Current-controlled CMOS (C3MOS) fully differential integrated delay cell with variable delay and high bandwidth

Information

  • Patent Grant
  • 7598788
  • Patent Number
    7,598,788
  • Date Filed
    Wednesday, December 28, 2005
    19 years ago
  • Date Issued
    Tuesday, October 6, 2009
    15 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Wells; Kenneth B.
    Agents
    • Garlick Harrison & Markison
    • Short; Shayne X.
Abstract
Current-controlled CMOS (C3MOS) fully differential integrated delay cell with variable delay and high bandwidth. A novel implementation includes a wideband differential transistor pair and a cross-coupled differential transistor pair. The wideband differential transistor pair can be implemented with appropriate input and output impedances to extend its bandwidth for use in broadband applications. These two stages, (1) buffer stage (or data amplifier stage) and (2) cross-coupled differential pair stage, are both very fast operating stages. This design does not incur any increased loading to previous or subsequent stages in a device. In addition, there is no increase in the total amount of current that is required.
Description
BACKGROUND OF THE INVENTION

1. Technical Field of the Invention


The invention relates generally to the field of communication devices; and, more particularly, it relates to the field of delay cells that can be implemented within such communication devices.


2. Description of Related Art


Data communication systems have been under continual development for many years. In many broadband data communication system application, variable delay cells are employed. In such applications, it is oftentimes desirable to adjust timing control between various components. One such possible implementation of a delay cell is within the context of a delay locked loop (DLL). A common approach to designing a DLL is to employ a number of delay blocks. In the prior art, each of the individual delay blocks can be undesirably power consumptive. It would be desirable to have a delay block design that is more energy efficient.


For appropriate alignment and control of the various components within a communication system, it is very often desirable to ensure having some means by which the various signal therein can be adjusted to ensure proper alignment and timing. As such, there has been and continues to be a need for better and more efficient means by which delay cells may be implemented within communication systems and within various communication devices within such communication systems.


BRIEF SUMMARY OF THE INVENTION

The present invention is directed to apparatus and methods of operation that are further described in the following Brief Description of the Several Views of the Drawings, the Detailed Description of the Invention, and the claims. Other features and advantages of the present invention will become apparent from the following detailed description of the invention made with reference to the accompanying drawings.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS


FIG. 1 illustrates an embodiment of a current-controlled CMOS (C3MOS) wideband data amplifier circuit.



FIG. 2 illustrates an embodiment of a variable delay cell.



FIG. 3 illustrates another embodiment of a variable delay cell.



FIG. 4 illustrates an embodiment of a two-path adjustable high bandwidth delay cell.



FIG. 5 illustrates an embodiment of a wideband variable delay cell.



FIG. 6 illustrates an embodiment of delay through a cross-coupled differential pair (normalized) in response to current in a buffer stage (normalized).





DETAILED DESCRIPTION OF THE INVENTION

Various embodiments of the invention provide for ultra high-speed logic circuitry implemented in silicon complementary metal-oxide-semiconductor (CMOS) process technology. A distinction is made herein between the terminology “CMOS process technology” and “CMOS logic.” CMOS process technology as used herein refers generally to a variety of well established CMOS fabrication processes that form a field-effect transistor over a silicon substrate with a gate terminal typically made of polysilicon material disposed on top of an insulating material such as silicon dioxide. CMOS logic, on the other hand, refers to the use of complementary CMOS transistors (n-channel and p-channel, implemented using NMOS (Negative-Channel Metal-Oxide Semiconductor) transistors or PMOS (Positive-Channel Metal-Oxide Semiconductor) transistors) to form various logic gates and more complex logic circuitry, wherein zero static current is dissipated. Embodiments of the invention use current-controlled mechanisms to develop a family of very fast current-controlled CMOS (C3MOS or C3MOS™) logic that can be fabricated using a variety of conventional CMOS process technologies, but that unlike conventional CMOS logic does dissipate static current. C3MOS logic or current-controlled metal-oxide-semiconductor field-effect transistor (MOSFET) logic are used herein interchangeably.


Various C3MOS circuit techniques are described in greater detail in commonly-assigned U.S. patent application Ser. No. 09/484,856, now U.S. Pat. No. 6,424,194 B1, entitled “Current Controlled CMOS Logic Family,” by A. Hairapetian, which is hereby incorporated by reference in its entirety for all purposes as indicated above.


Other techniques have been developed to increase the gain-bandwidth product of CMOS circuitry. For example, shunt peaking is one approach that has resulted in improved gain-bandwidth product. Shunt peaking involves putting an inductor in series with the output resistor to expand the bandwidth of the circuit. Such inductive broadbanding technique combined with C3MOS circuitry is described in greater detail in commonly-assigned U.S. patent application Ser. No. 09/610,905, now U.S. Pat. No. 6,340,899 B1, entitled “Current-Controlled CMOS Circuits with Inductive Broadbanding,” by M. Green, which is hereby incorporated by reference in its entirety for all purposes as indicated above.


In commonly-assigned U.S. patent application Ser. No. 10/028,806, now U.S. Pat. No. 6,624,699 B2, entitled “Current-controlled CMOS wideband data amplifier circuits,” by Guangming Yin and Jun Cao, which is hereby incorporated by reference in its entirety for all purposes as indicated above, the current-controlled CMOS wideband data amplifier circuits disclosed therein having expanded bandwidth are designed to achieve such the goal of having a flat frequency response over a very wide frequency range, where maximum bandwidth expansion is achieved by using series inductor peaking with Miller capacitance cancellation technique and shunt inductor peaking in current controlled CMOS (C3MOS or Current-controlled CMOS wideband data amplifier circuits) circuits.



