This application claims the benefit of Chinese Patent Application No. 201910335411.9, filed on Apr. 24, 2019, and of Chinese Patent Application No. 202010142587.5, filed on Mar. 4, 2020, both of which are incorporated herein by reference in their entirety.
The present invention generally relates to the field of power electronics, and more particularly to current drive circuits and methods compatible with a triac dimmer, and associated light-emitting diode (LED) lighting devices.
A switched-mode power supply (SMPS), or a “switching” power supply, can include a power stage circuit and a control circuit. When there is an input voltage, the control circuit can consider internal parameters and external load changes, and may regulate the on/off times of the switch system in the power stage circuit. Switching power supplies have a wide variety of applications in modern electronics. For example, switching power supplies can be used to drive light-emitting diode (LED) loads.
Reference may now be made in detail to particular embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention may be described in conjunction with the preferred embodiments, it may be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents that may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it may be readily apparent to one skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, processes, components, structures, and circuits have not been described in detail so as not to unnecessarily obscure aspects of the present invention.
A triac dimmer may perform dimming with a phase control method. That is, the triac dimmer can be controlled to be turned on based on per half cycle of a sinusoidal signal, in order to obtain the same turned-on phase angle. The turned-on phase angle may be changed by regulating a chopped phase of the triac dimmer, in order to perform dimming. The triac dimmer can be used to perform dimming on incandescent bulbs. With the popularization of light-emitting diode (LED) light sources, triac dimmers are increasingly used by LED drive circuits to perform dimming. Demand exists for an LED drive circuit to not only compatible with a triac (e.g., compatible with only a maximum turned-on angle of the triac), but also to be capable of analog dimming with an analog dimming depth reaching about 1%. Since triac dimmers are widely used in the market, an LED drive circuit may be compatible with traditional triac dimmers, while also being compatible with an intelligent dimming scheme.
Referring now to
Referring now to
Referring now to
In one embodiment, a current drive circuit applied in an LED drive circuit that is compatible with a triac dimmer and is configured to generate a direct current bus voltage, can include: (i) a current generation circuit configured to receive the direct current bus voltage, and to generate a drive current based on a PWM dimming signal, in order to drive an LED load; and (ii) an input current regulation circuit configured to generate a regulation signal based on a duty cycle of the PWM dimming signal, in order to control an operation state of the triac dimmer.
Referring now to
Alternatively, current generation circuit 3 may be implemented by a constant current linear drive circuit, which may generate a constant drive current based on the PWM dimming signal. Input current regulation circuit 4 can generate regulation signal Vreg based on a duty cycle of the PWM dimming signal, in order to control an operation state of triac dimmer TRIAC based on regulation signal Vreg. In this way, when the duty cycle of the PWM dimming signal is small, the input current IIN can be reduced to be less than a holding current of triac dimmer TRIAC, such that triac dimmer TRIAC is turned-off. This can substantially avoid the problem of the LED load flickering due to a small duty cycle of the PWM dimming signal. When the duty cycle of the PWM dimming signal is relatively small, input current IIN may be reduced to be less than the holding current of triac dimmer TRIAC by regulating a magnitude of input current IIN, or by directly cutting off an input current path for supplying the direct current bus voltage to the LED load.
Referring now to
Current generation circuit 3 can receive voltage signal V2, and may generate a drive current ILED based on a PWM dimming signal, in order to drive an LED load. In certain embodiments, current generation circuit 3 can be implemented by a constant current linear drive circuit connected to the LED load. For example, current generation circuit 3 can include current control circuit 31 and transistor Q1. One power terminal of transistor Q1 can connect to a negative terminal of the LED load, the other power terminal of transistor Q1 may be grounded via a current sampling resistor RS, and a control terminal of transistor Q1 can connect to current control circuit 31. An operation state of transistor Q1 may be controlled based on control signal VC1 from current control circuit 31, in order to generate drive current ILED.
