The present technology relates to relates generally to devices, systems, and methods for removing obstructions from body lumens. Some embodiments of the present technology relate to devices and methods for a current generator for a medical treatment system.
Many medical procedures use medical device(s) to remove an obstruction (such as clot material) from a body lumen, vessel, or other organ. An inherent risk in such procedures is that mobilizing or otherwise disturbing the obstruction can potentially create further harm if the obstruction or a fragment thereof dislodges from the retrieval device. If all or a portion of the obstruction breaks free from the device and flows downstream, it is highly likely that the free material will become trapped in smaller and more tortuous anatomy. In many cases, the physician will no longer be able to use the same retrieval device to again remove the obstruction because the device may be too large and/or immobile to move the device to the site of the new obstruction.
Procedures for treating ischemic stroke by restoring flow within the cerebral vasculature are subject to the above concerns. The brain relies on its arteries and veins to supply oxygenated blood from the heart and lungs and to remove carbon dioxide and cellular waste from brain tissue. Blockages that interfere with this blood supply eventually cause the brain tissue to stop functioning. If the disruption in blood occurs for a sufficient amount of time, the continued lack of nutrients and oxygen causes irreversible cell death. Accordingly, it is desirable to provide immediate medical treatment of an ischemic stroke.
To access the cerebral vasculature, a physician typically advances a catheter from a remote part of the body (typically a leg) through the abdominal vasculature and into the cerebral region of the vasculature. Once within the cerebral vasculature, the physician deploys a device for retrieval of the obstruction causing the blockage. Concerns about dislodged obstructions or the migration of dislodged fragments increases the duration of the procedure at a time when restoration of blood flow is paramount. Furthermore, a physician might be unaware of one or more fragments that dislodge from the initial obstruction and cause blockage of smaller more distal vessels.
Many physicians currently perform thrombectomies (i.e. clot removal) with stents to resolve ischemic stroke. Typically, the physician deploys a stent into the clot in an attempt to push the clot to the side of the vessel and re-establish blood flow. Tissue plasminogen activator (“tPA”) is often injected into the bloodstream through an intravenous line to break down a clot. However, it takes time for the tPA to reach the clot because the tPA must travel through the vasculature and only begins to break up the clot once it reaches the clot material. tPA is also often administered to supplement the effectiveness of the stent. Yet, if attempts at clot dissolution are ineffective or incomplete, the physician can attempt to remove the stent while it is expanded against or enmeshed within the clot. In doing so, the physician must effectively drag the clot through the vasculature, in a proximal direction, into a guide catheter located within vessels in the patient's neck (typically the carotid artery). While this procedure has been shown to be effective in the clinic and easy for the physician to perform, there remain some distinct disadvantages to using this approach.
For example, one disadvantage is that the stent may not sufficiently retain the clot as it pulls the clot to the catheter. In such a case, some or all of the clot might remain in the vasculature. Another risk is that, as the stent mobilizes the clot from the original blockage site, the clot might not adhere to the stent as the stent is withdrawn toward the catheter. This is a particular risk when passing through bifurcations and tortuous anatomy. Furthermore, blood flow can carry the clot (or fragments of the clot) into a branching vessel at a bifurcation. If the clot is successfully brought to the end of the guide catheter in the carotid artery, yet another risk is that the clot may be “stripped” or “sheared” from the stent as the stent enters the guide catheter.
In view of the above, there remains a need for improved devices and methods that can remove occlusions from body lumens and/or vessels.
Mechanical thrombectomy (e.g., clot-grabbing and removal) has been effectively used for treatment of ischemic stroke. Although most clots can be retrieved in a single pass attempt, there are instances in which multiple attempts are needed to fully retrieve the clot and restore blood flow through the vessel. Additionally, there exist complications due to detachment of the clot from the interventional element during the retrieval process as the interventional element and clot traverse through tortuous intracranial vascular anatomy. For example, the detached clot or clot fragments can obstruct other arteries leading to secondary strokes. The failure modes that contribute to clot release during retrieval are: (a) boundary conditions at bifurcations; (b) changes in vessel diameter; and (c) vessel tortuosity, amongst others.
Certain blood components, such as platelets and coagulation proteins, display negative electrical charges. The treatment systems of the present technology provide an interventional element and a current generator configured to positively charge the interventional element during one or more stages of a thrombectomy procedure. For example, the current generator may apply a constant or pulsatile direct current (DC) to the interventional element. The positively charged interventional element attracts negatively charged blood components, thereby improving attachment of the thrombus to the interventional element and reducing the number of device passes or attempts necessary to fully retrieve the clot. In some aspects of the present technology, the treatment system includes an elongate core member (e.g., a cable) extending between the current generator and the interventional element. A delivery electrode may be integrated into the core member and/or interventional element, and the treatment system further includes a negative electrode that may be disposed at a number of different locations. For example, the negative electrode can be a wire coupled to or integrated within the core member. Additionally or alternatively, a negative electrode can take the form of a needle, a grounding pad, a conductive element carried by a one or more catheters of the treatment system, a separate guide wire, and/or any other suitable conductive element configured to complete an electrical circuit with the delivery electrode and the extracorporeally positioned current generator. When the interventional element is placed in the presence of blood (or any other electrolytic medium) and voltage is applied at the terminals of the current generator, current flows along the core member to the interventional element, through the blood, and to the return electrode, thereby positively charging at least a portion of the interventional element and adhering clot material thereto.
To avoid additional risk to the patient, and to ensure the treatment system functions properly, current should be reliably delivered to the interventional element. To improve reliability, a handheld current generator can be used to deliver current to the interventional element. In some embodiments, the handheld current generator can detachably couple to the core member to form an electrical connection. For example, the core member can be slidably inserted into the current generator so that some components of the core member come into contact with the electrical terminals of the current generator, which forms an electrical connection. In some embodiments, the current generator is sized so that an electrical connection is formed only when the core member is fully and properly inserted into the current generator. In various embodiments, the current generator can include several features that assist the user with reliably delivering current to the interventional element. For example, the current generator can include a guide surface that can guide the core element into the current generator and a locking mechanism that can hold the core element in position when a connection with the current generator is formed.