FIG. 1 illustrates an embodiment 100 of a current-controlled CMOS (C3MOS) wideband data amplifier circuit. A current source transistor can be biased by a bias voltage so that a constant current flows from drain to source in the current source transistor. Two separate differential transistors compose a wideband differential transistor pair. A first differential transistor has its gate tied to the negative end of a first series peaking inductor L1, while a positive differential input signal INP is coupled to the positive end of the first series peaking inductor L1. Similarly, a second differential transistor has its gate tied to the negative end of a second series peaking inductor L2, while a negative differential input signal INN is coupled to the positive end of the second series peaking inductor L2.


Assuming that the first and second differential transistors are identical, then the first and second series peaking inductors L1 and L2 have the same inductance. A first output resistor R3 has its negative end tied to the drain of the first differential transistor, and has its positive end tied to the negative end of a first shunt peaking inductor L3. A second output resistor R4 has its negative end tied to the drain of the second differential transistor, and has its positive end tied to the negative end of a second shunt peaking inductor L4. The positive ends of the first and second shunt peaking inductors L3 and L4 are tied to the positive supply voltage (shown as VCC).


Preferably, the first and second output resistors R3 and R4 have the same resistance value R, and the first and second shunt peaking inductors L3 and L4 have the same inductances. A first capacitor C1 (which may be referred to as a first Miller cancellation capacitor C1) has its positive end coupled to the drain of the second differential transistor, and has its negative end coupled to the gate of the first differential transistor. A second capacitor C2 (which may be referred to as a second Miller cancellation capacitor C2) has its positive end coupled to the drain of the first differential transistor, and has its negative end coupled to the gate of the second differential transistor. A first output signal OUTP is taken at the drain of the second differential transistor, and the second output signal OUTN is taken at the drain of the first differential transistor.


Input series inductors (L1 and L2) resonate with the capacitance at the input of the differential pair at high frequencies and thus extend the bandwidth of the amplifier. In addition, at high frequencies, the inductors (L1 and L2) act as high impedance chokes between the termination resistors (shown as two series connected 50 Ω resistors) and the capacitors and thus also improve the input reflection for the C3MOS wideband data amplifier circuit of this embodiment 100.



FIG. 2 illustrates an embodiment 200 of a variable delay cell. As mentioned above, there is a need in the art for delay cells within many broadband data communication applications. Also, variable delay cells provide for even greater flexibility and applicability than fixed delay type delay cells. This embodiment 200 shows a basic building block of a data synchronization circuit. The input data (DIN) is retimed by a flip-flop (FF) driven by a clock signal (CLK). For the FF to operate correctly, the input data (DIN) and clock (CLK) must satisfy one or more certain timing requirements. A delay cell is often inserted between the input data (DIN) and the FF so that the timing relation between the clock (CLK) and data (DIN) at the input of the FF can be adjusted to compensate for any phase variations of the input signals or circuit delay variations due to changes in process, voltage supply or temperature (PVT). As the input data (DIN) runs at an ever increasing rate, the delay cell needs to have continuously higher and higher bandwidth in order to preserve the signal integrity of the input data.



FIG. 3 illustrates another embodiment 300 of a variable delay cell. This embodiment 300 is another example by which a variable delay cell can be employed. The embodiment 300 is a 5-tap finite impulse response (FIR) filter that is constructed to process the input data (DIN). For the FIR filter to work as designed, each delay cell (i.e., delay cells 310, 320, 330, and 340) should have the same delay in time which is usually inversely proportional to the data rate. Similar to the embodiment 200 of the FIG. 2, variable delay cells are desirable to compensate the circuit delay variations due to changes in PVT conditions. Furthermore, if the input data rate may vary, the delay cell also needs to provide corresponding changes in delay. Since multiple delay cells (i.e., delay cells 310, 320, 330, and 340) are usually connected in tandem, it's very important for the delay cells to have relatively high bandwidth in regard to the data rate.


In the embodiment 300 of a variable delay cell implemented using a 5-tap FIR filter, a goal is to have a data stream with an equal delay (e.g., Δtn) between each of the various components of the data stream. In the embodiment 300, there are 5 components of the data stream. Typically, this delay (e.g., Δtn) is the same, and the delays of each of these delay cells 310, 320, 330, and 340 may be adjusted together.


Another possible embodiment by which a variable delay cell can be implemented is to add a variable capacitive load at the output of conventional data buffers (e.g., differential pairs). However, there is a fundamental limitation on such an approach. For those circuits whose small-signal transfer function can be approximated by a single-pole response, the bandwidth and delay are directly coupled together. For example, the 10%-90% rise/fall time in response to an input step equals to 0.35/BW (where BW is the −3 dB bandwidth of the small signal response of the circuit). The larger is the delay amount, then the smaller is the bandwidth. As a result, the minimum bandwidth requirement on the delay cell puts an upper limit of the delay amount if such a circuit is employed. On the other hand, the smaller is the delay amount, then the larger is the bandwidth the circuit needs to have, which usually means more power and larger area the delay cell needs to have if a simple single-pole buffer is employed.



FIG. 4 illustrates an embodiment 400 of a two-path adjustable high bandwidth delay cell. This embodiment 400 employs two separate data paths for the input data. One of the data paths has a relatively smaller amount of propagation delay (shown as buffer(s) with small delay 410), and the other of the data paths has a relatively larger amount of propagation delay (shown as buffer(s) with large delay 420). The signal passes through the two different paths are then combined together at a summing stage. The relative strength of the two paths can be adjusted (using a control block 430) and thus enable the overall data path to have a variable delay. To implement the slow path, several fast buffers can be connected in series in order to have a large enough propagation delay while preserving signal integrity.


