1. Technical Field of the Invention
The present invention relates in general to integrated circuitry, and in particular to complementary metal-oxide-semiconductor (CMOS) logic and circuits with enhanced speed characteristics.
2. Description of Related Art
For a number of reasons CMOS is the logic family of choice in today's VLSI devices. Due to the complementary nature of its operation, CMOS logic consumes near zero static power. CMOS also readily scales with technology. These two features are highly desirable given the drastic growth in demand for low power and portable electronic devices. Further, with the computer aided design (CAD) industry's focus on developing automated design tools for CMOS based technologies, the cost and the development time of CMOS VLSI devices has reduced significantly.
The one drawback of the CMOS logic family, however, remains its limited speed. That is, conventional CMOS logic has not achieved the highest attainable switching speeds made possible by modern sub-micron CMOS technologies. This is due to a number of reasons. Referring to
As a result of the speed limitations of conventional CMOS logic, integrated circuit applications in the Giga Hertz frequency range have had to look to alternative technologies such as ultra high speed bipolar circuits and Gallium Arsenide (GaAs). These alternative technologies, however, have drawbacks of their own that have made them more of a specialized field with limited applications as compared to silicon MOSFET that has had widespread use and support by the industry. In particular, compound semiconductors such as GaAs are more susceptible to defects that degrade device performance, and suffer from increased gate leakage current and reduced noise margins. Furthermore, attempts to reliably fabricate a high quality oxide layer using GaAs have not thus far met with success. This has made it difficult to fabricate GaAs FETs, limiting the GaAs technology to junction field-effect transistors (JFETs) or Schottky barrier metal semiconductor field-effect transistors (MESFETs). A major drawback of the bipolar technology, among others, is its higher current dissipation even for circuits that operate at lower frequencies.
It is therefore highly desirable to develop integrated circuit design techniques that are based on conventional silicon CMOS technology, but overcome the speed limitations of CMOS logic.
The present invention is directed to apparatus and methods of operation that are further described in the following Brief Description of the Several Views of the Drawings, the Detailed Description of the Invention, and the claims. Other features and advantages of the present invention will become apparent from the following detailed description of the invention made with reference to the accompanying drawings.
The present invention provides ultra high-speed logic circuitry implemented in silicon complementary metal-oxide-semiconductor (CMOS) process technology. A distinction is made herein between the terminology “CMOS process technology” and “CMOS logic.” CMOS process technology as used herein refers generally to a variety of well established CMOS fabrication processes that form a field-effect transistor over a silicon substrate with a gate terminal typically made of polysilicon material disposed on top of an insulating material such as silicon dioxide. CMOS logic, on the other hand, refers to the use of complementary CMOS transistors (n-channel and p-channel) to form various logic gates and more complex logic circuitry, wherein zero static current is dissipated. The present invention uses current-controlled mechanisms to develop a family of very fast current-controlled CMOS (or C3MOS™) logic that can be fabricated using a variety of conventional CMOS process technologies, but that unlike conventional CMOS logic does dissipate static current. C3MOS logic or current-controlled metal-oxide-semiconductor field-effect transistor (MOSFET) logic are used herein interchangeably.
In a preferred embodiment, the basic building block of this logic family is an NMOS differential pair with resistive loads. Referring to
Significant speed advantages are obtained by this type of current steering logic. Unlike the conventional CMOS inverter of
The design of each C3MOS logic cell according to the present invention is optimized based on several considerations including speed, current dissipation, and voltage swing. The speed of the logic gate is determined by the resistive load and the capacitance being driven. As discussed above, the preferred embodiment according to the present invention uses polysilicon resistors to implement the load devices. P-channel MOSFETs can alternatively be used, however, they require special biasing to ensure they remain in linear region. Further, the junction capacitances of the p-channel load MOSFETs introduce undesirable parasitics. Speed requirements place a maximum limit on the value of the resistive loads. On the other hand, the various C3MOS logic cells are designed to preferably maintain a constant voltage swing (I×R). Accordingly, the values for R and I are adjusted based on the capacitive load being driven to strike the optimum trade-off between switching speed and power consumption.
The C3MOS logic family, according to the present invention, contains all the building blocks of other logic families. Examples of such building blocks include inverters, buffers, level shift buffers, N-input NOR and NAND gates, exclusive OR (XOR) gates, flip flops and latches, and the like.
A C3MOS master-slave flip-flop 800 according to the present invention can be made by combining two latches 700 as shown in
In
Every one of the logic gates described thus far may be implemented using p channel transistors. The use of p-channel transistors provides for various alternative embodiments for C3MOS logic gates.
