The present invention relates to light generating instruments for curing light-curable compounds, such as those utilized in dental applications. More particularly, the present invention relates to energy and light efficient curing light instruments.
Light-curable compounds, such as adhesives and bonding or filling compounds, are widely used to attach objects to surfaces or to fill gaps or other openings, such as a cavity, in a tooth. Such curable compounds are generally available in a semi-solid state, and are manipulated and positioned on the surface or in the gap as desired, and hardened or cured into a more solid state for permanency. Curing or hardening is generally a chemical polymerization process, which is promoted and driven by various curing conditions and factors. For example, a semi-solid compound or component thereof, may be cured by exposure to air or to energy, such as heat or light energy.
Today, many adhesive and filling compounds are cured by exposure to light energy, particularly visible light energy. The light curing process involves directing a beam of light, such as visible light, at a specific wavelength or band of wavelengths onto a semi-solid light-curable compound to cure the compound. The compound includes light sensitive, chemical components therein which, when exposed to light at the specific wavelength, generally polymerize to harden the compound onto the work surface to bond, fill, or coat the surface.
Specifically, light-curable compounds are widely used in dental procedures. Dentists use light-curable compounds for tooth repairs in a variety of applications including a base, a liner, a coating, a surface seal, a filling for caries and cavities, and to secure crowns or similar dental structures to a tooth surface. Generally, visible light in the blue range of the light spectrum will be sufficient to cure most commonly used dental compounds. Once cured, the dental compound functions, for example, to reduce further tooth decay, to bond dental structures, and/or to provide additional structural support to a tooth.
Generally, curing is effected by various instruments or devices capable of generating visible light, particularly a beam of blue light, and directing this light onto a tooth surface containing the light-curable compound. The blue light penetrates into the compound layer on the tooth surface for complete curing. The duration of the exposure to blue light for proper curing of the compound layer depends upon the light-curable compound itself, thickness of the compound layer, and the power and characteristics of the blue light emitted from the curing light instrument. For example, curing a compound to provide a thin tooth surface coating or veneer will require less light energy, while curing a compound to provide a thicker, deeper filling for gaps, such as caries and cavities, will require a greater amount of light energy.
Presently, the prior art dental curing light devices utilized to deliver blue light to the tooth have exhibited various drawbacks. For example, the blue light directed towards the tooth inevitably exposes the surrounding oral tissue to certain wavelengths of blue light known to be undesirable for human tissue. Hence, curing light devices must be tuned to emit light at the proper wavelength to cure a specific wavelength sensitive light-curable compound for proper curing and have their output radiation limited to within a suitable wavelength band.
Filtering of unwanted wavelengths of light is accomplished by use of complex filtering devices or special filters which receive broad spectrum light from a lamp element, such as a halogen lamp bulb, and allow only the light at the desired blue wavelength to pass through or reflect onto the light-curable compound. The undesired wavelengths are then deflected back into the housing of the instrument adding to the accumulation of heat during operation of the instrument. The heat must be dissipated and therefore, large heat sinks, fans and other devices are necessary. Furthermore, the heat degrades the operation of the bulb and shortens its effective life. In addition, filtering mechanisms often cause a loss of a portion or spectrum of radiation emitted by the light source. Only the specific angle of incidence of light entering the filtering device will be reflected to the curable compound while light outside the specific angle of incidence will be filtered out and lost.
While filtering and angle of incidence effect to decrease light intensity, the light intensity is further diminished by dispersion and scattering of light emitted from the light source. Curing light instruments of the prior art, particularly those utilizing filters, typically have a gap or an empty, hollow space between the light emission source and the filter or other means to direct or transmit the curing light out of the instrument and onto a light-curable compound. However, a portion of the light emitted into this space misses the outlet, thereby reducing the amount of light contacting the light-curable compound.
Thus, curing light instruments of the prior art, with or without filtering devices, are inefficient by virtue of loss of emitted light available to cure the compound. As a result, these instruments require more power output from the light source, increased light emission, and/or longer curing time. Consequently, such instruments also require larger and more efficient heat dissipation components, which increases their overall cost and size. The size, cost of manufacture and operation, and decrease in convenience, to both the operator and the patient, renders these instruments less useful and less desirable.
Thus, there is a need to provide a curing light instrument to cure compounds in a fast, efficient, and effective manner, while improving convenience and reducing size and overall costs.
Accordingly, it is desirable to provide a curing light instrument, which efficiently and effectively cures light-curable compounds by maximizing the amount of light directed onto the light-curable compound.
It is also desirable to provide a curing light instrument, which is small, portable and convenient to use for curing light-curable compounds.
It is further desirable to provide a curing light instrument requiring low maintenance and radiating light from energy efficient light emitting elements having a long life.
The present invention provides curing light instruments which overcome the weaknesses and drawbacks associated with the prior art light generating instruments by providing an instrument which efficiently and effectively maximizes the light available to cure light-curable compounds. To this end, and in accordance with the principles of the invention, the curing light instrument comprises a housing, a light emitting structure positioned in the housing comprising at least one light emitting die, and a reflector configured to capture and direct light emitted from the die onto a light-curable compound. The reflector is generally a tubular passage having proximal and distal ends, one of which interfaces with the light emitting structure such that a maximum amount of the emitted light is captured and directed onto the light-curable compound.
