Curing light instrument

Information

  • Patent Grant
  • 8231383
  • Patent Number
    8,231,383
  • Date Filed
    Tuesday, February 6, 2007
    17 years ago
  • Date Issued
    Tuesday, July 31, 2012
    12 years ago
Abstract
The present invention provides a handheld portable, efficient instrument for curing light-curable compounds. The instrument comprises a housing, a light emitted structure supported in the housing, and a reflector configured to interface with the light emitting structure such that light emitted is captured and directed by the reflector onto a light-curable compound. The reflector maximizes the amount of light transferred and contacting the light-curable compound thereby reducing the instrument=s power requirements and improving efficiency. The light emitting structure comprises state of the art, energy efficient, light generating dies. The curing light instrument may also have a self-contained power supply lending portability and convenient of use.
Description
FIELD OF THE INVENTION

The present invention relates to light generating instruments for curing light-curable compounds, such as those utilized in dental applications. More particularly, the present invention relates to energy and light efficient curing light instruments.


BACKGROUND OF THE INVENTION

Light-curable compounds, such as adhesives and bonding or filling compounds, are widely used to attach objects to surfaces or to fill gaps or other openings, such as a cavity, in a tooth. Such curable compounds are generally available in a semi-solid state, and are manipulated and positioned on the surface or in the gap as desired, and hardened or cured into a more solid state for permanency. Curing or hardening is generally a chemical polymerization process, which is promoted and driven by various curing conditions and factors. For example, a semi-solid compound or component thereof, may be cured by exposure to air or to energy, such as heat or light energy.


Today, many adhesive and filling compounds are cured by exposure to light energy, particularly visible light energy. The light curing process involves directing a beam of light, such as visible light, at a specific wavelength or band of wavelengths onto a semi-solid light-curable compound to cure the compound. The compound includes light sensitive, chemical components therein which, when exposed to light at the specific wavelength, generally polymerize to harden the compound onto the work surface to bond, fill, or coat the surface.


Specifically, light-curable compounds are widely used in dental procedures. Dentists use light-curable compounds for tooth repairs in a variety of applications including a base, a liner, a coating, a surface seal, a filling for caries and cavities, and to secure crowns or similar dental structures to a tooth surface. Generally, visible light in the blue range of the light spectrum will be sufficient to cure most commonly used dental compounds. Once cured, the dental compound functions, for example, to reduce further tooth decay, to bond dental structures, and/or to provide additional structural support to a tooth.


Generally, curing is effected by various instruments or devices capable of generating visible light, particularly a beam of blue light, and directing this light onto a tooth surface containing the light-curable compound. The blue light penetrates into the compound layer on the tooth surface for complete curing. The duration of the exposure to blue light for proper curing of the compound layer depends upon the light-curable compound itself, thickness of the compound layer, and the power and characteristics of the blue light emitted from the curing light instrument. For example, curing a compound to provide a thin tooth surface coating or veneer will require less light energy, while curing a compound to provide a thicker, deeper filling for gaps, such as caries and cavities, will require a greater amount of light energy.


Presently, the prior art dental curing light devices utilized to deliver blue light to the tooth have exhibited various drawbacks. For example, the blue light directed towards the tooth inevitably exposes the surrounding oral tissue to certain wavelengths of blue light known to be undesirable for human tissue. Hence, curing light devices must be tuned to emit light at the proper wavelength to cure a specific wavelength sensitive light-curable compound for proper curing and have their output radiation limited to within a suitable wavelength band.


Filtering of unwanted wavelengths of light is accomplished by use of complex filtering devices or special filters which receive broad spectrum light from a lamp element, such as a halogen lamp bulb, and allow only the light at the desired blue wavelength to pass through or reflect onto the light-curable compound. The undesired wavelengths are then deflected back into the housing of the instrument adding to the accumulation of heat during operation of the instrument. The heat must be dissipated and therefore, large heat sinks, fans and other devices are necessary. Furthermore, the heat degrades the operation of the bulb and shortens its effective life. In addition, filtering mechanisms often cause a loss of a portion or spectrum of radiation emitted by the light source. Only the specific angle of incidence of light entering the filtering device will be reflected to the curable compound while light outside the specific angle of incidence will be filtered out and lost.


While filtering and angle of incidence effect to decrease light intensity, the light intensity is further diminished by dispersion and scattering of light emitted from the light source. Curing light instruments of the prior art, particularly those utilizing filters, typically have a gap or an empty, hollow space between the light emission source and the filter or other means to direct or transmit the curing light out of the instrument and onto a light-curable compound. However, a portion of the light emitted into this space misses the outlet, thereby reducing the amount of light contacting the light-curable compound.


Thus, curing light instruments of the prior art, with or without filtering devices, are inefficient by virtue of loss of emitted light available to cure the compound. As a result, these instruments require more power output from the light source, increased light emission, and/or longer curing time. Consequently, such instruments also require larger and more efficient heat dissipation components, which increases their overall cost and size. The size, cost of manufacture and operation, and decrease in convenience, to both the operator and the patient, renders these instruments less useful and less desirable.


Thus, there is a need to provide a curing light instrument to cure compounds in a fast, efficient, and effective manner, while improving convenience and reducing size and overall costs.


Accordingly, it is desirable to provide a curing light instrument, which efficiently and effectively cures light-curable compounds by maximizing the amount of light directed onto the light-curable compound.


It is also desirable to provide a curing light instrument, which is small, portable and convenient to use for curing light-curable compounds.


It is further desirable to provide a curing light instrument requiring low maintenance and radiating light from energy efficient light emitting elements having a long life.


SUMMARY OF THE INVENTION

The present invention provides curing light instruments which overcome the weaknesses and drawbacks associated with the prior art light generating instruments by providing an instrument which efficiently and effectively maximizes the light available to cure light-curable compounds. To this end, and in accordance with the principles of the invention, the curing light instrument comprises a housing, a light emitting structure positioned in the housing comprising at least one light emitting die, and a reflector configured to capture and direct light emitted from the die onto a light-curable compound. The reflector is generally a tubular passage having proximal and distal ends, one of which interfaces with the light emitting structure such that a maximum amount of the emitted light is captured and directed onto the light-curable compound.


The housing of the instrument generally includes a handle portion and a barrel portion. The handle portion may house a power source, such as a battery, connected electronically through a control circuit to the light emitting structure. The control circuit controls the time the radiation is emitted, and may further control other factors related to the emission of curing light. The barrel portion of the housing has a proximal end and a distal end. Curing light is radiated directly out of the distal end onto a light-curable compound or alternatively transmitted through a light guide configured to attach to the distal end of the housing. A light shield may be coupled to the distal end of the housing to protect the operator=s eyes from the curing light.