When the duty cycle of the PWM dimming signal is less than a reset value, the operation state of transistor Q1 can be controlled based on the duty cycle of the PWM dimming signal to control the magnitude of input current IIN, in order to control the operation state of triac dimmer TRIAC. In one example, current control circuit 31 can regulate a voltage at the gate terminal of transistor Q1 based on the duty cycle of the PWM dimming signal to regulate a current flowing through transistor Q1, in order to reduce an input current of the current drive circuit to be less than a holding current of the triac dimmer. Thus, the triac dimmer may be turned off in advance due to the small input current. Alternatively, transistor Q1 may be controlled to be turned on or turned off based on the duty cycle of the PWM dimming signal to control the input current path to be conductive or cut off, in order to control the operation state of triac dimmer TRIAC.
When current generation circuit 3 is implemented by a switch-type regulator and the duty cycle of the PWM dimming signal is small, a duty cycle of the switch-type regulator can be regulated to reduce the drive current or cut off the input current path, so as to turn off triac dimmer TRIAC. Input current regulation circuit 4 can generate regulation signal Vreg based on the duty cycle of the PWM dimming signal, in order to control the operation state of triac dimmer TRIAC based on the regulation signal Vreg. In this way, when the duty cycle of the PWM dimming signal is small, input current IIN can be reduced to be less than a holding current of triac dimmer TRIAC, and thus triac dimmer TRIAC may not be turned on.
In certain embodiments, when the duty cycle of the PWM dimming signal is small, the input current path can be cut off based on regulation signal Vreg, in order to turn off the triac dimmer. Input current regulation circuit 4 can generate regulation signal Vreg based on a comparison result between a “first” signal for characterizing the duty cycle of the PWM dimming signal and a threshold. When the duty cycle of the PWM dimming signal is small, triac dimmer TRIAC can be turned off based on regulation signal Vreg. It is to be understood that the first signal may be a reference current signal for characterizing the duty cycle of the PWM dimming signal, or a compensation signal generated based on an error between the drive current and a desired drive current corresponding to the PWM dimming signal.
Input current regulation circuit 4 can include compensation signal generation circuit 41, slope signal generation circuit 42, comparison circuit 43, and a switch circuit. Compensation signal generation circuit 41 can generate compensation signal Vcomp for characterizing the error between the drive current ILED and the desired drive current. In one example, compensation signal generation circuit 41 can include reference signal generation circuit 411, error amplifier EA, and a compensation circuit. Reference signal generation circuit 411 can filter an external PWM dimming signal, and may process the filtered signal based on an internal dimming curve, in order to obtain reference current signal Vref corresponding to the PWM dimming signal. Reference current signal Vref can be positively correlated with the duty cycle of the PWM dimming signal. Error amplifier EA can generate compensation signal Vcomp based on sampling signal VS of the drive current ILED and reference current signal Vref.
For example, reference current signal Vref may be provided to a non-inverting input terminal of error amplifier EA, and sampling signal VS can be provided to an inverting input terminal of the error amplifier EA, such that a negative feedback loop may be formed for drive current ILED, and compensation signal Vcomp can be generated from an output terminal of error amplifier EA. Compensation signal generation circuit 41 can also include a compensation circuit to compensate an output signal of error amplifier EA1, in order to generate compensation signal Vcomp. Further, current control circuit 31 of current generation circuit 3 can generate control signal VC1 based on compensation signal Vcomp to control the operation state of transistor Q1, in order to generate drive current ILED corresponding to the PWM dimming signal.
Since reference current signal Vref is positively correlated with the duty cycle of the PWM dimming signal, and error amplifier EA generates compensation signal Vcomp based on the error between reference current signal Vref and sampling signal VS, a magnitude of compensation signal Vcomp can be capable of characterizing a magnitude of the duty cycle of the PWM dimming signal. Slope signal generation circuit 42 can generate a threshold (e.g., slope signal Vslope). Slope signal Vslope can serve as a reference for determining the magnitude of the duty cycle of the PWM dimming signal. Since the magnitude of compensation signal Vcomp is capable of characterizing the magnitude of the duty cycle of the PWM dimming signal, whether the duty cycle of the PWM dimming signal is small can be determined by determining whether slope signal Vslope rises to compensation signal Vcomp in a cycle. In this way, when the duty cycle of the PWM dimming signal is small, input current IIN can be reduced to be less than a holding current of triac dimmer TRIAC, such that triac dimmer TRIAC is turned off in advance.