As illustrated by the various C3MOS logic elements described above, all of the building blocks of any logic circuitry can be constructed using the C3MOS technique of the present invention. More complex logic circuits such as shift registers, counters, frequency dividers, etc., can be constructed in C3MOS using the basic elements described above. As mentioned above, however, C3MOS logic does consume static power. The static current dissipation of C3MOS may become a limiting factor in certain large scale circuit applications. In one embodiment, the present invention combines C3MOS logic with conventional CMOS logic to achieve an optimum balance between speed and power consumption. According to this embodiment of the present invention, an integrated circuit utilizes C3MOS logic for the ultra high speed (e.g., GHz) portions of the circuitry, and conventional CMOS logic for the relatively lower speed sections. For example, to enable an integrated circuit to be used in ultra high speed applications, the input and output circuitry that interfaces with and processes the high speed signals is implemented using C3MOS. The circuit also employs C3MOS to divide down the frequency of the signals being processed to a low enough frequency where conventional CMOS logic can be used. The core of the circuit, according to this embodiment, is therefore implemented by conventional CMOS logic that consumes zero static current.
An example of a circuit implemented using combined CMOS/C3MOS logic according to the present invention is shown in
Referring back to
As apparent from the circuit shown in
According to one embodiment of the present invention the combined C3MOS/CMOS circuit technique as shown in
In conclusion, the present invention provides various circuit techniques for implementing ultra high speed circuits using current-controlled CMOS (C3MOS) logic fabricated in conventional CMOS process technology. An entire family of logic elements including inverter/buffers, level shifters, NAND, NOR, XOR gates, latches, flip-flops and the like have been developed using C3MOS according to the present invention. In one embodiment, the present invention advantageously combines high speed C3MOS logic with low power conventional CMOS logic. According to this embodiment circuits such as transceivers along fiber optic channels can be fabricated on a single chip where the ultra-high speed portions of the circuit utilize C3MOS and the relatively lower speed parts of the circuit use conventional CMOS logic. While the above is a complete description of the preferred embodiment of the present invention, it is possible to use various alternatives, modifications and equivalents. Therefore, the scope of the present invention should be determined not with reference to the above description but should, instead, be determined with reference to the appended claims, along with their full scope of equivalents.
In addition, certain embodiments of the present invention provide a new family of CMOS logic that is based on current-controlled mechanism to maximize speed of operation. The current-controlled CMOS (or C3MOS™) logic family according to the present invention includes all the building blocks of any other logic family. The basic building block of the C3MOS logic family uses a pair of conventional MOSFETs that steer current between a pair of load devices in response to a difference between a pair of input signals. Thus, unlike conventional CMOS logic, C3MOS logic according to this invention dissipates static current, but operates at much higher speeds. In one embodiment, the present invention combines C3MOS logic with CMOS logic within the same integrated circuitry, where C3MOS is utilized in high speed sections and CMOS is used in the lower speed parts of the circuit.
Accordingly, in one embodiment, the present invention provides a current-controlled metal-oxide semiconductor field-effect transistor (MOSFET) circuit fabricated on a silicon substrate, including a clocked latch made up of first and second n-channel MOSFETs having their source terminals connected together, their gate terminals coupled to receive a pair of differential logic signals, respectively, and their drain terminals connected to a true output and a complementary output, respectively; a first clocked n-channel MOSFET having a drain terminal connected to the source terminals of the first and second n-channel MOSFETs, a gate terminal coupled to receive a first clock signal CK, and a source terminal; third and fourth n-channel MOSFETs having their source terminals connected together, their gate terminals and drain terminals respectively cross-coupled to the true output and the complementary output; a second clocked n-channel MOSFET having a drain terminal connected to the source terminals of the third and fourth n-channel MOSFETs, a gate terminal coupled to receive a second clock signal CKB, and a source terminal; first and second resistive elements respectively coupling the true output and the complementary output to a high logic level; and a current-source n-channel MOSFET connected between the source terminals of the first and second clocked n-channel MOSFETs and a logic low level.
In another embodiment, the circuit further includes a buffer/inverter made up of first and second n-channel MOSFETs having their source terminals connected together, their gate terminals respectively coupled to receive a pair of differential logic signals, and their drain terminals coupled to a high logic level via a respective pair of resistive loads; and a current-source n-channel MOSFET connected between the source terminals of the first and second n-channel MOSFETs and a low logic level, wherein, the drain terminal of the first n-channel MOSFET provides a true output of the buffer/inverter and the drain terminal of the second n-channel MOSFET provides the complementary output of the buffer/inverter.
In yet another embodiment, the present invention provides complementary metal-oxide-semiconductor (CMOS) logic circuitry that combines on the same silicon substrate, current-controlled MOSFET circuitry of the type described above for high speed signal processing, with conventional CMOS logic that does not dissipate static current. Examples of such combined circuitry include serializer/deserializer circuitry used in high speed serial links, high speed phase-locked loop dividers, and the like.