The housing of the instrument generally includes a handle portion and a barrel portion. The handle portion may house a power source, such as a battery, connected electronically through a control circuit to the light emitting structure. The control circuit controls the time the radiation is emitted, and may further control other factors related to the emission of curing light. The barrel portion of the housing has a proximal end and a distal end. Curing light is radiated directly out of the distal end onto a light-curable compound or alternatively transmitted through a light guide configured to attach to the distal end of the housing. A light shield may be coupled to the distal end of the housing to protect the operator=s eyes from the curing light.
The light emitting structure emits the light necessary to cure the light-curable compound. Light emitting structures, such as structures having at least one light generating die, capable of emitting light, such as blue light, in wavelengths necessary to cure light-curable compounds are suitable. In one embodiment, the instrument utilizes a highly efficient light emitting structure which comprises a collective array of solid state light emitting dies formed on one or more substrates and selectively generates blue light. The first substrate, if only one or the substrate furthest removed from the dies, is generally coupled to an optional base which in turn may be mounted on a printed circuit board. It is beneficial for the printed circuit board, the base, and the substrates to comprise thermally-conductive materials, including metals, such as aluminum, copper and alloys thereof, to conduct heat away from the dies. Cooling of the light emitting structure and corresponding substrates and base may be accomplished by a heat sink thermally coupled to the printed circuit board. Alternatively, a cooling device, such as a fan may be located proximate the heat sink to cool the heat sink and further cool the light emitting structure.
The reflector improves light energy efficiency of the curing light instrument by minimizing or eliminating the loss of light emitted from the light emitting structure thereby maximizing the light radiated out of the instrument housing onto the light-curable compound. To this end, one end of the reflector, such as the proximate end, may be positioned to surround the light emitting structure thereby capturing a significant portion, if not all, of the light emitted and directing this light out of the other end of the reflector. Advantageously, the reflector may comprise a suitable material, such as metal, plastic or glass. To further enhance efficiency, the reflector may have an inner surface comprising a reflective material, such as aluminum or a metal-coated plastic. In one embodiment, the distal end of the reflector is connected to a light guide to transmit the directed light out of the housing.
Accordingly, the present invention minimizes loss, dispersion, and scattering of the light radiation, thereby improving curing efficiency, effectiveness, and decreasing costs associated with curing a light-curable compound on a work surface. The invention is particularly useful for curing light-curable compounds commonly used in dental applications, such as providing an adhesive bond to secure crowns or similar dental structures to a tooth surface, a base, a liner, a coating, or a filling for caries and cavities. These and other objects and advantages of the present invention shall be made apparent from the accompanying drawings and description thereof.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with a general description of the invention given below, serve to explain the principles of the invention.
The present invention provides curing light instruments to cure light-curable compounds, such as dental compounds, efficiently and effectively from a cost and energy perspective. While the invention will be described in one embodiment herein as having application to curing dental compounds, it is not so specifically limited. Also, the curing light instrument illustrated herein is portable, however, the invention is not so limited and could alternatively be plugged into a source of power. Portability, of course, provides added convenience of use.
As shown in
Light emitting structure 20 is capable of emitting light 34 having wavelengths suitable to cure a light-curable compound. Advantageously, the light emitting structure 20 emits a narrow wavelength band of radiation or light sufficient to cure the compound. Referring to
A suitable light emitting structure 20 may further comprise a first substrate, a base, and optionally a second substrate, positioned between the first substrate on which the dies are formed and the base. The light emitting structure 20 may further comprise a printed circuit board on which the first substrate, second substrate, or base is mounted. Referring to
Printed circuit board 25 generally serves to relay the necessary electrical energy, generally through electrical leads, to the dies 32 to generate light. Printed circuit board 25 may additionally provide cooling for the light emitting structure 20. Accordingly, printed circuit board 25 may comprise thermally conductive materials including metals, such as aluminum, copper, silicon and alloys thereof. Advantageously, the printed circuit board 25 will comprise aluminum, thus maximizing the dissipation of heat emitted by dies 32 during the operation. The printed circuit board 25, and therefore the light emitting structure 20, may be supported by the housing via direct attachment or indirect attachment through an intermediary structure, such as a heat sink 51 (
The light emitting structure 20 depicted in the figures provides many advantages over those used in prior art instruments. Some of the advantages include extremely high flux and flux density, and a longer operating life in the range of up to 10,000 hours for the light-generating components. The die 32 are solid state devices having significantly long life spans as compared to prior art bulbs. This translates into cost savings and convenience for the operator by providing a curing light instrument 10 having a longer useful lifetime without the need to constantly replace bulbs.