For transmission rates of 10 Gbps (Giga-bits per second) or higher, CMOS data buffers generally consume a significant amount of power due to limitations of the technology. In the two-path embodiment 400 of the FIG. 4 for a variable delay cell, at least three high-speed blocks need to be powered up, including the summer. The summer is especially power consumptive because it has two pairs of full-rate data input which will add a significant amount lot of parasitic loading to the high speed data path. Furthermore, the input data are connected to both the quick path and the slow path. If this combined input is connected to the output of a front buffer, this configuration will significantly increase the loading to the previous stage and thus reduce the overall bandwidth of the data path. If the combined input is connected to the input pads of the chip directly, it will cause a severe degradation of the matching between the input of the receiver and the traces on the printed circuit board (PCB) due to the excessive capacitance loading. This results in large amount of reflections and will degrade the integrity of the input data significantly. Another potential issue of the two path implementation is when the signals that have been passed going through the two different paths are combined together at the summer, additional jitter may be generated if the delay between the two path differs significantly. It would be most desirable to have a high bandwidth variable delay cell that would not have increased power and loading requirements across a wide variety of applications.


The embodiment 400 mixes two types of buffers together: a slow buffer and a fast buffer. The larger delay that is required or desired in a particular application inherently incurs a lower bandwidth in the embodiment 400. The lower bandwidth in such an instance acts as a low pass filter (LPF). This LPF filtering may corrupt the signal undesirably due to the low frequency cut-off. Undesirable inter-symbol Interference (ISI) may also be introduced because of this LPF filtering. In very high speed, broadband application, such effects can significantly reduce overall performance.



FIG. 5 illustrates an embodiment 500 of a wideband variable delay cell. In this embodiment 500, the input of the signal is connected to a current-controlled CMOS (C3MOS) wideband data amplifier circuit having expanded bandwidth that is similar to the embodiment 100 of the FIG. 1. The operation of such a wideband data amplifier circuit having expanded bandwidth is also described in commonly-assigned U.S. patent application Ser. No. 10/028,806, now U.S. Pat. No. 6,624,699 B2, entitled “Current-controlled CMOS wideband data amplifier circuits,” by Guangming Yin and Jun Cao. In such a C3MOS wideband data amplifier circuit having expanded bandwidth, maximum bandwidth expansion is achieved by using series inductor peaking with miller capacitance cancellation technique and shunt inductor peaking in current controlled CMOS circuit (C3MOS or C3MOS).


Connected to the output of the wideband data buffer having expanded bandwidth (that includes the differential transistor pair M1 and M2, i.e. a wideband differential transistor pair) is a cross-coupled differential pair (that includes the differential transistor pair M3 and M4, i.e. a cross-coupled differential transistor pair) as the regenerative stage for the data. In this embodiment 500, there are therefore two very fast operating blocks [(1) wideband data buffer and (2) cross-coupled differential pair] that operate cooperatively to perform the functionality of a wideband variable delay cell that is appropriate for broadband applications.


To vary the delay, the currents of the buffer stage and the cross-coupled differential pair stage can be adjusted (e.g., using a control block 530). When all the current passes through the buffer stage and the cross-coupled differential pair stage current source is turned off, the circuit behaves just like a wideband data amplifier having expanded bandwidth as described and referenced above (i.e., the embodiment 100 of the FIG. 1 and within U.S. Pat. No. 6,624,699 B2). With the high bandwidth achieved by various design skills, the delay through the delay cell can be very small. To increase the delay, the current going through the buffer stage is reduced and the current going through the cross-coupled differential pair stage is increased by the same amount. For the output signal to reach full swing, it has to go through the regenerative process at the cross-coupled differential pair to be amplified, and thus the delay is increased. A first-order analysis of the embodiment 500 of such a variable delay cell can be done based on a two-step approximation, as shown below.


Since the buffer stage of the variable delay cell has very high bandwidth, the delay from input to output at this stage is very small. It is reasonable to assume the delay through the buffer stage is a relatively constant value (denoted as Tb); the delay variation of the delay cell is mostly contributed by the regenerative process of the cross-coupled differential pair stage (denoted as Tr). In the two-step approximation, the signal through the delay cell is divided into two steps. In the first step, the signal Vin is buffered by the input stage and appear at the output after a delay of T0, taking a value of Vm·Vm is equal to the current passing through the buffer stage (Ib) times the load resistance (R). In the second step, the signal Vm at the input of the cross-coupled differential pair goes through the positive feedback of the cross-coupled differential pair and gets regenerated until reaching the value of V0, after a delay of Tr. The voltage, V0, is a fixed value, determined by the total current (I0=Ib+Ir) and load resistance (V0=R·I0).


If it assumed that Ib=x·I0, then Ir=(1−x)·I0. The value of x can be changed between I and 0, where x=1 means that all the current is going through the buffer stage. At the output, which is also the input of the cross-coupled differential pair (that includes the differential transistor pair M3 and M4), after T0 of delay vm=x·I0·R. It is noted that the output voltage of a regenerative cross-coupled differential pair increases exponentially with time and is proportional to the initial voltage as indicated below.

V(t)=Vm·e(t/τ)


where τ is the characteristic time constant of the cross-coupled differential pair, which is inversely proportional to the gain of the cross-coupled differential pair. For CMOS transistors, the gain is proportional to the square root of the biasing current in the first order as indicated below.






τ
=

k



(

1
-
x

)

·

I
0











V


(

T
r

)


=


V
0

=


V
m

·



(


T
r

/
τ

)











T
r

=


τ
·

ln


(


V
0


V
m


)



=


-
k

·

I
0

-
0.5


·


(

1
-
x

)


-
0.5


·

ln


(
x
)









FIG. 6 illustrates an embodiment 600 of delay through a cross-coupled differential pair (normalized) in response to current in a buffer stage (normalized). This embodiment 600 shows the normalized delay through the cross-coupled differential pair stage, Tr/(k·I0−0.5), as a function of the normalized current in the buffer stage







(

x
=


I
b


I
0



)

.