The light emitting structure emits the light necessary to cure the light-curable compound. Light emitting structures, such as structures having at least one light generating die, capable of emitting light, such as blue light, in wavelengths necessary to cure light-curable compounds are suitable. In one embodiment, the instrument utilizes a highly efficient light emitting structure which comprises a collective array of solid state light emitting dies formed on one or more substrates and selectively generates blue light. The first substrate, if only one or the substrate furthest removed from the dies, is generally coupled to an optional base which in turn may be mounted on a printed circuit board. It is beneficial for the printed circuit board, the base, and the substrates to comprise thermally-conductive materials, including metals, such as aluminum, copper and alloys thereof, to conduct heat away from the dies. Cooling of the light emitting structure and corresponding substrates and base may be accomplished by a heat sink thermally coupled to the printed circuit board. Alternatively, a cooling device, such as a fan may be located proximate the heat sink to cool the heat sink and further cool the light emitting structure.


The reflector improves light energy efficiency of the curing light instrument by minimizing or eliminating the loss of light emitted from the light emitting structure thereby maximizing the light radiated out of the instrument housing onto the light-curable compound. To this end, one end of the reflector, such as the proximate end, may be positioned to surround the light emitting structure thereby capturing a significant portion, if not all, of the light emitted and directing this light out of the other end of the reflector. Advantageously, the reflector may comprise a suitable material, such as metal, plastic or glass. To further enhance efficiency, the reflector may have an inner surface comprising a reflective material, such as aluminum or a metal-coated plastic. In one embodiment, the distal end of the reflector is connected to a light guide to transmit the directed light out of the housing.


Accordingly, the present invention minimizes loss, dispersion, and scattering of the light radiation, thereby improving curing efficiency, effectiveness, and decreasing costs associated with curing a light-curable compound on a work surface. The invention is particularly useful for curing light-curable compounds commonly used in dental applications, such as providing an adhesive bond to secure crowns or similar dental structures to a tooth surface, a base, a liner, a coating, or a filling for caries and cavities. These and other objects and advantages of the present invention shall be made apparent from the accompanying drawings and description thereof.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with a general description of the invention given below, serve to explain the principles of the invention.



FIG. 1 is an internal view of the housing of one embodiment of a curing light instrument;



FIG. 2 is a cross-sectional view of the barrel portion of the housing illustrated in FIG. 1;



FIG. 3 is a magnified cross-sectional view of the reflector-light emitting structure interface illustrated in FIG. 2;



FIG. 4 is an overhead view of one embodiment of a light emitting structure;



FIG. 5 is a cross-sectional view of the light emitting structure shown in FIG. 4, enclosed by a lens;



FIG. 6 is a side view of a reflector; and



FIG. 7 is a bottom view of the reflector illustrated in FIG. 6.





DETAILED DESCRIPTION OF THE INVENTION

The present invention provides curing light instruments to cure light-curable compounds, such as dental compounds, efficiently and effectively from a cost and energy perspective. While the invention will be described in one embodiment herein as having application to curing dental compounds, it is not so specifically limited. Also, the curing light instrument illustrated herein is portable, however, the invention is not so limited and could alternatively be plugged into a source of power. Portability, of course, provides added convenience of use.



FIG. 1 illustrates one embodiment of the curing light instrument. As shown, the curing light instrument 10 comprises a housing 12, a light emitting structure 20 positioned within the housing 12, and a reflective element or reflector 40 configured to interface with the light emitting structure 20, such that reflector 40 captures light emitted from the light emitting structure 20 and directs it onto a light-curable compound to cure the compound.


As shown in FIG. 1, housing 12 of instrument 10 is generally a gun-shaped structure having a barrel portion 14 coupled to a handle portion 17. Barrel portion 14 of housing 12 generally includes a distal end 15 and a proximal end 16. Handle portion 17 of housing 12 generally includes a distal end 18 and a proximal end 19. Proximal end 16 of the barrel portion 14 is generally a continuation in structure of the distal end 18 of the handle portion 17. While references are made to the ends of portions 14, 17, for illustration, the housing is not limited to such references. Advantageously, the barrel portion 14 will house the light emitting structure 20. The housing 12, including the barrel portion 14 and the handle portion 17, may be composed of any suitable materials, such as those typically used in the art. Particularly useful are lightweight compact flame resistant materials, such as plastic. In addition, either or both of the barrel portion 14 and handle portion 17 of the housing 12 may be vented for purposes of dissipating heat generated by light emitting structure 20. It is particularly beneficial to vent that portion which houses the light emitting structure 20.


Light emitting structure 20 is capable of emitting light 34 having wavelengths suitable to cure a light-curable compound. Advantageously, the light emitting structure 20 emits a narrow wavelength band of radiation or light sufficient to cure the compound. Referring to FIGS. 3 and 4, the light emitting structure 20 comprises at least one light emitting element or die 32. Die 32 generates light 34 for transmission out of the distal end 15 of barrel portion 14 of the housing 12 onto a light-curable compound (not shown). As shown in FIG. 3, light 34 is not directed, rather it is generally emitted in various directions. In the exemplary embodiment disclosed herein, each die 32 is generally made of light generating semiconducting material. The dies 32 are not individually packaged with individual reflectors and individual lenses. Rather, the dies 32 are unpackaged junctions which, when electrically biased, generate light in a desirable narrow band of wavelengths. Each die 32 typically requires approximately 4-5 volts of DC bias. In the disclosed embodiment, the die 32 is appropriately biased for operation. Die 32 may generally be any shape, such as a square as shown in FIG. 4. Die 32 may be of suitable size, advantageously small enough to provide a compact instrument 10. In one embodiment, the die 32 is in the order of 1.0 mm on a side or 1.0 mm2 in area.



FIG. 4 illustrates one embodiment of a light emitting structure 20 suitable for the invention. As shown, light emitting structure 20 may comprise an array of four dies 32 which, at a suitable power level, collectively provide a very high density of light to effectively cure a light-curable compound. By virtue of its small size, die 32 provides a collective array which overall requires much less surface area than conventionally packaged LEDs, such as those used in the prior art. Each die 32 may be arranged or spaced as desired to form the array. It is important to keep the density of the light 34 to a maximum. Thus, the dies 32 are laid out to avoid any blank spots in the generated light pattern. In accordance with the embodiment illustrated in FIG. 4, dies 32 are formed side-by-side in a matrix resembling a square to supply a continuous pattern of light. The matrix or array arrangement may be any shape, and advantageously, one corresponding to the shape of the underlying substrate layer 22. Other factors influencing the size and shape of the array include light requirements for the instrument, the cooling system available, and the light output of the available die. In addition, the number of dies 32 may increase or decrease depending upon the type of compound to be cured and the types of dental applications for which the instrument 10 is used. For example, curing a deep filling or thicker surface coating may require stronger radiation which may be provided by more than four dies 32. Further, different light amounts and intensities may be necessary depending upon the sensitivity of the compound. Accordingly, the present invention is not limited by the number of dies utilized.


