Current control of a power supply for an ionizer

Information

  • Patent Grant
  • 6646853
  • Patent Number
    6,646,853
  • Date Filed
    Friday, November 16, 2001
    23 years ago
  • Date Issued
    Tuesday, November 11, 2003
    21 years ago
Abstract
A control circuit for an ionizer controls an output of at least one of a positive voltage direct current (DC) power supply (PS) and a negative voltage DC PS. Each PS is connected to at least one ionizing pin. The control circuit controls the output of the power supplies so as to cause a flow of positive and negative ions from the ionizer and directed towards a target. The control circuit includes a positive PS return current sense resistor that biases the negative voltage PS to decrease the output of the negative voltage PS when the current detected by the positive sense resistor increases and to increase the output of the negative voltage PS when the current detected by the positive sense resistor decreases. The control circuit includes a similar negative PS return current sense resistor and associated bias circuitry for controlling the negative voltage power supply.
Description




BACKGROUND OF THE INVENTION




Controlling static charge is an important issue in continuous web operations (product moved in a continuous or nearly continuous feed) and in semiconductor manufacturing. Undesirable Triboelectric (static caused by friction) charges are introduced onto the web during handling by rollers, cutters and the like. In web operations, such undesirable charges can attract unwanted particulate matter onto the product, can cause difficult handling issues with the product, and may even cause discharges which are potentially harmful to the electronic controls that operate the machines. In semiconductor manufacturing, device defects caused by electrostatically attracted foreign matter and electrostatic discharge events contribute greatly to overall manufacturing losses.




Air ionization is an effective method of eliminating static charges on non-conductive materials and isolated conductors. Air ionizers generate large quantities of positive and negative ions in the surrounding atmosphere which serve as mobile carriers of charge in the air. As ions flow through the air, they are attracted to oppositely charged particles and surfaces. Neutralization of electrostatically charged surfaces can be rapidly achieved through this process.




Air ionization may be performed using electrical ionizers which generate ions in a process known as corona discharge. Electrical ionizers generate air ions through this process by intensifying an electric field around a sharp point until it overcomes the dielectric strength of the surrounding air. Negative corona occurs when electrons are flowing from the electrode into the surrounding air. Positive corona occurs as a result of the flow of electrons from the air molecules into the electrode.




Ionizer devices take many forms such as ionizing bars, air ionization blowers, air ionization nozzles, and the like, and are utilized to neutralize static electrical charge by emitting positive and negative ions into the workspace or onto the surface of an area carrying undesirable static charges. Ionizing bars are typically used in continuous web operations such as paper printing, polymeric sheet material, or plastic bag fabrication. Air ionization blower and nozzles are typically used in workspaces for assembling electronics equipment such as hard disk drives, integrated circuits, and the like, that are sensitive to electrostatic discharge (ESD).




To achieve the maximum possible reduction in static charges from an ionizer of a given output, the ionizer must produce amounts of positive and negative ions in order to compensate for the net charge on the web or in the workspace. That is, the output of the ionizer must increase or decrease the output of positive and/or negative ions in order to achieve a neutralized net charge on the web or in the workspace.




One prior art method of generating ions is by use of an alternating current (AC) voltage generator connected to ionizing pins which produces ions of one polarity for approximately 35% of a half cycle and then, after a delay, produces ions of the other polarity for approximately 35% of a half cycle. The positive ions and negative ions are output based upon the cycle or frequency of the AC voltage waveform and are not controlled based upon feedback of the actual charge on the web or in the workspace or on the demand for ions of a particular polarity. Such prior art devices are discussed in U.S. Pat. No. 3,936,698 (Meyer) and U.S. Pat. No. 3,714,531 (Takahashi). The drawback to AC ionizers is that when the net charge is negative on the web or in the workspace is negative, negative ions are still going to be generated and possibly directed onto the web or into the workspace, which will have no effect in neutralizing the negative charge. The converse is also true when the net charge is positive. Additionally, there is a lag time between generating positive ions and negative ions directly related to the rise time of the AC voltage waveform. Thus, ions are produced in slugs rather than in a continuous manner which further is not effective in neutralizing a charge in applications with a fast moving web.




Another prior art method for generating ions is by use of a high voltage direct (DC) current generator of each polarity connected to ionizing pins. Some of these DC generators are merely fixed output power supplies that generate a continuos output of both positive and negative ions. A user may take readings with a handheld charge monitor and then make adjustments to the positive or negative power supply accordingly. However, the change in charge on the web or the workspace can occur very quickly and very frequently. Simple changes to the ambient conditions such as temperature, humidity, and the like, can have a drastic affect on the Triboelectric charging that the materials being handled experience. Thus, it is not possible for a user to make adjustments often enough (continuously) to compensate for the charge fluctuations.