It is evident that as the current passing through the buffer stage becomes smaller, the delay through the cross-coupled differential pair stage becomes bigger. The total delay through the delay cell is T=Tb+Tr. Thus by changing the current distribution between the buffer stage (including the differential transistor pair M1 and M2) and cross-coupled differential pair stage (including the differential transistor pair M3 and M4) (i.e., which involves changing the value of x), the amount of the delay can be readily adjusted.


This control of the two currents, Ib and Ir, and their relationship, may be performed using a control block (e.g., control block 530 in the embodiment 500 of the FIG. 5). It is noted that the total current (I0=Ib+Ir) required in the embodiment 500 is kept constant, but merely the relationship (or relationship) between these 2 currents, Ih and Ir, is controlled thereby controlling the overall delay. For example, a variable delay of such a variable delay cell circuit can be controlled by adjusting at least one of a first current, Ib, in a first variable current source and a second current, Ir, in the second variable current source. A variable delay of such a variable delay cell circuit can be controlled can be viewed as being a function of a ratio of a first current, Ib, in the first current source divided by a sum that includes the first current in the first current source and the second current in the second current source (e.g., total current (I0=Ib+Ir)). Also, because this total current (I0=Ib+Ir) remains unchanged, then the DC level of the delay cell output incurred by the load resistance also remains unchanged.


As the value of x approaches 1, then the total delay a variable delay cell (e.g., the embodiment 500 of the FIG. 5) approaches the delay of the wideband data buffer (that includes the differential transistor pair M1 and M2). As the value of x approaches 0 (zero), then the total delay a variable delay cell (e.g., the embodiment 500 of the FIG. 5) approaches the maximum possible delay of the device that includes the delay of both the wideband data buffer (that includes the differential transistor pair M1 and M2) and the cross-coupled differential pair (that includes the differential transistor pair M3 and M4).


Various embodiments of the invention presented herein provide for a large amount of delay to be incurred (which is selectable and variable, as desired in any of a wide variety of applications) with a minimal amount of signal quality degradation (i.e., minimal or no ISI).


One of many advantages of this novel design is that all the bandwidth extension techniques as referenced above with respect to a wideband data amplifier circuit having expanded bandwidth can be readily applied to the variable delay cell. In the embodiment 500 of FIG. 5, series input inductors L1 and L2, shunt peaking inductors L3 and L4, and negative miller capacitors C1 and C2 are all added so that the stage including differential transistor pair M1 and M2 can achieve high bandwidth with minimum increase of power. As the bandwidth of the buffer stage increases, a lower end of the delay value reduces and thus the variable delay range is increased without compromising the signal integrity. In addition, as the buffer stage becomes much faster than the cross-coupled differential pair stage, the predictions of the two-step approximation become more accurate.


By eliminating the double path (as depicted in the embodiment 400 of the FIG. 4), the embodiment 500 of the FIG. 5 shows an integrated delay cell that does not require the summing stage and thus reduces the power significantly. There is no extra capacitive loading added to the high speed path at the input. The additional capacitance due to the drains of the cross-coupled differential pair transistors at the output can be easily compensated by the shunt inductor. As a result, it is much easier to incorporate the integrated stage into the data path without compromising the signal integrity or degrading the impedance matching.


From the embodiment 500 of the FIG. 5, it is clear that the amount of delay can be changed continuously by implementing continuous control signals for the two current sources (i.e., using control block 530). A programmable delay cell can also be readily implemented by replacing the two current sources (Ib and Ir) with a series of smaller current source, each can be turn on or off using digital control signals.


In summary, a fully differential current-controlled CMOS (C3MOS) integrated wideband delay cell is presented herein. At the buffer stage, bandwidth extension techniques such as shunt peaking, series inductive peaking can be readily applied to increase the range of the flat frequency response. A cross-coupled differential pair stage is added to the output of the buffer to add delay from input to output through the regenerative process of the cross-coupled differential transistor pair connected in a positive feedback configuration. The delay can be adjusted by varying the current distribution between the buffer stage and the cross-coupled differential pair stage. The integrated delay cell can then accommodate a large amount of delay while at the same time maintain a high bandwidth for the data path, without adding load to the input and without adding power consumption.


It is also noted that the methods described within the preceding figures can also be performed within any appropriate system and/or apparatus design (communication systems, communication transmitters, communication receivers, communication transceivers, and/or functionality described therein) without departing from the scope and spirit of the invention.


In view of the above detailed description of the invention and associated drawings, other modifications and variations will now become apparent. It should also be apparent that such other modifications and variations can be effected without departing from the spirit and scope of the invention.