A suitable light emitting structure 20 may further comprise a first substrate, a base, and optionally a second substrate, positioned between the first substrate on which the dies are formed and the base. The light emitting structure 20 may further comprise a printed circuit board on which the first substrate, second substrate, or base is mounted. Referring to FIG. 3, the first substrate 22, a surface on which the collective array of dies 32 are formed, advantageously provides a means to cool the light emitting structure 20. To this end, substrate 22 may comprise thermally-conductive materials to dissipate the heat generated by the dies 32. For example, the substrate 22 may be formed of a ceramic material, such as alumina or silica. In other embodiments, there may be more than one substrate. For example, as shown in embodiments illustrated in FIGS. 4 and 5, light emitting structure 20 has a first substrate 22 and a second substrate 23. The shapes of each substrate may vary and may depend upon the design and space available in instrument 10, and number of dies 32. For example, as illustrated in FIG. 4, the first substrate 22 may be square in shape and the second substrate 23, coupled to the first substrate 22 on a surface opposing the dies 32, may be hexagonal in shape. For efficient cooling purposes, it is beneficial to have each subsequent substrate subsequently removed from the dies 32 to be successively larger in size. Thermally coupling the finally removed substrate to a base 24 is beneficial for further support and added cooling.



FIG. 5 illustrates the embodiment of the light emitting structure 20 illustrated in FIG. 4 viewed from a cross-sectional perspective and enclosed by a lens. As shown, the light emitting structure 20 includes a base 24 positioned between the second substrate 23 and the printed circuit board 25. The base 24 generally comprises one or more thermally-conductive materials, including aluminum, copper, gold, silver and silicon. Base layer 24 is advantageously an aluminum slug. The base 24 may in turn be mounted on the printed circuit board 25 by conventional techniques, such as by the use of bolts or other fasteners, or alternatively without fasteners, such as with thermal cement or other securing members. As illustrated, the base 24 is mounted or secured to the printed circuit board 25 by a plastic housing 26 configured to accomplish such attachment. In addition to plastic housing 26, the secured base 24 is further mounted by use of a cement (not shown).


Printed circuit board 25 generally serves to relay the necessary electrical energy, generally through electrical leads, to the dies 32 to generate light. Printed circuit board 25 may additionally provide cooling for the light emitting structure 20. Accordingly, printed circuit board 25 may comprise thermally conductive materials including metals, such as aluminum, copper, silicon and alloys thereof. Advantageously, the printed circuit board 25 will comprise aluminum, thus maximizing the dissipation of heat emitted by dies 32 during the operation. The printed circuit board 25, and therefore the light emitting structure 20, may be supported by the housing via direct attachment or indirect attachment through an intermediary structure, such as a heat sink 51 (FIG. 3). Heat sink 51 provides additional cooling for the instrument 10. Further cooling may be accomplished with a forced air element, such as a fan 54 (FIG. 2), used to direct or force air over the heat sink 51 and/or the light emitting structure 20. As shown in FIG. 2, fan 54 may be thermally coupled to heat sink 51.


The light emitting structure 20 depicted in the figures provides many advantages over those used in prior art instruments. Some of the advantages include extremely high flux and flux density, and a longer operating life in the range of up to 10,000 hours for the light-generating components. The die 32 are solid state devices having significantly long life spans as compared to prior art bulbs. This translates into cost savings and convenience for the operator by providing a curing light instrument 10 having a longer useful lifetime without the need to constantly replace bulbs.


A particularly important advantage is that light emitting structure 20 allows instrument 10 to emit desired light, such as blue light radiation, necessary to cure specific compounds. In one embodiment, the die 32 provides radiation in a blue light at a desirable band of wavelengths, for example, around 470 nanometers. Such blue light is useful for curing dental compounds, particularly those being currently used in tooth repairs. To this end, the present invention eliminates the need for filtering devices, typically used to filter undesired wavelengths of broad spectrum light, as is required with prior art halogen lamp bulbs. In addition, the light emitting structure 20 is generally more energy efficient than incandescent and most halogen lamps. Furthermore, the emitted light tends to be cooler, safer to touch, and generally turns on/off instantaneously. One embodiment of a light emitting structure 20 suitable for the present invention is available from Lumileds Lighting Company, U.S.


In accordance with the principles of the invention, the light radiated from the light emitting structure 20 is efficiently captured and directed for effective curing. As mentioned before, the dies 32 emit light 34 which is scattered and multi-directional and not in the form of a dense beam directed in any particular direction. As shown in FIGS. 2 and 3, the light emitting structure 20 is interfaced with a reflector 40 such that a light 34 generated by the light emitting structure 20 is emitted into the reflector 40 despite the multi-directional emission. Advantageously, reflector 40 is configured to surround the light emitting structure 20. This surrounding relationship between the reflector 40 and the light emitting structure 20 may structurally be any interfacing relationship provided that the configuration ensures that a substantial portion of light 34 is captured by reflector 40. For example, as illustrated in FIG. 2, reflector 40 may be configured to enclose dies 32 and any or all substrates 22 and/or 23, and interface with the base 24 (if present). Alternatively, reflector 40 may interface with support members 26 securing base 24 to the printed circuit board 25 (FIG. 3). Accordingly, reflector 40 allows the curing light instrument 10 to be efficient from an energy and light perspective by minimizing a loss of light 34 radiated from light emitting structure 20. To this end, reflector 40 also minimizes the loss of curing ability due to scattering and dispersion of the light, as seen with the instruments of the prior art. Further, reflector 40 reduces the power requirements for the light emitting structure 20 thereby reducing the cooling requirements of curing light instrument 10.


Reflector 40, in the exemplary embodiment illustrated in FIG. 6, is generally a tubular shaped structure having a proximal end 42 and a distal end 43. Referring to FIG. 3, the proximal end 42 surrounds the light emitting structure 20 so that light 34 is emitted directly into the reflector 40. The specific sizes and dimensions, such as the diameter and length, of the reflector 40 may vary and will generally depend upon the size of the interfacing component of the light emitting structure 20. In the embodiment shown in FIG. 6, the proximal and distal ends, 42 and 43 respectively, of reflector 40 have different dimensions. The shape of distal end 43 of reflector 40 may vary depending upon the ability to interface with other desired structural elements of instrument 10, such as a light guide 52.


Reflector 40 may generally be supported by housing 12, advantageously at distal end 15 of barrel portion 14 of housing 12. Alternatively, reflector 40 may be supported through attachment to another structural component of instrument 10. For example, reflector 40 may be supported via attachment to light emitting structure 20. More particularly, as illustrated in FIGS. 6 and 7, reflector 40 may integrally include a support member 39 to secure reflector 40 to light emitting structure 20 and/or a support member 41, which can secure reflector 40 to base 24 or to printed circuit board 25. Alternatively, as shown in FIGS. 2 and 3, the reflector 40 may be supported by coupling to an adapter 45. As shown in FIGS. 3 and 6, reflector 40 may have a locating notch or groove 47, which may be intimately adapted to receive a finger on adapter 45 so as to prevent movement and decoupling of reflector 40 from a light guide 52. Any means of support for the reflector 40 provides additional support for the light emitting structure 20. Reflector 40 improves the curing efficiency of instrument 10. To this end, reflector 40 may be formed of a suitable material which is capable of reflecting light. The reflector 40 may be made of a suitable material, such as plastic, glass, or a metal. Plastic is a lightweight material, allowing instrument 10 to be inexpensively fabricated. For materials like plastic which do not inherently reflect light, the reflector 40 may advantageously have a reflective coating on an inner surface 46 (FIG. 3). Inner surface 46 captures the light emitted in from die 32 and directs it onto the light-curable compound. Accordingly, surface 46 generally comprises a reflective material, including metals such as aluminum. Advantageously, surface 46 will be aluminum. Referring to FIG. 2, the reflector 40 directs the light 34 to other structural components, such as a light guide 52, or out of the housing 12. The combination of the reflector 40 and the array of dies 32 maximizes the amount of light 34 provided for curing.


