The present disclosure relates to tire inflation repair assemblies and methods, and in particular embodiments, currency operated fluid addition and tire repair assemblies and methods.
Fluids that may be added to tires to repair leaks in tires are currently available. The present disclosure addresses the problem of providing these fluids at remote locations at a cost to the consumer, thereby alleviating the need for the consumer to store these fluids in a vehicle. The storage of these fluids can be difficult because the consumer is required to periodically exchange the fluids for other fluids that may be newer or fresher fluids. The present disclosure provides currency operated assemblies and methods for providing these fluids. The preparation of these assemblies and methods can be difficult for at least the reason that the fluids have a tendency to clog conduits that they may in for extended periods of time. Embodiments of the present disclosure provide methods and assemblies that overcome these problems.
The present disclosure provides systems and methods for the currency operated filling and sealing of vehicle tires.
Methods for repairing tires are also provided with the methods including providing tire sealant to a tire from a tire repair assembly upon depositing currency in the tire repair assembly.
Stand alone currency operated tire repair assemblies are also provided with the assemblies including: a tire sealant tank; an air compressor operatively coupled to the tank; a valve operatively aligned between the tank and the air compressor; a flow meter operatively aligned between the tank and the air compressor; and computer processing circuitry operatively coupled to the air compressor, the valve, and the flow meter.
The present disclosure provides tire pressurization/sealant systems that can include a coned plunger valve. The present disclosure also provides tire pressurization/sealant systems that can include, for example, a first fluid source, a plunger valve assembly, a first conduit extending from the first fluid source to the plunger valve assembly, and a tire pressurizing hose extending from the plunger valve assembly. The present disclosure also provides methods for providing sealant to a tire via a tire pressurizing hose and cleaning out the tire pressurizing hose. The methods can include providing tire sealant to a tire via a tire pressuring hose through a plunger valve assembly and reconfiguring the plunger valve assembly to provide an aqueous solution through the hose to clean out the valve assembly and the hose.
Embodiments of the disclosure are described below with reference to the following accompanying drawings.
The assemblies and methods of the present disclosure will be described with reference to
Referring to
As can be seen from assembly 20, repair maintenance access can be provided to different components of assembly 20 by design. For example, cover 30 can be removed from assembly 20 to allow access to air assembly 12 for repair and maintenance. Also, door 32 can be coupled to housing 28 to allow for repair and maintenance and/or refilling of tank 14. According to example implementations, tank 14 can be a refillable tank that may not have hard side walls. It may be simply a bag with soft side walls that may be suspended in a tank. These tanks can have easy-clasp configurations or snap fits that allow for the quick release of the tank to the hardware of assembly 12. In accordance with example implementations, upon initiation of the repair and filling sequence, compressor 12 may be initiated for a few moments to build up sufficient pressure and air provided to tire 26, then at a predetermined time or desired time, valve 16 may be engaged to provide fluid from tank 14 through tubing 24 to tire 26. Upon a desired amount of time and/or an amount of fluid being provided to tire 26, a close down or cleaning sequence may be initiated, allowing for the removal of fluid from lines such as tire line 24.
Referring to
Air assembly 52 such as a pressure unit that can include an air compressor such as diaphragm pump, piston or screw pump and/or air pressure pump, can be coupled to the tire sealant tank 51 via pressure unit product connection 59. Connections such as connection 59 can be used to operatively couple components of assembly 52. In this case the operatively coupling is fluid communication. In accordance with example implementations fluid communication between these components as well as all components in the assembly can be controlled by one or a combination of valves and/or flow meters.
As indicated herein assembly 50 can include a currency operating assembly. This operating assembly may be mechanically and/or electronically coupled to the one or more valves and/or flow meters operatively aligned along the fluid communication between components. In one example, the mechanical coupling can engage/disengage the valves and/or flow meters.
In accordance with another implementation, assembly 50 can include computer processing circuitry 70. Circuitry 70 can be configured/used to control valves and/or flow meters of assembly 50 as well as record/control other components of assembly 50. Circuitry 70 can include processing circuitry 72 as well as storage circuitry 74. Circuitry 70 may have a user interface in the form of a wired or wireless interface for example. Example processing circuitry can include but is not limited to communications circuitry such as wireless communication devices, for example WiFi devices. Example communications circuitry can be a mini computer equipped with a WiFi connection.