The present U.S. Utility patent application claims priority pursuant to 35 U.S.C. §120, as a continuation, to the following U.S. Utility patent application which is hereby incorporated herein by reference in its entirety and made part of the present U.S. Utility patent application for all purposes: 1. U.S. Utility application Ser. No. 12/363,202, entitled “Current-controlled CMOS logic family,” filed Jan. 30, 2009, and scheduled to be issued as U.S. Pat. No. 7,724,057 on May 25, 2010, which claims priority pursuant to 35 U.S.C. §120, as a continuation, to the following U.S. Utility Patent Application which is hereby incorporated herein by reference in its entirety and made part of the present U.S. Utility Patent Application for all purposes: 2. U.S. Utility application Ser. No. 11/729,679, entitled “Current-controlled CMOS logic family,” filed Mar. 29, 2007, now U.S. Pat. No. 7,486,124 B2, issued on Feb. 3, 2009, which claims priority pursuant to 35 U.S.C. §120, as a continuation, to the following U.S. Utility Patent Application which is hereby incorporated herein by reference in its entirety and made part of the present U.S. Utility Patent Application for all purposes: 3. U.S. Utility application Ser. No. 11/385,632, entitled “Current-controlled CMOS logic family,” filed Mar. 21, 2006, now U.S. Pat. No. 7,215,169 B2, issued on May 8, 2007, which claims priority pursuant to 35 U.S.C. §120, as a continuation, to the following U.S. Utility Patent Application which is hereby incorporated herein by reference in its entirety and made part of the present U.S. Utility Patent Application for all purposes: 4. U.S. Utility application Ser. No. 11/114,969, entitled “Current-controlled CMOS logic family,” filed Apr. 26, 2005, now U.S. Pat. No. 7,038,516 B2, issued on May 2, 2006, which claims priority pursuant to 35 U.S.C. §120, as a continuation, to the following U.S. Utility Patent Application which is hereby incorporated herein by reference in its entirety and made part of the present U.S. Utility Patent Application for all purposes: 5. U.S. Utility application Ser. No. 10/143,087, entitled “Current-controlled CMOS logic family,” filed May 9, 2002, now U.S. Pat. No. 6,900,670 B2, issued on May 31, 2005, which claims priority pursuant to 35 U.S.C. §120, as a continuation, to the following U.S. Utility Patent Application which is hereby incorporated herein by reference in its entirety and made part of the present U.S. Utility Patent Application for all purposes: 6. U.S. Utility application Ser. No. 09/484,856, entitled “Current-controlled CMOS logic family,” filed Jan. 18, 2000, now U.S. Pat. No. 6,424,194 B1, issued on Jun. 23, 2002, which claims priority pursuant to 35 U.S.C. §119(e) to the following U.S. Provisional Patent Application which is hereby incorporated herein by reference in its entirety and made part of the present U.S. Utility Patent Application for all purposes: a. U.S. Provisional Application Ser. No. 60/141,355, entitled “Current-controlled CMOS logic family,” filed Jun. 28, 1999, now expired.
Number | Name | Date | Kind |
---|---|---|---|
3569732 | Christensen | Mar 1971 | A |
4333020 | Maeder | Jun 1982 | A |
4395774 | Rapp | Jul 1983 | A |
4449248 | Leslie et al. | May 1984 | A |
4519068 | Krebs et al. | May 1985 | A |
4545023 | Mizzi | Oct 1985 | A |
4599526 | Paski | Jul 1986 | A |
4649293 | Ducourant | Mar 1987 | A |
4680787 | Marry | Jul 1987 | A |
4727309 | Vajdic et al. | Feb 1988 | A |
4731796 | Masterton et al. | Mar 1988 | A |
4737975 | Shafer | Apr 1988 | A |
4761822 | Maile | Aug 1988 | A |