A particularly important advantage is that light emitting structure 20 allows instrument 10 to emit desired light, such as blue light radiation, necessary to cure specific compounds. In one embodiment, the die 32 provides radiation in a blue light at a desirable band of wavelengths, for example, around 470 nanometers. Such blue light is useful for curing dental compounds, particularly those being currently used in tooth repairs. To this end, the present invention eliminates the need for filtering devices, typically used to filter undesired wavelengths of broad spectrum light, as is required with prior art halogen lamp bulbs. In addition, the light emitting structure 20 is generally more energy efficient than incandescent and most halogen lamps. Furthermore, the emitted light tends to be cooler, safer to touch, and generally turns on/off instantaneously. One embodiment of a light emitting structure 20 suitable for the present invention is available from Lumileds Lighting Company, U.S.
In accordance with the principles of the invention, the light radiated from the light emitting structure 20 is efficiently captured and directed for effective curing. As mentioned before, the dies 32 emit light 34 which is scattered and multi-directional and not in the form of a dense beam directed in any particular direction. As shown in
Reflector 40, in the exemplary embodiment illustrated in
Reflector 40 may generally be supported by housing 12, advantageously at distal end 15 of barrel portion 14 of housing 12. Alternatively, reflector 40 may be supported through attachment to another structural component of instrument 10. For example, reflector 40 may be supported via attachment to light emitting structure 20. More particularly, as illustrated in
Adapter 45 not only serves to secure or support reflector 40, but also to couple reflector 40 to a light guide 52. More specifically, adapter 45 is configured to couple to the distal end 43 of the reflector 40 and to the proximal end 50 of the light guide 52. In this manner, the adapter 45 couples the reflector 40 to the light guide 52 so as to provide one continuous interface without a loss of light. Adapter 45 may be formed of a lightweight material, such as plastic.
The embodiment of the instrument 10 illustrated in
Light guide 52 may generally be any shape effective to transmit light. Preferably, the shape of the light guide 52 will be adapted for convenience of use depending upon the work surface. For instance, while the light guide 52 may have a relatively uniform diameter from the proximal end 50 through the distal end 48, advantageously, distal end 48 will have a smaller diameter then proximal end 50 to increase the intensity of the exiting light 34 and improve the curing efficiency and convenience of use of the instrument 10. In one embodiment of the invention the reflector 40 is configured to fill a conventional 13 mm light guide. The adaptor 45 is also configured to interface with a 13 mm light guide. While suitable light guides 52 may be commercially available in a variety of different sizes and shapes, for example, in diameters of 8 mm, 11 mm, and 13 mm, respectively, it has been discovered that a distal end 48 diameter of about 11 mm will allow sufficient exposure of the light-curable compound to light 34 and curing of the compound without significant movement of distal end 48 around the work surface. In one embodiment of the invention, a light-receiving end 50 at 13 mm is tapered down to a light-output end of around 11 mm. The larger proximal end 50 of about 13 mm allows the light guide 52 to maximize the capture of light 34 from the reflector 40 thereby further improving the light curing efficiency of instrument 10. The 11 mm distal end concentrates the light 34 to allow a higher intensity of light than a conventional 11 mm or 13 mm light guide. Therefore, in the one embodiment, light guide 52 has a proximal end or receiving end 50 having a diameter of about 13 mm and a distal end or transmitting end 48 having a smaller diameter of about 11 mm. Furthermore, slight bending or tapering of the light guide 52 between the distal end 48 and the proximal end 50 allows the user to cure compounds on work surfaces which would otherwise be difficult to reach. As shown in
Generally, the light guide 52 will comprise components capable of effectively transmitting light 34. For example, one embodiment of the invention utilizes a light guide 52 comprising a plurality of optical fibers (not shown) which are operably fused together into a single light guide or light pipe type structure to transmit the light 34. In another embodiment, the light guide 52 utilizes a plurality of individual optical fibers or strands which collectively form a conductor. Each strand in the conductor has a taper separate from the taper of each other strand. For example, to form a conductor having individual tapered strands, each of the fiber-optic strands may be separately tapered, bundled and fused together to form a solid conductor. The solid conductor may then be stretched to form an elongated stretch section of conical geometry wherein each strand is uniformly tapered over the stretched section. The combined bundle of tapered strands generally imparts a taper to the light guide 52. This solid conductor generally has a light receiving end or proximal end 50 and a light transmitting end or distal end 48 as described above. Further details and additional light guides 52 which are suitable for the present invention are set forth in the U.S. Pat. No. 5,371,826, titled “Dental Fiber-optic Light Bundle with Uniform Taper” and herein incorporated by reference in its entirety. Also, conventional light guides known in the art are suitable for the invention.
