The present invention relates to a transformer, and more particularly to a current-sharing transformer for balancing the currents passing through the multiple DC loads. The present invention relates to a power supply circuit having such a current-sharing transformer.
In recent years, light emitting diodes (LEDs) capable of emitting light with high luminance and high illuminating efficiency have been developed. In comparison with a common incandescent light, a LED has lower power consumption, long service life, and quick response speed. With the maturity of the LED technology, LEDs will replace all conventional lighting facilities. Until now, LEDs are widely used in many aspects of daily lives, such as automobile lighting devices, handheld lighting devices, backlight sources for LCD panels, traffic lights, indicator board displays, and the like.
Generally, the LED can be considered as a DC load. When an electronic device (e.g. a LCD panel) having multiple LED strings is operated, the currents passing through all LED strings shall be identical for a purpose of obtaining uniform brightness. Due to different inherent characteristics of these LED strings, the currents passing these LED strings are not identical and the brightness is usually not uniform. Therefore, the use life of individual LED string is shortened or even the whole electronic device has a breakdown.
For obtaining uniform brightness of multiple LED strings, several current sharing techniques have been disclosed. For example, as shown in FIG. 1, U.S. Pat. No. 6,621,235 disclosed a current sharing supply circuit for driving multiple LED strings. The current sharing supply circuit of
The conventional current sharing supply circuit for driving multiple LED strings, however, still has some drawbacks. For example, since the linear regulator and the current mirrors are employed, the conventional current sharing supply circuit has high power loss but low operating efficiency. In addition, since more components are used, the conventional current sharing supply circuit is very complicated.
There is a need of providing a current-sharing transformer so as to obviate the drawbacks encountered from the prior art.
An object of the present invention provides a current-sharing transformer for balancing the currents passing through the multiple DC loads.
Another object of the present invention provides a power supply circuit having such a current-sharing transformer, in which the power supply circuit has minimized power loss, high operating efficiency and simplified circuitry configuration.
In accordance with an aspect of the present invention, there is provided a current-sharing transformer. The current-sharing transformer includes a magnetic core assembly, a primary winding coil and multiple secondary winding coils. The magnetic core assembly includes a main magnetic post and multiple minor magnetic posts. The primary winding coil is wound around the main magnetic post. The secondary winding coils wound around respective minor magnetic posts. The secondary winding coils are connected to respective DC loads through respective rectifier circuits. The magnetic paths between respective minor magnetic posts and the main magnetic post are equal, so that the magnitudes of currents passing through the DC loads are balanced by the current-sharing transformer.
In accordance with another aspect of the present invention, there is provided a power supply circuit for driving multiple DC loads. The power supply circuit includes a switching circuit, a current-sharing transformer, and multiple rectifier circuits. The switching circuit is used for outputting an AC voltage. The current-sharing transformer is electrically connected to the switching circuit. The current-sharing transformer includes a magnetic core assembly, a primary winding coil and multiple secondary winding coils. The magnetic core assembly includes a main magnetic post and multiple minor magnetic posts. The primary winding coil is wound around the main magnetic post and electrically connected with the switching circuit for receiving the AC voltage. The secondary winding coils are wound around respective minor magnetic posts. The secondary winding coils generate AC induction currents according to electromagnetic induction between respective winding coils and the primary winding coil. The rectifier circuits are electrically connected to respective secondary winding coils and respective DC loads for rectifying the AC induction currents into corresponding DC voltages and outputting the DC voltages to respective DC loads. The magnetic paths between respective minor magnetic posts and the main magnetic post are equal, so that the magnitudes of currents passing through the DC loads are balanced by the current-sharing transformer.
The above contents of the present invention will become more readily apparent to those ordinarily skilled in the art after reviewing the following detailed description and accompanying drawings, in which:
The present invention will now be described more specifically with reference to the following embodiments. It is to be noted that the following descriptions of preferred embodiments of this invention are presented herein for purpose of illustration and description only. It is not intended to be exhaustive or to be limited to the precise form disclosed.
The present invention relates to a power supply circuit for driving multiple DC loads, so that all DC loads have the same brightness values. Examples of the DC loads are LED strings. Each LED string includes a plurality of LEDs. For clarification, each LED string having two LEDs is shown in the drawings.
The current-sharing transformer 22 is electrically connected to the switching circuit 21, the first rectifier circuit 23 and the second rectifier circuit 24. The current-sharing transformer 22 is electrically connected to the first LED string 28 and the second LED string 29 through the first rectifier circuit 23 and the second rectifier circuit 24, respectively. The current-sharing transformer 22 comprises a magnetic core assembly 221, a primary winding coil 222 and multiple secondary winding coils (not shown). The magnetic core assembly 221 comprises a main magnetic post 225 and multiple minor magnetic posts (see
The first rectifier circuit 23 and the second rectifier circuit 24 are used for rectifying the first AC induction current and the second AC induction current into a first DC current and a second DC current, respectively. The first DC current and a second DC current are respectively transmitted to the first LED string 28 and the second LED string 29, thereby illuminating the first LED string 28 and the second LED string 29. Since the DC currents passing through the first LED string 28 and the second LED string 29 are equal, the first LED string 28 and the second LED string 29 have the same brightness value.