Additional features and advantages of the present technology are described below, and in part will be apparent from the description, or may be learned by practice of the present technology. The advantages of the present technology will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings. The subject technology is illustrated, for example, according to various aspects described below. Various examples of aspects of the subject technology are described as numbered clauses (1, 2, 3, etc.) for convenience. These are provided as examples and do not limit the subject technology
Many aspects of the present disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale. Instead, emphasis is placed on clearly illustrating the principles of the present disclosure.
The present technology provides devices, systems, and methods for removing clot material from a blood vessel lumen. Although many of the embodiments are described below with respect to devices, systems, and methods for treating a cerebral or intracranial embolism, other applications and other embodiments, in addition to those described herein, are within the scope of the technology. For example, the treatment systems and methods of the present technology may be used to remove emboli from body lumens other than blood vessels (e.g., the digestive tract, etc.) and/or may be used to remove emboli from blood vessels outside of the brain (e.g., pulmonary, abdominal, cervical, or thoracic blood vessels, or peripheral blood vessels including those within the legs or arms, etc.). In addition, the treatment systems and methods of the present technology may be used to remove luminal obstructions other than clot material (e.g., plaque, resected tissue, foreign material, etc.). Moreover, the current generator of the present technology may be used in other contexts beyond removal of luminal obstructions, for example electrolytic detachment, neuromodulation, or any other instances in which electrical current is delivered to a treatment system disposed within a corporeal lumen or otherwise within the body.
The core member 105 is configured to be slidably disposed within the lumen of the third catheter 114. In the illustrated embodiment, the core member 105 can take the form of an electrical cable that includes a first conductor 116 and a second conductor 118. As discussed in more detail below, in some instances the first conductor 116 can take the form of an elongated tube (e.g., a hypotube) and the second conductor 118 can take the form of an elongated wire or rod. In some embodiments, the second conductor 118 is configured to be disposed within a lumen of the first conductor 116. The first conductor 116 and/or the second conductor 118 can be electrically insulated along at least a portion of their respective lengths. In some embodiments, the treatment device 104 does not include the second catheter 112. The first catheter 110 can be coupled to (or incorporate) the handle 108, which provides proximal access to the first conductor 116 and second conductor 118. In some embodiments, the handle 108 can be a series of rotating hemostasis valves. For example, the handle 108 can be a Bi-Tri-Quad axial system used for neurointerventions.
The current generator 200 may be coupled to the core member 105 to deliver electrical current to the interventional element 106 and thereby provide an electrically charged environment at the distal portion 104b of the treatment device 104. Further, the current generator 200 may be coupled to the core member 105 to return electrical current from the electrically charged environment to the current generator 200. In various embodiments, the current generator 200 can be electrically coupled to the first conductor 116, the second conductor 118, or both.
In some embodiments, the treatment system 100 includes a suction source 120 (e.g., a syringe, a pump, etc.) configured to be fluidically coupled (e.g., via a connector 122) to a proximal portion of one or more of the first catheter 110, the second catheter 112, and/or the third catheter 114 to apply negative pressure therethrough. In some embodiments, the treatment system 100 includes a fluid source 124 (e.g., a fluid reservoir, a syringe, pump, etc.) configured to be fluidically coupled (e.g., via the connector 122) to a proximal portion of one or more of the first catheter 110, the second catheter 112, and/or the third catheter 114 to supply fluid (e.g., saline, contrast agents, a drug such as a thrombolytic agent, etc.) to the treatment site.
According to some embodiments, the catheters 110, 112, and 114 can each be formed as a generally tubular member extending along and about a central axis. According to some embodiments, the third catheter 114 is generally constructed to track over a conventional guidewire in the cervical anatomy and into the cerebral vessels associated with the brain and may also be chosen according to several standard designs that are generally available. Accordingly, the third catheter 114 can have a length that is at least 125 cm long, and more particularly may be between about 125 cm and about 175 cm long. Other designs and dimensions are contemplated.
The second catheter 112 can be sized and configured to slidably receive the third catheter 114 therethrough. As noted above, the second catheter 112 can be coupled at a proximal portion to a suction source 120 (
According to some embodiments, the bodies of the catheters 110, 112, and 114 can be made from various thermoplastics, e.g., polytetrafluoroethylene (PTFE or TEFLON®), fluorinated ethylene propylene (FEP), high-density polyethylene (HDPE), polyether ether ketone (PEEK), etc., which can optionally be lined on the inner surface of the catheters or an adjacent surface with a hydrophilic material such as polyvinylpyrrolidone (PVP) or some other plastic coating. Additionally, either surface can be coated with various combinations of different materials, depending upon the desired results.
In some embodiments, the current generator 200 may be coupled to a proximal portion of the first conductor 116, and/or a proximal portion of the third catheter 114, the second catheter 112, and/or first catheter 110 to provide an electric current to the interventional element 106. For example, as shown in
The system can include multiple (e.g., two or more), distinct conductive paths or channels for passing electrical current along the system. The interventional element 106 can serve as one electrode (e.g., a positive electrode) in electrical communication with a conductive path via the first conductor 116. Another of the conductive paths of the system can be in electrical communication with another electrode (e.g., a negative electrode). For example, the second conductor 118 can serve as the negative electrode.
As shown in
In various embodiments, the second conductor 118 and the interventional element 106 can be joined together to secure the interventional element 106 relative to the second conductor 118 and to complete an electrical pathway between the elongate second conductor 118 to the interventional element 106. For example, when voltage is applied via the electrical connectors of the current generator 200, current can flow from the positive connector of the current generator 200, distally along the second conductor 118 to the interventional element 106 and through the surrounding media (e.g., blood, tissue, thrombus, etc.) before returning proximally along the first conductor 116 to the negative electrical connector of the current generator 200, thereby positively charging at least a portion of the interventional element 106 and promoting clot adhesion.