Adapter 45 not only serves to secure or support reflector 40, but also to couple reflector 40 to a light guide 52. More specifically, adapter 45 is configured to couple to the distal end 43 of the reflector 40 and to the proximal end 50 of the light guide 52. In this manner, the adapter 45 couples the reflector 40 to the light guide 52 so as to provide one continuous interface without a loss of light. Adapter 45 may be formed of a lightweight material, such as plastic.


The embodiment of the instrument 10 illustrated in FIG. 1 includes a light guide 52 configured to interface with the reflector 40 and to receive and transmit the light 34 directed therefrom. The light guide 52 generally comprises a distal end 48 and a proximal end 50. As shown in FIG. 1, the light 34 is received by the proximal end 50 of light guide 52, also referred to as the receiving end, and transmitted out of the distal end 48 of light guide 52, also referred to as the transmission end. Proximal end 50 is generally removably secured to the housing 12, or to the reflector 40 or adaptor 45. Conventional securing means are suitable. For example, proximal end 50 may be snapped into and out of the distal end 15 of housing 12 or into and out of the distal end 43 of the reflector 40 or adaptor 45.


Light guide 52 may generally be any shape effective to transmit light. Preferably, the shape of the light guide 52 will be adapted for convenience of use depending upon the work surface. For instance, while the light guide 52 may have a relatively uniform diameter from the proximal end 50 through the distal end 48, advantageously, distal end 48 will have a smaller diameter then proximal end 50 to increase the intensity of the exiting light 34 and improve the curing efficiency and convenience of use of the instrument 10. In one embodiment of the invention the reflector 40 is configured to fill a conventional 13 mm light guide. The adaptor 45 is also configured to interface with a 13 mm light guide. While suitable light guides 52 may be commercially available in a variety of different sizes and shapes, for example, in diameters of 8 mm, 11 mm, and 13 mm, respectively, it has been discovered that a distal end 48 diameter of about 11 mm will allow sufficient exposure of the light-curable compound to light 34 and curing of the compound without significant movement of distal end 48 around the work surface. In one embodiment of the invention, a light-receiving end 50 at 13 mm is tapered down to a light-output end of around 11 mm. The larger proximal end 50 of about 13 mm allows the light guide 52 to maximize the capture of light 34 from the reflector 40 thereby further improving the light curing efficiency of instrument 10. The 11 mm distal end concentrates the light 34 to allow a higher intensity of light than a conventional 11 mm or 13 mm light guide. Therefore, in the one embodiment, light guide 52 has a proximal end or receiving end 50 having a diameter of about 13 mm and a distal end or transmitting end 48 having a smaller diameter of about 11 mm. Furthermore, slight bending or tapering of the light guide 52 between the distal end 48 and the proximal end 50 allows the user to cure compounds on work surfaces which would otherwise be difficult to reach. As shown in FIG. 1, light guide 52 is advantageously tapered proximate the distal end 48.


Generally, the light guide 52 will comprise components capable of effectively transmitting light 34. For example, one embodiment of the invention utilizes a light guide 52 comprising a plurality of optical fibers (not shown) which are operably fused together into a single light guide or light pipe type structure to transmit the light 34. In another embodiment, the light guide 52 utilizes a plurality of individual optical fibers or strands which collectively form a conductor. Each strand in the conductor has a taper separate from the taper of each other strand. For example, to form a conductor having individual tapered strands, each of the fiber-optic strands may be separately tapered, bundled and fused together to form a solid conductor. The solid conductor may then be stretched to form an elongated stretch section of conical geometry wherein each strand is uniformly tapered over the stretched section. The combined bundle of tapered strands generally imparts a taper to the light guide 52. This solid conductor generally has a light receiving end or proximal end 50 and a light transmitting end or distal end 48 as described above. Further details and additional light guides 52 which are suitable for the present invention are set forth in the U.S. Pat. No. 5,371,826, titled “Dental Fiber-optic Light Bundle with Uniform Taper” and herein incorporated by reference in its entirety. Also, conventional light guides known in the art are suitable for the invention.


A shield 68 (FIG. 2) may be attached to instrument 10 to protect the operator (not shown) from exposure to light reflected during curing operations. Shield 68 may generally be configured to be easily secured or removably secured to the light guide 52, beneficially to the receiving end 50 of light guide 52. Alternatively, in an embodiment of the instrument 10 where a light guide 52 is not included, shield 68 may be secured to the distal end 15 of barrel portion 14 of housing 12.



FIG. 5 illustrates one embodiment of the inventive instrument 10 wherein the light emitting structure 20 is generally encapsulated by a lens 33. Lens 33 is placed over a collective array of dies 32 and directs the light 34 generated therefrom. Lens 33, therefore, may beneficially comprise an optically refractive material placed as a continuous layer over the dies 32. For example, lens 33 may be made of clear plastic. Lens 33 may be supported or held in place by conventional means, such as, but not limited to, one or more support legs 27. Legs 27 may be configured to attach to plastic housing 26 of light emitting structure 20. Lens 33 is surrounded by reflector 40 such that the light 34 is refracted, without escape, into the reflector 40. To this end, lens 33 eliminates the need for a larger focusing lens having drawbacks discussed earlier.


Referring again to FIG. 1, the curing light instrument 10 may also comprise a power source, such as a power supply, to power the curing light instrument 10 and particularly, the light emitting structure 20. The power supply may be a portable power supply, such as a battery 58, contained in the housing 12. Advantageously, battery 58 will be a rechargeable battery contained in the handle portion 15 of housing 12. Alternatively, the curing light instrument 10 may be powered by an external source such as an AC power source coupled to a converter to supply DC power to the light emitting structure 20. Persons of ordinary skill in the art will readily understand that such an external source may be supplied through an electrical cord (not shown) to the curing light instrument 10. The power supply is typically coupled to a control circuit 62 which allows control, regulation, or conditioning of the power or electrical energy supplied to the light emitting structure 20.


