Unless otherwise indicated, the foregoing is not admitted to be prior art to the claims recited herein and should not be construed as such.
Knowing the amount of current being delivered to a load can be useful in a wide variety of applications. For example, in low-power electronic devices (e.g., smart phone, computer tablets, and other consumer electronics) the supply current can be monitored to understand the system's impact on battery life. The load current also can be used to make safety-critical decisions in over-current protection circuits. Generally, a current sensor is a circuit that can detect a current (e.g., current through a load) and produce an output current that is representative of the detected current. In some circuit applications, the output current can be converted to an easily measured output voltage that is proportional to the detected current.
In typical current sensing circuit designs, it is important to be able to produce a sense current that accurately represents (replicates) the current flowing (the current being sensed) through the pass device that supplies current to the load. Analysis of accuracy limitations of producing a sense current of a current flowing through a pass device has shown that the replica device voltage drop across the channel must match the voltage drop across the channel of the pass device very accurately. Typically, an active high gain feedback loop is used, which employs one or more amplifiers. The offset in each amplifier should be reduced to very low values in order to produce an accurate sense current.
A technique called “auto-zeroing” can automatically drive the DC offset of an amplifier to zero. Auto zeroing uses a switched capacitor technique. The conventional switched capacitor auto zero technique is one that prevents the amplifier from being used during part of a repeating cycle during which a capacitor samples its offset.
In embodiments, a circuit includes an amplifier section that has an integrator section, an amplifier section, and an offset nulling section. The amplifier section can be connected to or disconnected from an output of the circuit. The amplifier section can be disconnected from the output of the circuit when the offset nulling section is storing an offset of the amplifier section. The integrator section can drive the output of the circuit when the amplifier section is disconnected from the output, and sense an error signal at the inputs of the circuit. The amplifier section can be connected to the output of the circuit to generate a control signal when the integrator section is connected to the amplifier section. The offset nulling section can compensate for the DC offset of the amplifier section.
In some embodiments, the amplifier section contains a single opamp. In some embodiments, the amplifier is a differential mode amplifier.
In some embodiments, the circuit may be connected in a current sense circuit.
In some embodiments, the circuit may include switches to configure the connections among the amplifier section, the integrator section, and the offset nulling section.
The following detailed description and accompanying drawings provide a better understanding of the nature and advantages of the present disclosure.
With respect to the discussion to follow and in particular to the drawings, it is stressed that the particulars shown represent examples for purposes of illustrative discussion, and are presented in the cause of providing a description of principles and conceptual aspects of the present disclosure. In this regard, no attempt is made to show implementation details beyond what is needed for a fundamental understanding of the present disclosure. The discussion to follow, in conjunction with the drawings, make apparent to those of skill in the art how embodiments in accordance with the present disclosure may be practiced. In the accompanying drawings:
In the following description, for purposes of explanation, numerous examples and specific details are set forth in order to provide a thorough understanding of the present disclosure. It will be evident, however, to one skilled in the art that the present disclosure as expressed in the claims may include some or all of the features in these examples, alone or in combination with other features described below, and may further include modifications and equivalents of the features and concepts described herein.
In some embodiments, the current sensing circuit 200 may comprise a sense device Msense that is configured with pass device Mpass as a current mirror. The control inputs (e.g., gate terminals in the case of a field-effect transistor, FET) of Mpass and Msense may be connected to the control device 14, and the outputs (e.g., source terminals) of Mpass and Msense may be connected to the load.
In order to accurately mirror the current through Mpass, the voltage drop VDS across the channel of Mpass and the channel of Msense should match. Accordingly, the current sensing circuit 200 may utilize a high gain feedback loop that includes an amplifier stage (amplifier circuit) 202 to drive an output stage 204 to regulate the voltage level at input node 208b (e.g., drain terminals) of Msense to match the voltage level at input node 208a. As will be explained below, in some embodiments, the amplifier stage 202 may operate based on timing signals from timing circuitry 206.
