The present invention relates to polymer electrolyte batteries and, more particularly, to current collectors for use in polymer electrolyte batteries.
Rechargeable batteries manufactured from laminates of solid polymer electrolytes and sheet-like electrodes display many advantages over conventional liquid electrolyte batteries. These advantages include: lower overall battery weight; higher power density; higher specific energy; and longer service life. In addition, they are more environmentally friendly since the danger of spilling toxic liquid into the environment is eliminated.
Solid polymer battery components generally include: positive electrodes (commonly referred to as cathodes); negative electrodes (commonly referred to as anodes); and an electrolyte separator which is capable of permitting ionic conductivity and which is sandwiched between the electrodes. Moreover, a current collector can also be associated with either one of the electrodes, especially the cathode.
In addition to acting as a mechanical support, the current collector also conducts the flow of electrons between the active material of the electrode and the battery terminals. Current collectors have a tendency to corrode or form an insulating film, which impairs the passage of electrons between the collector and the active material of the electrode, thereby increasing the internal resistance of the electrochemical cell and reducing power density and cycle life of such rechargeable batteries.
The current collector is also considered a passive component of the electrochemical cell because it normally does not generate energy. It simply provides a means for conducting the electrical current generated by the electrochemical cell. It is therefore advantageous to reduce the volume and weight of the current collector as much as possible.
Thus, there is a need for a relatively light and thin current collector which can better resist corrosion.
In accordance with a first broad aspect, the invention seeks to provide a current collector for an electrochemical cell. The current collector comprises a polymer support film having a surface. The current collector also comprises a conductive metallic layer on at least a portion of the surface of the polymer support film, the conductive metallic layer having a first thickness. The current collector further comprises a protective metallic layer on the conductive metallic layer. The protective metallic layer has a second thickness less than the first thickness and is adapted to protect the conductive metallic layer against corrosion.
In accordance with a second broad aspect, the invention seeks to provide an electrochemical generator comprising at least one thin-film electrochemical cell. Each one of the at least one thin-film electrochemical cell comprises at least one thin-film solid electrolyte disposed between a film constituting an anode and a film constituting a cathode, and a current collector associated with one of the anode and the cathode. The current collector comprises a polymer support film having a surface. The current collector also comprises a conductive metallic layer on at least a portion of the surface of the polymer support film, the conductive metallic layer having a first thickness. The current collector also comprises a protective metallic layer on the conductive metallic layer. The protective metallic layer has a second thickness less than the first thickness and is adapted to protect the conductive metallic layer against corrosion.
In accordance with a third broad aspect, the invention seeks to provide a method of manufacturing a current collector for an electrochemical cell. The method comprises
These and other aspects and features of the present invention will now become apparent to those of ordinary skill in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying drawings.
A detailed description of preferred embodiments of the present invention is provided herein below with reference to the following drawings, in which:
In the drawings, the embodiments of the invention are illustrated by way of examples. It is to be expressly understood that the description and drawings are only for the purpose of illustration and are an aid for understanding. They are not intended to be a definition of the limits of the invention.
As previously mentioned, current collectors in electrochemical (EC) cells are passive components that transport currents generated by the chemical reaction between the anode and the cathode. Current collectors also act as mechanical supports for paste-like anodes or cathodes, and as such should be as strong and as thin as practicable to reduce the weight and volumetric penalty of the current collector to the overall weight and volume of the EC cell.
To achieve these goals, a current collector in accordance with one embodiment comprises a polymer support film having a thickness of between about 1 and 15 microns, preferably less than about 10 microns, onto which is deposited by vacuum evaporation a conductive metallic layer having a thickness of less than 3 microns, and preferably less than 1 micron. The conductive metallic layer is thereafter protected against corrosion by a protective metallic layer having a thickness of between about 5 and 500 nanometers, and preferably less than about 100 nanometers.
The polymer support film is selected for its relative thinness, its tensile strength, its low elongation, its ability to be metallized, and its stability over time. Polymer support films exhibiting acceptable properties can comprise bi-axially oriented polystyrene (BO-PS), polyethylene terephthalate (BO-PET), polycarbonate (PC), polypropylene (PP), polypropylene sulphide (PPS) and polyethylene naphthalate (PEN). Such polymer support films are readily available on the market in thickness ranging from 2 microns to 12 microns. They are also capable of withstanding the high temperature of metal evaporation deposition and plasma activated evaporation deposition. Finally, they display good tensile strength such that the metallized current collector may be processed in subsequent manufacturing steps to make electrochemical cells.
The conductive metallic layer may comprise any metal exhibiting good electrical and thermal conductivity, as well as low density and low cost. Suitable metals include aluminum (Al), copper (Cu), silver (Ag), nickel (Ni), tin (Sn) or alloys based on these metals. However, preferred metals are aluminum and copper for their low cost and good conductivity. The chosen metal may be vacuum vapor deposited or plasma activated deposited onto the polymer support film.