Claims
  • 1. A current-controlled CMOS (C3MOS) wideband variable delay cell circuit, the circuit comprising: a first differential transistor having a first source, a first gate, and a first drain;a second differential transistor having a second source that is directly coupled to the first source of the first differential transistor, a second gate, and a second drain;a first variable current source transistor such that a drain of the first variable current source transistor is directly coupled to the directly coupled first source and second source and a source of the first variable current source transistor is grounded;a first lumped input impedance component that is directly coupled between a first differential input of the C3MOS wideband variable delay cell circuit and the first gate of the first differential transistor;a second lumped input impedance component that is directly coupled between a second differential input of the C3MOS wideband variable delay cell circuit and the second gate of the second differential transistor;a first output impedance, having a first output resistor and a first shunt peaking inductor connected in series, that is directly coupled between the first drain of the first differential transistor and a supply voltage;a second output impedance, having a second output resistor and a second shunt peaking inductor connected in series, that is directly coupled between the second drain of the second differential transistor and the supply voltage;a third differential transistor having a third source, a third gate, and a third drain;a fourth differential transistor having a fourth source that is directly coupled to the third source of the third differential transistor, a fourth gate, and a fourth drain;a second variable current source transistor such that a drain of the second variable current source transistor is directly coupled to the directly coupled third source and fourth source and a source of the second variable current source transistor is grounded; anda control module that: adjusts a delay of the C3MOS wideband variable delay cell circuit by adjusting a first DC bias voltage provided to a gate of the first variable current source transistor to set a first DC bias current in the first variable current source transistor and by adjusting a second DC bias voltage provided to a gate of the second variable current source transistor to set a second DC bias current in the second variable current source transistor; andkeeps a sum of the first DC bias current in the first variable current source transistor and the second DC bias current in the second variable current source transistor constant; and wherein:the first lumped input impedance component and the second lumped input impedance component operate to perform bandwidth expansion of the wideband differential transistor pair;the first drain of the first differential transistor, the third drain of the third differential transistor, and the fourth gate of the fourth differential transistor are directly coupled at a first node that is a first differential output of the C3MOS wideband variable delay cell circuit; andthe second drain of the second differential transistor, the fourth drain of the fourth differential transistor, and the third gate of the third differential transistor are directly coupled at a second node that is a second differential output of the C3MOS wideband variable delay cell circuit.
  • 2. The circuit of claim 1, further comprising: a first capacitor that is coupled between the first drain of the first differential transistor and the second gate of the second differential transistor; anda second capacitor that is coupled between the second drain of the second differential transistor and the first gate of the first differential transistor.
  • 3. The circuit of claim 1, wherein: the first lumped input impedance component comprises a first series inductor; andthe second lumped input impedance component comprises a second series inductor.
  • 4. The circuit of claim 1, wherein: the first output resistor of the first output impedance is coupled between the first drain of the first differential transistor and the first shunt peaking inductor of the first output impedance; andthe first shunt peaking inductor of the first output impedance is coupled between the first output resistor of the first output impedance and the supply voltage.
  • 5. The circuit of claim 1, wherein: the first differential transistor, the second differential transistor, the third differential transistor, the fourth differential transistor, the first variable current source transistor, and the second variable current source transistor comprise NMOS (Negative-Channel Metal-Oxide Semiconductor) transistors.
  • 6. The circuit of claim 1, wherein: the first differential transistor, the second differential transistor, the third differential transistor, the fourth differential transistor, the first variable current source transistor, and the second variable current source transistor comprise PMOS (Positive-Channel Metal-Oxide Semiconductor) transistors.
  • 7. The circuit of claim 1, wherein: the control module keeps a DC level output of the first differential output of the C3MOS wideband variable delay cell circuit and the second differential output of the C3MOS wideband variable delay cell circuit constant by keeping the sum of the first DC bias current in the first variable current source transistor and the second DC bias current in the second variable current source transistor being constant.
  • 8. The circuit of claim 1, wherein: the delay of the C3MOS wideband variable delay cell circuit is a function of a ratio of the first DC bias current in the first variable current source transistor divided by the sum of the first DC bias current in the first variable current source transistor and the second DC bias current in the second variable current source transistor.
  • 9. The circuit of claim 1, wherein: the C3MOS wideband variable delay cell circuit is one delay cell of a plurality of delay cells implemented within an n-tap finite impulse response (FIR) filter.
  • 10. A current-controlled CMOS (C3MOS) wideband variable delay cell circuit, the circuit comprising: a wideband differential transistor pair having a first differential input, a second differential input, a first differential output, and a second differential output;a first variable current source transistor, such that a drain of the first variable current source transistor is directly coupled to directly coupled sources of the wideband differential transistor pair and a source of the first variable current source transistor is grounded, that is operable to provide first DC bias current to the wideband differential transistor pair;a cross-coupled differential transistor pair having a third differential input, a fourth differential input, a third differential output, and a fourth differential output;a second variable current source transistor, such that a drain of the second variable current source transistor is directly coupled to directly coupled sources of the cross-coupled differential transistor pair and a source of the second variable current source transistor is grounded, that is operable to provide second DC bias current to the cross-coupled differential transistor pair;a first lumped input impedance component that directly couples a first differential input signal to the first differential input of the wideband differential transistor pair;a second lumped input impedance component that directly couples a second differential input signal to the second differential input of the wideband differential transistor pair;a first output impedance that directly couples the first differential output of the wideband differential transistor pair to a power supply voltage;a second output impedance that directly couples the second differential output of the wideband differential transistor pair to the power supply voltage; anda control module that: adjusts a delay of the C3MOS wideband variable delay cell circuit by adjusting a first DC bias voltage provided to a gate of the first variable current source transistor to set the first DC bias current in the first variable current source transistor and by adjusting a second DC bias voltage provided to a gate of the second variable current source transistor to set the second DC bias current in the second variable current source transistor; andkeeps a sum of the first DC bias current in the first variable current source transistor and the second DC bias current in the second variable current source transistor constant; and wherein:the first lumped input impedance component and the second lumped input impedance component operate to perform bandwidth expansion of the wideband differential transistor pair;the second differential output of the wideband differential transistor pair, the third differential input of the cross-coupled differential transistor pair, and the third differential output of the cross-coupled differential transistor pair are directly coupled at a first node that is a first differential output of the C3MOS wideband variable delay cell circuit; andthe first differential output of the wideband differential transistor pair, the fourth differential input of the cross-coupled differential transistor pair, and the fourth differential output of the cross-coupled differential transistor pair are directly coupled at a second node that is a second differential output of the C3MOS wideband variable delay cell circuit.