The embodiment illustrated in FIG. 1 is an instrument 10 allowing the operator to control the timing requirements of light 34 emitted. As shown, a trigger switch 60, which may be located in the handle portion 17 of the housing 12, is generally used to power the light emitting structure 20. Trigger switch 60 is electrically coupled to the control circuit 62 and controls the ON/OFF function of light 34 emitted from the light emitting structure 20. Further switches (not shown) may also be located in the housing 12, for example in the handle portion 17, to control other aspects of the emission of curing light 34. For instance, instrument 10 may have a second switch (not shown) designed to control the power flowing to the light emitting structure 20 and/or to regulate the level or power of the radiation emitted. In such an instrument, these control switches would also be coupled to control circuit 62 to allow the operator complete control over all aspects necessary to properly cure the compound. Control circuit 62 may generally be positioned and supported by the housing 12. As shown in FIG. 1, the control circuit may be located in the distal end 18 of handle portion 17 of housing 12.


The present invention also provides a method to cure light-curable compounds. While the method refers to curing compounds used in dental applications, the invention is not so limited. Generally, the operator, a dentist for example, initially positions the curing light instrument in proximity to the compound. The operator grips the instrument 10 at the handle portion 17 of housing 12 and directs the light transmitting end, typically the distal end 15 of barrel portion 14, towards the work surface (not shown), such as a tooth. The operator then activates the curing light instrument 10 by adjusting and/or depressing the trigger switch 60 appropriately to generate light, or turn ON light 34, to begin to cure a light-curable compound. The light emitting structure 20 then emits light 34 having the desired power and wavelength to cure the compound. In one embodiment, the light emitted will have a power in the range of from about 200 to about 1400 mW/cm2. The multi-directional light 34 emitted is captured and directed by the reflector 40 onto a light-curable compound to cure the compound. Once the operator is satisfied that the compound has been cured, the curing light may be turned OFF by simple release of the trigger switch 60. Where the curing light instrument includes a light guide 52, the operator positions the transmission end 48 of the light guide 52 into the mouth of a patient in proximity to the compound and radiates the light 34 to effect the dental repair.


Thus, the invention provides a small, compact, durable, and portable curing light instrument for hardening or curing light-curable materials used in dental applications. The invention also eliminates the need for filters by providing a light emitting structure comprising dies which generate a desired narrow wavelength band of blue light. Also, the dies have long useful lifetimes and state of the art light generating capabilities. In addition, the invention includes an appropriately dimensioned reflector, strategically interfaced with the light emitting structure, to reduce or eliminate the loss of light radiation emitted thereby reducing both the required periods of light emission and power requirements of the instrument as a whole. To this end, the inventive instrument reduces the heat generated within the instrument housing and eliminates the need for complicated cooling systems. Thus, the inventive instrument is efficient with respect to curing times and heat generation. In addition, the small size of the highly efficient light emitting structure provides an instrument which may be assembled in a housing generally smaller than instruments of the prior art. To this end, the device is lighter and easier for the operator to manipulate. Also, the portable nature of the device allows the operator to carry the instrument and use as needed.


While the present invention has been illustrated by a description of the embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative apparatus and method, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the applicant=s general inventive concept.

Claims
  • 1. An instrument for curing light-curable compounds comprising: a housing;a light emitting structure positioned in the housing and including at least one light emitting die mounted on a substrate;a lens structure positioned proximate to the die and positioned over the die and at least a portion of the substrate to capture light from the die, the lens structure extending forwardly of the die to refract captured light;a reflector configured for being positioned with the light emitting structure and configured to capture light emitted from the die, the reflector being a tubular structure having open proximal and distal ends;the lens structure and die being positioned proximate to the open proximal end of the reflector and the lens structure extending into the tubular reflector structure from the proximal end so the light is refracted into the reflector and directed toward the distal end and onto a light-curable compound;a light guide operably coupled to the distal end of the reflector, the light guide including a plurality of fiber-optic strands capable of transmitting light along the length of the light guide for transmitting light captured by the reflector onto a light-curable compound.
  • 2. The instrument of claim 1 wherein the light emitting structure comprises a plurality of dies to form an array.
  • 3. The instrument of claim 1 wherein the first substrate comprises a thermally conductive material.
  • 4. The instrument of claim 1 wherein the reflector is configured of at least one of a plastic, metal and glass.
  • 5. The instrument of claim 1 further comprising a heat sink thermally coupled to the light emitting structure to absorb heat generated therefrom.
  • 6. The instrument of claim 1 further comprising a light shield removably mounted to the housing to prevent reflection of curing light to an operator during use of the instrument.
  • 7. The instrument of claim 1 further comprising a fan positioned in the housing to cool the light emitting structure.
  • 8. The instrument of claim 1 further comprising a portable power supply positioned within the housing for providing power to the light emitting structure.
  • 9. The instrument of claim 1 further comprising a base coupled to the first substrate, the base comprising a thermally conductive material.
  • 10. The instrument of claim 1 wherein said housing comprises a barrel portion, and a handle portion coupled to the barrel portion, wherein an end of the barrel portion is configured to support a light guide for transmitting light out of the barrel portion of the housing and to the light-curable compound.
  • 11. The instrument of claim 1 wherein the fiber-optic strands are bundled together to form a solid conductor, the strands being individually tapered to impart a taper to the light guide.
  • 12. The instrument of claim 11 wherein the solid conductor comprises a light receiving end and a light transmitting end, the light receiving end having a diameter of about 13 mm and the light transmitting end having a diameter of about 11 mm.
  • 13. The instrument of claim 11 wherein the fiber-optic strands are tapered at an angle less than one-tenth of a degree (<0.1°), and the taper angle for said light guide is less than five degrees (5°).
  • 14. The instrument of claim 9 wherein the thermally conductive material is at least one of aluminum, copper, gold, and silver.
  • 15. The instrument of claim 9 further comprising a second substrate positioned between the base and the first substrate.
  • 16. The instrument of claim 15 wherein the second substrate comprises a thermally conductive material.
  • 17. The instrument of claim 1 further comprising a printed circuit board coupled to the first substrate.
  • 18. The instrument of claim 9 further comprising a printed circuit board coupled to the base.
  • 19. The instrument of claim 18 wherein the printed circuit board comprises aluminum.
  • 20. An instrument for curing light-curable compounds comprising: a housing;a light emitting structure comprising a plurality of solid state light emitting dies forming a collective array on a first substrate;a lens structure positioned proximate to the array and positioned over the array of dies to capture light collectively from the dies, the lens structure extending forwardly of the array to refract captured light;a reflector forming a generally tubular passage having open proximal and distal ends, the lens structure and array being positioned proximate the open proximal end and the reflector configured to surround the array of dies with the lens structure extending through the proximal end, the reflector operable to capture and direct light emitted by the array of dies toward the distal end;a light guide operably coupled to the distal end of the reflector, the light guide including a plurality of fiber-optic strands capable of transmitting light along the length of the light guide for transmitting light captured by the reflector onto a light-curable compound.
  • 21. The instrument of claim 20 wherein the reflector is configured of at least one of a plastic, metal and glass.
  • 22. The instrument of claim 20 wherein the reflector couples proximate the light emitting structure to surround the dies and capture light emitted therefrom.
  • 23. The instrument of claim 20 wherein the fiber-optic strands are bundled together to form a solid conductor, the strands being individually tapered to impart a taper to the light guide.
  • 24. The instrument of claim 23 wherein the solid conductor comprises a light receiving end and a light transmitting end, the light receiving end having a diameter of about 13 mm and the light transmitting end having a diameter of about 11 mm.
  • 25. The instrument of claim 23 wherein the fiber-optic strands are tapered at an angle less than one-tenth of a degree (<0.1°), and the taper angle for said light guide is less than five degrees (5°).
  • 26. The instrument of claim 20 further comprising a printed circuit board formed of a thermally conductive material, the printed circuit board coupled to the first substrate on a side opposing the collective array of dies.
  • 27. The instrument of claim 26 wherein the printed circuit board is formed of aluminum.
  • 28. The instrument of claim 26 further comprising a heat sink thermally coupled to the printed circuit board.
  • 29. The instrument of claim 28 further comprising a forced air device for directing air proximate the heat sink.
  • 30. The instrument of claim 20 further comprising a portable power supply positioned within the housing to provide power to the light emitting structure.
  • 31. The instrument of claim 26 further comprising a second substrate formed of a thermally conductive material positioned between the printed circuit board and the first substrate.
  • 32. The instrument of claim 26 further comprising a base formed of a thermally conductive material positioned between the printed circuit board and the first substrate.
  • 33. The instrument of claim 20 further comprising an adaptor, the adaptor configured to interface with the distal end of the reflector and an end of the light guide for coupling the light guide and reflector.
  • 34. The instrument of claim 32 wherein the base is formed of one of aluminum, copper, gold and silver.
RELATED APPLICATIONS