4777657 | Gillaspie | Oct 1988 | A |
4794649 | Fujiwara | Dec 1988 | A |
4804954 | Macnak et al. | Feb 1989 | A |
4806796 | Bushey et al. | Feb 1989 | A |
4807282 | Kazan et al. | Feb 1989 | A |
4817054 | Benerjee et al. | Mar 1989 | A |
4817115 | Campo et al. | Mar 1989 | A |
4850009 | Zook et al. | Jul 1989 | A |
4890832 | Komaki | Jan 1990 | A |
4894792 | Mitchell et al. | Jan 1990 | A |
4916441 | Gombrich | Apr 1990 | A |
4964121 | Moore | Oct 1990 | A |
4969206 | Desrochers | Nov 1990 | A |
4970406 | Fitzpatrick et al. | Nov 1990 | A |
4977611 | Maru | Dec 1990 | A |
4995099 | Davis | Feb 1991 | A |
5008879 | Fischer et al. | Apr 1991 | A |
5025486 | Klughart | Jun 1991 | A |
5029183 | Tymes | Jul 1991 | A |
5031231 | Miyazaki | Jul 1991 | A |
5033109 | Kawano et al. | Jul 1991 | A |
5041740 | Smith | Aug 1991 | A |
5055659 | Hendrick et al. | Oct 1991 | A |
5055660 | Bertagna et al. | Oct 1991 | A |
5079452 | Lain et al. | Jan 1992 | A |
5081402 | Koleda | Jan 1992 | A |
5087099 | Stolarczyk | Feb 1992 | A |
5115151 | Hull et al. | May 1992 | A |
5117501 | Childress et al. | May 1992 | A |
5119502 | Kallin et al. | Jun 1992 | A |
5121408 | Cai et al. | Jun 1992 | A |
5123029 | Bantz et al. | Jun 1992 | A |
5128938 | Borras | Jul 1992 | A |
5134347 | Koleda | Jul 1992 | A |
5142573 | Umezawa | Aug 1992 | A |
5150361 | Wieczorek et al. | Sep 1992 | A |
5152006 | Klaus | Sep 1992 | A |
5153878 | Krebs | Oct 1992 | A |
5175870 | Mabey et al. | Dec 1992 | A |
5177378 | Nagasawa | Jan 1993 | A |
5179721 | Comroe et al. | Jan 1993 | A |
5181200 | Harrison | Jan 1993 | A |
5196805 | Beckwith et al. | Mar 1993 | A |
5216295 | Hoang | Jun 1993 | A |
5230084 | Nguyen | Jul 1993 | A |
5239662 | Danielson et al. | Aug 1993 | A |
5241542 | Natarajan et al. | Aug 1993 | A |
5241691 | Owen | Aug 1993 | A |
5247656 | Kabuo et al. | Sep 1993 | A |
5249220 | Moskowitz et al. | Sep 1993 | A |
5249302 | Metroka et al. | Sep 1993 | A |
5265238 | Canova, Jr. et al. | Nov 1993 | A |
5265270 | Stengel et al. | Nov 1993 | A |
5274666 | Dowdell et al. | Dec 1993 | A |
5276680 | Messenger | Jan 1994 | A |
5278831 | Mabey et al. | Jan 1994 | A |
5289055 | Razavi | Feb 1994 | A |
5289469 | Tanaka | Feb 1994 | A |
5291516 | Dixon et al. | Mar 1994 | A |
5293639 | Wilson et al. | Mar 1994 | A |
5296849 | Ide | Mar 1994 | A |
5297144 | Gilbert et al. | Mar 1994 | A |
5301196 | Ewen et al. | Apr 1994 | A |
5323392 | Ishii et al. | Jun 1994 | A |
5331509 | Kikinis | Jul 1994 | A |
5345449 | Buckingham et al. | Sep 1994 | A |
5349649 | Iijima | Sep 1994 | A |
5361397 | Wright | Nov 1994 | A |
5363121 | Freund | Nov 1994 | A |
5373149 | Rasmussen | Dec 1994 | A |
5373506 | Tayloe et al. | Dec 1994 | A |
5390206 | Rein et al. | Feb 1995 | A |
5392023 | D' Avello et al. | Feb 1995 | A |
5406615 | Miller, II et al. | Apr 1995 | A |
5406643 | Burke et al. | Apr 1995 | A |
5418837 | Johansson et al. | May 1995 | A |
5420529 | Guay et al. | May 1995 | A |
5423002 | Hart | Jun 1995 | A |
5426637 | Derby et al. | Jun 1995 | A |
5428636 | Meier | Jun 1995 | A |
5430845 | Rimmer et al. | Jul 1995 | A |
5434518 | Sinh et al. | Jul 1995 | A |
5438329 | Gastouniotis et al. | Aug 1995 | A |
5440560 | Rypinski | Aug 1995 | A |
5457412 | Tamba et al. | Oct 1995 | A |
5459412 | Mentzer | Oct 1995 | A |
5465081 | Todd | Nov 1995 | A |
5481265 | Russell | Jan 1996 | A |
5481562 | Pearson et al. | Jan 1996 | A |
5488319 | Lo | Jan 1996 | A |
5490282 | Dreps et al. | Feb 1996 | A |
5510734 | Sone | Apr 1996 | A |
5510748 | Erhart et al. | Apr 1996 | A |
5521530 | Yao et al. | May 1996 | A |