The output stage 204 may comprise FET Mmir1 that operates as a current source. The output (Out) of amplifier stage 202 may control the amount of current that flows through Mmir1. The output stage 204 may further comprise FET Mmir2 that is configured with Mmir1 as a current mirror. The current flow (sense current) Imeas through Mmir2 is representative of the load current Iload. In some embodiments, the size of Mmir2 may be dimensioned (gate width, gate length) with respect to Mmir1 so that the current amplification ratio produces a suitable signal for Imeas. In some embodiments, the current mirror Mmir1, Mmir2 may be biased using an internal voltage level Vdd that can be generated in an electronic device (e.g.,
In operation, the amplifier stage 202 may regulate Mmir1 in a feedback loop to drive the voltage difference (error) at nodes 208a, 208b sensed between inputs In1, In2 to zero. As the load current Iload varies, so will the voltage at In1. Current through Mmir1 can be regulated to provide the same voltage at In2. FET Mmir2 mirrors the current through Mmir1, and thus provides a sense current Imeas that is representative of the load current Iload. In accordance with the present disclosure, the DC offset in amplifier stage 202 can be significantly reduced to maintain an accurate match between the voltage drop VDS across the channel of Msense and the channel of Mpass. Additional details of the amplifier stage 202 will be provided below.
The current sense circuit 200 in
Referring to
The amplifier stage 202 may further include switches φ1 and φ2 that can alternate between two different configurations of OPEN and CLOSE. In some embodiments, the timing circuitry 206 (e.g., a clock circuit) may generate control signals φ1, φ2 to operate the switches to the OPEN state or the CLOSE state. For example, the switches identified by φ1 can OPEN and CLOSE in accordance with a control signal φ1, while the switches identified by φ2 can OPEN and CLOSE in accordance with a control signal φ2. While, in some embodiments, the timing circuitry 206 uses two control signals φ1, φ2 to alternate between the two switch configurations, it will be appreciated from the description to follow that in other embodiments the timing circuitry may use additional signals to control the switches between configurations.
Referring to
Continuing with
In some embodiments, the offset nulling section 406 may comprise a capacitor (offset capacitor) C1. In one configuration of the switches, the capacitor C1 can be connected to sense and store a DC offset voltage of the amplifier 402. In another configuration of the switches, the capacitor C1 can be connected to apply the stored voltage to the amplifier 402 to compensate the amplifier's DC offset.
Referring now to
Since capacitor C2 is connected in a negative feedback loop, one of ordinary skill will understand that the amplifier 402 will effectively add the charge that is stored in C3 to the charge that is already stored in C2. The negative feedback loop will limit the amount of charge stored in C2 to the amount of charge in C3. The DC offset in amplifier 402, which would cause too much charge or too little charge to accumulate in C2, can be compensated for by capacitor C1; this will become more apparent from the description of operation of the amplifier stage 202 during phase φ2.
Referring now to
In phase φ2, the amplifier 402 is configured with unity gain feedback. Capacitor C1 is connected across the inputs of amplifier 402, and referenced to the In1 input of the amplifier stage 202. The charge that is stored in C1 by amplifier 402 represents the DC offset of the amplifier. Capacitor C1, therefore, samples and stores the DC offset of amplifier 402 in phase φ2, which is then used in phase φ1 to compensate for the DC offset as explained above.
Referring to
Referring to
Referring for a moment to
Specific operations in accordance with the present disclosure may be summarized as follows:
Referring to
Referring to
Referring
Referring to
In
In
Charge injection from operation of the switches φ1 and φ2 can affect the charge stored on the capacitors, thus affecting the voltage on the capacitors and impacting the accuracy of the DC offset function. By using a differential circuit (which suppresses common mode effects) charge injection can be largely made to be a common mode effect, and will hence be largely rejected by the differential circuit.
Referring now to
Operation in phase φ1 and phase φ2 is similar to the foregoing embodiments, but in a differential context. The differential inputs of differential amplifier A1 have corresponding capacitors C1a/C1b and C2a/C2b. A2 may be a differential to single-ended amplifier/converter that can convert the differential output from A1 into a control signal at the output OUT.