One prior art device described in U.S. Pat. No. 5,930,105 describes a control circuit for a DC ionizer that attempts to trim the outputs of the positive and negative power supplies by monitoring the total net current through a resistor that purportedly corresponds to a change in the charge value. The single return current sensing resistor compensates the outputs of both power supplies, and does not separately control them. Thus, there is always a given output level of each type of ion, positive and negative, which does not compensate for charge changes quickly enough, especially in a fast-moving web. This DC ionizer only produces slightly more of one ion over the other and therefore the net charge that reaches the web or workspace has little affect when the charge on the web or workspace changes quickly.




Accordingly, there is an unmet need for a controller for a DC ionization system which allows for fast response time and achieves improved charge neutralization. The present invention fulfills these needs.




BRIEF SUMMARY OF THE INVENTION




The present invention provides a control circuit for an ionizer which controls an output of at least one of a positive voltage direct current power supply and a negative voltage direct current power supply. Each power supply is connected to at least one ionizing pin. The control circuit controls the output of at least one of the power supplies so as to cause a flow of positive and negative ions to be emitted from the ionizer and directed towards a target. The control circuit includes a positive power supply return current sense resistor that biases the positive voltage power supply to increase the output of the positive voltage power supply when a positive ion current detected by the positive power supply return current sense resistor decreases and to decrease the output of the positive voltage power supply when the positive ion current detected by the positive power supply return current sense resistor increases, thereby creating a static-free environment at the target. The control circuit also includes a negative power supply return current sense resistor that biases the negative voltage power supply to decrease the output of the negative voltage power supply when a negative ion current detected by the negative power supply return current sense resistor increases and to decrease the output of the negative voltage power supply when the negative ion current detected by the negative power supply return current sense resistor increases, thereby creating the static-free environment at the target.




In an alternate embodiment, the positive power supply return current sense resistor biases the negative voltage power supply to decrease the output of the negative voltage power supply when a positive ion current detected by the positive power supply return current sense resistor increases and to increase the output of the negative voltage power supply when the positive ion current detected by the positive power supply return current sense resistor decreases, thereby creating the static-free environment at the target. The negative power supply return current sense resistor biases the positive voltage power supply to decrease the output of the positive voltage power supply when a negative ion current detected by the negative power supply return current sense resistor increases and to increase the output of the positive voltage power supply when the negative ion current detected by the negative power supply return current sense resistor decreases, thereby creating the static-free environment at the target.











BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS




The foregoing summary, as well as the following detailed description of preferred embodiments of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings embodiments which are presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown.




In the drawings:





FIG. 1

is a simplified electrical schematic of a control circuit in accordance with a second embodiment of the present invention;





FIG. 2

is a perspective view of an ionizer mounted above a moving web;





FIG. 3

is a simplified electrical schematic of a third embodiment of a control circuit in accordance with the present invention;





FIG. 4

is a simplified electrical schematic of a preferred embodiment of a control circuit in accordance with the present invention;





FIG. 5

is a detailed electrical schematic of the control circuit of

FIG. 1

;





FIG. 6

is a detailed electrical schematic of the control circuit of

FIG. 3

;





FIG. 7

is a detailed electrical schematic of a fourth embodiment of a control circuit in accordance with the present invention;





FIG. 8

is a detailed electrical schematic of a fifth embodiment of a control circuit in accordance with the present invention;





FIGS. 9A-9C

, taken together, show a detailed electrical schematic of the control circuit of

FIG. 4

;





FIG. 10

is a detailed electrical schematic of a power supply for the control circuit of

FIGS. 9A-9C

;





FIG. 11

is a detailed electrical schematic of a positive neutralizing current indicator for the control circuit of

FIGS. 9A-9C

;





FIG. 12

is a detailed electrical schematic of a negative neutralizing current indicator for the control circuit of

FIGS. 9A-9C

;





FIG. 13

is a detailed electrical schematic of a high voltage on indicator for the control circuit of

FIGS. 9A-9C

;





FIG. 14

is a detailed electrical schematic of a fault indicator for the control circuit of

FIGS. 9A-9C

; and





FIG. 15

is a detailed electrical schematic of a clean bar indicator for the control circuit of FIGS.


9


A-


9


C.











DETAILED DESCRIPTION OF THE INVENTION




I. Overview




Certain terminology is used in the following description for convenience only and is not limiting. The words “right”, “left”, “lower”, and “upper” designate directions in the drawings to which reference is made. The words “inwardly” and “outwardly” refer to directions toward and away from, respectively, the geometric center of any device described and designated parts thereof. The terminology includes the words above specifically mentioned, derivatives thereof and words of similar import. Additionally, the word “a” is used in the claims and in the corresponding portions of the specification, means “at least one.”