5533029 | Gardner | Jul 1996 | A |
5535373 | Oinowich | Jul 1996 | A |
5544222 | Robinson et al. | Aug 1996 | A |
5548230 | Gerson et al. | Aug 1996 | A |
5576644 | Pelella | Nov 1996 | A |
5579487 | Meyerson et al. | Nov 1996 | A |
5584048 | Wieczorek | Dec 1996 | A |
5587709 | Jeong | Dec 1996 | A |
5600267 | Wong et al. | Feb 1997 | A |
5606268 | Van Brunt | Feb 1997 | A |
5614841 | Marbot et al. | Mar 1997 | A |
5625308 | Matsumoto et al. | Apr 1997 | A |
5628055 | Stein | May 1997 | A |
5630061 | Richter et al. | May 1997 | A |
5640356 | Gibbs | Jun 1997 | A |
5675584 | Jeong | Oct 1997 | A |
5680633 | Koenck et al. | Oct 1997 | A |
5708399 | Fujii et al. | Jan 1998 | A |
5724361 | Fiedler | Mar 1998 | A |
5726588 | Fiedler | Mar 1998 | A |
5732346 | Lazaridis et al. | Mar 1998 | A |
5740366 | Mahany et al. | Apr 1998 | A |
5744366 | Kricka et al. | Apr 1998 | A |
5767699 | Bosnyak et al. | Jun 1998 | A |
5796727 | Harrison et al. | Aug 1998 | A |
5798658 | Werking | Aug 1998 | A |
5821809 | Boerstler et al. | Oct 1998 | A |
5839051 | Grimmett et al. | Nov 1998 | A |
5859669 | Prentice | Jan 1999 | A |
5867043 | Kim | Feb 1999 | A |
5877642 | Takahashi | Mar 1999 | A |
5892382 | Ueda et al. | Apr 1999 | A |
5896135 | Yang | Apr 1999 | A |
5903176 | Westgate | May 1999 | A |
5905386 | Gerson | May 1999 | A |
5940771 | Gollnick et al. | Aug 1999 | A |
5945847 | Ransijn | Aug 1999 | A |
5945858 | Sato | Aug 1999 | A |
5945863 | Coy | Aug 1999 | A |
5969556 | Hayakawa | Oct 1999 | A |
6002279 | Evans et al. | Dec 1999 | A |
6008670 | Pace | Dec 1999 | A |
6014041 | Somasekhar et al. | Jan 2000 | A |
6014705 | Koenck et al. | Jan 2000 | A |
6028454 | Elmasry et al. | Feb 2000 | A |
6037841 | Tanji et al. | Mar 2000 | A |
6037842 | Bryan et al. | Mar 2000 | A |
6038254 | Ferraiolo et al. | Mar 2000 | A |
6061747 | Ducaroir et al. | May 2000 | A |
6081162 | Johnson | Jun 2000 | A |
6094074 | Chi et al. | Jul 2000 | A |
6104214 | Ueda et al. | Aug 2000 | A |
6108334 | Blanc et al. | Aug 2000 | A |
6111425 | Bertin et al. | Aug 2000 | A |
6114843 | Olah | Sep 2000 | A |
6121793 | Pickering | Sep 2000 | A |
6177891 | Nakamura | Jan 2001 | B1 |
6188339 | Hasegawa | Feb 2001 | B1 |
6194950 | Kibar | Feb 2001 | B1 |
6222380 | Gerowitz et al. | Apr 2001 | B1 |
6232844 | Talaga, Jr. | May 2001 | B1 |
6247138 | Tamura | Jun 2001 | B1 |
6259312 | Murtojarvi | Jul 2001 | B1 |
6265898 | Bellaouar | Jul 2001 | B1 |
6310501 | Yamashita | Oct 2001 | B1 |
6374311 | Mahany et al. | Apr 2002 | B1 |
6424194 | Hairapetian | Jul 2002 | B1 |
6463092 | Kim et al. | Oct 2002 | B1 |
6496540 | Widmer | Dec 2002 | B1 |
6862296 | Desai | Mar 2005 | B1 |
6897697 | Yin et al. | May 2005 | B2 |
6900670 | Hairapetian | May 2005 | B2 |
6911855 | Yin et al. | Jun 2005 | B2 |
6927606 | Kocaman | Aug 2005 | B2 |
6982583 | Yin et al. | Jan 2006 | B2 |
7038516 | Hairapetian | May 2006 | B2 |
7215169 | Hairapetian | May 2007 | B2 |
7486124 | Hairapetian | Feb 2009 | B2 |
7724057 | Hairapetian | May 2010 | B2 |
Number | Date | Country |
---|---|---|
0685933 | Dec 1995 | EP |
0909035 | Oct 2007 | EP |
8101780 | Jun 1981 | WO |
Entry |
---|
Widmer et al., Single-Chip 4x500-MEd CMOS Transceiver, IEEE Journal of Solid-state Circuits, vol. 31 No. 12 pp. 2004-2014 (1996). |
Yamashina et al., “A Low-Supply Voltage GHz MOS Integrated Circuit for Mobile Computing Systems,” IEEE Symposium on Low Power Electronics, XP002386133, Oct. 1994, pp. 80-81. |
Yamashina, M. and Yamada, H. “An MOS current mode logic (MCML) circuit for low-power sub-GHz processors,” IEICE Trans. Electron. Oct. 1992, pp. 1181-1187, vol. E75-C, No. 10. |