With respect to the protective layer, the latter is electronically conductive to allow movement of electrons between the electrode active material and the conductive metallic layer of the current collector. In addition, it also acts to prevent degradation through corrosion or passivation of the conductive metallic layer. This layer should be as thin as possible and serves as a barrier between the corrosion or passivation effect of the electrode material. The protective layer preferably contributes to the electronic conductivity of the current collector. The protective layer is preferably a second metallic or metal oxide layer deposited onto the conductive metallic layer. Metal vapor deposition is one available technique to achieve such a layer. Most metals are sufficiently conductive to allow easy electronic movement, however few are adapted to resist corrosion initiated by the salts present in electrochemical cells. Suitable metals comprise silver (Ag), gold (Au), palladium (Pd), platinum (Pt) and metal oxides derived from any suitable metal that can form stable electronically conductive oxides such as SnO2, CrO3, etc.
Suitable methods of depositing the conductive metallic layer in thicknesses sufficient to permit the draining of current densities (Imax/cm2) generated by electrochemical cells of average or large sizes include vacuum vapor metallization and plasma activated evaporation deposition. Vacuum vapor metallization is a low pressure, high temperature (energy) process in which metal vapor is formed. Vacuum vapor metallization generally occurs in three basic modes. First, metal wire can be directed into a hot boat or other container at high temperatures and low pressures wherein the metal melt formed in the boat is converted into vapor. Secondly, electron beam excitation of a metal held at low pressure and approximately ambient temperature can cause the production of a pool of molten metal and a metal vapor. Thirdly, the induction heating of metal in a susceptor vessel can result in the production of useful quantities of metal vapor at low pressure.
Plasma may be used to enhance activation of metal evaporation. As illustrated in
As shown, a surface treatment system 30 may also be used to treat the polymer support film 16 prior to metal deposition in the evaporation zone 14. Surface treatment is preferably done in the winding zone 12. Ionized gas is propelled onto the surface or surfaces of the polymer support film 16 to improve the adhesion of the metal coating onto the polymer support film 16 and to improve the consistency of the metallized film as a barrier against oxygen transmission. Surface treatment of the polymer support film 16 improves the density and consistency of the metallized film.
In order to achieve a coating thickness of over 1000 Å (0.1 μm), the deposition rate of vaporized metal must be relatively high and the speed of the polymer support film 16 should be slowed down proportionally. Heat build up within the polymer support film 16 is compensated by more efficient cooling and heat dissipation of the latter in order to prevent melt down.
As shown in tables 1 and 2 below, conductive metallic layers of aluminum and copper featuring thicknesses of less than about 3.0 μm were coated onto one side of a BO-PET plastic support film. The maximum resistivity, required for the conductive layer is about 0.2 Ω/square to drain the current density generated by medium to large electrochemical cells. The resistivity measured for the aluminum conductive layers were satisfactory from 0.39 μm upward and it may be extrapolated that a 0.3 μm thick layer would be adequate. The resistivity measured for the copper conductive layers were satisfactory for thickness of 0.51 μm upward. Persons skilled in the art will however understand that thicknesses other than those listed in the below tables may also be suitable.
Once the conductive metallic layer is coated or deposited onto the polymer support film 16, the protective layer is then applied onto the conductive metallic layer to protect the latter from the corrosive and passivation effect of the cathodic or anodic materials to be later coated onto the current collector. Preferred methods of depositing the protective layer in thicknesses ranging from about 5 nm to about 500 nm, and preferably less than about 100 nm, is either thermal evaporation deposition and plasma activated evaporation deposition or metal sputtering coating, which is well known in the art. In one embodiment, the protective layer is composed of silver (Ag) and has a thickness in the range of 10-50 nm thick. As mentioned above, however, other suitable metals such as gold (Au), palladium (Pd), platinum (Pt), and metal oxides derived from any suitable metal that can form stable electronically conductive oxides such as SnO2, CrO3, may also be used.
Preferably, the polymer support film 42 is coated on both sides as illustrated in
To further increase the conductivity of the current collector and therefore reduce the required thickness of the conductive metallic layers 52 and 56, a conductive polymer support film may be used. A conductive polymer support film refers to any polymer support film which has been doped with a sufficient amount of a conductive material, so as to be conductive and therefore increase the overall conductivity of a current collector as described above. Advantageously, the increased conductivity may improve the processability of the polymer support film by increasing its thermal conductivity and therefore its ability to dissipate heat through the cooling drum of the vacuum metallization apparatus. Examples of particular polymers employed include polyesters, polycarbonates, polyacrylates, polyethylenes, polypropylenes and the like. These polymers are doped with a sufficient amount of a conductive material to render them conductive. Such conductive materials include, by way of example, carbon powder, graphite, powdered nickel, metal particles, and the like. Polymers characterized by a conjugated network of double bonds like polypyrol and polyacetylene may also be conductive and used as a polymer support film 42.
A mono-face cell configuration may alternatively be employed in which a one sided cathodic current collector 40, as shown in
In accordance with one specific embodiment, and with further reference to
Thin-film electrochemical cells may also be packaged in a “jelly roll” configuration so as to form a generally cylindrical cell structure, a flat roll configuration, or a flat stack configuration. Such configurations are well known in the art.
Although various embodiments have been illustrated, this was for the purpose of describing, but not limiting, the invention. Various modifications will become apparent to those skilled in the art and are within the scope of this invention, which is defined more particularly by the attached claims.
The present application is a continuation of U.S. patent application Ser. No. 10/329,364 filed on Dec. 27, 2002, which is hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 10329364 | Dec 2002 | US |
Child | 11134438 | May 2005 | US |