The present invention relates in general to integrated circuitry, and in particular to complementary metal-oxide-semiconductor (CMOS) logic and circuits with enhanced speed characteristics.
For a number of reasons CMOS is the logic family of choice in today's VLSI devices. Due to the complementary nature of its operation, CMOS logic consumes near zero static power. CMOS also readily scales with technology. These two features are highly desirable given the drastic growth in demand for low power and portable electronic devices. Further, with the computer aided design (CAD) industry's focus on developing automated design tools for CMOS based technologies, the cost and the development time of CMOS VLSI devices has reduced significantly.
The one drawback of the CMOS logic family, however, remains its limited speed. That is, conventional CMOS logic has not achieved the highest attainable switching speeds made possible by modern sub-micron CMOS technologies. This is due to a number of reasons. Referring to
This relationship, however, no longer holds in sub-micron technologies. As the channel length L in CMOS technology shrinks into the sub-micron range, the power supply voltage must be reduced to prevent potential damage to the transistors caused by effects such as oxide breakdown and hot-electrons. The reduction of the power supply voltage prevents the proportional lowering of Ron with the channel length L. Moreover, the load capacitance which in the past was dominated by the capacitances associated with the MOS device, is dominated by the routing or interconnect capacitance (Cin) modern sub 0.5 micron technologies. This means that the load capacitance will not be reduced in proportion with the channel length L. Thus, the RC loading which is the main source of delaying the circuit remains relatively the same as CMOS technology moves in the sub-micron range.
Furthermore, modern sub-micron CMOS process technologies such as a 0.13 μ process, require lower power supply voltages (e.g., 1.2 volts) for reliability concerns. The lower power supply voltages, which are characteristic of these sub-micron CMOS processes, limit the current density or the transconductance of the MOS transistor rendering the devices even slower.
As a result of the speed limitations of conventional CMOS logic, integrated circuit applications in the Giga Hertz frequency range have had to look to alternative technologies such as ultra high speed bipolar circuits and Gallium Arsenide (GaAs). These alternative technologies, however, have drawbacks of their own that have made them more of a specialized field with limited applications as compared to silicon MOSFET that has had widespread use and support by the industry. In particular, compound semiconductors such as GaAs are more susceptible to defects that degrade device performance, and suffer from increased gate leakage current and reduced noise margins. Furthermore, attempts to reliably fabricate a high quality oxide layer using GaAs have not thus far met with success. This has made it difficult to fabricate GaAs FETs, limiting the GaAs technology to junction field-effect transistors (JFETs) or Schottky barrier metal semiconductor field-effect transistors (MESFETs). A major drawback of the bipolar technology, among others, is its higher current dissipation even for circuits that operate at lower frequencies.
It is therefore highly desirable to develop integrated circuit design techniques that are based on conventional silicon CMOS technology, but overcome the speed limitations of CMOS logic.
The present invention provides a new family of CMOS logic that is based on current-controlled mechanism to maximize speed of operation. The current-controlled CMOS (or C3MOS™) logic family according to the present invention includes all the building blocks of any other logic family. The basic building block of the C3MOS logic family uses a pair of conventional MOSFETs that steer current between a pair of load devices in response to a difference between a pair of input signals. Thus, unlike conventional CMOS logic, C3MOS logic according to this invention dissipates static current, but operates at much higher speeds. The structure of a typical C3MOS logic block according to the present invention stacks more than a couple of devices between the power supplies. This extends the power supply range of the circuit allowing it to operate at a supply voltage that can be higher than the voltage the CMOS process can tolerate. The higher power supply voltage further enhances the speed of the circuit. In one embodiment, the present invention combines C3MOS logic with CMOS logic within the same integrated circuitry, where C3MOS is utilized in high speed sections and CMOS is used in the lower speed parts of the circuit. In another embodiment, a higher power supply voltage is used for the C3MOS section of the circuit while a lower power supply voltage is used for the conventional CMOS logic circuitry.