In certain embodiments, the polarities of the current generator 200 can be switched, so that the negative electrical connector is electrically coupled to the first conductor 116 and the positive electrical connector is electrically coupled to the second conductor 118. This can be advantageous when, for example, attempting to attract predominantly positively charged material to the interventional element 106, or when attempting to break up a clot rather than grasp it with an interventional element 106. In some embodiments alternating current (AC) signals may be used rather than DC. In certain instances, AC signals may advantageously help break apart a thrombus or other material.
In various embodiments, the interventional element 106 can take any number of forms, for example a removal device, a thrombectomy device, or other suitable medical device. For example, in some embodiments the interventional element 106 may be a stent and/or stent retriever, such as Medtronic's Solitaire™ Revascularization Device, Stryker Neurovascular's Trevo® ProVue™ Stentriever, or other suitable devices. In some embodiments, the interventional element 106 may be a coiled wire, a weave, and/or a braid formed of a plurality of braided filaments. Examples of suitable interventional elements 106 include any of those disclosed in U.S. Pat. No. 7,300,458, filed Nov. 5, 2007, U.S. Pat. No. 8,940,003, filed Nov. 22, 2010, U.S. Pat. No. 9,039,749, filed Oct. 1, 2010, and U.S. Pat. No. 8,066,757, filed Dec. 28, 2010, each of which is incorporated by reference herein in its entirety.
The interventional element 106 can have a low-profile, constrained or compressed configuration for intravascular delivery to the treatment site within the third catheter 114, and an expanded configuration for securing and/or engaging clot material and/or for restoring blood flow at the treatment site. The interventional element 106 has a proximal portion including an attachment portion 106a that may be coupled to the first conductor 116 and a distal portion comprising an open cell framework or body 106b. In some embodiments, the body 106b of the interventional element 106 can be generally tubular (e.g., cylindrical), and the proximal portion of the interventional element 106 can taper proximally to the attachment portion 106a.
The interventional element 106 can be a metallic and/or electrically conductive thrombectomy device. For example, the interventional element can include or be made of stainless steel, nitinol, cobalt-chromium, platinum, tantalum, alloys thereof, or any other suitable material. In some embodiments, the interventional element 106 is a mesh structure (e.g., a braid, a stent, etc.) formed of a superelastic material (e.g., Nitinol) or other resilient or self-expanding material configured to self-expand when released from the third catheter 114. The mesh structure may include a plurality of struts and open spaces between the struts. In some embodiments, the struts and spaces may be situated along the longitudinal direction of the interventional element 106, the radial direction, or both.
In some embodiments, the first conductor 116 can be a structural element configured to push and pull a device such as the interventional element 106 along the bodily lumen. The first conductor 116 can be any suitable elongate member configured to advance the interventional element 106 to a treatment site within a blood vessel. For example, the first conductor 116 can be or include a wire, tube (e.g., a hypotube), coil, or any combination thereof. According to some embodiments, the first conductor 116 comprises an elongate tubular member defining a lumen therethrough. In some embodiments, the first conductor 116 can comprise a distally located aperture configured to receive the attachment portion of the interventional element. In some embodiments, the first conductor 116 comprises a distally located joining element comprising the aperture configured to receive the attachment portion. The first conductor 116 can have a length sufficient to extend from a location outside the patient's body through the vasculature to a treatment site within the patient's body. The first conductor 116 can be a monolithic structure or formed of multiple joined segments. In some embodiments, the first conductor 116 can comprise a laser-cut hypotube having a spiral cut pattern (or other pattern of cut voids) formed in its sidewall along at least a portion of its length. The first conductor 116 can be metallic and/or otherwise electrically conductive to deliver current from the current generator 102 to the interventional element 106. For example, the first conductor 116 can comprise or consist of nickel titanium alloy, stainless steel, or other metals or alloys. In embodiments that comprise multiple joined segments, the segments may be of the same or different materials. For example, some or all of the first conductor 116 can be formed of stainless steel, or other suitable materials known to those skilled in the art. Nickel titanium alloy may be preferable for kink resistance and reduction of imaging artifacts.
In some embodiments, the second conductor 118 can be a structural element configured to secure or retain a position of the interventional element 106 relative to the first conductor 116. Additionally, or alternatively, the second conductor 118 can be configured to be a negative electrode. The second conductor 118 can be any suitable elongate member configured to extend through a lumen of the first conductor 116. For example, the second conductor 118 can be or include a wire, tube (e.g., a hypotube), coil, or any combination thereof. The second conductor 118 can have a length sufficient to extend from a location outside the patient's body through the vasculature to a treatment site within the patient's body. The second conductor 118 can be a monolithic structure or formed of multiple joined segments. The second conductor 118 can be metallic or electrically conductive to deliver current from the surrounding media (e.g., blood, tissue, thrombus, etc.) to the current generator 200. For example, the second conductor 118 can comprise or consist of nickel titanium alloy, stainless steel, or other metals or alloys. In embodiments that comprise multiple joined segments, the segments may be of the same or different materials. For example, some or all of the second conductor 118 can be formed of stainless steel, or other suitable materials known to those skilled in the art. Nickel titanium alloy may be preferable for kink resistance and reduction of imaging artifacts. The second conductor 118 can be electrically insulated along some or all of its length. In some embodiments, the second conductor 118 comprises an insulated wire or guide wire having one or more exposed, electrically conductive portions. For example, a distal end portion of the second conductor 118 can be exposed to conduct current from surrounding media (e.g., blood, tissue, thrombus, etc.) at a treatment site.