Capacitors C1a and C1b sense and store the DC offsets in the differential inputs of differential amplifier A1 during phase φ2 and serve as nulling capacitors during phase φ1. The capacitor C3 stores the voltage difference between nodes 308a and 308b sensed during φ2. The charge stored on capacitor C3 can be integrated onto capacitors C2a and C2b during phase φ1, which in turn can serve as holding capacitors during phase φ2 to maintain the input to A2 and hence maintain the output at OUT.
Embodiments in accordance with the present disclosure can provide more accurate current sensing. In particular embodiments, accuracy in current sensing can be achieved by more accurate replication of the voltage drop of a pass transistor onto a sense transistor. Embodiments in accordance with the present disclosure can reduce DC offset in an amplifier using a single opamp auto-zeroing design that can provide continuous-on operation.
The above description illustrates various embodiments of the present disclosure along with examples of how aspects of the particular embodiments may be implemented. The above examples should not be deemed to be the only embodiments, and are presented to illustrate the flexibility and advantages of the particular embodiments as defined by the following claims. Based on the above disclosure and the following claims, other arrangements, embodiments, implementations and equivalents may be employed without departing from the scope of the present disclosure as defined by the claims.
Number | Name | Date | Kind |
---|---|---|---|
5479130 | McCartney | Dec 1995 | A |
6781450 | Mercer | Aug 2004 | B1 |
7321260 | Larson | Jan 2008 | B2 |
8624766 | Pulijala | Jan 2014 | B2 |
20090273392 | Korobeynikov et al. | Nov 2009 | A1 |
20150035813 | Lei | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
2005020291 | Jan 2005 | JP |
Entry |
---|
Dunlap, et al., “A Noise-Shaped Switching Power Supply Using a Delta-Sigma Modulator” IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 51, No. 6, Jun. 2004. |
Enz C.C., et al., “Circuit Techniques for Reducing the Effects of Op-Amp Imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization,” Proceedings of the IEEE, Nov. 1996, vol. 84 (11), pp. 1584-1614. |
International Search Report and Written Opinion—PCT/US2015/038126—ISA/EPO—Oct. 21, 2015. |
Lin J., et al., “Offset-Compensated Area-Efficient Switched-Capacitor Sum-Gain Amplifier”, Proceedings of the International Symposium on Circuits and Systems. (ISCS). Chicago, May 3-6, 1993; [Proceedings of the International Symposium on Circuits and Systems. (ISCS)], New York, IEEE, US, vol. -, May 3, 1993, pp. 1026-1029, XP010115276, DOI: 10.1109/ISCAS.1993.393899 ISBN: 978-0-7803-1281-4. |
Radev N.A., et al., “Comparative Analysis of Two Gain- and Offset Compensated Very Large Time Constant Switched-capacitor Integrators”, Microelectronics, 2000. ICM 2000. Proceedings of the 12th Internationa l Conference on Oct. 31-Nov. 2, 2000, Piscataway, NJ, USA,IEEE, Oct. 31, 2000, pp. 51-54, XP010538939, ISBN: 978-964-360-057-0. |
Shi X., et al., “Gain- and offset-compensated non-inverting SC Circuits”, Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000 I EEE International Symposium on May 28-31, 2000, Piscataway, NJ, USA,IEEE, vol. 2, May 28, 2000, pp. 425-428, XP010502751, ISBN: 978-0-7803-5482-1. |
Yoshizawa H., et al., “Switched-Capacitor Track-and-Hold Amplifiers With Low Sensitivity to Op-Amp Imperfections”, IEEE Transactions on Circuits and Systems Part I: Regular Papers, IEEE Service Center, New York, NY, US, vol. 54, No. 1, Jan. 1, 2007, pp. 193-199, XP011155732, ISSN: 1057-7122, DOI: 10.1109/TCS1.2006.887454. |
Number | Date | Country | |
---|---|---|---|
20160013765 A1 | Jan 2016 | US |