Processing circuitry may comprise circuitry configured to implement desired programming provided by appropriate media in at least one embodiment. For example, processing circuitry may be implemented as one or more of a processor and/or other structure configured to execute executable instructions including, for example, software and/or firmware instructions, and/or hardware circuitry. Exemplary embodiments of processing circuitry include hardware logic, PGA, FPGA, ASIC, state machines, and/or other structures alone or in combination with a processor. These examples of processing circuitry are for illustration and other configurations are possible.
At least some embodiments or aspects described herein may be implemented using programming stored within appropriate processor-usable media and/or communicated via a network or other transmission media and configured to control appropriate processing circuitry. For example, programming may be provided via appropriate media including, for example, embodied within articles of manufacture, embodied within a data signal (e.g., modulated carrier wave, data packets, digital representations, etc.) communicated via an appropriate transmission medium, such as a communication network (e.g., the Internet and/or a private network), wired electrical connection, optical connection and/or electromagnetic energy, for example, via a communications interface, or provided using other appropriate communication structure or medium. Example programming including processor-usable code may be communicated as a data signal embodied in a carrier wave in but one example.
Storage circuitry may be embodied in a number of different ways using electronic, magnetic, optical, electromagnetic, or other techniques for storing information. Some specific examples of storage circuitry include, but are not limited to, a portable magnetic computer diskette, such as a floppy diskette, zip disk, hard drive, random access memory, read only memory, flash memory, cache memory, and/or other configurations capable of storing programming, data, or other digital information. In one embodiment, storage circuitry may store programming implemented by the processing circuitry.
The user interface is configured to interact with a user including conveying data to a user (e.g., displaying data for observation by the user, audibly communicating data to a user, etc.) as well as receiving inputs from the user (e.g., tactile input, voice instruction, etc.). Accordingly, in one example embodiment, the user interface may include a display (e.g., cathode ray tube, LCD, etc.) configured to depict visual information and an audio system as well as a keyboard, mouse and/or other input device. This interface may be integrated with the currency assembly, for example. Any other suitable apparatus for interacting with a user may also be utilized.
The circuitry operatively coupled to one or more of the air assembly, the sealant tank, the currency operating assembly, and/or the valve. Via the interface, information such as one or more of sealant amount, currency received, and/or credit card information can be provided to remote computers.
Assembly 50 can also include a clean out assembly associated with the air assembly and the tire sealant container. Accordingly, pressure unit clean out assembly 56 can be coupled via pressure unit clean out connection 64 to flow meter 57 which can be operatively coupled to air assembly 52.
Assembly 50 can also include a temperature control assembly, such as temperature control 55, operatively coupled to the tire sealant tank 51 and/or conduits associated with same.
Flow meters such as flow meter 57 operatively coupled to the outlet of the tire sealant tank as well as assemblies 52 and 56.
Assembly 50 can also include a scale 53 that may be operatively engaged with tank 51 to acquire data relating to amount of sealant used/available. This data may be acquired/processed with circuitry 70. Scale 53 can include a volume sensor, and/or sealant levels may be monitored by weight float system, visual window, for example. Time flow controller 54 may be utilized to regulate flow of sealant and/or temperature control of assembly 50 thereby providing heat at night and/or cooling during the day.
Connections 58, 60, 61, 62, and/or 63 can be utilized to operatively connect the assemblies. The operative connection can include fluid conduit and electrical conduit for example.
Assemblies of the present disclosure may be provided as a stand alone unit, requiring only a power supply to operate or components of the assemblies can be provided to already existing units and the existing units reconfigured.
In accordance with the assemblies provided, methods for repairing tires can include providing tire sealant to a tire from a tire repair assembly upon depositing currency in the tire repair assembly. In accordance with an example aspect, after providing the sealant, flushing any remaining sealant from any conduits used to provide the sealant can be performed.
The tire sealant can be maintained in a fluid state by controlling the temperature, for example and this control may be performed according to a predetermined plan or as instructed remotely, for example. As another example of remote control, upon the providing sealant, processing circuitry can signal a remote computer processing system as to the status of the tire repair assembly. This can also be performed periodically and data can be exchanged between two systems, such data can include tire sealant amount available/used and/or currency received.
Referring next to
Referring to
In accordance with example implementations, the cone portion can be aligned with conduit 106 and in between opposing conduits 102 and 104.
This application claims priority to U.S. provisional patent application Ser. No. 62/375,392 filed Aug. 15, 2016, entitled “Currency Operated Tire Inflation and Repair Apparatus and Methods” the entirety of which is hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/047003 | 8/15/2017 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62375392 | Aug 2016 | US |