Referring now to the drawings in detail, wherein like numerals indicate like elements throughout,

FIGS. 4

,


9


A-


9


C and


10


-


15


show a preferred embodiment of a control circuit in accordance with the present invention.

FIGS. 1

,


3


and


5


-


8


show alternate embodiments of a control circuit in accordance with the present invention.





FIG. 1

shows a control circuit


10


for an ionizer


8


which controls an output


12




a


of a positive voltage direct current (DC) power supply


12


and an output


14




a


of a negative voltage DC power supply


14


. Each power supply, positive and negative voltage, is connected to at least one ionizing pin


16


,


18


, respectively. The control circuit


10


controls the output


12




a


or


14




a


, of at least one of the power supplies


12


,


14


so as to cause a flow of positive


11


and negative


13


ions to be emitted from the ionizer


8


and directed towards a target


6


. The target


6


, as used herein, may be a continuous web product like paper, plastic, or the like, or the target


6


may simply be a general workspace or area. The control circuit


10


includes a positive power supply return current sense resistor


20


. The positive power supply return current sense resistor


20


provides a voltage drop based upon the current through the positive voltage power supply


12


, and the voltage drop across the positive power supply return current sense resistor


20


is an input


24




c


of a positive bias circuit


24


. An output


24




a


of the positive bias circuit


24


biases the positive voltage power supply


12


by modulating a low voltage DC source


2


to an input


12




c


of the positive voltage power supply


12


in order to increase the output


12




a


of the positive voltage power supply


12


when a negative ion current detected by the positive power supply return current sense resistor


20


decreases and to decrease the output


12




a


of the positive voltage power supply


12


when the positive ion current detected by the positive power supply return current sense resistor


20


increases, thereby creating a static-free environment at the target


6


. The low voltage DC source


2


is between about 12 Volts DC and about 24 Volts DC, but is preferably about 16.5 Volts DC. The control circuit


10


also includes a negative power supply return current sense resistor


22


. The negative power supply return current sense resistor


22


provides a voltage drop based upon the current through the negative voltage power supply


14


, and the voltage drop across the negative power supply return current sense resistor


22


is an input


26




c


of a negative bias circuit


26


. An output


26




a


of the negative bias circuit


26


biases the negative voltage power supply


14


by modulating the low voltage DC source


2


an input


14




c


of the negative voltage power supply


14


in order to increase the output


14




a


of the negative voltage power supply


14


when a negative ion current detected by the negative power supply return current sense resistor


22


decreases and to decrease the output


14




a


of the negative voltage power supply


14


when the negative ion current detected by the negative power supply return current sense resistor


22


decreases, thereby creating the static-free environment at the target


6


. The control circuit


10


is designed to maintain a constant current.




The control circuit


10


illustrated in

FIG. 1

is operating in a current control mode. When no charge is present on the target


6


, the control circuit


10


automatically adjusts the amount of positive


11


and negative


13


ions to produce a cloud (not shown) of balanced charge above the target


6


. When a net negative charge (not shown) appears on the target


6


, an imbalance occurs in the cloud as positive ions


11


are depleted and are attracted to the negative charge on the target


6


. Since the control circuit


10


is designed to maintain a constant current, the positive bias circuit


24


increases the output


12




a


of the positive voltage power supply


12


which, in turn, produces more positive ions


11


. Since there is no positive charge on the target


6


, the negative bias circuit


26


will decrease the output


14




a


of the negative voltage power supply


14


which, in turn, produces less negative ions


13


. The converse is also true. The current control mode is better suited for applications where the ionizer


8


is located relatively close, approximately ½″ to 3″, to the target


6


and when the target is not moving or is moving relatively slowly.





FIGS. 3 and 6

show a second embodiment of the cross control circuit


50


. The positive power supply return current sense resistor


20


biases the negative voltage power supply


14


to decrease the output


14




a


of the negative voltage power supply


14


when the positive ion current detected by the positive power supply return current sense resistor


20


increases and to increase the output


14




a


of the negative voltage power supply


14


when the positive ion current detected by the positive power supply return current sense resistor


20


decreases, thereby creating the static-free environment at the target. The negative power supply return current sense resistor


22


biases the positive voltage power supply


12


to decrease the output


12




a


of the positive voltage power supply


12


when a negative ion current detected by the negative power supply return current sense resistor


22


increases and to increase the output


12




a


of the positive voltage power supply


12


when the negative ion current detected by the negative power supply return current sense resistor


22


decreases, thereby creating the static-free environment at the target.