Referring now to
Comparator COM2 can generate reset signal Vreset. Set terminal S of the RS flip-flop can receive set signal Vset, reset terminal R of the RS flip-flop can receive reset signal Vreset, and output terminal Q of the RS flip-flop may generate logic signal Vlogic. Current source I, capacitor C1, and switch S3 can connect in parallel with each other, and switch S3 may be controlled by an inverted version of logic signal Vlogic. When switch S3 is turned off, current source I can charge capacitor C1, and the increased slope signal Vslope may be generated on capacitor C1. When switch S3 is turned on, slope signal Vslope on capacitor C1 can return to zero. Comparison circuit 43 can generate regulation signal Vreg based on compensation signal Vcomp and slope signal Vslope.
Referring now to
Referring back to
Referring now to
In this case, transistor Q1 may not be turned off actively and can be controlled by current control circuit 31, such that sampling signal VS falls to zero when direct current bus voltage VBUS is equal to drive voltage VLED of the LED load. When the duty cycle of the PWM dimming signal is small, the case that slope signal Vslope is greater than compensation signal Vcomp can occur in a time period in which direct current bus voltage VBUS is greater than drive voltage VLED of the LED load. In this case, transistor Q1 can be controlled to be turned off actively, and the input current path may be cut off, such that triac dimmer TRIAC is turned off in advance while not being restarted. In certain embodiments, the current drive circuit can be compatible with the triac dimmer in an intelligent dimming process. When the duty cycle of the PWM dimming signal is relatively small, the input current path can be cut off actively, such that the triac dimmer is turned off in advance while not being restarted. This can substantially avoid LED load flickering that can occur in a dimming process due to a small duty cycle of the PWM dimming signal.
Referring now to
Current compensation circuit 5 can generate compensation current IQ2 when the duty cycle of the PWM dimming signal is relatively small and the input current path is conductive, in order to maintain the triac dimmer in a turned-on state at the start of the conduction of the triac dimmer. In this example, when the duty cycle of the PWM dimming signal is small, at the start of the conduction of the triac dimmer, input current IIN greater than the holding current can hardly be supplied to the triac dimmer TRIAC. In this case, triac dimmer TRIAC can turn off and become unstable. To deal with this problem, current compensation circuit 5 can additionally supply compensation current IQ2 to triac dimmer TRIAC, such that input current IIN may be increased in order to maintain the triac dimmer in an ON state. For example, current compensation circuit 5 can connect to transistor Q1 in parallel, and can include transistor Q2, error amplifier EA2, and switch S4. Transistor Q2 can connect to transistor Q1 in parallel; that is, power terminals of transistors Q1 and Q2 may be connected to each other. Switch S4 can be controlled to be turned on/off based on regulation signal Vreg. When switch S4 is turned on, since a control terminal of transistor Q2 can be grounded, transistor Q2 may be turned off.
Error amplifier EA2 can generate control signal VC2 based on sampling signal VS of drive current ILED and reference signal Vref low for characterizing an excessive low input current, to control transistor Q2 to be turned on, in order to generate the compensation current IQ2 to compensate input current IIN when the input current path is conductive. In this way, the problem of triac dimmer TRIAC being turned off due to an insufficient holding current when the duty cycle of the PWM dimming signal is small can be substantially avoided. Further, when regulation signal Vreg is active, the input current path can be controlled to be cut off by simultaneously turning off transistor Q1 and current compensation circuit 5 based on regulation signal Vreg.
