1. Technical Field
The present disclosure relates to detecting apparatuses, and particularly to a current detecting apparatus.
2. Description of the Related Art
Generally, a current provided by a driver for a motor is detected by a current sensor. Typically, the kind of current sensor used in such a driver will only detect the current in increments, such as 5 A, 10 A, 20 A, 30 A, or 50 A, and so on. Therefore, detection of the current may not be very precise, for example, when the current of the motor is about 24 A, the sensor may detect the current as being 30 A. Therefore, current detection for a motor by such a driver is imprecise.
Referring to
Referring to
The A/A signal isolation amplifier U1 includes an input and an output. The input of the A/A signal isolation amplifier U1 includes a positive voltage input pin IN+, a negative voltage input pin IN−, a first power pin VDD1, and a first ground pin GND1. The output of the A/A signal isolation amplifier U1 includes a positive voltage output pin Vout+, a negative voltage output pin Vout−, a second power pin VDD2, and a second ground pin GND2. The first power pin VDD1 is connected to a first power supply VD1, and also connected to the first ground pin GND1 via the first capacitor C1. The positive input voltage pin IN+ is connected to the first end of the first resistor R1 via the second resistor R2, and also connected to the first ground pin GND1 via the second capacitor C2. The negative input voltage pin IN− is connected to the first ground pin GND1, and connected to the second end of the first resistor R1. The first ground pin GND1 is grounded. The second power pin VDD2 is connected to a second power supply VD2, and connected to the second ground pin GND2. The positive output voltage pin Vout+ and the negative output voltage pin Vout− are connected to the A/D interface 10 of the processor 100. The second ground pin GND2 is grounded via the third capacitor C3.
In order to isolate the input and the output of the A/A isolation amplifier U1 from each other, the first power pin VDD1 and the second power pin VDD2 are correspondingly connected to the different power supplies VD1 and VD2 which are both capable of providing about a +5V voltage, and the first ground pin GND1 and the second ground pin GND2 are connected to different grounds. The first capacitor C1, the second capacitor C2, and the third capacitor C3 are configured for wave filtering. The second resistor R2 is configured for current limiting. In one exemplary embodiment, the first capacitor C1, the second capacitor C2, the third capacitor C3, and the second resistor R2 can be omitted to save cost.
The resistance of the first resistor R1 is determined by a maximum input voltage of the positive input voltage pin IN+ of the A/A signal isolation amplifier U1 and a maximum current output by the driver D1. For example, when the maximum input voltage of the positive input voltage pin IN+ of the A/A signal isolation amplifier U1 is about 0.03V, and the maximum current of the driver D1 is about 30 A, thereby the resistance of the first resistor R1 should be approximately 0.03V/30 A=0.001Ω.
An electrical potential difference is formed between the first and second ends of the first resistance R1 when the current I1 passes through the first resistor R1. The electrical potential difference is transmitted to the A/A signal isolation amplifier U1 via the positive input voltage pin IN+ and the negative input voltage pin IN−. The A/A signal isolation amplifier U1 isolates and amplifies the electrical potential difference to output an isolated signal Vo. The isolated signal Vo is transmitted to the A/D interface 10 of the processor 100 for an analog-to-digital signal conversion. The processor 100 processes a digital signal converted by the A/D interface 10 to obtain the value of the current I1 passing through the first resistor R1. In one exemplary embodiment, the processor 100 may include a comparator (not shown), for comparing the digital signal with a determined reference value, so that, for example, when the current I1 is overvalue, an alarm is given.
Referring to
Referring to
It is to be understood, however, that even though numerous characteristics and advantages of the present disclosure have been set forth in the foregoing description, together with details of the structure and function of the disclosure, the disclosure is illustrative only, and changes may be made in details, especially in matters of shape, size, and arrangement of parts within the principles of the disclosure to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
200910300171.5 | Jan 2009 | CN | national |