The cross control circuit


50


illustrated in

FIG. 3

is operating in a cross control mode. When no charge is present on the target


6


, the cross control circuit


50


automatically adjusts the amount of positive


11


and negative


13


ions to produce a cloud (not shown) of balanced charge above the target


6


. When a net negative charge appears on the target


6


, an imbalance occurs in the cloud as positive ions


11


are depleted and are attracted to the negative charge on the target


6


. Since the control circuit is designed to maintain a constant current, the positive bias circuit


24


decreases the output


14




a


of the negative voltage power supply


14


which, in turn, produces less negative ions


13


. Since there is no positive charge on the target


6


, the negative bias circuit


26


will increase the output


12




a


of the negative positive power supply


12


which, in turn, produces more positive ions


11


. The converse is also true. The cross control mode is better suited for applications where the ionizer


8


is located relatively far, approximately 3″-12″ or more, from the target


6


and when the target is moving relatively quickly.





FIG. 4

illustrates a preferred embodiment of a control circuit


60


in accordance with the present invention. The control circuit


60


includes a control mode selector switch


62


that has a first contact


62




a


and a second contact


62




b


. The control mode selector switch


62


has a first position and a second position. The first position is associated with the current control mode and the second position is associated with the cross control mode. When the control mode selector switch


62


is in the first position, the output


24




a


of the positive bias circuit


24


is directed through the first contact


62




a


to the input


12




c


of the positive voltage power supply


12


and the output


26




a


of the negative bias circuit


26


is directed through the second contact


62




b


to the input


14




c


of the negative voltage power supply


14


. Thus, when the control mode selector switch


62


is in the first position, the control circuit


60


operates substantially the same as the control circuit


10


shown in

FIGS. 1 and 5

. Alternatively, when the control mode selector switch


62


is in a second position, the output


24




a


of the positive bias circuit


24


is directed through the first contact


62




a


to the input


14




c


of the negative voltage power supply


14


and the output


26




a


of the negative bias circuit


26


is directed through the second contact


62




b


to the input


12




c


of the positive voltage power supply. Thus, when the control mode selector switch


62


is in the second position, the control circuit


60


operates substantially the same as the cross control circuit


50


shown in

FIGS. 3 and 6

. The mode selector switch


62


may be a simple two position, dry contact type switch with a slide-type actuator, a rotary type actuator, push-to-set/push-to-reset actuator, or a toggle type actuator. Alternatively, the mode selector switch may simply pilot a relay, silicon controlled rectifier (SCR), transistor, or the like, to divert the two outputs. The type of switch or its equivalent is not critical to the present invention, and therefore is not discussed in greater detail herein.




In the present embodiment, the user may determine that the ionizer


8


has to be mounted nearer to or farther from the target


6


or may relocate the ionizer


8


to another location. The mode selector switch


62


enables the user to easily select the best mode, current control or cross control, based upon the mounting location and target conditions as described above.





FIG. 7

illustrates a fourth embodiment of the present invention wherein only the positive voltage power supply is automatically controlled. A control circuit


70


includes all of the elements associated with the positive bias circuit


24


, but does not include the negative bias circuit


26


or its associated negative power supply return current sense resistor


22


. The control circuit


70


may or may not include a user adjustable control device


72


, such as a potentiometer or the like, for manually adjusting the output


14




a


level of the negative voltage power supply


14


. Alternatively, the negative voltage power supply


14


may be selected with a fixed or nonadjustable constant voltage output


14




a


. In an alternate of this embodiment, the positive voltage power


12


is manually adjusted and the positive bias circuit


24


adjusts the negative voltage power supply


14


.





FIG. 8

illustrates a fifth embodiment of the present invention wherein only the negative voltage power supply is automatically controlled. A control circuit


80


includes all of the elements associated with the negative bias circuit


26


, but does not include the positive bias circuit


24


or its associated positive power supply return current sense resistor


20


. The control circuit


80


may or may not include a user adjustable control device


82


, such as a potentiometer or the like, for manually adjusting the output


12




a


level of the positive voltage power supply


12


. Alternatively, the positive voltage power supply


12


may be selected with a fixed or nonadjustable constant voltage output


12




a


. In an alternate of this embodiment, the negative voltage power


14


is manually adjusted and the negative bias circuit


26


adjusts the positive voltage power supply


12


.




II. Detailed Description




Referring now to

FIGS. 9A-9C

and


10


-


15


, a much more detailed version of the embodiment described above and demonstrated in

FIG. 4

is provided. It should be noted that other components and devices may be utilized to implement the circuits describe hereafter without departing from the broad scope of the present invention.