Accordingly, in one embodiment, the present invention provides a metal-oxide-semiconductor field-effect transistor (MOSFET) circuit fabricated on a silicon substrate, comprising: first circuitry implemented using current-controlled complementary metal-oxide semiconductor C3MOS logic wherein logic levels are signaled by current steering in one of two or more branches in response to differential input signals, the first circuitry being configured to process a first signal having a first frequency; and second circuitry implemented using conventional complementary metal-oxide-semiconductor (CMOS) logic wherein substantially zero static current is dissipated, the second circuitry being coupled to the first circuitry and configured to process a second signal having a second frequency that is different than the first frequency, wherein the first circuitry is coupled to a first power supply voltage and the second circuitry is coupled to a second power supply voltage that is different than the first power supply voltage.
In a specific implementation of the above embodiment, the first power supply voltage is higher in magnitude than the second power supply voltage. In yet another specific implementation, the second power supply voltage is the maximum power supply voltage specified by CMOS process used to fabricate the circuit. In another specific embodiment, the second power supply voltage is generated on-chip from the first power supply voltage. In this embodiment the circuit further includes a voltage generator that is configured to receive the first power supply voltage and to generate the second power supply voltage.
The following detailed description with the accompanying drawings provide a better understanding of the nature and advantages of the current-controlled CMOS logic according to the present invention.
The present invention provides ultra high-speed logic circuitry implemented in silicon complementary metal-oxide-semiconductor (CMOS) process technology. A distinction is made herein between the terminology “CMOS process technology” and “CMOS logic.” CMOS process technology as used herein refers generally to a variety of well established CMOS fabrication processes that form a field-effect transistor over a silicon substrate with a gate terminal typically made of polysilicon material disposed on top of an insulating material such as silicon dioxide. CMOS logic, on the other hand, refers to the use of complementary CMOS transistors (n-channel and p-channel) to form various logic gates and more complex logic circuitry, wherein zero static current is dissipated. The present invention uses current-controlled mechanisms to develop a family of very fast current-controlled CMOS (or C3MOS™) logic that can be fabricated using a variety of conventional CMOS process technologies, but that unlike conventional CMOS logic does dissipate static current. C3MOS logic or current-controlled metal-oxide-semiconductor field-effect transistor (MOSFET) logic are used herein interchangeably.
In a preferred embodiment, the basic building block of this logic family is an NMOS differential pair with resistive loads. Referring to
Significant speed advantages are obtained by this type of current steering logic. Unlike the conventional CMOS inverter of
The design of each C3MOS logic cell according to the present invention is optimized based on several considerations including speed, current dissipation, and voltage swing. The speed of the logic gate is determined by the resistive load and the capacitance being driven. As discussed above, the preferred embodiment according to the present invention uses polysilicon resistors to implement the load devices. P-channel MOSFETs can alternatively be used, however, they require special biasing to ensure they remain in linear region. Further, the junction capacitances of the p-channel load MOSFETs introduce undesirable parasitics. Speed requirements place a maximum limit on the value of the resistive loads. On the other hand, the various C3MOS logic cells are designed to preferably maintain a constant voltage swing (I×R). Accordingly, the values for R and I are adjusted based on the capacitive load being driven to strike the optimum trade-off between switching speed and power consumption.
The C3MOS logic family, according to the present invention, contains all the building blocks of other logic families. Examples of such building blocks include inverters, buffers, level shift buffers, N-input NOR and NAND gates, exclusive OR (XOR) gates, flip flops and latches, and the like.
A C3MOS master-slave flip-flop 800 according to the present invention can be made by combining two latches 700 as shown in
Every one of the logic gates described thus far may be implemented using p channel transistors. The use of p-channel transistors provides for various alternative embodiments for C3MOS logic gates.
As illustrated by the various C3MOS logic elements described above, all of the building blocks of any logic circuitry can be constructed using the C3MOS technique of the present invention. More complex logic circuits such as shift registers, counters, frequency dividers, etc., can be constructed in C3MOS using the basic elements described above. As mentioned above, however, C3MOS logic does consume static power. The static current dissipation of C3MOS may become a limiting factor in certain large scale circuit applications. In one embodiment, the present invention combines C3MOS logic with conventional CMOS logic to achieve an optimum balance between speed and power consumption. According to this embodiment of the present invention, an integrated circuit utilizes C3MOS logic for the ultra high speed (e.g., GHz) portions of the circuitry, and conventional CMOS logic for the relatively lower speed sections. For example, to enable an integrated circuit to be used in ultra high speed applications, the input and output circuitry that interfaces with and processes the high speed signals is implemented using C3MOS. The circuit also employs C3MOS to divide down the frequency of the signals being processed to a low enough frequency where conventional CMOS logic can be used. The core of the circuit, according to this embodiment, is therefore implemented by conventional CMOS logic that consumes zero static current.