In some embodiments, the treatment device 104 can comprise one or more electrically insulating materials. For example, an insulating material 130 can be disposed on one or more portions of the second conductor 118 to electrically isolate the second conductor 118 from the first conductor 116, the connection 126, and/or the interventional element 106. Additionally or alternatively, the insulating material 130 can be disposed within a lumen of the first conductor 116 to electrically isolate the first conductor 116 from the second conductor 118 and/or the attachment portion of the interventional element 106. In some embodiments, the insulating material 130 is disposed over an outer surface of the first conductor 116 along at least a portion of a length of the first conductor 116 to direct current through the first conductor 116 and prevent current loss from the first conductor 116 to the surrounding environment. As shown in
As shown in
In some embodiments, the connection 126 can comprise a bonding agent and/or a joining element. The bonding agent can comprise adhesive, solder, welding flux, brazing filler, etc. In some embodiments, the bonding agent can bond to the connection 126 without applying heat. For example, the bonding agent can comprise a UV-curable adhesive. In embodiments that comprise a polymer coating of the wire or polymer tubing, use of a bonding agent that avoids application of heat that would damage the polymer may be preferred. The joining element can be mechanical component used to mechanically interlock the interventional element 106 to the connection 126.
In some embodiments, sections (e.g., proximal end sections) of the first conductor 116 and the second conductor 118 can be uninsulated, and thus, exposed. For example, as shown in
In some embodiments, the core member 105 can be configured to receive an electrical signal from the current generator 200. For example, as will be described in more detail below, one or more electrical connectors from the current generator 200 can electrically connect with the contact regions of first conductor 116 and second conductor 118 to deliver an electrical signal to the first conductor 116 and the second conductor 118.
In some embodiments, an insulative or conductive tube can be coupled to the first conductor 116, second conductor 118, and insulating material 130. As illustrated in
In some embodiments, insulative tube 140 can prevent electrical shortages between the first conductor 116, the second conductor 118, and/or the conductive tube 142 at the proximal end of the core member 105. For example, the conductive tube 140 can include an electrically insulative material and can be positioned between the first conductor 116 and the second conductor 118 and/or conductive tube 142. This arrangement can prevent the first conductor 116 from directly contacting the second conductor 118 or the conductive tube 142.
In some embodiments, the conductive tube 142 can assist with coupling the current generator 200 to the second conductor 118. For example, the conductive tube 142 can include an electrically conductive material that allows for the conductive tube 142 and the second conductor 118 to be electrically coupled. Additionally, in some embodiments, the outer surface of the conductive tube 142 can be electrically conductive, which can allow for an electrical signal to be delivered to the second conductor 118 through the conductive tube 142. This arrangement can allow for one or more electrical connectors from the current generator 200 to electrically couple with the second conductor 118 by coupling with the conductive tube 142.
As shown in
The current generator 200 can be configured to guide the core member 105 into the channel 206. For example, when a user attempts to insert the core member 105 into the current generator 200, the proximal end of the core member 105 can contact the guide surface 208, which can direct the proximal end of the core member 105 towards the aperture 207 due to the tapered shape of the guide surface 208. Once the core member 105 reaches the aperture 207, the core member 105 can be further inserted into the channel 206 through the aperture 207.
The current generator 200 can be sized to hold at least a portion of the core member 105 within the current generator 200. For example, as shown in
In some embodiments, the current generator 200 can be configured to electrically couple to the core member 105. For example, as shown in
In some embodiments, the electrical connectors 222 can be configured to couple to the exposed contact regions of the first conductor 116 and the second conductor 118. For example, as shown in
As shown in
The current generator 200 can be configured to lock the core member 105 in place within the current generator 200 when the core member 105 is coupled to the current generator 200. For example, when the core member 105 is inserted into the current generator 200, the biasing member 232 can press the insert 230 against the portion of the core member 105 positioned within the channel 206 along the longitudinal axis of the core member 105. The insert 230 pressing against a portion of the core member 105 can create a friction fit with between the insert 230, the channel 206, and a portion of the core member 105. This friction fit can lock the core member 105 in position by preventing the core member 105 from moving, e.g., into or out of the channel 206 and/or current generator 200. In some embodiments, the friction fit is created when the release mechanism 226 is in its locked position. In some embodiments, the friction fit is released when the release mechanism 226 is in its unlocked state.
As shown in
In some embodiments, the current generator 200 is configured to be a handheld device. For example, the current generator 200 can be sized so that the generator is capable of being held in the hand of a user. In some embodiments, the current generator 200 is not connected to an external power source, which can allow for the current generator to be utilized without connecting to an external power source.
The current generator 200 can be configured to output medically useful electric current to the treatment device 104. For example, when the current generator 200 is coupled to the core member 105, the switch 228 can be activated, which results in the power source 240 forming a circuit with the first electrical connector 222a, second electrical connector 222b, and the core member 105. With the circuit formed, the power source 240 can supply current to the treatment device 104 via the core member 105.
In various embodiments, the current generator 200 can include one or more safety systems that can prevent the current generator 200 from shorting or unintentionally shutting down. For example, the current generator 200 can run software that repeatedly checks the electrical path for current leakage or shortages. In some embodiments, the current generator 200 can include a feedback system that utilizes a user interface (e.g. sounds, lights, screen, etc.) to inform the user of any errors within the system. In various embodiments, the current generator 200 can be sealed to prevent moisture from entering into the current generator 200. For example, several components of the current generator 200 (e.g. the cap 204, release mechanism 226, and switch 228) can form a tight friction fit with the body 202 of the current generator 200, or can include a sealer (e.g. an O-ring) to prevent any unwanted moisture from entering into the conductive path. In some embodiments, the current generator 200 can include additional components to prevent an electrical signal from being unintentionally sent. For example, the current generator 200 can include a film that is placed over a terminal of a power source 140 to prevent the current generator 200 from operating until the film is removed.