FIG. 10

illustrates a power supply


100


for a control circuit


160


. A power adapter PS


1


, as is known in the art, converts an alternating current (AC) voltage to a DC voltage. The AC voltage may be between about 90 Volts AC and 250 Volts AC at about 50 to 60 Hz. The converted DC voltage may be between about 15 Volts DC and about 24 Volts DC. The power adapter PS


1


includes a plug LC


1


for connection to a conventional wall receptacle and a plug P


4


for connection to a socket J


4


mounted in a housing (not shown) for the remainder of the power supply


100


circuitry and the control circuit


160


. The socket J


4


is connected to a power switch SW


2


, which may be any two condition switch as is known in the art, but is preferably a two position toggle actuated switch with a dry-contact closure.




The power switch SW


2


allows DC power to be delivered to a first voltage regulator integrated circuit (IC) REG


1


, which in conjunction with appropriately selected biasing elements such as resistors R


50


, R


51


, capacitors C


17


, C


18


, and a diode D


1


, regulates the voltage to about 16.0 Volts DC to 17.0 Volts DC, but preferably 16.5 Volts DC. The voltage output of regulator REG


1


(hereinafter “regulated 16.5 VDC”) is connected through appropriate electrical connections such as routed copper strips, jumpers, wires, and the like to other circuits shown in

FIGS. 9A-9C

and


11


-


15


. The regulated 16.5 VDC is depicted on the drawings as an upwardly directed arrow with a “+Vcc” designator. The regulated 16.5 VDC also provides input power to a second voltage regulator IC REG


2


. The second voltage regulator IC REG


2


regulates the voltage to about 14.5 Volts DC to about 15.5 Volts DC, but preferably 15.0 Volts DC. The output of the second voltage regulator IC REG


2


provides input power to an inverter IC U


3


, which in conjunction with appropriately selected biasing elements such as capacitors C


15


, C


16


, provides an inverted or negative of the regulated output voltage from the second voltage regulator IC REG


2


. The inverted voltage output of inverter IC U


3


is preferably about −15 volts DC (hereinafter “regulated −15 VDC”). The voltage output inverter IC U


3


is connected through appropriate electrical connections such as routed copper strips, jumpers, wires, and the like to other circuits shown in

FIGS. 9A-9C

and


11


-


15


. The regulated −15 VDC is depicted on the drawings as an downwardly directed arrow with a “−Vss” designator.





FIGS. 9A-9C

show a more detailed version of the control circuit


60


of

FIG. 4

described above, designated in

FIGS. 9A-9C

as the control circuit


160


. The control circuit


160


includes a positive high voltage (HV) power supply PS


20


and a negative high voltage power supply PS


10


. The high voltage power supplies PS


10


, PS


20


may be of the same type and are preferably linear power supplies that accept a modulated input voltage of between about 0 volts DC and about 18 volts DC, but preferably between about 1 volt DC and 12 volts DC. The HV power supplies PS


10


, PS


20


convert the input voltage to a corresponding output voltage between about 0 volts DC and about 15,000 volts DC (15 kV DC), but preferably to an output voltage between about 0 volts DC and about 5,000 volts (5 kV DC). The negative output voltage of the HV power supply PS


10


is designated as −HV OUTPUT and is connected by cable, wire, or the like to a negative ionizer bar (not shown). The positive output voltage of HV power supply PS


20


is designated as +HV OUTPUT and is connected by cable, wire, or the like to a positive ionizer bar (not shown).




The control circuit


160


also includes a negative power supply return current sense resistor bank SW


7


and a positive power supply return current sense resistor bank SW


9


. The resistor banks SW


7


, SW


9


are ten position, dip switch selectable resistor banks with different resistance values for each dip switch setting. Depending on the total length of the negative and positive ionizer bars from about one half a foot to about twenty feet, but preferably between about one foot to about ten feet, a different resistance value is selected on the negative resistor bank SW


7


and the positive resistor bank SW


9


. In most installations, the negative and positive ionizer bars will be identical in length, so the resistance values of the negative and positive resistance banks SW


7


, SW


9


will be set to equivalent resistance values. The added length of the ionizer bars adds resistance to the circuit, and therefore, the resistor banks SW


7


, SW


9


allow for an adjustable compensation for the varying resistance due to changes in length. In an alternative embodiment, the ion current sense resistor banks SW


7


, SW


9


are potentiometers for adjusting the compensation due to changes in length.