Yamashina, M. and Yamada, H. “An MOS current mode logic (MCML) circuit for low-power sub-GHz processors,” NEC Res. Develop. Jan. 1995, pp. 54-63, vol. 36, No. 1. |
Yuen et al., An ECL Gate Array with 2.5 GHz Embedded PLL, IEEE 1993. |
Atkinson, A Single Chip Radio Transceiver for DECT, IEEE 1997. |
Bagby, “One Approach to Wireless Network Architecture,” IEEE P802.11191-2, Jan. 1991, pp. 1-15, 17-21. |
Baumert et al., A Monolithic 50-200 MHz CMOS Clock Recovery and Retiming Circuit, IEEE 1989 Custom Integrated Circuits Conference pp. 14.5.1-14.5.4, (May 1989). |
Biba, A Modest Proposal for a Asynchronous, Data Intensive, Wireless Local Area Network, IEEE P802.11191-25, Mar. 1991; pp. 1-25. |
Bida, “A Hybrid Wireless MAC Protocol Supporting Asynchronous and Synchronous MSDU Delivery Services,” IEEE 802.11/91-92, Sep. 1991, pp. 1-46. |
Buhanan, “CML and Flip TAB Joint Forces in the DPS 88's Micropackages,” Electronics Nov. 3, 1982. |
Cheah, “A Proposed Architecture and Access Protocol Outline for the IEEE 802.11 Radio LAN Standards,” Document IEEE P802.11/91-54, May 1991; pp. 1-20. |
Chen and Barker, A 1.25Gb/s, 460mW CMOS Transceiver for Serial Data Communication, 1997 IEEE International Solid-state Circuits Conference pp. 242-243, 465. |
Chen and Waldron, A Single-Chip 266Mbls CMOS TransmitterIReceiver for Serial Data Communications, 1993 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 100-101, 269. |
Chu et al.: “A comparison of CMOS circuit techniques: Differential cascode voltage switch logic versus conventional logic” IEEE Journal of Solid-State Circuits, vol. SC-22(4) pp. 528-532, (Aug. 1987). |
Cox, “A Radio System Proposal for Widespread Low-Power Tetherless Communications,” IEEE Transactions on Communications, vol. 39, No. 2 (Feb. 1991), pp. 324-335. |
Djahanshahi et al., High-speed ECL-Compatible Serial I/0 in 0.35!m CMOS, IEEE 1998. |
Dunlop et al., A 9 Gbitls Bandwidth MultiplexerfDemultiplexer CMOS Chip, 1992 Symposium on VLSI Circuits Digest of Technical Papers pp. 68-69. |
Elrabaa, Multimitter BiCMOS CML Circuits, IEEE Journal of Solid- State Circuits, vol. 27, No. 3, pp. 454-458 (Mar. 1992). |
Elrabaa, Optimization of Digital BiCMOS Circuits, An Overview, IEEE 1992, 5 pages. |
Ewen et al., CMOS circuits for Gbls serial data communication, IBM J. Res. Develop., vol. 39 No. 12 pp. 73-81 (Mar. 1995). |
Ewen et al., Single-Chip 1062Mbaud CMOS Transceiver for Serial Data Communication, 1995 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 32-33, 336. |
Fiedler et al., A 1.0625Gbps Transceiver with 2x-Oversampling and Transmit Signal Pre-Emphasis, 1997 IEEE International Solid- state Circuits Conference pp. 238-239, 464. |
Friedman et al, A Baseband Processor for IS-54 Cellular Telephony, IEEE Journal of Solid-state Circuits, vol. 31 No. 5 pp. 646-655 (May 1996). |
Fukaishi et al., A 4.25-Gbls CMOS Fiber Channel Transceiver with Asynchronous Tree-Type Demultiplexer and Frequency Conversion Architecture, IEEE Journal of Solid-state Circuits, vol. 33 No. 12, pp. 2139-2147 (1998). |
Gray et al., “Analysis and Design of Analog Integrated Circuits,” John Wiley Sons, Inc., pp. 704-709, (1977). |
Harrold, “An Introduction to GaAs IC Design,” Prentice Hall International, UK Ltd., pp. 43-45, 63, 160, (1993). |
Heimschi et al; Merged CMOS/Bipolar Current Switch Logic (MCSL), IEEE Journal of Solid State Circuits, Oct. 1989, vol. 24, pp. 1307-1311. |
Heller et al.: “Cascade voltage switch logic: A differential CMOS logic family”, IEEE International Solid-State Circuits Conference, pp. 16-17 (Feb. 22, 1984). |