An example method of using the current generator 200 to deliver an electrical signal to the treatment device 104 will now be described. First, the treatment device 104 is positioned within a patient at the treatment site or in a catheter, microcatheter, or in a sheath such as an introducer sheath (as can be used to package the treatment device 104) which may have a distal end configured for connection to a proximal end of a catheter hub. Once the treatment device 104 is properly positioned, the user can couple the core member 105 to the current generator. The core member 105 can be coupled to the current generator 200 by causing the current generator 200 to slide over the proximal end of the core member 105. The guide surface 208 can be used to guide the proximal end of the core member 105 to the aperture 207. Once the proximal end of the core member is at the aperture 207, the user can press the release mechanism 226 to place the insert 230 of the locking mechanism in the unlocked position. While in the unlocked position, the core member 105 can slide through the channel 206 and into the inner chamber 216. When the proximal end of the core member 105 abuts the stop 214, and/or aligns with the electrical connectors 222 of the current generator, the user can release the release mechanism 226 to place the insert 230 in the locked position, which locks the core member 105 in position. With the core member 105 in position, the user can interact with the switch 228. Interacting with the switch initiates the supply of an electrical signal through an electrical circuit from the power source 240, through the second electrical connector 222b, through the second conductor 118, to the treatment site, and returning from the treatment site, through the first conductor 116, through the first electrical connector 222a, and back to the power source 240. (When other forms or polarities of current are employed, the direction of travel may be in the opposite direction, or varied or alternating as appropriate.) In some embodiments, the electrical signal is an electrical current of between about 0-5 mA. In some embodiments, the electrical signal is supplied for a duration of time between about 30 seconds to about 10 minutes. After the electrical signal is delivered to the treatment device 104 for the proper duration, the user can interact with the switch 228 to deactivate the power source 240. Additionally, the user can press the release mechanism 226 to unlock the core member 105. With the core member 105 unlocked, the user can decouple the current generator 200 from the core member 105 by slidably removing the current generator 200 from the core member 105.
The descriptions of embodiments of the technology are not intended to be exhaustive or to limit the technology to the precise form disclosed above. Where the context permits, singular or plural terms may also include the plural or singular term, respectively. Although specific embodiments of, and examples for, the technology are described above for illustrative purposes, various equivalent modifications are possible within the scope of the technology, as those skilled in the relevant art will recognize. For example, while steps are presented in a given order, alternative embodiments may perform steps in a different order. The various embodiments described herein may also be combined to provide further embodiments.
Moreover, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in reference to a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of the items in the list. Additionally, the term “comprising” is used throughout to mean including at least the recited feature(s) such that any greater number of the same feature and/or additional types of other features are not precluded. It will also be appreciated that specific embodiments have been described herein for purposes of illustration, but that various modifications may be made without deviating from the technology. Further, while advantages associated with certain embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein.
Number | Name | Date | Kind |
---|---|---|---|
4538622 | Samson et al. | Sep 1985 | A |
5167239 | Cohen et al. | Dec 1992 | A |
5549626 | Miller et al. | Aug 1996 | A |
5662671 | Barbut et al. | Sep 1997 | A |
5885278 | Fleischman | Mar 1999 | A |
5891136 | Mcgee et al. | Apr 1999 | A |
5928260 | Chin et al. | Jul 1999 | A |
5972019 | Engelson et al. | Oct 1999 | A |
6022336 | Zadno-Azizi et al. | Feb 2000 | A |
6059779 | Mills | May 2000 | A |
6074386 | Goble | Jun 2000 | A |
6102908 | Tu et al. | Aug 2000 | A |
6315794 | Richter | Nov 2001 | B1 |
6540733 | Constantz et al. | Apr 2003 | B2 |