The positive power supply return current sense resistor bank SW


9


provides, in conjunction with appropriate biasing elements such as resistors R


2


, R


15


, and capacitors C


1


, C


6


, an input voltage to an operational amplifier (Op-Amp) IC U


1


C. The input voltage of the Op-Amp IC U


1


C is based upon the positive ion current flow as measured through the HV power supplies PS


10


, PS


20


. An output of the Op-Amp IC U


1


C drives another Op-Amp IC U


2


C. The Op-Amp IC U


2


C, in conjunction with appropriate biasing components such as resistor R


16


, R


17


, capacitors C


7


, C


11


and potentiometer R


9


, form a positive error amplifier


162


.




The negative power supply return current sense resistor bank SW


7


provides, in conjunction with appropriate biasing elements such as resistors R


4


, R


14


and capacitors C


2


, C


5


, C


12


, C


13


, an input voltage to an Op-Amp IC U


1


B. The input voltage of the Op-Amp IC U


1


B is based upon the negative ion current flow as measured through the HV power supplies PS


10


, PS


20


. An output of the Op-Amp IC U


1


B drives another Op-Amp IC U


2


A. The Op-Amp IC U


2


A, in conjunction with appropriate biasing components such as resistors R


3


, R


5


, R


6


and a capacitor C


14


, provides an input voltage to an Op-Amp IC U


2


B. The Op-Amp IC U


2


B, in conjunction with appropriate biasing components such as resistor R


11


, R


12


, capacitors C


3


, C


4


and potentiometer R


8


, form a negative error amplifier


164


.




The control circuit


160


further includes a control mode selector switch SW


8


which has a first contact SW


8


A, a second contact SW


8


B, a third contact SW


8


C and a fourth contact SW


8


D. The control mode selector switch SW


8


has a first position and a second position. The first position is associated with the current control mode and the second position is associated with the cross control mode as described above.




When the control mode selector switch SW


8


is in the first position (current control mode), an output


164




a


of the negative error amplifier


164


is directed through the first contact SW


8


A to an input of a negative power supply transistor Q


1


, and an output


162




a


of the positive error amplifier


162


is directed through the second contact SW


8


B to an input of a positive power supply transistor Q


2


. The negative power supply transistor Q


1


gates the regulated 16.5 volts DC to the input of the negative HV power supply PS


10


thereby providing the modulated voltage between 0 volts DC and 12 volts DC proportional to the input voltage of the negative power supply transistor. In a similar fashion, the positive power supply transistor gates the regulated 16.5 volts DC to the input of the positive HV power supply PS


20


thereby providing the modulated voltage between 0 volts DC and 12 volts DC proportion to the input voltage of the positive power supply transistor. In the current control mode, the gated output of the negative power supply transistor Q


1


is directed through contact SW


8


D to a negative control voltage (NCV) conductor, and the gated output of the positive power supply transistor Q


2


is directed through contact SW


8


C to a positive control voltage (PCV) conductor. The NCV and PCV conductors connect to the other circuits in

FIGS. 11-15

.




When the control mode selector switch SW


8


is in the second position (cross control mode), the output


164




a


of the negative error amplifier


164


is directed through the first contact SW


8


A to the input of the positive power supply transistor Q


2


, and the output


162




a


of the positive error amplifier


162


is directed through the second contact SW


8


B to the input of the negative power supply transistor Q


1


. In the cross control mode, the gated output of the negative power supply transistor Q


1


is directed through contact SW


8


D to the PCV conductor, and the gated output of the positive power supply transistor Q


2


is directed through contact SW


8


C to the NCV conductor.




The mode selector switch SW


8


may be a simple two position, dry contact type switch with a slide-type actuator, a rotary type actuator, push-to-set/push-to-reset actuator, or a toggle type actuator. Alternatively, the mode selector switch SW


8


may simply pilot a relay, SCR, transistor or the like to divert four outputs. As mentioned above, it should be noted that the type of switch or its equivalent is not critical to the present invention.




The potentiometers R


8


, R


9


of the negative error amplifier


164


and positive error amplifier


162


circuits are also tied together with a Zener diode Z and biasing resistor R


52


to reference the two error amplifiers


162


,


164


to each other, thereby forming a common reference REF. The common reference REF allows the control circuit


160


to achieve an output balance when relative charge conditions are relatively stable. In an alternate embodiment, the potentiometers R


8


, R


9


are replaced with a single potentiometer, a laser trimmed resistor, a resistor bank or the like.