This application is a Continuation Application of U.S. patent application Ser. No. 10/215,210 entitled Curing Light Instrument and filed on Aug. 8, 2002, which Application is incorporated herein by reference in its entirety.

US Referenced Citations (302)
Number Name Date Kind
3638013 Keller Jan 1972 A
3712984 Lienhard Jan 1973 A
3733481 Kuyt May 1973 A
3868513 Gonser Feb 1975 A
3970856 Mahaffey et al. Jul 1976 A
RE29421 Scott Sep 1977 E
4048490 Troue Sep 1977 A
4114274 Jones Sep 1978 A
4114946 Hoffmeister et al. Sep 1978 A
4149086 Nath Apr 1979 A
4185891 Kaestner Jan 1980 A
4186748 Schlager Feb 1980 A
4209907 Tsukada et al. Jul 1980 A
4221994 Friedman Sep 1980 A
4229658 Gonser Oct 1980 A
4230453 Reimers Oct 1980 A
4233649 Scheer et al. Nov 1980 A
4280273 Vincent Jul 1981 A
4298806 Herold Nov 1981 A
4308120 Pennewiss et al. Dec 1981 A
4337759 Popovich et al. Jul 1982 A
4385344 Gonser May 1983 A
RE31279 Mefferd et al. Jun 1983 E
4391588 Matsui Jul 1983 A
4398885 Loge et al. Aug 1983 A
4412134 Herold et al. Oct 1983 A
4445858 Johnson May 1984 A
4450139 Bussiere et al. May 1984 A
4610630 Betush Sep 1986 A
4666406 Kanca, III May 1987 A
4673353 Nevin Jun 1987 A
4716296 Bussiere et al. Dec 1987 A
4729076 Masami et al. Mar 1988 A
4757381 Cooper et al. Jul 1988 A
4762862 Yada et al. Aug 1988 A
4792692 Herold et al. Dec 1988 A
4810194 Snedden Mar 1989 A
4826431 Fujimura et al. May 1989 A
4836782 Gonser Jun 1989 A
4839566 Herold et al. Jun 1989 A
4846546 Cuda Jul 1989 A
4888489 Bryan Dec 1989 A
4935665 Murata Jun 1990 A
4936808 Lee Jun 1990 A
4948215 Friedman Aug 1990 A
4963798 McDermott Oct 1990 A
4999310 Kim Mar 1991 A
5003434 Gonser et al. Mar 1991 A
5007837 Werly Apr 1991 A
5017140 Ascher May 1991 A
5029957 Hood Jul 1991 A
5070258 Izumi et al. Dec 1991 A
5115761 Hood May 1992 A
5147204 Patten et al. Sep 1992 A
5150016 Sawase et al. Sep 1992 A
5161879 McDermott Nov 1992 A
5162696 Goodrich Nov 1992 A
5173810 Yamakawa Dec 1992 A
RE34196 Munro Mar 1993 E
5189751 Giuliani et al. Mar 1993 A
5198678 Oppawsky Mar 1993 A
5201655 Friedman Apr 1993 A
5233283 Kennedy Aug 1993 A
5242602 Richardson et al. Sep 1993 A
5265792 Harrah et al. Nov 1993 A
5278629 Schlager et al. Jan 1994 A
5283425 Imamura Feb 1994 A
5290169 Friedman et al. Mar 1994 A
5302124 Lansing et al. Apr 1994 A
5312249 Kennedy May 1994 A
5316473 Hare May 1994 A
5328368 Lansing et al. Jul 1994 A
5371826 Friedman Dec 1994 A
5373114 Kondo et al. Dec 1994 A
5420768 Kennedy May 1995 A
5457611 Verderber Oct 1995 A
5471129 Mann Nov 1995 A
5487662 Kipke et al. Jan 1996 A
5521392 Kennedy et al. May 1996 A
5530632 Shikano et al. Jun 1996 A
5535230 Abe Jul 1996 A
5616141 Cipolla Apr 1997 A
5617492 Beach et al. Apr 1997 A
5634711 Kennedy et al. Jun 1997 A
5660461 Ignatius et al. Aug 1997 A
5664042 Kennedy Sep 1997 A
5678998 Honkura et al. Oct 1997 A
5698866 Doiron et al. Dec 1997 A
5707139 Haitz Jan 1998 A
5711665 Adam et al. Jan 1998 A
5741132 Usui et al. Apr 1998 A
5747363 Wei et al. May 1998 A
5759032 Bartel Jun 1998 A
5803729 Tsimerman Sep 1998 A
5857767 Hochstein Jan 1999 A
5912470 Eibofner et al. Jun 1999 A
5928220 Shimoji Jul 1999 A
5931676 Honkura et al. Aug 1999 A
5975895 Sullivan Nov 1999 A
6008264 Ostler et al. Dec 1999 A
6033223 Narusawa et al. Mar 2000 A
6045240 Hochstein Apr 2000 A
6046460 Mertins Apr 2000 A
6065965 Rechmann May 2000 A
6068474 Senn et al. May 2000 A
6077073 Jacob Jun 2000 A
6079861 Woodward et al. Jun 2000 A
6086367 Levy Jul 2000 A
6095812 Senn et al. Aug 2000 A
6099520 Shimoji Aug 2000 A
6102696 Osterwalder et al. Aug 2000 A
6123545 Eggler et al. Sep 2000 A
6132213 Knorpp et al. Oct 2000 A
6155823 Nagel Dec 2000 A
6157661 Walker et al. Dec 2000 A
6159005 Herold et al. Dec 2000 A
6161937 Rosenstatter Dec 2000 A
6168431 Narusawa et al. Jan 2001 B1
6171105 Sarmadi Jan 2001 B1
6186786 Trushkowsky Feb 2001 B1
6190020 Hartley Feb 2001 B1
6193510 Tsimerman Feb 2001 B1
6200134 Kovac et al. Mar 2001 B1
6203325 Honkura et al. Mar 2001 B1
6208788 Nosov Mar 2001 B1
6220722 Begemann Apr 2001 B1
6257883 Voudouris Jul 2001 B1
6280187 Slone Aug 2001 B1
6280188 Ross Aug 2001 B1
