The present disclosure relates to RF jumper cables for use with macro cellular antennas, and, more particularly, to a jumper cable having an integrated direct current power block in combination with an end connector. The jumpers have very stringent performance requirements and are exposed to potentially severe weather.
A market exists for individual components intended to block the DC power transmitted through a coaxial cable from entering equipment interface ports, while still allowing a range of RF frequencies to pass through. This is done for any number of reasons, most of which are some manifestation of surge protection or preventing residual power in the transmission line from interfering with the active components of the system.
The current method for protecting equipment from DC power involves attaching a long, bulky interstitial component between the cable connector and the interface port. Conventional solutions involve interposing an additional separate DC Block between the coaxial cable and the equipment interface port. This results in several problems: first, a separate DC block introduces an additional point of connection, which could fail; second, installation is complicated by the need to provide and install an additional DC Block component; and third, the external geometry of the DC block may vary, depending on the model and manufacturer, which greatly complicates the weather protection required for mitigating the infiltration of water and ice into the cable connector and separate DC Block assembly.
Therefore, there is a need to overcome, or otherwise lessen the effects of, the disadvantages and shortcomings described above.
Additional features and advantages of the present disclosure are described in, and will be apparent from, the following Brief Description of the Drawings and Detailed Description.
In one embodiment, a connector is provided for coupling a coaxial cable to an interface port, comprising a capacitor segment interposing a center conductor of a coaxial cable to a center conductor of an interface port and an outer conductor segment extending over and electrically shielding the capacitor segment. The capacitor segment comprises an inner and outer pin having a dielectric insulator therebetween and is configured to electrically connect an inner conductor of the coaxial cable to the interface port thereby facilitating the passage of RF energy from the inner conductor of the coaxial cable to the interface port while inhibiting the passage of electric current through the capacitor segment to the interface port.
In another embodiment, an RF jumper cable is provided comprising a coaxial cable having a center conductor and an outer conductor, a coupling member configured to mechanically and electrically coupling the outer conductor of the coaxial cable to an outer conductor of an interface port, and a capacitor segment interposing the coaxial cable and electrically connecting the center conductor of the coaxial cable to an inner conductor of the interface port. The capacitor segment is disposed internally of, and coaxial with, the outer conductor of the coaxial cable and comprises an inner pin coupled to the center conductor of the coaxial cable, a concentric outer pin connecting to an inner conductor of the interface port, a dielectric insulator interposing the inner pin and the outer pin, and a conductive outer body segment disposed over the concentric outer pin of the capacitor segment. The conductive outer body segment interposes the outer connector and the male connector and electrically connects the outer conductor of the coaxial cable to the interface port through the coupling member. The capacitor segment is electrically shielded by the conductive outer body segment, facilitates the passage of RF signals to and from the interface port and inhibits the passage of electrical current to/from the interface port and/or the coaxial cable.
The present disclosure is directed to an RF jumper cable including a connector having an integrated current inhibitor or DC Block. The disclosure describes a robust jumper cable/connector/capacitor having a significantly reduced design envelope. Further, the present disclosure integrates an organic or electrolytic capacitor to reduce the overall size, cost, and complexity of the jumper cable and the cooperating components. While the connector/capacitor is described in the context of a jumper cable, it will be appreciated that the connector is applicable to any cable connection requiring the transmission of RF signals to and/or from an interface port.
Additionally, the present disclosure employs a laser welded jumper platform. A laser welded jumper of the type employed is disclosed in commonly-owned, co-pending patent application Ser. No. 14/812,227 entitled “Coaxial Cable Device Having A Helical Outer Conductor and Method for Effecting Weld Connectivity,” the contents of which are incorporated herein by reference in their entirety.
In
The insulator DL may be any material having low or non-conductive properties. In the described embodiment, a layer of Kapton® (Kapton is a registered Trademark of DowDupont located in Wilmington, State of Delaware) tape is disposed between the inner and outer pins 16a, 16b creating a dielectric break between the pins 16a, 16b to produce the capacitor segment 16. Kapton is a polyimide film and its chemical composition is poly-oxydiphenylene-pyromellitimide. In the described embodiment, the Kapton tape is disposed over the inner conductor 16a for a length of between about 1.5 inches to about 2.3 inches. The Kapton tape forms a relatively thin layer of insulating material between the inner and outer pins 16a, 16b and, in the described embodiment, produces a thickness of between about 0.045 inches to about 0.020 inches.
Variations of the insulator DL are contemplated within the scope of the present disclosure. For example, the capacitor does not need to be a single coaxial capacitor. The same effect could be achieved using a plurality of coaxial conductors each having a dielectric material therebetween. Further, the capacitor segment 16 may be an electrolytic capacitor wherein the dielectric coating, layer or filler material DL is comprised of a hard ceramic material. In this instance, the dielectric ceramic layer DL may be etched onto the inner pin 16a of the capacitor segment 16. An electrolytic capacitor segment 16 produces a significantly higher dielectric constant, enabling far smaller, i.e., shorter, pins 16a, 16. For example, to achieve a desired bandpass property, a capacitor employing a Kapton layer DL, having a mean thickness of about 0.034 inches, may have an overlapping portion of 1.5 inches in length. A similar structure employing a ceramic dielectric, i.e., a ceramic layer having the same thickness, may require an overlapping portion having a length of 0.75″ for the same performance. Accordingly, the ceramic dielectric may be ½ of the length of a Kapton insulator.
In
In
In the described embodiment, the end of the inner pin 16a is centered within and supported by a first centering member 26 disposed within the central bore 20 (see
In
A weld ring 70 is disposed over the end of the cable 50 and receives inner and outer O-ring seals 74, 76, respectively to prevent moisture and debris from entering the outer body segment 18, on one side thereof, and the coaxial cable 50, on the other side thereof. A conductive split ring 80 is penetration welded to the weld ring 70 to provide an electrical ground path from the conductive corrugated outer conductor 62 to the weld ring 70. Inasmuch as the weld ring 70 interposes the outer conductor 62 and the first end 12 of the outer body segment 18, an electrical ground path is produced from the outer conductor 62 to the outer body segment 18.
In
Finally, in
It should be understood that various changes and modifications to the embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present disclosure and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.
Although several embodiments of the disclosure have been disclosed in the foregoing specification, it is understood by those skilled in the art that many modifications and other embodiments of the disclosure will come to mind to which the disclosure pertains, having the benefit of the teaching presented in the foregoing description and associated drawings. It is thus understood that the disclosure is not limited to the specific embodiments disclosed herein above, and that many modifications and other embodiments are intended to be included within the scope of the appended claims. Moreover, although specific terms are employed herein, as well as in the claims which follow, they are used only in a generic and descriptive sense, and not for the purposes of limiting the present disclosure, nor the claims which follow.
This application is a non-provisional patent application of, and claims the benefit and priority of, U.S. Provisional Patent Application No. 62/448,679 filed on Jan. 20, 2017. The entire contents of such application is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62448679 | Jan 2017 | US |