FIG. 11

is a positive power supply control voltage indicator


110


circuit schematic. The PCV, in conjunction with biasing resistors R


18


, R


19


, R


20


, and potentiometer R


21


provides inputs to a light emitting diode (LED) driver IC U


3


. The LED driver IC U


300


is supplied with regulated 16.5 VDC, and in conjunction with suitable biasing components such as resistor R


22


and capacitor C


3


, drives an LED array LED


4


. The LED array LED


4


includes ten LED's that may be arranged in a bar graph configuration. Alternatively, LED array LED


4


could be replaced with individual LED's, indicator lamps, gauges or the like without departing from the broad scope of the present invention.





FIG. 12

is a negative power supply control voltage indicator


120


circuit schematic. The NCV, in conjunction with biasing resistors R


23


, R


24


, R


25


, and potentiometer R


26


provides inputs to a light emitting diode (LED) driver IC U


6


. The LED driver IC U


600


is supplied with regulated 16.5 VDC, and in conjunction with suitable biasing components such as resistor R


27


and capacitor C


4


, drives an LED array LED


5


. The LED array LED


5


includes ten LED's that may be arranged in a bar graph configuration. Alternatively, LED array LED


5


could be replaced with individual LED's, indicator lamps, gauges or the like without departing from the broad scope of the present invention.





FIG. 13

is a HV-on indicator


130


circuit schematic. The PCV and NCV are directed through diodes D


3


and D


4


, respectively. If either voltage is high (not zero), a voltage will be provided through resistor R


10


to an HV on transistor Q


20


. The HV-on transistor Q


20


drives, in conjunction with suitable biasing components such as resistor R


13


and diode D


5


, a HV-on relay RL


3


coil. A normally open contact RL


3


A of relay RL


3


closes when the relay RL


3


is energized and provides regulated 16.5 VDC biased through a resistor R


16


to a preferably green LED, HV-on LED


1


. Thus, when either or both PCV and NCV are high, the transistor Q


2


is on, the relay RL


3


is energized, the contact RL


3


A is closed and the LED LED


1


is illuminated. The HV-on relay RL


3


may also have other normally open or normally closed contacts (not shown) for providing external signals or annunciation.





FIG. 14

is a Fault indicator


140


circuit schematic. The PCV is connected to a PCV voltage comparator IC U


1


C which compares the PCV voltage level to a voltage level biased below the regulated 16.5 VDC by resistors R


5


and R


6


. The NCV is connected to an NCV voltage comparator IC U


1


D which compares the NCV voltage level to a voltage level biased below the regulated 16.5 VDC by resistors R


7


and R


8


. Outputs of the comparators U


1


C and U


1


d are gated through a first NAND gate U


2


B and a second NAND gate U


2


C which is equivalent to an AND gate. Thus, if both PCV and NCV are greater than their respective biased voltages at comparators U


1


C and U


1


D, a voltage will be provided through resistor R


11


to an fault transistor Q


30


. The Fault transistor Q


30


drives, in conjunction with suitable biasing components such as resistor R


14


and diode D


6


, a Fault relay RL


2


coil. A normally open contact RL


2


A of relay RL


2


closes when the relay RL


2


is energized and provides regulated 16.5 VDC biased through a resistor R


17


to a preferably red LED, Fault LED


2


. The Fault relay RL


2


may also have other normally open or normally closed contacts (not shown) for providing external signals or annunciation.





FIG. 15

is a Clean-bar indicator


150


circuit schematic. The PCV is connected to a PCV voltage comparator IC U


1


A which compares the PCV voltage level to a voltage level biased below the regulated 16.5 VDC by resistors R


1


and R


2


. The NCV is connected to an NCV voltage comparator IC U


1


B which compares the NCV voltage level to a voltage level biased below the regulated 16.5 VDC by resistors R


3


and R


4


. Outputs of the comparators U


1


A and U


1


B are gated through a first NAND gate U


2


A and a second NAND gate U


2


D which is equivalent to an AND gate. Thus, if both PCV and NCV are greater than their respective biased voltages at comparators U


1


A and U


1


B, a voltage will be provided through diode D


1


and resistor R


9


to a clean-bar transistor Q


10


. The Clean-bar transistor Q


10


drives, in conjunction with suitable biasing components such as resistor R


12


and diode D


2


, a Clean-bar relay RL


1


coil. A normally open contact RL


1


A of relay RL


1


closes when the relay RL


1


is energized and provides regulated 16.5 VDC biased through a resistor R


15


to a preferably yellow LED, Clean-bar LED


3


. The Clean-bar relay RL


1


may also have other normally open or normally closed contacts (not shown) for providing external signals or annunciation. The clean-bar indicator circuit


150


also includes filtering capacitors C


1


and C


2


for the regulated power provided to comparator IC U


1


and NAND gate IC U


2


, respectively.