6658288 | Hayashi | Dec 2003 | B1 |
6663650 | Sepetka et al. | Dec 2003 | B2 |
6837886 | Collins et al. | Jan 2005 | B2 |
6922579 | Taimisto et al. | Jul 2005 | B2 |
7094249 | Broome et al. | Aug 2006 | B1 |
7255695 | Falwell et al. | Aug 2007 | B2 |
7520966 | Diaz et al. | Apr 2009 | B2 |
7556624 | Laufer et al. | Jul 2009 | B2 |
7742795 | Stone et al. | Jun 2010 | B2 |
8032222 | Loushin et al. | Oct 2011 | B2 |
8038674 | Schmaltz et al. | Oct 2011 | B2 |
8246641 | Osborne et al. | Aug 2012 | B2 |
8249685 | Falwell et al. | Aug 2012 | B2 |
8382821 | Richter | Feb 2013 | B2 |
8603014 | Alleman et al. | Dec 2013 | B2 |
8795305 | Martin et al. | Aug 2014 | B2 |
8837800 | Bammer et al. | Sep 2014 | B1 |
8888788 | Adams et al. | Nov 2014 | B2 |
8965534 | Hyatt et al. | Feb 2015 | B2 |
9011431 | Long et al. | Apr 2015 | B2 |
9039753 | Thramann | May 2015 | B2 |
9119656 | Bose et al. | Sep 2015 | B2 |
9125666 | Steinke et al. | Sep 2015 | B2 |
9126018 | Garrison | Sep 2015 | B1 |
9179971 | Kirschenman | Nov 2015 | B2 |
9211132 | Bowman | Dec 2015 | B2 |
9241699 | Kume et al. | Jan 2016 | B1 |
9265512 | Garrison et al. | Feb 2016 | B2 |
9308007 | Cully et al. | Apr 2016 | B2 |
9399118 | Kume et al. | Jul 2016 | B2 |
9445828 | Turjman et al. | Sep 2016 | B2 |
9445829 | Brady et al. | Sep 2016 | B2 |
9492637 | Garrison et al. | Nov 2016 | B2 |
9539022 | Bowman | Jan 2017 | B2 |
9561345 | Garrison et al. | Feb 2017 | B2 |
9579119 | Cully et al. | Feb 2017 | B2 |
9585741 | Ma | Mar 2017 | B2 |
9642635 | Vale et al. | May 2017 | B2 |
9655633 | Leynov et al. | May 2017 | B2 |
9681882 | Wilson et al. | Jun 2017 | B2 |
9713730 | Mathur et al. | Jul 2017 | B2 |
9737318 | Monstadt et al. | Aug 2017 | B2 |
9770251 | Bowman et al. | Sep 2017 | B2 |
9795400 | Davidson | Oct 2017 | B2 |
9801643 | Hansen et al. | Oct 2017 | B2 |
9808271 | Ulm | Nov 2017 | B2 |
9827084 | Bonnette et al. | Nov 2017 | B2 |
9861783 | Garrison et al. | Jan 2018 | B2 |
9901543 | Chausson et al. | Feb 2018 | B2 |
9993257 | Losordo et al. | Jun 2018 | B2 |
10028782 | Orion | Jul 2018 | B2 |
10029008 | Creighton | Jul 2018 | B2 |
10039906 | Kume et al. | Aug 2018 | B2 |
10092241 | Toth et al. | Oct 2018 | B2 |
10136942 | Cosman | Nov 2018 | B1 |
10251569 | Burkett | Apr 2019 | B2 |
10413309 | Farhat et al. | Sep 2019 | B2 |
10660698 | Willard et al. | May 2020 | B2 |
10709463 | Girdhar et al. | Jul 2020 | B2 |
10847411 | Chen et al. | Nov 2020 | B2 |
10874411 | Nguyen et al. | Dec 2020 | B2 |
10987117 | Girdhar et al. | Apr 2021 | B2 |
11058444 | Girdhar et al. | Jul 2021 | B2 |
11090071 | Girdhar et al. | Aug 2021 | B2 |
11160571 | Nguyen et al. | Nov 2021 | B2 |
11523838 | Nguyen et al. | Dec 2022 | B2 |
11633201 | Girdhar et al. | Apr 2023 | B2 |
11666350 | Nguyen et al. | Jun 2023 | B2 |
11832836 | Girdhar et al. | Dec 2023 | B2 |
11944332 | Girdhar et al. | Apr 2024 | B2 |
11944334 | Girdhar et al. | Apr 2024 | B2 |
11944374 | Girdhar et al. | Apr 2024 | B2 |
11950794 | Nguyen et al. | Apr 2024 | B2 |
11963713 | Girdhar et al. | Apr 2024 | B2 |
11974752 | Nguyen et al. | May 2024 | B2 |
12004803 | Nageswaran et al. | Jun 2024 | B2 |
12016582 | Nguyen et al. | Jun 2024 | B2 |
20010001314 | Davison et al. | May 2001 | A1 |
20010011182 | Dubrul et al. | Aug 2001 | A1 |
20020059938 | Fogarty et al. | May 2002 | A1 |
20020091407 | Zadno-azizi et al. | Jul 2002 | A1 |
20020133111 | Shadduck et al. | Sep 2002 | A1 |
20020138094 | Borillo et al. | Sep 2002 | A1 |
20030088245 | Woloszko et al. | May 2003 | A1 |
20030135232 | Douk et al. | Jul 2003 | A1 |
20040073243 | Sepetka et al. | Apr 2004 | A1 |
20040187875 | He et al. | Sep 2004 | A1 |
20040219660 | Dev et al. | Nov 2004 | A1 |
20050043728 | Ciarrocca | Feb 2005 | A1 |
20050090857 | Kusleika et al. | Apr 2005 | A1 |
20050096647 | Steinke et al. | May 2005 | A1 |
20050228417 | Teitelbaum et al. | Oct 2005 | A1 |
20060089638 | Carmel et al. | Apr 2006 | A1 |
20070005105 | Kusleika et al. | Jan 2007 | A1 |
20070208367 | Fiorella et al. | Sep 2007 | A1 |
20080042662 | Abraham | Feb 2008 | A1 |
20080045881 | Teitelbaum et al. | Feb 2008 | A1 |
20080262489 | Steinke et al. | Oct 2008 | A1 |
20080294181 | Wensel et al. | Nov 2008 | A1 |
20080300571 | Lepivert | Dec 2008 | A1 |
20090024154 | Williams et al. | Jan 2009 | A1 |
20090054918 | Henson | Feb 2009 | A1 |
20090069828 | Martin et al. | Mar 2009 | A1 |
20090112228 | Deshpande et al. | Apr 2009 | A1 |
20090171147 | Lee | Jul 2009 | A1 |
20090198269 | Hannes et al. | Aug 2009 | A1 |
20090240250 | Hayashi et al. | Sep 2009 | A1 |
20090318892 | Aboytes et al. | Dec 2009 | A1 |
20090318943 | Eidenschink et al. | Dec 2009 | A1 |