An example of a circuit implemented using combined CMOS/C3MOS logic according to the present invention is shown in
Referring back to
As apparent from the circuit shown in
According to one embodiment of the present invention the combined C3MOS/CMOS circuit technique as shown in
According to another aspect of the present invention circuit speed is further enhanced by using a higher supply voltage for the C3MOS circuitry than that which may be specified by the CMOS fabrication process. The ongoing advances in semiconductor fabrication technology continue to make smaller and faster devices possible. The smaller geometries, however, often limit the voltage tolerance of the transistors. For example, while a thinner gate dielectric in an MOS transistor helps increase its speed of operation, the breakdown voltage at which damage may be caused to the transistor is also lowered. This reliability concern, as well as the desire to reduce power, have resulted in a downward trend in the permissible level of supply voltage for the modem sub-micron CMOS process. The lower power supply voltage, however, reduces the current density of the MOS transistor (i.e., lower transconductance) making the transistor slower. This is worse for CMOS circuitry using C3MOS logic where there are more than two devices stacked between the two power supplies. That is, instead of the two transistors 102 and 104 in the conventional CMOS inverter shown in
According to one embodiment of the present invention a CMOS circuit combining both C3MOS logic as well as conventional CMOS logic is operated using two different power supply voltages. The C3MOS logic runs off of a first power supply voltage that is higher than the power supply voltage used for the conventional CMOS logic. The stacked nature of the C3MOS logic structure divides the power supply voltage across at least three stacked devices as opposed to only two. This enables it to receive a supply voltage that is higher than the maximum tolerable for conventional CMOS logic where there are only two devices between the supply rails. For example, today's 0.13μ CMOS process may specify power supply voltages no higher than 1.2 volts. A circuit according to this embodiment of the present invention can run the C3MOS portion off of a higher supply voltage of, e.g., 1.8 volts, while the CMOS portion of the circuit runs off of the prescribed 1.2 volt supply. Because the 1.8 volts is divided between at least one resistor and two transistors (as in the case of the C3MOS buffer/inverter of FIG. 2), the transistors do not experience excessive voltages between their terminals during operation. Also, because C3MOS circuitry 25 typically processes signals with smaller swings, it can withstand the higher supply voltage. The higher power supply voltage greatly improves the speed of the circuit as well as its ability to meet the required LVDS output level.
Referring to
The dual power supply embodiment of the present invention can be implemented in a number of ways. In one embodiment, two separate supply voltages can be applied externally. The higher voltage would be applied to the C3MOS logic circuitry and the lower voltage to the conventional CMOS logic circuitry. This embodiment would require two external pins for the chip. An alternative embodiment receives only one power supply voltage and generates the other on-chip. Referring to
In conclusion, the present invention provides various circuit techniques for implementing ultra high speed circuits using current-controlled CMOS (C3MOS) logic fabricated in conventional CMOS process technology. An entire family of logic elements including inverter/buffers, level shifters, NAND, NOR, XOR gates, latches, flip-flops and the like have been developed using C3MOS according to the present invention. In one embodiment, the present invention advantageously combines high speed C3MOS logic with low power conventional CMOS logic. According to this embodiment circuits such as transceivers along fiber optic channels can be fabricated on a single chip where the ultra-high speed portions of the circuit utilize C3MOS and the relatively lower speed parts of the circuit use conventional CMOS logic. In another embodiment, the C3MOS logic circuitry receives a first power supply voltage that is higher than the power supply voltage used by the conventional CMOS logic circuitry. While the above is a complete description of the preferred embodiment of the present invention, it is possible to use various alternatives, modifications and equivalents. Therefore, the scope of the present invention should be determined not with reference to the above description but should, instead, be determined with reference to the appended claims, along with their full scope of equivalents.