A shield 68 (
Referring again to
The embodiment illustrated in
The present invention also provides a method to cure light-curable compounds. While the method refers to curing compounds used in dental applications, the invention is not so limited. Generally, the operator, a dentist for example, initially positions the curing light instrument in proximity to the compound. The operator grips the instrument 10 at the handle portion 17 of housing 12 and directs the light transmitting end, typically the distal end 15 of barrel portion 14, towards the work surface (not shown), such as a tooth. The operator then activates the curing light instrument 10 by adjusting and/or depressing the trigger switch 60 appropriately to generate light, or turn ON light 34, to begin to cure a light-curable compound. The light emitting structure 20 then emits light 34 having the desired power and wavelength to cure the compound. In one embodiment, the light emitted will have a power in the range of from about 200 to about 1400 mW/cm2. The multi-directional light 34 emitted is captured and directed by the reflector 40 onto a light-curable compound to cure the compound. Once the operator is satisfied that the compound has been cured, the curing light may be turned OFF by simple release of the trigger switch 60. Where the curing light instrument includes a light guide 52, the operator positions the transmission end 48 of the light guide 52 into the mouth of a patient in proximity to the compound and radiates the light 34 to effect the dental repair.
Thus, the invention provides a small, compact, durable, and portable curing light instrument for hardening or curing light-curable materials used in dental applications. The invention also eliminates the need for filters by providing a light emitting structure comprising dies which generate a desired narrow wavelength band of blue light. Also, the dies have long useful lifetimes and state of the art light generating capabilities. In addition, the invention includes an appropriately dimensioned reflector, strategically interfaced with the light emitting structure, to reduce or eliminate the loss of light radiation emitted thereby reducing both the required periods of light emission and power requirements of the instrument as a whole. To this end, the inventive instrument reduces the heat generated within the instrument housing and eliminates the need for complicated cooling systems. Thus, the inventive instrument is efficient with respect to curing times and heat generation. In addition, the small size of the highly efficient light emitting structure provides an instrument which may be assembled in a housing generally smaller than instruments of the prior art. To this end, the device is lighter and easier for the operator to manipulate. Also, the portable nature of the device allows the operator to carry the instrument and use as needed.
While the present invention has been illustrated by a description of the embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative apparatus and method, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the applicant=s general inventive concept.
This application is a Continuation Application of U.S. patent application Ser. No. 10/215,210 entitled Curing Light Instrument and filed on Aug. 8, 2002, which Application is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3638013 | Keller | Jan 1972 | A |
3712984 | Lienhard | Jan 1973 | A |
3733481 | Kuyt | May 1973 | A |
3868513 | Gonser | Feb 1975 | A |
3970856 | Mahaffey et al. | Jul 1976 | A |
RE29421 | Scott | Sep 1977 | E |
4048490 | Troue | Sep 1977 | A |
4114274 | Jones | Sep 1978 | A |
4114946 | Hoffmeister et al. | Sep 1978 | A |