Hoberecht, “A Layered network Protocol for Packet Voice and Data Integration,” IEEE Journal on Selected Areas in Communications, vol. SAC-1, No. 6 (Dec. 1983), pp. 1006-1013. |
Hodges et al., “Analysis and Design of Digital Integrated Circuits.” McGraw Hill, Inc., pp. 271-283, (1983). |
Katsu, S. et al. “A GaAs monolithic frequency divider using source coupled FET logic,” IEEE Electron Device Letters Aug. 1982, pp. 197-199, vol. EDL-3, No. 8. |
Katsu, S. et al. “A source coupled FET logic-A new current-mode approach to GaAs logics,” IEEE Transactions on Electron Devices Jun. 1985, pp. 1114-1118, vol. ED-32, No. 6. |
Klose, “Process-Optimization for Sub-30ps BiCMOS Technologies for Mixed ECLICMOS Applications,” IEEE 1991. |
Kurisu et al., 2.8Gb/s 176mW Byte-Interleaved and 3.0 Gbls 118mW Bit-Interleaved 8:1 Multiplexers, 1996 International Solid state Circuits Conference pp. 122-123, 429. |
Lee et al., “A CMOS Serial Link for 1 Gbaud Fully Duplexed Data Communication,” 1994 Symposium on VLSI Circuits Digest of Technical Papers, pp. 125-126. |
Lee et al., A CMOS Serial Link for Fully Duplexed Data Communication, IEEE Journal of Solid-State Circuits, vol. 30, pp. 353-364 (Apr. 1995). |
Lee, T.H. “High-frequency amplifier design,” Chapter 8 In The Design of CMOS Radio-Frequency Integrated Circuits. 1998, Cambridge Press, New York, N.Y., pp. 178-185. |
Madhavan and Levi, Low-Power 2.5 Gbitls VCSEL driver in 0.5!m CMOS technology, Electronics Letters, vol. 34 No. 2 pp. 178-179 (Jan. 1998). |
Mizuno, M. et al. “A GHz MOS adaptive pipeline technique using MOS current-mode logic,” IEEE J. of Solid-State Circuits Jun. 1996, pp. 784-791, vol. 31, No. 6. |
Mudd et al, “Very High Speed ECLICMG Gate Arrays with Submicron Structures,” IEEE 1989, 5 pages. |
Natarajan et al, “Battery Efficient Operation of Radio MAC Protocol,” IEEE P802.11191-102, Sep. 1991, pp. 1-5. |
Navarro and Van Noije, Design of an 8:1 MUX at 1.7Gbit/s in 0.8!m CMOS Technology, 1998 Great Lakes Symposium on VLSI. |
Oshima et al., “A Single CMOS SDH Terminal Chip for 622 Mbls STM 4C,” 1994 IEEE International SolidState Circuits Conference Digest of Technical Papers, pp. 174-175. |
Pederson and Metz, A CMOS to IOOK ECL Interface Circuit, 1989 IEEE International Solid-state Circuits Conference pp. 226-227, 345. |
Pfennings et al. “Differential split-level CMOS logic for subnanosecond speeds,” IEEE Journal ofSolid State Circuits Oct. 1985, pp. 1050-1055, vol. SC-20, No. 5. |
Quigley et al., Current Mode Transceiver Logic, (CMTL) for Reduced Swing CMOS, Chip to Chip Communication, IEEE 1993. |
Robert Meier's Master's Thesis, Mobile Computer Network Architecture, May 1993, 82 pages. |
Rudell, J. et al. “A 1.9-GHz wide-band IF double conversion CMOS receiver for cordless telephone applications,” IEEE Journal of Solid State Circuits Dec. 1997, pp. 2071-2088, vol. 32, No. 12. |
Runge and Thomas, 5Gbit/s 2:1 multiplexer fabricated in 0.351m CMOS and 3Gbit/s 1:2 demultiplexer fabricated in 0.5!m CMOS technology, Electronics Letters, vol. 35 No. 19.pp. 163 1-33 (Sep. 1999). |
Rypinski, “Architecture-Topology and Protocol Stacks,” IEEE 802.11191-21, Mar. 1991, 12 pages. |
Rypinski, Power-Drain Considerations for Full Time and Sleep Mode Radio Receivers, IEEE P802.11/91-99, Sep. 1991, 11 pages. |
Somasekhar, D'. and Kaushik, R. “Differential current switch logic a power DCVS logic family,” IEEE Journal of Solid-State Circuits Jul. 1996, pp. 981-991, vol. 31, No. 7. |