The present U.S. Utility Patent Application is a continuation of U.S. Utility patent application Ser. No. 10/229,257, entitled “CURRENT-CONTROLLED CMOS CIRCUIT USING HIGHER VOLTAGE SUPPLY IN LOW VOLTAGE CMOS PROCESS,” filed Aug. 26, 2002, pending, which is hereby incorporated herein by reference in its entirety and made part of the present U.S. Utility Patent Application for all purposes. The U.S. Utility patent application Ser. No. 10/229,257, filed Aug. 26, 2002, now U.S. Pat. No. 6,897,697, is a Continuation-in-Part of U.S. patent application Ser. No. 10/143,087, filed May 9, 2002, now U.S. Pat. No. 6,900,670 which is a Continuation of U.S. patent application Ser. No. 09/484,856, filed Jan. 18, 2000, now U.S. Pat. No. 6,424,194 B1, which claims priority from U.S. Provisional Patent Application Ser. No. 60/141,355, filed Jun. 28, 1999, the disclosures of which are each incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4449248 | Leslie et al. | May 1984 | A |
4519068 | Krebs et al. | May 1985 | A |
4545023 | Mizzi | Oct 1985 | A |
4680787 | Marry | Jul 1987 | A |
4731796 | Masterton et al. | Mar 1988 | A |
4737975 | Shafer | Apr 1988 | A |
4761822 | Maile | Aug 1988 | A |
4777657 | Gillaspie | Oct 1988 | A |
4794649 | Fujiwara | Dec 1988 | A |
4804954 | Macnak et al. | Feb 1989 | A |
4807282 | Kazan et al. | Feb 1989 | A |
4817115 | Campo et al. | Mar 1989 | A |
4850009 | Zook et al. | Jul 1989 | A |
4890832 | Komaki | Jan 1990 | A |
4894792 | Mitchell et al. | Jan 1990 | A |
4916441 | Gombrich | Apr 1990 | A |
4964121 | Moore | Oct 1990 | A |
4969206 | Desrochers | Nov 1990 | A |
4977611 | Maru | Dec 1990 | A |
4995099 | Davis | Feb 1991 | A |
5008879 | Fischer et al. | Apr 1991 | A |
5025486 | Klughart | Jun 1991 | A |
5029183 | Tymes | Jul 1991 | A |
5031231 | Miyazaki | Jul 1991 | A |
5033109 | Kawano et al. | Jul 1991 | A |
5055659 | Hendrick et al. | Oct 1991 | A |
5055660 | Bertagna et al. | Oct 1991 | A |
5081402 | Koleda | Jan 1992 | A |
5087099 | Stolarczyk | Feb 1992 | A |
5117501 | Childress et al. | May 1992 | A |
5119502 | Kallin et al. | Jun 1992 | A |
5121408 | Cai et al. | Jun 1992 | A |
5123029 | Bantz et al. | Jun 1992 | A |
5128938 | Borras | Jul 1992 | A |
5134347 | Koleda | Jul 1992 | A |
5142573 | Umezawa | Aug 1992 | A |
5150361 | Wieczorek et al. | Sep 1992 | A |
5152006 | Klaus | Sep 1992 | A |
5153878 | Krebs | Oct 1992 | A |
5175870 | Mabey et al. | Dec 1992 | A |
5179721 | Comroe et al. | Jan 1993 | A |
5181200 | Harrison | Jan 1993 | A |
5230084 | Nguyen | Jul 1993 | A |
5239662 | Danielson et al. | Aug 1993 | A |
5241542 | Natarajan et al. | Aug 1993 | A |
5241691 | Owen | Aug 1993 | A |
5249220 | Moskowitz et al. | Sep 1993 | A |
5249302 | Metroka et al. | Sep 1993 | A |
5265238 | Canova, Jr. et al. | Nov 1993 | A |
5265270 | Stengel et al. | Nov 1993 | A |
5274666 | Dowdell et al. | Dec 1993 | A |
5276680 | Messenger | Jan 1994 | A |
5278831 | Mabey et al. | Jan 1994 | A |
