component composite coating composition of claim 25 wherein the particles comprise 1 to 48 percent by weight, based on the total weight of the particles, cerium oxide, 1 to 34 percent by weight, based on the total weight of the particles, zirconium oxide and 51 to 80 percent by weight, based on the total weight of the particles, silica.
- 28. The multi-component composite coating composition of claim 25 wherein the particles comprise 1 to 18 percent by weight, based on the total weight of the particles, iron oxide, 1 to 34 percent by weight, based on the total weight of the particles, zirconium, and 65 to 94 percent by weight, based on the total weight of the particles, silica.
- 29. The multi-component composite coating composition of claim 19 wherein the particles have a mean particle size less than 50 nm.
- 30. The multi-component composite coating composition of claim 29 wherein the particles have a mean particle size less than 20 nm.
- 31. The multi-component composite coating composition of claim 19 wherein the particles have an index of refraction between 1.50 and 1.60.
- 32. A pigment comprising particles having a mean particle size less than 100 nm and further comprising 1 to 99 percent by weight one or more metal oxide(s) wherein the metals are selected from at least one of zinc, titanium, cerium, manganese, bismuth copper, zirconium and iron and 1 to 99 percent by weight silica.
- 33. The pigment of claim 32, having a mean particle size less than 50 nm.
- 34. The pigment of claim 33, having a mean particle size less than 20 nm.
- 35. The pigment of claim 32, wherein the index of refraction thereof is between 1.5 and 1.6.
- 36. The pigment of claim 32 wherein the particles are prepared by a process comprising: (a) introducing reactants into a reaction chamber; (b) rapidly heating the reactants by means of a plasma to a selected reaction temperature sufficient to yield a gaseous reaction product; (c) rapidly cooling the gaseous reaction product by passing the gaseous reaction product through a restrictive convergent-divergent nozzle or contacting the gaseous reaction product with a cool surface or quenching gas; and (d) condensing the gaseous reaction product to yield ultrafine solid particles.
- 37. A coated substrate in which the curable coating composition of claim 1 is applied and cured to form a cured coating; the cured coating having a thickness of at least 5 microns and having an ultraviolet absorbance of at least 0.5 at 350 nm; whereas a similar cured coating without the particles has an ultraviolet absorbance of no greater than 0.2 at 350 nm.
- 38. A coated substrate in which the multi-component composite coating composition of claim 19 is applied and cured to form a cured coating; the cured coating having a thickness of at least 5 microns and having an ultraviolet absorbance of at least 0.5 at 350 nm; whereas a similar cured coating without the particles has an ultraviolet absorbance of no greater than 0.2 at 350 nm.
CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims priority under 35 U.S.C. §119 to Provisional Application Serial No. 60/358,283, filed Feb. 20, 2002.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60358283 |
Feb 2002 |
US |