4149086 | Nath | Apr 1979 | A |
4185891 | Kaestner | Jan 1980 | A |
4186748 | Schlager | Feb 1980 | A |
4209907 | Tsukada et al. | Jul 1980 | A |
4221994 | Friedman | Sep 1980 | A |
4229658 | Gonser | Oct 1980 | A |
4230453 | Reimers | Oct 1980 | A |
4233649 | Scheer et al. | Nov 1980 | A |
4280273 | Vincent | Jul 1981 | A |
4298806 | Herold | Nov 1981 | A |
4308120 | Pennewiss et al. | Dec 1981 | A |
4337759 | Popovich et al. | Jul 1982 | A |
4385344 | Gonser | May 1983 | A |
RE31279 | Mefferd et al. | Jun 1983 | E |
4391588 | Matsui | Jul 1983 | A |
4398885 | Loge et al. | Aug 1983 | A |
4412134 | Herold et al. | Oct 1983 | A |
4445858 | Johnson | May 1984 | A |
4450139 | Bussiere et al. | May 1984 | A |
4610630 | Betush | Sep 1986 | A |
4666406 | Kanca, III | May 1987 | A |
4673353 | Nevin | Jun 1987 | A |
4716296 | Bussiere et al. | Dec 1987 | A |
4729076 | Masami et al. | Mar 1988 | A |
4757381 | Cooper et al. | Jul 1988 | A |
4762862 | Yada et al. | Aug 1988 | A |
4792692 | Herold et al. | Dec 1988 | A |
4810194 | Snedden | Mar 1989 | A |
4826431 | Fujimura et al. | May 1989 | A |
4836782 | Gonser | Jun 1989 | A |
4839566 | Herold et al. | Jun 1989 | A |
4846546 | Cuda | Jul 1989 | A |
4888489 | Bryan | Dec 1989 | A |
4935665 | Murata | Jun 1990 | A |
4936808 | Lee | Jun 1990 | A |
4948215 | Friedman | Aug 1990 | A |
4963798 | McDermott | Oct 1990 | A |
4999310 | Kim | Mar 1991 | A |
5003434 | Gonser et al. | Mar 1991 | A |
5007837 | Werly | Apr 1991 | A |
5017140 | Ascher | May 1991 | A |
5029957 | Hood | Jul 1991 | A |
5070258 | Izumi et al. | Dec 1991 | A |
5115761 | Hood | May 1992 | A |
5147204 | Patten et al. | Sep 1992 | A |
5150016 | Sawase et al. | Sep 1992 | A |
5161879 | McDermott | Nov 1992 | A |
5162696 | Goodrich | Nov 1992 | A |
5173810 | Yamakawa | Dec 1992 | A |
RE34196 | Munro | Mar 1993 | E |
5189751 | Giuliani et al. | Mar 1993 | A |
5198678 | Oppawsky | Mar 1993 | A |
5201655 | Friedman | Apr 1993 | A |
5233283 | Kennedy | Aug 1993 | A |
5242602 | Richardson et al. | Sep 1993 | A |
5265792 | Harrah et al. | Nov 1993 | A |
5278629 | Schlager et al. | Jan 1994 | A |
5283425 | Imamura | Feb 1994 | A |
5290169 | Friedman et al. | Mar 1994 | A |
5302124 | Lansing et al. | Apr 1994 | A |
5312249 | Kennedy | May 1994 | A |
5316473 | Hare | May 1994 | A |
5328368 | Lansing et al. | Jul 1994 | A |
5371826 | Friedman | Dec 1994 | A |
5373114 | Kondo et al. | Dec 1994 | A |
5420768 | Kennedy | May 1995 | A |
5457611 | Verderber | Oct 1995 | A |
5471129 | Mann | Nov 1995 | A |
5487662 | Kipke et al. | Jan 1996 | A |
5521392 | Kennedy et al. | May 1996 | A |
5530632 | Shikano et al. | Jun 1996 | A |
5535230 | Abe | Jul 1996 | A |
5616141 | Cipolla | Apr 1997 | A |
5617492 | Beach et al. | Apr 1997 | A |
5634711 | Kennedy et al. | Jun 1997 | A |
5660461 | Ignatius et al. | Aug 1997 | A |
5664042 | Kennedy | Sep 1997 | A |
5678998 | Honkura et al. | Oct 1997 | A |
5698866 | Doiron et al. | Dec 1997 | A |
5707139 | Haitz | Jan 1998 | A |
5711665 | Adam et al. | Jan 1998 | A |
5741132 | Usui et al. | Apr 1998 | A |
5747363 | Wei et al. | May 1998 | A |
5759032 | Bartel | Jun 1998 | A |
5803729 | Tsimerman | Sep 1998 | A |
5857767 | Hochstein | Jan 1999 | A |
5912470 | Eibofner et al. | Jun 1999 | A |
5928220 | Shimoji | Jul 1999 | A |
5931676 | Honkura et al. | Aug 1999 | A |
5975895 | Sullivan | Nov 1999 | A |
6008264 | Ostler et al. | Dec 1999 | A |
6033223 | Narusawa et al. | Mar 2000 | A |
6045240 | Hochstein | Apr 2000 | A |
6046460 | Mertins | Apr 2000 | A |
6065965 | Rechmann | May 2000 | A |
6068474 | Senn et al. | May 2000 | A |
6077073 | Jacob | Jun 2000 | A |
6079861 | Woodward et al. | Jun 2000 | A |
6086367 | Levy | Jul 2000 | A |