5289469 | Tanaka | Feb 1994 | A |
5291516 | Dixon et al. | Mar 1994 | A |
5293639 | Wilson et al. | Mar 1994 | A |
5296849 | Ide | Mar 1994 | A |
5297144 | Gilbert et al. | Mar 1994 | A |
5323392 | Ishii et al. | Jun 1994 | A |
5331509 | Kikinis | Jul 1994 | A |
5345449 | Buckingham et al. | Sep 1994 | A |
5349649 | Iijima | Sep 1994 | A |
5361397 | Wright | Nov 1994 | A |
5363121 | Freund | Nov 1994 | A |
5373149 | Rasmussen | Dec 1994 | A |
5373506 | Tayloe et al. | Dec 1994 | A |
5390206 | Rein et al. | Feb 1995 | A |
5392023 | D'Avello et al. | Feb 1995 | A |
5406615 | Miller, II et al. | Apr 1995 | A |
5406643 | Burke et al. | Apr 1995 | A |
5418837 | Johansson et al. | May 1995 | A |
5420529 | Guay et al. | May 1995 | A |
5423002 | Hart | Jun 1995 | A |
5426637 | Derby et al. | Jun 1995 | A |
5428636 | Meier | Jun 1995 | A |
5430845 | Rimmer et al. | Jul 1995 | A |
5438329 | Gastouniotis et al. | Aug 1995 | A |
5440560 | Rypinski | Aug 1995 | A |
5465081 | Todd | Nov 1995 | A |
5481265 | Russell | Jan 1996 | A |
5481562 | Pearson et al. | Jan 1996 | A |
5533029 | Gardner | Jul 1996 | A |
5535373 | Olnowich | Jul 1996 | A |
5544222 | Robinson et al. | Aug 1996 | A |
5579487 | Meyerson et al. | Nov 1996 | A |
5584048 | Wieczorek | Dec 1996 | A |
5628055 | Stein | May 1997 | A |
5630061 | Richter et al. | May 1997 | A |
5675584 | Jeong | Oct 1997 | A |
5680633 | Koenck et al. | Oct 1997 | A |
5724361 | Fiedler | Mar 1998 | A |
5732346 | Lazaridis et al. | Mar 1998 | A |
5740366 | Mahany et al. | Apr 1998 | A |
5744366 | Kricka et al. | Apr 1998 | A |
5767699 | Bosnyak et al. | Jun 1998 | A |
5796727 | Harrison et al. | Aug 1998 | A |
5798658 | Werking | Aug 1998 | A |
5839051 | Grimmett et al. | Nov 1998 | A |
5940771 | Gollnick et al. | Aug 1999 | A |
5945858 | Sato | Aug 1999 | A |
5952847 | Plants et al. | Sep 1999 | A |
6014705 | Koenck et al. | Jan 2000 | A |
6028454 | Elmasry et al. | Feb 2000 | A |
6038254 | Ferraiolo et al. | Mar 2000 | A |
6061747 | Ducaroir et al. | May 2000 | A |
6094074 | Chi et al. | Jul 2000 | A |
6111425 | Bertin et al. | Aug 2000 | A |
6111437 | Patel | Aug 2000 | A |
6188339 | Hasegawa | Feb 2001 | B1 |
6194950 | Kibar et al. | Feb 2001 | B1 |
6222380 | Gerowitz et al. | Apr 2001 | B1 |
6232844 | Talaga, Jr. | May 2001 | B1 |
6242949 | Wilford | Jun 2001 | B1 |
6265898 | Bellaouar | Jul 2001 | B1 |
6374311 | Mahany et al. | Apr 2002 | B1 |
6424194 | Hairapetian | Jul 2002 | B1 |
6463092 | Kim et al. | Oct 2002 | B1 |
6525571 | Green | Feb 2003 | B2 |
6559685 | Green | May 2003 | B2 |
Number | Date | Country | |
---|---|---|---|
20040227544 A1 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
60141355 | Jun 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10229257 | Aug 2002 | US |
Child | 10876790 | US | |
Parent | 09484856 | Jan 2000 | US |
Child | 10143087 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10143087 | May 2002 | US |
Child | 10229257 | US |