  • 11. The circuit of claim 10, wherein: the delay of the C3MOS wideband variable delay cell circuit is a function of a ratio of the first DC bias current in the first variable current source transistor divided by the sum of the first DC bias current in the first variable current source transistor and the second DC bias current in the second variable current source transistor.
  • 12. The circuit of claim 10, wherein: the wideband differential transistor pair comprises: a first differential transistor having a first source, a first gate that comprises the first differential input of the wideband differential transistor pair, and a first drain that comprises the second differential output of the wideband differential transistor pair;a second differential transistor having a second source, a second gate that comprises the second differential input of the wideband differential transistor pair, and a second drain that comprises the first differential output of the wideband differential transistor pair; andwherein the drain of the first variable current source transistor is directly coupled to the first source of the first differential transistor and to the second source of the second differential transistor;the cross-coupled differential transistor pair comprises: a third differential transistor having a third source, a third gate, and a third drain;a fourth differential transistor having a fourth source, a fourth gate, and a fourth drain; andwherein the drain of the second variable current source transistor is directly coupled to the third source of the third differential transistor and to the fourth source of the fourth differential transistor;the first drain of the first differential transistor, the third drain of the third differential transistor, and the fourth gate of the fourth differential transistor are directly coupled; andthe second drain of the second differential transistor, the fourth drain of the third differential transistor, and the third gate of the third differential transistor are directly coupled.
  • 13. The circuit of claim 10, wherein: a first capacitor that is coupled between the first differential input of the wideband differential transistor pair and the first differential output of the wideband differential transistor pair; anda second capacitor that is coupled between the second differential input of the wideband differential transistor pair and the second differential output of the wideband differential transistor pair.
  • 14. The circuit of claim 10, wherein: the first lumped input impedance component comprises a first series inductor; andthe second lumped input impedance component comprises a second series inductor.
  • 15. The circuit of claim 10, wherein: the first output impedance comprises a first output resistor and a first shunt peaking inductor connected in series; andthe second output impedance comprises a second output resistor and a second shunt peaking inductor connected in series.
  • 16. A current-controlled CMOS (C3MOS) wideband variable delay cell circuit, the circuit comprising: a first differential transistor having a first source, a first gate, and a first drain;a second differential transistor having a second source that is directly coupled to the first source of the first differential transistor, a second gate, and a second drain;a first variable current source transistor such that a drain of the first variable current source transistor is directly coupled to the directly coupled first source and second source and a source of the first variable current source transistor is grounded;a first series inductor that is directly coupled between a first differential input of the C3MOS wideband variable delay cell circuit and the first gate of the first differential transistor;a second series inductor that is directly coupled between a second differential input of the C3MOS wideband variable delay cell circuit and the second gate of the second differential transistor;a first output impedance, having a first output resistor and a first shunt peaking inductor connected in series, such that the first output resistor is directly coupled between the drain of the first differential transistor and the first shunt peaking inductor, and the first shunt peaking inductor is directly coupled between the first output resistor and a supply voltage;a second output impedance, having a second output resistor and a second shunt peaking inductor connected in series, such that the second output resistor is directly coupled between the drain of the second differential transistor and the second shunt peaking inductor, and the second shunt peaking inductor is directly coupled between the second output resistor and the supply voltage;a first capacitor that is directly coupled between the drain of the first differential transistor and the gate of the second differential transistor;a second capacitor that is directly coupled between the drain of the second differential transistor and the gate of the first differential transistor;a third differential transistor having a third source, a third gate, and a third drain;a fourth differential transistor having a fourth source that is directly coupled to the third source of the third differential transistor, a fourth gate, and a fourth drain;a second variable current source transistor such that a drain of the second variable current source transistor is directly coupled between the directly coupled third source and fourth source and a source of the second variable current source transistor is grounded; anda control module that: adjusts a delay of the C3MOS wideband variable delay cell circuit by adjusting a first DC bias voltage provided to a gate of the first variable current source transistor to set a first DC bias current in the first variable current source transistor and by adjusting a second DC bias voltage provided to a gate of the second variable current source transistor to set a second DC bias current in the second variable current source transistor; andkeeps a sum of the first DC bias current in the first variable current source transistor and the second DC bias current in the second variable current source transistor constant; and wherein:the first drain of the first differential transistor, the third drain of the third differential transistor, and the fourth gate of the fourth differential transistor are directly coupled at a first node that is a first differential output of the C3MOS wideband variable delay cell circuit; andthe second drain of the second differential transistor, the fourth drain of the fourth differential transistor, and the third gate of the third differential transistor are directly coupled at a second node that is a second differential output of the C3MOS wideband variable delay cell circuit.
  • 17. The circuit of claim 16, wherein: the control module keeps a DC level output of the first differential output of the C3MOS wideband variable delay cell circuit and the second differential output of the C3MOS wideband variable delay cell circuit constant by keeping the sum of the first DC bias current in the first variable current source transistor and the second DC bias current in the second variable current source transistor being constant.
  • 18. The circuit of claim 16, wherein: the delay of the C3MOS wideband variable delay cell circuit is a function of a ratio of the first DC bias current in the first variable current source transistor divided by the sum of the first DC bias current in the first variable current source transistor and the second DC bias current in the second variable current source transistor.
  • 19. The circuit of claim 16, wherein: the C3MOS wideband variable delay cell circuit is one delay cell of a plurality of delay cells implemented within an n-tap finite impulse response (FIR) filter.
  • 20. The circuit of claim 16, wherein: the first differential transistor, the second differential transistor, the third differential transistor, the fourth differential transistor, the first variable current source transistor, and the second variable current source transistor comprise NMOS (Negative-Channel Metal-Oxide Semiconductor) transistors or PMOS (Positive-Channel Metal-Oxide Semiconductor) transistors.
CROSS REFERENCE TO RELATED PATENTS/PATENT APPLICATIONS