6095812 | Senn et al. | Aug 2000 | A |
6099520 | Shimoji | Aug 2000 | A |
6102696 | Osterwalder et al. | Aug 2000 | A |
6123545 | Eggler et al. | Sep 2000 | A |
6132213 | Knorpp et al. | Oct 2000 | A |
6155823 | Nagel | Dec 2000 | A |
6157661 | Walker et al. | Dec 2000 | A |
6159005 | Herold et al. | Dec 2000 | A |
6161937 | Rosenstatter | Dec 2000 | A |
6168431 | Narusawa et al. | Jan 2001 | B1 |
6171105 | Sarmadi | Jan 2001 | B1 |
6186786 | Trushkowsky | Feb 2001 | B1 |
6190020 | Hartley | Feb 2001 | B1 |
6193510 | Tsimerman | Feb 2001 | B1 |
6200134 | Kovac et al. | Mar 2001 | B1 |
6203325 | Honkura et al. | Mar 2001 | B1 |
6208788 | Nosov | Mar 2001 | B1 |
6220722 | Begemann | Apr 2001 | B1 |
6257883 | Voudouris | Jul 2001 | B1 |
6280187 | Slone | Aug 2001 | B1 |
6280188 | Ross | Aug 2001 | B1 |
6282013 | Ostler et al. | Aug 2001 | B1 |
6299450 | Honkura et al. | Oct 2001 | B1 |
6322358 | Senn et al. | Nov 2001 | B1 |
6331111 | Cao | Dec 2001 | B1 |
6345982 | Meyer | Feb 2002 | B1 |
6371826 | Pestonji | Apr 2002 | B1 |
6379149 | Franetzki | Apr 2002 | B1 |
6382967 | Rohner et al. | May 2002 | B1 |
6384099 | Ostler et al. | May 2002 | B1 |
6419483 | Adam et al. | Jul 2002 | B1 |
6425761 | Eibofner | Jul 2002 | B1 |
6439888 | Boutoussov et al. | Aug 2002 | B1 |
6465961 | Cao | Oct 2002 | B1 |
6468077 | Melikechi et al. | Oct 2002 | B1 |
6482004 | Senn | Nov 2002 | B1 |
6498108 | Cao | Dec 2002 | B2 |
6558829 | Faris et al. | May 2003 | B1 |
6561806 | Kyotani et al. | May 2003 | B2 |
6634770 | Cao | Oct 2003 | B2 |
6634771 | Cao | Oct 2003 | B2 |
6692251 | Logan et al. | Feb 2004 | B1 |
6692252 | Scott | Feb 2004 | B2 |
6700158 | Cao et al. | Mar 2004 | B1 |
6702576 | Fischer et al. | Mar 2004 | B2 |
6709128 | Gordon | Mar 2004 | B2 |
6709270 | Honkura et al. | Mar 2004 | B2 |
6719446 | Cao | Apr 2004 | B2 |
6719558 | Cao | Apr 2004 | B2 |
6719559 | Cao | Apr 2004 | B2 |
6755647 | Melikechi | Jun 2004 | B2 |
6755648 | Cao | Jun 2004 | B2 |
6755649 | Cao | Jun 2004 | B2 |
6767109 | Plank et al. | Jul 2004 | B2 |
6780010 | Cao | Aug 2004 | B2 |
6783362 | Cao | Aug 2004 | B2 |
6783810 | Jin et al. | Aug 2004 | B2 |
6793490 | Bianchetti et al. | Sep 2004 | B2 |
6799967 | Cao | Oct 2004 | B2 |
6815241 | Wang | Nov 2004 | B2 |
6824294 | Cao | Nov 2004 | B2 |
6829260 | Hsia | Dec 2004 | B2 |
6857873 | Bianchetti | Feb 2005 | B2 |
6890175 | Fischer et al. | May 2005 | B2 |
6910886 | Cao | Jun 2005 | B2 |
6918762 | Gill et al. | Jul 2005 | B2 |
6926524 | Cao | Aug 2005 | B2 |
6929472 | Cao | Aug 2005 | B2 |
6932600 | Cao | Aug 2005 | B2 |
6940659 | McLean et al. | Sep 2005 | B2 |
6953340 | Cao | Oct 2005 | B2 |
6954270 | Ostler et al. | Oct 2005 | B2 |
6955537 | Cao | Oct 2005 | B2 |
6957907 | Fischer | Oct 2005 | B2 |
6969253 | Cao | Nov 2005 | B2 |
6971875 | Cao | Dec 2005 | B2 |
6971876 | Cao | Dec 2005 | B2 |
6974319 | Cao | Dec 2005 | B2 |
6979193 | Cao | Dec 2005 | B2 |
6979194 | Cao | Dec 2005 | B2 |
6981867 | Cao | Jan 2006 | B2 |
6981876 | Bleckley | Jan 2006 | B2 |
6986782 | Chen et al. | Jan 2006 | B2 |
6988890 | Cao | Jan 2006 | B2 |
6988891 | Cao | Jan 2006 | B2 |
6991356 | Tsimerman | Jan 2006 | B2 |
6991456 | Plank | Jan 2006 | B2 |
6994546 | Fischer | Feb 2006 | B2 |
7001057 | Plank | Feb 2006 | B2 |
7011519 | Castellini | Mar 2006 | B2 |
7029277 | Gofman | Apr 2006 | B2 |
7056116 | Scott et al. | Jun 2006 | B2 |
7066732 | Cao | Jun 2006 | B2 |
7066733 | Logan et al. | Jun 2006 | B2 |
7074040 | Kanca | Jul 2006 | B2 |
7077648 | Cao | Jul 2006 | B2 |
7086111 | Hilscher et al. | Aug 2006 | B2 |
7086858 | Cao | Aug 2006 | B2 |
7094054 | Cao | Aug 2006 | B2 |
7101072 | Takada et al. | Sep 2006 | B2 |
7106523 | McLean et al. | Sep 2006 | B2 |