20090318994 | Eidenschink et al. | Dec 2009 | A1 |
20100004623 | Hamilton et al. | Jan 2010 | A1 |
20100010533 | Burke et al. | Jan 2010 | A1 |
20100042136 | Berrada et al. | Feb 2010 | A1 |
20100168739 | Wu et al. | Jul 2010 | A1 |
20100174309 | Fulkerson et al. | Jul 2010 | A1 |
20100228280 | Groothuis et al. | Sep 2010 | A1 |
20100234842 | Schmaltz | Sep 2010 | A1 |
20100256616 | Katoh et al. | Oct 2010 | A1 |
20100256627 | Ma et al. | Oct 2010 | A1 |
20110130756 | Everson et al. | Jun 2011 | A1 |
20110196478 | Torosoff | Aug 2011 | A1 |
20110202085 | Loganathan et al. | Aug 2011 | A1 |
20110301506 | Volz | Dec 2011 | A1 |
20110301549 | Hartmann | Dec 2011 | A1 |
20110301594 | Orion et al. | Dec 2011 | A1 |
20120101560 | Kluck | Apr 2012 | A1 |
20130008780 | Andreacchi et al. | Jan 2013 | A1 |
20130030461 | Marks et al. | Jan 2013 | A1 |
20130072960 | Schneider et al. | Mar 2013 | A1 |
20130184702 | Neal et al. | Jul 2013 | A1 |
20130237864 | Mazar et al. | Sep 2013 | A1 |
20130281788 | Garrison | Oct 2013 | A1 |
20130282084 | Mathur et al. | Oct 2013 | A1 |
20130317589 | Martin et al. | Nov 2013 | A1 |
20130345739 | Brady et al. | Dec 2013 | A1 |
20140025069 | Willard et al. | Jan 2014 | A1 |
20140025152 | Headley | Jan 2014 | A1 |
20140172001 | Becking et al. | Jun 2014 | A1 |
20140180139 | Millett | Jun 2014 | A1 |
20140188127 | Dubrul et al. | Jul 2014 | A1 |
20140243882 | Ma | Aug 2014 | A1 |
20140257362 | Eidenschink | Sep 2014 | A1 |
20140265030 | Janardhan et al. | Sep 2014 | A1 |
20140276074 | Warner | Sep 2014 | A1 |
20140276778 | Mclawhorn et al. | Sep 2014 | A1 |
20140277013 | Sepetka et al. | Sep 2014 | A1 |
20140277079 | Vale et al. | Sep 2014 | A1 |
20140309673 | Dacuycuy et al. | Oct 2014 | A1 |
20140309675 | Maisano et al. | Oct 2014 | A1 |
20140343595 | Monstadt et al. | Nov 2014 | A1 |
20140364896 | Consigny | Dec 2014 | A1 |
20150112321 | Cadouri | Apr 2015 | A1 |
20150133990 | Davidson | May 2015 | A1 |
20150150672 | Ma | Jun 2015 | A1 |
20150164666 | Johnson et al. | Jun 2015 | A1 |
20150182740 | Mickelsen | Jul 2015 | A1 |
20150230820 | Turjman et al. | Aug 2015 | A1 |
20150297250 | Farhat et al. | Oct 2015 | A1 |
20150297251 | Sos | Oct 2015 | A1 |
20150359547 | Vale et al. | Dec 2015 | A1 |
20160008003 | Kleshinski et al. | Jan 2016 | A1 |
20160015402 | Brady et al. | Jan 2016 | A1 |
20160015935 | Chan et al. | Jan 2016 | A1 |
20160106448 | Brady et al. | Apr 2016 | A1 |
20160106449 | Brady et al. | Apr 2016 | A1 |
20160113663 | Brady et al. | Apr 2016 | A1 |
20160113665 | Brady et al. | Apr 2016 | A1 |
20160151618 | Powers et al. | Jun 2016 | A1 |
20160157843 | Dickson et al. | Jun 2016 | A1 |
20160157985 | Vo et al. | Jun 2016 | A1 |
20160199127 | Prutchi | Jul 2016 | A1 |
20160199620 | Pokorney et al. | Jul 2016 | A1 |
20160228681 | Di Palma et al. | Aug 2016 | A1 |
20160228684 | Martin | Aug 2016 | A1 |
20160242661 | Fischell et al. | Aug 2016 | A1 |
20160278839 | Pedersen et al. | Sep 2016 | A1 |
20160296690 | Kume et al. | Oct 2016 | A1 |
20160302808 | Loganathan et al. | Oct 2016 | A1 |
20160324440 | Kim et al. | Nov 2016 | A1 |
20160331377 | Divino et al. | Nov 2016 | A1 |
20160375180 | Anzai | Dec 2016 | A1 |
20170079766 | Wang et al. | Mar 2017 | A1 |
20170079767 | Leon-Yip | Mar 2017 | A1 |
20170086862 | Vale et al. | Mar 2017 | A1 |
20170100143 | Grandfield | Apr 2017 | A1 |
20170105743 | Vale et al. | Apr 2017 | A1 |
20170128126 | Sunenshine et al. | May 2017 | A1 |
20170164963 | Goyal | Jun 2017 | A1 |
20170172644 | Butzbacker et al. | Jun 2017 | A1 |
20170215902 | Leynov et al. | Aug 2017 | A1 |
20170215955 | Hancock et al. | Aug 2017 | A1 |
20170224953 | Tran et al. | Aug 2017 | A1 |
20170281909 | Northrop et al. | Oct 2017 | A1 |
20170290599 | Youn et al. | Oct 2017 | A1 |
20170311963 | Farhat et al. | Nov 2017 | A1 |
20170367707 | Divino | Dec 2017 | A1 |
20180049762 | Seip et al. | Feb 2018 | A1 |
20180084982 | Yamashita et al. | Mar 2018 | A1 |
20180116685 | Ulm, III | May 2018 | A1 |
20180116717 | Taff et al. | May 2018 | A1 |
20180132876 | Zaidat | May 2018 | A1 |
20180133436 | Garrison et al. | May 2018 | A1 |
20180140314 | Goyal et al. | May 2018 | A1 |
20180140315 | Bowman et al. | May 2018 | A1 |
20180140354 | Lam et al. | May 2018 | A1 |
20180161514 | Rothenberg et al. | Jun 2018 | A1 |
20180161541 | Haldis et al. | Jun 2018 | A1 |
20180185614 | Garrison et al. | Jul 2018 | A1 |
20180193026 | Yang et al. | Jul 2018 | A1 |
20180200040 | Wasdyke et al. | Jul 2018 | A1 |
20180236221 | Opie et al. | Aug 2018 | A1 |
20180303595 | Opie et al. | Oct 2018 | A1 |
20180344970 | Kornowski et al. | Dec 2018 | A1 |
20190038438 | John et al. | Feb 2019 | A1 |