6282013 Ostler et al. Aug 2001 B1
6299450 Honkura et al. Oct 2001 B1
6322358 Senn et al. Nov 2001 B1
6331111 Cao Dec 2001 B1
6345982 Meyer Feb 2002 B1
6371826 Pestonji Apr 2002 B1
6379149 Franetzki Apr 2002 B1
6382967 Rohner et al. May 2002 B1
6384099 Ostler et al. May 2002 B1
6419483 Adam et al. Jul 2002 B1
6425761 Eibofner Jul 2002 B1
6439888 Boutoussov et al. Aug 2002 B1
6465961 Cao Oct 2002 B1
6468077 Melikechi et al. Oct 2002 B1
6482004 Senn Nov 2002 B1
6498108 Cao Dec 2002 B2
6558829 Faris et al. May 2003 B1
6561806 Kyotani et al. May 2003 B2
6634770 Cao Oct 2003 B2
6634771 Cao Oct 2003 B2
6692251 Logan et al. Feb 2004 B1
6692252 Scott Feb 2004 B2
6700158 Cao et al. Mar 2004 B1
6702576 Fischer et al. Mar 2004 B2
6709128 Gordon Mar 2004 B2
6709270 Honkura et al. Mar 2004 B2
6719446 Cao Apr 2004 B2
6719558 Cao Apr 2004 B2
6719559 Cao Apr 2004 B2
6755647 Melikechi Jun 2004 B2
6755648 Cao Jun 2004 B2
6755649 Cao Jun 2004 B2
6767109 Plank et al. Jul 2004 B2
6780010 Cao Aug 2004 B2
6783362 Cao Aug 2004 B2
6783810 Jin et al. Aug 2004 B2
6793490 Bianchetti et al. Sep 2004 B2
6799967 Cao Oct 2004 B2
6815241 Wang Nov 2004 B2
6824294 Cao Nov 2004 B2
6829260 Hsia Dec 2004 B2
6857873 Bianchetti Feb 2005 B2
6890175 Fischer et al. May 2005 B2
6910886 Cao Jun 2005 B2
6918762 Gill et al. Jul 2005 B2
6926524 Cao Aug 2005 B2
6929472 Cao Aug 2005 B2
6932600 Cao Aug 2005 B2
6940659 McLean et al. Sep 2005 B2
6953340 Cao Oct 2005 B2
6954270 Ostler et al. Oct 2005 B2
6955537 Cao Oct 2005 B2
6957907 Fischer Oct 2005 B2
6969253 Cao Nov 2005 B2
6971875 Cao Dec 2005 B2
6971876 Cao Dec 2005 B2
6974319 Cao Dec 2005 B2
6979193 Cao Dec 2005 B2
6979194 Cao Dec 2005 B2
6981867 Cao Jan 2006 B2
6981876 Bleckley Jan 2006 B2
6986782 Chen et al. Jan 2006 B2
6988890 Cao Jan 2006 B2
6988891 Cao Jan 2006 B2
6991356 Tsimerman Jan 2006 B2
6991456 Plank Jan 2006 B2
6994546 Fischer Feb 2006 B2
7001057 Plank Feb 2006 B2
7011519 Castellini Mar 2006 B2
7029277 Gofman Apr 2006 B2
7056116 Scott et al. Jun 2006 B2
7066732 Cao Jun 2006 B2
7066733 Logan et al. Jun 2006 B2
7074040 Kanca Jul 2006 B2
7077648 Cao Jul 2006 B2
7086111 Hilscher et al. Aug 2006 B2
7086858 Cao Aug 2006 B2
7094054 Cao Aug 2006 B2
7101072 Takada et al. Sep 2006 B2
7106523 McLean et al. Sep 2006 B2
7108504 Cao Sep 2006 B2
7144250 Fischer et al. Dec 2006 B2
7153015 Brukilacchio Dec 2006 B2
7167824 Kallulli Jan 2007 B2
7172319 Holder et al. Feb 2007 B2
7182597 Gill et al. Feb 2007 B2
7189983 Aguirre et al. Mar 2007 B2
7192276 Fischer et al. Mar 2007 B2
7202489 Aguirre et al. Apr 2007 B2
7202490 Aguirre et al. Apr 2007 B2
7207694 Petrick Apr 2007 B1
7210814 Scott et al. May 2007 B2
7210930 Kovac et al. May 2007 B2
7223270 Altshuler et al. May 2007 B2
7224001 Cao May 2007 B2
7252678 Ostler et al. Aug 2007 B2
7267457 Ostler et al. Sep 2007 B2
7271420 Cao Sep 2007 B2
7273369 Rosenblood et al. Sep 2007 B2
7283230 Ostler et al. Oct 2007 B2
7320593 Ostler et al. Jan 2008 B2
7323849 Robinett et al. Jan 2008 B1
7329887 Henson et al. Feb 2008 B2
7410282 Eichelberger et al. Aug 2008 B2
7410283 West et al. Aug 2008 B2
7422598 Altshuler et al. Sep 2008 B2
7485116 Cao Feb 2009 B2
7530707 Plank et al. May 2009 B2
7530808 Cao et al. May 2009 B2
7622467 McKinnell et al. Nov 2009 B2
7651268 Cao et al. Jan 2010 B2
7654086 Gong et al. Feb 2010 B2
7661172 Hilscher et al. Feb 2010 B2
7677888 Halm Mar 2010 B1
7677890 Turner Mar 2010 B2
7696728 Cross et al. Apr 2010 B2
7704074 Jensen Apr 2010 B2
7712468 Hargadon May 2010 B2
7728345 Cao Jun 2010 B2
7733056 Hartung et al. Jun 2010 B2
7758204 Klipstein et al. Jul 2010 B2
7786499 Cao Aug 2010 B2
20010007739 Eibofner et al. Jul 2001 A1
20010046652 Ostler et al. Nov 2001 A1
20020014864 Gemunder et al. Feb 2002 A1
20020051367 Hooker et al. May 2002 A1
20020115037 Cao Aug 2002 A1
20020133970 Gordon et al. Sep 2002 A1
20020168603 Cao Nov 2002 A1
20020168607 Cao Nov 2002 A1
20020175628 Cao Nov 2002 A1
20020177099 Cao Nov 2002 A1
20020180368 Cao Dec 2002 A1
20020181947 Cao Dec 2002 A1
20020190659 Cao Dec 2002 A1
20020190660 Cao Dec 2002 A1
20030015667 MacDougald et al. Jan 2003 A1
20030036031 Lieb et al. Feb 2003 A1