7108504 | Cao | Sep 2006 | B2 |
7144250 | Fischer et al. | Dec 2006 | B2 |
7153015 | Brukilacchio | Dec 2006 | B2 |
7167824 | Kallulli | Jan 2007 | B2 |
7172319 | Holder et al. | Feb 2007 | B2 |
7182597 | Gill et al. | Feb 2007 | B2 |
7189983 | Aguirre et al. | Mar 2007 | B2 |
7192276 | Fischer et al. | Mar 2007 | B2 |
7202489 | Aguirre et al. | Apr 2007 | B2 |
7202490 | Aguirre et al. | Apr 2007 | B2 |
7207694 | Petrick | Apr 2007 | B1 |
7210814 | Scott et al. | May 2007 | B2 |
7210930 | Kovac et al. | May 2007 | B2 |
7223270 | Altshuler et al. | May 2007 | B2 |
7224001 | Cao | May 2007 | B2 |
7252678 | Ostler et al. | Aug 2007 | B2 |
7267457 | Ostler et al. | Sep 2007 | B2 |
7271420 | Cao | Sep 2007 | B2 |
7273369 | Rosenblood et al. | Sep 2007 | B2 |
7283230 | Ostler et al. | Oct 2007 | B2 |
7320593 | Ostler et al. | Jan 2008 | B2 |
7323849 | Robinett et al. | Jan 2008 | B1 |
7329887 | Henson et al. | Feb 2008 | B2 |
7410282 | Eichelberger et al. | Aug 2008 | B2 |
7410283 | West et al. | Aug 2008 | B2 |
7422598 | Altshuler et al. | Sep 2008 | B2 |
7485116 | Cao | Feb 2009 | B2 |
7530707 | Plank et al. | May 2009 | B2 |
7530808 | Cao et al. | May 2009 | B2 |
7622467 | McKinnell et al. | Nov 2009 | B2 |
7651268 | Cao et al. | Jan 2010 | B2 |
7654086 | Gong et al. | Feb 2010 | B2 |
7661172 | Hilscher et al. | Feb 2010 | B2 |
7677888 | Halm | Mar 2010 | B1 |
7677890 | Turner | Mar 2010 | B2 |
7696728 | Cross et al. | Apr 2010 | B2 |
7704074 | Jensen | Apr 2010 | B2 |
7712468 | Hargadon | May 2010 | B2 |
7728345 | Cao | Jun 2010 | B2 |
7733056 | Hartung et al. | Jun 2010 | B2 |
7758204 | Klipstein et al. | Jul 2010 | B2 |
7786499 | Cao | Aug 2010 | B2 |
20010007739 | Eibofner et al. | Jul 2001 | A1 |
20010046652 | Ostler et al. | Nov 2001 | A1 |
20020014864 | Gemunder et al. | Feb 2002 | A1 |
20020051367 | Hooker et al. | May 2002 | A1 |
20020115037 | Cao | Aug 2002 | A1 |
20020133970 | Gordon et al. | Sep 2002 | A1 |
20020168603 | Cao | Nov 2002 | A1 |
20020168607 | Cao | Nov 2002 | A1 |
20020175628 | Cao | Nov 2002 | A1 |
20020177099 | Cao | Nov 2002 | A1 |
20020180368 | Cao | Dec 2002 | A1 |
20020181947 | Cao | Dec 2002 | A1 |
20020190659 | Cao | Dec 2002 | A1 |
20020190660 | Cao | Dec 2002 | A1 |
20030015667 | MacDougald et al. | Jan 2003 | A1 |
20030036031 | Lieb et al. | Feb 2003 | A1 |
20030147258 | Fischer et al. | Aug 2003 | A1 |
20030148242 | Fischer et al. | Aug 2003 | A1 |
20030218880 | Brukilachchio | Nov 2003 | A1 |
20030219693 | Cao | Nov 2003 | A1 |
20040005524 | Oxman et al. | Jan 2004 | A1 |
20040054386 | Martin et al. | Mar 2004 | A1 |
20050002975 | Cao | Jan 2005 | A1 |
20050077865 | Durbin et al. | Apr 2005 | A1 |
20050082989 | Jones et al. | Apr 2005 | A1 |
20050093506 | Hamada et al. | May 2005 | A1 |
20050096661 | Farrow | May 2005 | A1 |
20050099824 | Dowling et al. | May 2005 | A1 |
20050116176 | Acquirre | Jun 2005 | A1 |
20050142514 | Scott | Jun 2005 | A1 |
20050158687 | Dahm | Jul 2005 | A1 |
20050171408 | Parker | Aug 2005 | A1 |
20050196721 | Jackson | Sep 2005 | A1 |
20060024638 | Rosenblood | Feb 2006 | A1 |
20060252005 | Feinbloom et al. | Nov 2006 | A1 |
20070128577 | Scott | Jun 2007 | A1 |
20070228392 | Plank et al. | Oct 2007 | A1 |
20080062703 | Cao | Mar 2008 | A1 |
20080154249 | Cao | Jun 2008 | A1 |
20080161783 | Cao | Jul 2008 | A1 |
20080285301 | Wanninger | Nov 2008 | A1 |
20090087393 | Jensen | Apr 2009 | A1 |
20090092947 | Cao | Apr 2009 | A1 |
20090155740 | Jensen | Jun 2009 | A1 |
20090227875 | Cao | Sep 2009 | A1 |
20090238779 | Cao | Sep 2009 | A1 |
20100004640 | Cao | Jan 2010 | A1 |
20100096643 | Cao | Apr 2010 | A1 |
20100117560 | Cao | May 2010 | A1 |
20100173267 | Cao | Jul 2010 | A1 |