From the foregoing, it can be seen that the present invention comprises a control circuit for ionizers having a positive power supply return current sense resistor and a negative power supply return current sense resistor that can bias a positive voltage DC power supply and a negative DC power supply, respectively or conversely. It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the appended claims.



Claims
  • 1. A control circuit for an ionizer which controls an output of at least one of a positive voltage direct current power supply and a negative voltage direct current power supply, each being connected to at least one ionizing pin so as to cause a flow of positive and negative ions to be emitted from the ionizer and directed towards a target, wherein the control circuit comprises at least one of:(a) a positive power supply return current sense resistor that biases the negative voltage power supply to decrease the output of the negative voltage power supply when a positive ion current detected by the positive power supply return current sense resistor increases and to increase the output of the negative voltage power supply when the positive ion current detected by the positive power supply return current sense resistor decreases, thereby creating a static-free environment at the target; or (b) a negative power supply return current sense resistor that biases the positive voltage power supply to decrease the output of the positive voltage power supply when a negative ion current detected by the negative power supply return current sense resistor increases and to increase the output of the positive voltage power supply when the negative ion current detected by the negative power supply return current sense resistor decreases, thereby creating the static-free environment at the target.
  • 2. The control circuit according to claim 1, wherein the control circuit comprises both a positive and a negative return current sense resistor, and the control circuit controls the output of both of the positive voltage power supply and the negative voltage power supply.
  • 3. The control circuit according to claim 1, wherein the ionizer is an ionizer bar and the positive voltage direct current power supply is connected to a plurality of ionizing pins spaced along the ionizer bar.
  • 4. The control circuit according to claim 1, wherein the ionizer is an ionizer bar, and the negative voltage direct current power supply is connected to a plurality of ionizing pins spaced along the ionizer bar.
  • 5. The control circuit according to claim 1 wherein the ionizer includes a positive voltage ionizer bar and a negative voltage ionizer bar, each ionizer bar having elongated housings that are mounted in parallel with each other, and the positive voltage direct current power supply is connected to a plurality of ionizing pins spaced along the positive voltage ionizer bar and the negative voltage direct current power supply is connected to a plurality of ionizing pins spaced along the negative voltage ionizer bar.
  • 6. A control circuit for an ionizer which controls an output of at least one of a positive voltage direct current power supply and a negative voltage direct current power supply, each being connected to at least one ionizing pin so as to cause a flow of positive and negative ions to be emitted from the ionizer and directed towards a target, the control circuit having a mode selector switch and wherein the control circuit comprises at least one of:(a) a positive power supply return current sense resistor that biases the positive voltage power supply to increase the output of the positive voltage power supply when a positive ion current detected by the positive power supply return current sense resistor decreases and to decrease the output of the positive voltage power supply when the positive ion current detected by the positive power supply return current sense resistor increases, thereby creating a static-free environment at the target when the mode selector switch is in a first position and that biases the negative voltage power supply to decrease the output of the negative voltage power supply when a positive ion current detected by the positive power supply return current sense resistor increases and to increase the output of the negative voltage power supply when the positive ion current detected by the positive power supply return current sense resistor decreases when the mode selector switch is in a second position; or (b) a negative power supply return current sense resistor that biases the negative voltage power supply to increase the output of the negative voltage power supply when a negative ion current detected by the negative power supply return current sense resistor decreases and to decrease the output of the negative voltage power supply when the negative ion current detected by the negative power supply return current sense resistor increases, thereby creating the static-free environment at the target when the mode selector switch is in the first position and that biases the positive voltage power supply to decrease the output of the positive voltage power supply when a negative ion current detected by the negative power supply return current sense resistor increases and to increase the output of the positive voltage power supply when the negative ion current detected by the negative power supply return current sense resistor decreases when the mode selector switch is in the second position.
  • 7. The control circuit according to claim 6, wherein the control circuit comprises both a positive and a negative return current sense resistor, and the control circuit controls the output of both of the positive voltage power supply and the negative voltage power supply.
  • 8. The control circuit according to claim 1 wherein the ionizer includes an ionizer bar, the ionizer bar having an elongated housing, and the positive voltage direct current power supply is connected to a plurality of ionizing pins spaced along the ionizer bar and the negative voltage direct current power supply is connected to another plurality of ionizing pins spaced along the ionizer bar.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/316,757, filed Sep. 4, 2001, entitled “Current Control Of A Power Supply for an Ionizer.”

US Referenced Citations (3)
Number Name Date Kind
4809127 Steinmann et al. Feb 1989 A
5930105 Pitel et al. Jul 1999 A
6259591 Pitel et al. Jul 2001 B1
Provisional Applications (1)
Number Date Country
60/316757 Sep 2001 US