20190046119 | Oxley | Feb 2019 | A1 |
20190175199 | Girdhar et al. | Jun 2019 | A1 |
20190175200 | Girdhar et al. | Jun 2019 | A1 |
20190239910 | Brady et al. | Aug 2019 | A1 |
20190262069 | Taff et al. | Aug 2019 | A1 |
20190336727 | Yang et al. | Nov 2019 | A1 |
20190388097 | Girdhar et al. | Dec 2019 | A1 |
20190388107 | Girdhar et al. | Dec 2019 | A1 |
20190388111 | Nguyen et al. | Dec 2019 | A1 |
20190388112 | Nguyen et al. | Dec 2019 | A1 |
20200054392 | Whiteley et al. | Feb 2020 | A1 |
20200129742 | Cope et al. | Apr 2020 | A1 |
20200297367 | Girdhar et al. | Sep 2020 | A1 |
20200297410 | Nguyen et al. | Sep 2020 | A1 |
20200390455 | Nguyen et al. | Dec 2020 | A1 |
20200390456 | Nguyen et al. | Dec 2020 | A1 |
20200390457 | Nageswaran et al. | Dec 2020 | A1 |
20200390458 | Nguyen et al. | Dec 2020 | A1 |
20210068853 | Nguyen et al. | Mar 2021 | A1 |
20210137542 | Oxley et al. | May 2021 | A1 |
20210177427 | Nguyen et al. | Jun 2021 | A1 |
20210177442 | Girdhar et al. | Jun 2021 | A1 |
20210177446 | Girdhar et al. | Jun 2021 | A1 |
20210186540 | Taff et al. | Jun 2021 | A1 |
20210238764 | Tyvoll et al. | Aug 2021 | A1 |
20210267612 | Girdhar et al. | Sep 2021 | A1 |
20210272676 | Dierl | Sep 2021 | A1 |
20220022899 | Girdhar et al. | Jan 2022 | A1 |
20220022900 | Nguyen et al. | Jan 2022 | A1 |
20220125455 | Girdhar et al. | Apr 2022 | A1 |
20220202431 | Davidson et al. | Jun 2022 | A1 |
20220218372 | Nguyen et al. | Jul 2022 | A1 |
20220236569 | Yamazaki et al. | Jul 2022 | A1 |
20220287616 | Dundovic et al. | Sep 2022 | A1 |
20220287765 | Nageswaran et al. | Sep 2022 | A1 |
20220313288 | Janardhan et al. | Oct 2022 | A1 |
20220387051 | Girdhar et al. | Dec 2022 | A1 |
20220387098 | Girdhar et al. | Dec 2022 | A1 |
20230064470 | Girdhar et al. | Mar 2023 | A1 |
20230113257 | Nguyen et al. | Apr 2023 | A1 |
20230149021 | Wainwright et al. | May 2023 | A1 |
20230277240 | Wu et al. | Sep 2023 | A1 |
20240074772 | Girdhar et al. | Mar 2024 | A1 |
20240081898 | Skillrud et al. | Mar 2024 | A1 |
20240293125 | Nguyen et al. | Sep 2024 | A1 |
20240315773 | Nageswaran et al. | Sep 2024 | A1 |
Number | Date | Country |
---|---|---|
101472685 | Jul 2009 | CN |
102753106 | Oct 2012 | CN |
104994799 | Oct 2015 | CN |
107405160 | Nov 2017 | CN |
104884681 | May 2018 | CN |
1484025 | Dec 2004 | EP |
2319575 | Nov 2013 | EP |
2490764 | Sep 2014 | EP |
2895645 | Jul 2015 | EP |
2967605 | Jan 2016 | EP |
3184067 | Jun 2017 | EP |
10290805 | Nov 1998 | JP |
2014004219 | Jan 2014 | JP |
2018118132 | Aug 2018 | JP |
20180102877 | Sep 2018 | KR |
9724073 | Jul 1997 | WO |
0035363 | Jun 2000 | WO |
2005000130 | Jan 2005 | WO |
2009127037 | Oct 2009 | WO |
2010061376 | Jun 2010 | WO |
2014079148 | May 2014 | WO |
2014168750 | Oct 2014 | WO |
2015141317 | Sep 2015 | WO |
2016007388 | Jan 2016 | WO |
2016141025 | Sep 2016 | WO |
2016198947 | Dec 2016 | WO |
2017058696 | Apr 2017 | WO |
2017192999 | Nov 2017 | WO |
2018019829 | Feb 2018 | WO |
2018033401 | Feb 2018 | WO |
2018046408 | Mar 2018 | WO |
2018127796 | Jul 2018 | WO |
2018137029 | Aug 2018 | WO |
2018137030 | Aug 2018 | WO |
2018145212 | Aug 2018 | WO |
2018156813 | Aug 2018 | WO |
2018172891 | Sep 2018 | WO |
2018187776 | Oct 2018 | WO |
2019102307 | May 2019 | WO |
2019118321 | Jun 2019 | WO |
2019133608 | Jul 2019 | WO |
2019246377 | Dec 2019 | WO |
2020174326 | Sep 2020 | WO |
2021118868 | Jun 2021 | WO |
2022058873 | Mar 2022 | WO |
Entry |
---|
Extended European Search Report dated Jul. 15, 2021; European Application No. 18888795.4; 6 pages. |
International Search Report and Written Opinion mailed Feb. 26, 2021; International Application No. PCT/US20/63200; 14 pages. |
International Search Report and Written Opinion mailed May 25, 2020, International Application No. PCT/US20/22463, 10 pages. |
International Search Report and Written Opinion mailed Nov. 3, 2020, International Application No. PCT/US20/70142, 18 pages. |
Fort, Stephen , et al., “‘Fused-Gold’ vs. ‘Bare’ stainless steel NIRflex stents of the same geometric design in diseased native coronary arteries. Long-term results from the NIR Top Study”, Euro Interv 2007; 3:256-261. |
International Search Report and Written Opinion dated Mar. 24, 2022; International Application No. PCT/US2021/061540; 10 pages. |
https://www.merriam-webster.com/dictionary/affix (Year: 2022). |
Chon, et al., “Mechanical behavior of rf-treated thrombus in mechanical thrombectomy”, Qin Z, Kwok JC, Lam DC; Med Eng Phys. Sep. 2017;47:184-189. doi: 10.1016/j.medengphy.2017.06.011. Epub Jul. 5, 2017. PMID: 28688756. (Year: 2017). |
Number | Date | Country | |
---|---|---|---|
20220409258 A1 | Dec 2022 | US |