Thompson et al., A 300-MHz BiCMOS Serial Data Transceiver, IEEE Journal of Solid-state Circuits, vol. 29 No. 3 pp. 185-192 (1994). |
Widmer et al., “Single-Chip 4x500Mbaud CMOS Transceiver,” 1996 IEEE International SolidState Circuits Conference Digest of Technical Papers, pp. 126-127, 430. |
Document label, “Feb. 4, 2011 Emulex's Invalidity Contentions”, 149 total pages. |
Document label, “Feb. 4, 2011 Emulex's Invalidity Contentions, Ex. A”, 249 total pages. |
Document label, “Feb. 4, 2011 Emulex's Invalidity Contentions, Ex. B”, 45 total pages. |
Document label, “Feb. 4, 2011 Emulex's Invalidity Contentions, Ex. C 11”, 80 total pages. |
Document label, “Feb. 4, 2011 Emulex's Invalidity Contentions, Ex. C 12”, 48 total pages. |
Document label, “Feb. 4, 2011 Emulex's Invalidity Contentions, Ex. C”, 67 total pages. |
Document label, “Feb. 4, 2011 Emulex's Invalidity Contentions, Ex. D 21”, 48 total pages. |
Document label, “Feb. 4, 2011 Emulex's Invalidity Contentions, Ex. D”, 230 total pages |
Document label, “Feb. 4, 2011 Emulex's Invalidity Contentions, Ex. E”, 384 total pages. |
Document label, “Feb. 4, 2011 Emulex's Invalidity Contentions, Ex. F”, 333 total pages. |
Document label, “Feb. 4, 2011 Emulex's Invalidity Contentions, Ex. G 21”, 33 total pages. |
Document label, “Feb. 4, 2011 Emulex's Invalidity Contentions, Ex. G”, 251 total pages. |
Document label, “Feb. 4, 2011 Emulex's Invalidity Contentions, Razavi”, 100 total pages. |
Document label, “Feb. 4, 2011 Emulex's Invalidity Contentions, Razavi, Part 2”, 82 total pages. |
Document label, “Feb. 4, 2011 Emulex's Invalidity Contentions, Varma”, 9 total pages. |
Document label, “Aug. 8, 2008 Broadcom Memorandum of Contentions of Fact and Law”, 26 total pages. |
Document label, “Aug. 8, 2011 Emulex's Mem of Contentions of Fact and Law”, 32 total pages. |
Document label, “Aug. 18, 2011 Emulex's 282 Notice”, 19 total pages. |
Document label, “Oct. 4, 2011 Broadcom Memo ISO Motion for JMOL of No Invalidity”, 7 total pages. |
Document label, “Oct. 5, 2011 Emulex Opp to Motion for JMOL of No Invalidity of”, 9 total pages. |
Document label, “Oct. 12, 2011 Special Verdict”, 15 total pages. |
Document label, “Nov. 9, 2011 Broadcom Post Trial Brief on NonObviousness of”, 21 total pages. |
Document label, “Nov. 9, 2011 Broadcom Post Trial Brief on NonObviousness of 2”, 22 total pages. |
Document label, “Nov. 9, 2011 Emulex's Renewed Motion for Judgement on Obviousn4”, 10 total pages. |
Document label, “Nov. 9, 2011 Emulex's Renewed Motion for Judgement on Obviousn5”, 10 total pages. |
Document label, “Nov. 9, 2011 Emulex's Renewed Motion for Judgement on Obviousn6”, 11 total pages. |
Document label, “Nov. 9, 2011 Emulex's Renewed Motion for Judgement on Obviousn7”, 22 total pages. |
Document label, “Nov. 9, 2011 Emulex's Renewed Motion for Judgement on Obviousne”, 4 total pages. |
Document label, “Nov. 9, 2011 Emulex's Renewed Motion for Judgement re Obviousn4”, 29 total pages. |
Document label, “Nov. 9, 2011 Emulex's Renewed Motion for Judgement re Obviousne”, 3 total pages. |
Number | Date | Country | |
---|---|---|---|
20100225355 A1 | Sep 2010 | US |
Number | Date | Country | |
---|---|---|---|
60141355 | Jun 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12363202 | Jan 2009 | US |
Child | 12784713 | US | |
Parent | 11729679 | Mar 2007 | US |
Child | 12363202 | US | |
Parent | 11385632 | Mar 2006 | US |
Child | 11729679 | US | |
Parent | 11114969 | Apr 2005 | US |
Child | 11385632 | US | |
Parent | 10143087 | May 2002 | US |
Child | 11114969 | US | |
Parent | 09484856 | Jan 2000 | US |
Child | 10143087 | US |