Further, as compared with the waveform of VS with the solid line, since current IQ2 is supplied to triac dimmer TRIAC, input current IIN can be increased at the start of the conduction of the triac dimmer. Since drive current ILED equals input current IIN, sampling signal VS of drive current ILED can be increased, and the triac dimmer may be maintained in the on state. When slope signal Vslope is increased to compensation signal Vcomp, regulation signal Vreg is active, the input current path can be controlled to be cut off by simultaneously turning off transistors Q1 and Q2 based on regulation signal Vreg, and sampling signal VS can fall to zero. With the current drive circuit in certain embodiments, input current IIN can be compensated when the duty cycle of the PWM dimming signal is small and the input current path is conductive, thereby substantially avoiding the problem of the triac dimmer TRIAC being turned off due to insufficient holding current when the duty cycle of the PWM dimming signal is small.
Referring now to
In one example, the input current regulation circuit 6 can include reference signal generation circuit 61, slope signal generation circuit 62, and comparison circuit 63. Reference signal generation circuit 61 can filter an external PWM dimming signal, and may process the filtered signal based on an internal dimming curve, in order to obtain reference current signal Vref corresponding to the PWM dimming signal. Reference current signal Vref can be positively correlated with the duty cycle of the PWM dimming signal. Slope signal generation circuit 62 can generate the threshold (e.g., slope signal Vslope). Slope signal Vslope can serve as a reference for determining the magnitude of the duty cycle of the PWM dimming signal. Since the magnitude of compensation signal Vcomp is capable of characterizing the magnitude of the duty cycle of the PWM dimming signal, whether the duty cycle of the PWM dimming signal is small can be determined by determining whether slope signal Vslope rises to compensation signal Vcomp in a cycle.
Comparison circuit 63 can include comparator COM3. An inverting input terminal of comparator COM3 can receive reference current signal Vref, and a non-inverting input terminal of comparator COM3 can receive slope signal Vslope. Comparator COM3 can generate regulation signal Vreg by comparing reference current signal Vref against slope signal Vslope. For example, when slope signal Vslope is greater than reference current signal Vref, the input current of the current drive circuit can be reduced to be less than a holding current of the triac dimmer, in order to turn off the triac dimmer in advance.
Input current regulation circuit 6 can also include switch circuit 64 coupled to control terminal of transistor Q1, and may switch a voltage at the control terminal of transistor Q1 between a ground and control signal VC1 based on regulation signal Vreg. In one example, when slope signal Vslope is greater than reference current signal Vref, regulation signal Vreg can be active, and the control terminal of transistor Q1 may be grounded. Thus, the input current path for supplying the direct current bus voltage to the LED load can be cut off, in order to turn off the triac dimmer in advance. When slope signal Vslope is not greater than reference current signal Vref, regulation signal Vreg may be inactive, and the control terminal of transistor Q1 can receive control signal VC1 generated by current control circuit 31.
Thus, the current flowing through transistor Q1 can be controlled based on compensation signal Vcomp representative of an error between reference current signal Vref corresponding to PWM dimming signal and sampling signal VS of drive current ILED, in order to control drive current ILED. In this way, when the duty cycle of the PWM dimming signal is small, the operation state of triac dimmer TRIAC can be controlled, thereby avoiding the potential LED flickering problem due to a small duty cycle of the PWM dimming signal.
The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various embodiments with modifications as are suited to particular use(s) contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
201910335411.9 | Apr 2019 | CN | national |
202010142587.5 | Mar 2020 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
5528481 | Caldeira et al. | Jun 1996 | A |
8310846 | Piazzesi | Nov 2012 | B2 |
8917068 | Chen et al. | Dec 2014 | B2 |
9331588 | Chen | May 2016 | B2 |
9762113 | Chen et al. | Sep 2017 | B2 |
20150078041 | Huang | Mar 2015 | A1 |
20150311810 | Chen et al. | Oct 2015 | A1 |
20160088697 | Yan | Mar 2016 | A1 |
20170047853 | Chen et al. | Feb 2017 | A1 |
20180310376 | Huang | Oct 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20200344857 A1 | Oct 2020 | US |