The present U.S. Utility Patent Application claims priority pursuant to 35 U.S.C. § 119(e) to the following U.S. Provisional Patent Application which is hereby incorporated herein by reference in its entirety and made part of the present U.S. Utility Patent Application for all purposes: 1. U.S. Provisional Application Ser. No. 60/714,814, entitled “Current-controlled CMOS (C3MOS) fully differential integrated delay cell with variable delay and high bandwidth,”, filed Tuesday, Sep. 6, 2005 (Sep. 6, 2005), pending. The following U.S. Utility Patent Applications are hereby incorporated herein by reference in their entirety and made part of the present U.S. Utility Patent Application for all purposes: 1. U.S. Utility patent application Ser. No. 09/484,856, entitled “Current-controlled CMOS logic family,”, filed Jan. 18, 2000 (Jan. 18, 2000), now U.S. Pat. No. 6,424,194 B1, issued Jul. 23, 2002 (Jul. 23, 2002). 2. U.S. Utility patent application Ser. No. 09/610,905, entitled “Current-controlled CMOS circuits with inductive broadbanding,”, filed Jul. 6, 2000 (Jul. 6, 2000), now U.S. Pat. No. 6,340,899 B1, issued Jan. 22, 2002 (Jan. 22, 2002). 3. U.S. Utility patent application Ser. No. 10/028,806, entitled “Current-controlled CMOS wideband data amplifier circuits,”, filed Oct. 25, 2001 (Oct. 25, 2001), now U.S. Pat. No. 6,624,699 B2, issued Sep. 23, 2003 (Sep. 23, 2003).