20030147258 Fischer et al. Aug 2003 A1
20030148242 Fischer et al. Aug 2003 A1
20030218880 Brukilachchio Nov 2003 A1
20030219693 Cao Nov 2003 A1
20040005524 Oxman et al. Jan 2004 A1
20040054386 Martin et al. Mar 2004 A1
20050002975 Cao Jan 2005 A1
20050077865 Durbin et al. Apr 2005 A1
20050082989 Jones et al. Apr 2005 A1
20050093506 Hamada et al. May 2005 A1
20050096661 Farrow May 2005 A1
20050099824 Dowling et al. May 2005 A1
20050116176 Acquirre Jun 2005 A1
20050142514 Scott Jun 2005 A1
20050158687 Dahm Jul 2005 A1
20050171408 Parker Aug 2005 A1
20050196721 Jackson Sep 2005 A1
20060024638 Rosenblood Feb 2006 A1
20060252005 Feinbloom et al. Nov 2006 A1
20070128577 Scott Jun 2007 A1
20070228392 Plank et al. Oct 2007 A1
20080062703 Cao Mar 2008 A1
20080154249 Cao Jun 2008 A1
20080161783 Cao Jul 2008 A1
20080285301 Wanninger Nov 2008 A1
20090087393 Jensen Apr 2009 A1
20090092947 Cao Apr 2009 A1
20090155740 Jensen Jun 2009 A1
20090227875 Cao Sep 2009 A1
20090238779 Cao Sep 2009 A1
20100004640 Cao Jan 2010 A1
20100096643 Cao Apr 2010 A1
20100117560 Cao May 2010 A1
20100173267 Cao Jul 2010 A1
20100207502 Cao Aug 2010 A1
Foreign Referenced Citations (125)
Number Date Country
2298992 Sep 2000 CA
2298993 Sep 2000 CA
19624087 Dec 1997 DE
19803755 Aug 1999 DE
000266038 Oct 1991 EP
000568666 Nov 1992 EP
000320080 Aug 1993 EP
000591613 Apr 1994 EP
000672435 Sep 1995 EP
000678282 Oct 1995 EP
000709698 May 1996 EP
000755662 Jul 1996 EP
000736307 Oct 1996 EP
000750889 Jan 1997 EP
000780101 Jun 1997 EP
000780103 Jun 1997 EP
000830850 Mar 1998 EP
000879582 Nov 1998 EP
000880945 Dec 1998 EP
000884025 Dec 1998 EP
000885025 Dec 1998 EP
000959803 Dec 1999 EP
000998880 May 2000 EP
001031326 Aug 2000 EP
001090607 Apr 2001 EP
001090608 Apr 2001 EP
001093765 Apr 2001 EP
001103232 May 2001 EP
001112721 Jul 2001 EP
001138276 Oct 2001 EP
001138349 Oct 2001 EP
000830851 May 2002 EP
000830852 May 2002 EP
001206923 May 2002 EP
01228738 Aug 2002 EP
001253547 Oct 2002 EP
000740567 Nov 2002 EP
001374797 Jan 2004 EP
1843079 Oct 2007 EP
002212010 Jul 1989 GB
002218636 Nov 1989 GB
002329756 Mar 1999 GB
002385137 Aug 2003 GB
DE2842938 Dec 1981 GR
DE3411996 Oct 1985 GR
DE3706852 Aug 1988 GR
DE4211233 Jan 1992 GR
DE9017070 Apr 1992 GR
DE2951927 Feb 1997 GR
0006030275 Feb 1994 JP
0007240536 Sep 1995 JP
07240536 Sep 1995 JP
0008141001 Jun 1996 JP
08141001 Jun 1996 JP
0008194786 Jul 1996 JP
0009010238 Jan 1997 JP
9010238 Jan 1997 JP
928719 Apr 1997 JP
9187825 Jul 1997 JP
1033573 Feb 1998 JP
410033573 Feb 1998 JP
2000312688 Nov 2000 JP
2001522635 Nov 2001 JP
2003320683 May 2002 JP
2002200100 Jul 2002 JP
2003093405 Apr 2003 JP
200328201 Oct 2003 JP
2007128667 May 2004 JP
2004355852 Dec 2004 JP
2005212805 Aug 2005 JP
2007514454 Jun 2007 JP
WO8301311 Apr 1983 WO
WO8404463 Nov 1984 WO
WO9202275 Feb 1992 WO
WO9309847 May 1993 WO
WO9321842 Nov 1993 WO
WO9507731 Mar 1995 WO
WO9519810 Jul 1995 WO
WO9526217 Oct 1995 WO
WO9736552 Oct 1997 WO
WO9737722 Oct 1997 WO
WO9746279 Dec 1997 WO
WO9746280 Dec 1997 WO
WO9803131 Jan 1998 WO
WO9803132 Jan 1998 WO
WO9804317 Feb 1998 WO
WO9909071 Feb 1999 WO
WO9911324 Mar 1999 WO
WO9916136 Apr 1999 WO
WO9920346 Apr 1999 WO
WO9935995 Jul 1999 WO
WO0001464 Jan 2000 WO
WO0002491 Jan 2000 WO
WO0013608 Mar 2000 WO
WO0015296 Mar 2000 WO
WO0041726 Jul 2000 WO
WO0041767 Jul 2000 WO
WO0041768 Jul 2000 WO
WO0043067 Jul 2000 WO
WO0043068 Jul 2000 WO
WO0043069 Jul 2000 WO
WO0045733 Aug 2000 WO
WO0067048 Nov 2000 WO
WO0067660 Nov 2000 WO
WO0103770 Jan 2001 WO
WO0113608 Feb 2001 WO
WO0114012 Mar 2001 WO
WO0119280 Mar 2001 WO
WO0124724 Apr 2001 WO
WO0154770 Aug 2001 WO
WO0160280 Aug 2001 WO
WO0164129 Sep 2001 WO
WO0168035 Sep 2001 WO
WO0169691 Sep 2001 WO
WO0206723 Jan 2002 WO
WO0209610 Feb 2002 WO
WO0211640 Feb 2002 WO
WO0232505 Apr 2002 WO
WO0233312 Apr 2002 WO
WO0249721 Jun 2002 WO
WO02056787 Jul 2002 WO
WO02069839 Sep 2002 WO
WO02080808 Oct 2002 WO
WO2006014363 Feb 2006 WO
WO2009134885 Nov 2009 WO
Related Publications (1)
Number Date Country
20070134616 A1 Jun 2007 US
Continuations (1)
Number Date Country
Parent 10215210 Aug 2002 US
Child 11671563 US