20100207502 | Cao | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
2298992 | Sep 2000 | CA |
2298993 | Sep 2000 | CA |
19624087 | Dec 1997 | DE |
19803755 | Aug 1999 | DE |
000266038 | Oct 1991 | EP |
000568666 | Nov 1992 | EP |
000320080 | Aug 1993 | EP |
000591613 | Apr 1994 | EP |
000672435 | Sep 1995 | EP |
000678282 | Oct 1995 | EP |
000709698 | May 1996 | EP |
000755662 | Jul 1996 | EP |
000736307 | Oct 1996 | EP |
000750889 | Jan 1997 | EP |
000780101 | Jun 1997 | EP |
000780103 | Jun 1997 | EP |
000830850 | Mar 1998 | EP |
000879582 | Nov 1998 | EP |
000880945 | Dec 1998 | EP |
000884025 | Dec 1998 | EP |
000885025 | Dec 1998 | EP |
000959803 | Dec 1999 | EP |
000998880 | May 2000 | EP |
001031326 | Aug 2000 | EP |
001090607 | Apr 2001 | EP |
001090608 | Apr 2001 | EP |
001093765 | Apr 2001 | EP |
001103232 | May 2001 | EP |
001112721 | Jul 2001 | EP |
001138276 | Oct 2001 | EP |
001138349 | Oct 2001 | EP |
000830851 | May 2002 | EP |
000830852 | May 2002 | EP |
001206923 | May 2002 | EP |
01228738 | Aug 2002 | EP |
001253547 | Oct 2002 | EP |
000740567 | Nov 2002 | EP |
001374797 | Jan 2004 | EP |
1843079 | Oct 2007 | EP |
002212010 | Jul 1989 | GB |
002218636 | Nov 1989 | GB |
002329756 | Mar 1999 | GB |
002385137 | Aug 2003 | GB |
DE2842938 | Dec 1981 | GR |
DE3411996 | Oct 1985 | GR |
DE3706852 | Aug 1988 | GR |
DE4211233 | Jan 1992 | GR |
DE9017070 | Apr 1992 | GR |
DE2951927 | Feb 1997 | GR |
0006030275 | Feb 1994 | JP |
0007240536 | Sep 1995 | JP |
07240536 | Sep 1995 | JP |
0008141001 | Jun 1996 | JP |
08141001 | Jun 1996 | JP |
0008194786 | Jul 1996 | JP |
0009010238 | Jan 1997 | JP |
9010238 | Jan 1997 | JP |
928719 | Apr 1997 | JP |
9187825 | Jul 1997 | JP |
1033573 | Feb 1998 | JP |
410033573 | Feb 1998 | JP |
2000312688 | Nov 2000 | JP |
2001522635 | Nov 2001 | JP |
2003320683 | May 2002 | JP |
2002200100 | Jul 2002 | JP |
2003093405 | Apr 2003 | JP |
200328201 | Oct 2003 | JP |
2007128667 | May 2004 | JP |
2004355852 | Dec 2004 | JP |
2005212805 | Aug 2005 | JP |
2007514454 | Jun 2007 | JP |
WO8301311 | Apr 1983 | WO |
WO8404463 | Nov 1984 | WO |
WO9202275 | Feb 1992 | WO |
WO9309847 | May 1993 | WO |
WO9321842 | Nov 1993 | WO |
WO9507731 | Mar 1995 | WO |
WO9519810 | Jul 1995 | WO |
WO9526217 | Oct 1995 | WO |
WO9736552 | Oct 1997 | WO |
WO9737722 | Oct 1997 | WO |
WO9746279 | Dec 1997 | WO |
WO9746280 | Dec 1997 | WO |
WO9803131 | Jan 1998 | WO |
WO9803132 | Jan 1998 | WO |
WO9804317 | Feb 1998 | WO |
WO9909071 | Feb 1999 | WO |
WO9911324 | Mar 1999 | WO |
WO9916136 | Apr 1999 | WO |
WO9920346 | Apr 1999 | WO |
WO9935995 | Jul 1999 | WO |
WO0001464 | Jan 2000 | WO |
WO0002491 | Jan 2000 | WO |
WO0013608 | Mar 2000 | WO |
WO0015296 | Mar 2000 | WO |
WO0041726 | Jul 2000 | WO |
WO0041767 | Jul 2000 | WO |
WO0041768 | Jul 2000 | WO |
WO0043067 | Jul 2000 | WO |
WO0043068 | Jul 2000 | WO |
WO0043069 | Jul 2000 | WO |
WO0045733 | Aug 2000 | WO |
WO0067048 | Nov 2000 | WO |
WO0067660 | Nov 2000 | WO |
WO0103770 | Jan 2001 | WO |
WO0113608 | Feb 2001 | WO |
WO0114012 | Mar 2001 | WO |
WO0119280 | Mar 2001 | WO |
WO0124724 | Apr 2001 | WO |
WO0154770 | Aug 2001 | WO |
WO0160280 | Aug 2001 | WO |
WO0164129 | Sep 2001 | WO |
WO0168035 | Sep 2001 | WO |
WO0169691 | Sep 2001 | WO |
WO0206723 | Jan 2002 | WO |
WO0209610 | Feb 2002 | WO |
WO0211640 | Feb 2002 | WO |
WO0232505 | Apr 2002 | WO |
WO0233312 | Apr 2002 | WO |
WO0249721 | Jun 2002 | WO |
WO02056787 | Jul 2002 | WO |
WO02069839 | Sep 2002 | WO |
WO02080808 | Oct 2002 | WO |
WO2006014363 | Feb 2006 | WO |
WO2009134885 | Nov 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20070134616 A1 | Jun 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10215210 | Aug 2002 | US |
Child | 11671563 | US |