US Referenced Citations (190)
Number Name Date Kind
3569732 Christensen Mar 1971 A
4333020 Maeder Jun 1982 A
4395774 Rapp Jul 1983 A
4449248 Leslie et al. May 1984 A
4519068 Krebs et al. May 1985 A
4545023 Mizzi Oct 1985 A
4599526 Paski Jul 1986 A
4649293 Ducourant Mar 1987 A
4680787 Marry Jul 1987 A
4727309 Vajdic et al. Feb 1988 A
4731796 Masterson et al. Mar 1988 A
4737975 Shafer Apr 1988 A
4761822 Maile Aug 1988 A
4777657 Gillaspie Oct 1988 A
4794649 Fujiwara Dec 1988 A
4804954 Macnak et al. Feb 1989 A
4806796 Bushey et al. Feb 1989 A
4807282 Kazan et al. Feb 1989 A
4817115 Campo et al. Mar 1989 A
4850009 Zook et al. Jul 1989 A
4890832 Zomaki Jan 1990 A
4894792 Mitchell et al. Jan 1990 A
4916441 Gombrich Apr 1990 A
4964121 Moore Oct 1990 A
4969206 Desrochers Nov 1990 A
4970406 Fitzpatrick et al. Nov 1990 A
4977611 Maru Dec 1990 A
4995099 Davis Feb 1991 A
5008879 Fischer et al. Apr 1991 A
5025486 Klughart Jun 1991 A
5029183 Tymes Jul 1991 A
5031231 Miyaski Jul 1991 A
5033109 Kawano et al. Jul 1991 A
5041740 Smith Aug 1991 A
5055659 Hendrick et al. Oct 1991 A
5055660 Bertagna et al. Oct 1991 A
5079452 Lain et al. Jan 1992 A
5081402 Koleda Jan 1992 A
5087099 Stolarczyk Feb 1992 A
5115151 Hull et al. May 1992 A
5117501 Childress et al. May 1992 A
5119502 Kallin et al. Jun 1992 A
5121408 Cai et al. Jun 1992 A
5123029 Bantz et al. Jun 1992 A
5128938 Borras Jul 1992 A
5134347 Koleda Jul 1992 A
5142573 Umezawa Aug 1992 A
5150361 Wieczorek et al. Sep 1992 A
5152006 Klaus Sep 1992 A
5153878 Krebs Oct 1992 A
5175870 Mabey et al. Dec 1992 A
5177378 Nagasawa Jan 1993 A
5179721 Comroe et al. Jan 1993 A
5181200 Harrison Jan 1993 A
5196805 Beckwith et al. Mar 1993 A
5216295 Hoang Jun 1993 A
5230084 Nguyen Jul 1993 A
5239662 Danielson et al. Aug 1993 A
5241542 Natarajan et al. Aug 1993 A
5241691 Owen Aug 1993 A
5247656 Kabuo et al. Sep 1993 A
5249220 Moskowitz et al. Sep 1993 A
5249302 Metroka et al. Sep 1993 A
5265238 Canova, Jr. et al. Nov 1993 A
5265270 Stengel et al. Nov 1993 A
5274666 Dowdell et al. Dec 1993 A
5276680 Messenger Jan 1994 A
5278831 Mbey et al. Jan 1994 A
5289055 Razavi Feb 1994 A
5289469 Tanaka Feb 1994 A
5291516 Dixon et al. Mar 1994 A
5293639 Wilson et al. Mar 1994 A
5296849 Ide Mar 1994 A
5297144 Gilbert et al. Mar 1994 A
5301196 Ewen et al. Apr 1994 A
5323392 Ishii et al. Jun 1994 A
5331509 Kikinis Jul 1994 A
5345449 Buckingham et al. Sep 1994 A
5349649 Iijima Sep 1994 A
5361397 Wright Nov 1994 A
5363121 Freund Nov 1994 A
5373149 Rasmussen Dec 1994 A
5373506 Tayloe et al. Dec 1994 A
5390206 Rein et al. Feb 1995 A
5392023 D'Avello et al. Feb 1995 A
5406615 Miller, II et al. Apr 1995 A
5406643 Burke et al. Apr 1995 A
5418837 Johansson et al. May 1995 A
5420529 Guay et al. May 1995 A
5423002 Hart Jun 1995 A
5426637 Derby et al. Jun 1995 A
5428636 Meier Jun 1995 A
5430845 Rimmer et al. Jul 1995 A
5434518 Sinh et al. Jul 1995 A
5438329 Gastouniotis et al. Aug 1995 A
5440560 Rypinski Aug 1995 A
5457412 Tamba et al. Oct 1995 A
5459412 Mentzer Oct 1995 A
5465081 Todd Nov 1995 A
5481265 Russell Jan 1996 A
5481562 Pearson et al. Jan 1996 A
5510734 Sone Apr 1996 A
5510748 Erhart et al. Apr 1996 A
5521530 Yao et al. May 1996 A
5526314 Kumar Jun 1996 A
5533029 Gardner Jul 1996 A
5535373 Oinowich Jul 1996 A
5544222 Robinson et al. Aug 1996 A
5548230 Gerson et al. Aug 1996 A
5576644 Pelella Nov 1996 A
5579487 Meyerson et al. Nov 1996 A
5584048 Wieczorek Dec 1996 A
5600267 Wong et al. Feb 1997 A
5606268 Van Brunt Feb 1997 A
5614841 Marbot et al. Mar 1997 A
5625308 Matsumoto et al. Apr 1997 A
5630061 Richter et al. May 1997 A
5640356 Gibbs Jun 1997 A
5675584 Jeong Oct 1997 A
5680633 Koenck et al. Oct 1997 A
5708399 Fujii et al. Jan 1998 A
5724361 Fiedler Mar 1998 A
5732346 Lazaridis et al. Mar 1998 A
5740366 Mahany et al. Apr 1998 A
5744366 Kricka et al. Apr 1998 A
5767699 Bosnyak et al. Jun 1998 A
5796727 Harrison et al. Aug 1998 A
5798658 Werking Aug 1998 A
5821809 Boerstler et al. Oct 1998 A
5839051 Grimmett et al. Nov 1998 A
5877642 Takahashi Mar 1999 A
5892382 Ueda et al. Apr 1999 A
5903176 Westgate May 1999 A
5905386 Gerson May 1999 A
5940771 Golnick et al. Aug 1999 A
5945847 Ransijn Aug 1999 A
5945858 Sato Aug 1999 A
5945863 Coy Aug 1999 A
5969556 Hayakawa Oct 1999 A
5994939 Johnson et al. Nov 1999 A
6002279 Evans et al. Dec 1999 A
6014041 Somasekhar et al. Jan 2000 A
6014705 Koenck et al. Jan 2000 A
6028454 Elmasry et al. Feb 2000 A
6037841 Tanjii et al. Mar 2000 A
6037842 Bryan et al. Mar 2000 A
6038254 Ferraiolo et al. Mar 2000 A
6060951 Inoue May 2000 A
6061747 Ducaroir et al. May 2000 A
6081162 Johnson Jun 2000 A
6094074 Chi Jul 2000 A
6104214 Ueda et al. Aug 2000 A
6111425 Bertin et al. Aug 2000 A
6114843 Olah Sep 2000 A
6188339 Hasegawa Feb 2001 B1
6194950 Kibar Feb 2001 B1
6222380 Gerowitz et al. Apr 2001 B1
6232844 Talaga, Jr. May 2001 B1
6255881 Balistreri et al. Jul 2001 B1
6259312 Murtojarvi Jul 2001 B1
6259321 Song et al. Jul 2001 B1
6265898 Bellaouar Jul 2001 B1
6310501 Yamashita Oct 2001 B1
6320422 Koh Nov 2001 B1
6366166 Belot Apr 2002 B1
6374311 Mahany et al. Apr 2002 B1
6377095 Kuo Apr 2002 B1
6414558 Ryan et al. Jul 2002 B1
6417737 Moloudi et al. Jul 2002 B1
6424194 Hairapetian Jul 2002 B1
6429692 Chan et al. Aug 2002 B1
6456122 Park et al. Sep 2002 B1
6462590 Warwar Oct 2002 B2
6463092 Kim Oct 2002 B1
6559693 Tung et al. May 2003 B2
6566720 Aldrich May 2003 B2
6624699 Yin et al. Sep 2003 B2
6686787 Ling Feb 2004 B2
6686788 Kim et al. Feb 2004 B2
6774721 Popescu et al. Aug 2004 B1
6864558 Momtaz et al. Mar 2005 B2
6909309 Green Jun 2005 B2
6911857 Stiff Jun 2005 B1
7256646 Eid et al. Aug 2007 B2
20020017921 Green Feb 2002 A1
20030034843 Fanous et al. Feb 2003 A1
20040104746 Kim et al. Jun 2004 A1
20050015638 Zhang Jan 2005 A1
20050093628 Chen May 2005 A1
20050110525 Chen May 2005 A1
Foreign Referenced Citations (5)
Number Date Country
0685933 Jun 1995 EP
1 306 970 Jun 2002 EP
1420511 May 2004 EP
WO 8101780 Jun 1981 WO
WO 0163767 Aug 2001 WO
Related Publications (1)
Number Date Country
20070052467 A1 Mar 2007 US
Provisional Applications (1)
Number Date Country
60714814 Sep 2005 US