Hereinafter, the structure of the current-sharing transformer 22 will be illustrated with reference to
Since the spacing interval S1 is equal to the spacing interval S2, the length H1 is equal to the length H2 and the magnetic flux cross-section area of the first minor magnetic post 226 is equal to that of the second minor magnetic post 227, the average length and average magnetic flux cross-section area of the first minor magnetic post 226 and the main magnetic post 225 are equal to those of the second minor magnetic post 227 and the main magnetic post 225. In other words, a first magnetic path between the first minor magnetic post 226 and the main magnetic post 225 is equal to a second magnetic path between the second minor magnetic post 227 and the main magnetic post 225. It is preferred that the main magnetic post 225, the first minor magnetic post 226 and the second minor magnetic post 227 are integrally formed. In addition, it is preferred that the coil turns of the first secondary winding coil 223 and the second secondary winding coil 224 are identical.
Hereinafter, the principle of achieving the current-sharing purpose by the current-sharing transformer 22 will be illustrated in more details with reference to
Please refer to
Please refer to
Hereinafter, the structure of the current-sharing transformer 5 will be illustrated in more details. As shown in
Since the spacing interval S3 is equal to the spacing interval S4, the length H3 is equal to the length H4 and the magnetic flux cross-section area of the third minor magnetic post 53 is equal to that of the fourth minor magnetic post 54, the average length and average magnetic flux cross-section area of the third minor magnetic post 53 and the main magnetic post 225 are equal to those of the fourth minor magnetic post 54 and the main magnetic post 225. In other words, a third magnetic path between the third minor magnetic post 53 and the main magnetic post 225 is equal to a fourth magnetic path between the fourth minor magnetic post 54 and the main magnetic post 225.
Since the first minor magnetic post 226 is arranged between the main magnetic post 225 and the third minor magnetic post 53 and the second minor magnetic post 227 is arranged between the main magnetic post 225 and the fourth minor magnetic post 54, the average length of the magnetic path between the third minor magnetic post 53 (or the fourth minor magnetic post 54) and the main magnetic post 225 is greater than the average length of magnetic path between the first minor magnetic post 226 (or the second minor magnetic post 227) and the main magnetic post 225. For allowing the magnetic path between the third minor magnetic post 53 (or the fourth minor magnetic post 54) and the main magnetic post 225 to be equal to the magnetic path between the first minor magnetic post 226 (or the second minor magnetic post 227) and the main magnetic post 225, the magnetic flux cross-section area of the third minor magnetic post 53 (or the fourth minor magnetic post 54) is greater than the magnetic flux cross-section area of the first minor magnetic post 226 (or the second minor magnetic post 227). In addition, the magnetic flux cross-section area of the third minor magnetic post 53 (or the fourth minor magnetic post 54) is in direct proportion to the difference between the magnetic path length from the third minor magnetic post 53 to the main magnetic post 225 and the magnetic path length from the first minor magnetic post 226 to the main magnetic post 225. Alternatively, the magnetic flux cross-section area of the third minor magnetic post 53 (or the fourth minor magnetic post 54) is in direct proportion to the difference between the magnetic path length from the fourth minor magnetic post 54 to the main magnetic post 225 and the magnetic path length from the second minor magnetic post 227 to the main magnetic post 225. As such, the average magnetic flux cross-section area of the magnetic path between the third minor magnetic post 53 and the main magnetic post 225 or the average magnetic flux cross-section area of the magnetic path between the fourth minor magnetic post 54 and the main magnetic post 225 is greater than the average magnetic flux cross-section area of the magnetic path between the first minor magnetic post 226 and the main magnetic post 225 or the average magnetic flux cross-section area of the magnetic path between the second minor magnetic post 227 and the main magnetic post 225. In other words, the magnetic path between the third minor magnetic post 53 (or the fourth minor magnetic post 54) and the main magnetic post 225 is substantially identical to the magnetic path between the first minor magnetic post 226 (or the second minor magnetic post 227) and the main magnetic post 225.
It is preferred that the main magnetic post 225, the first minor magnetic post 226, the second minor magnetic post 227, the third minor magnetic post 53 and the fourth minor magnetic post 54 are integrally formed. In addition, it is preferred that the coil turns of the first secondary winding coil 223, the second secondary winding coil 224, the third secondary winding coil 51 and the fourth secondary winding coil 52 are identical.
Hereinafter, the principle of achieving the current-sharing purpose by the current-sharing transformer 5 will be illustrated in more details with reference to
Since the magnetic paths between respective minor magnetic posts and the main magnetic post are equal, the magnitudes of currents passing through the DC loads are balanced by the current-sharing transformer. The number of the minor magnetic posts is the same as the number of the secondary winding coils, so that the DC currents passing through the respective DC loads are balanced by the current-sharing transformer. The configuration and shape of the current-sharing transformer are not restricted as long as the magnetic paths between respective minor magnetic posts and the main magnetic post are equal and the current-sharing purpose is achieved.
From the above description, since the magnetic paths between respective secondary winding coils and the primary winding coil of the current-sharing transformer are equal, the DC currents passing through the respective DC loads are balanced by the current-sharing transformer. Since no additional feedback and control circuits are necessary, the power supply circuit of the present invention is simplified and cost-effective.
While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not be limited to the disclosed embodiment. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.
Number | Date | Country | Kind |
---|---|---|---|
98113930 A | Apr 2009 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
7075244 | Kang et al. | Jul 2006 | B2 |
7196483 | Wey et al. | Mar 2007 | B2 |
7525258 | Kim et al. | Apr 2009 | B2 |
7893629 | Yang et al. | Feb 2011 | B2 |
7948736 | Liu et al. | May 2011 | B2 |
20070152606 | Wey et al. | Jul 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20100270945 A1 | Oct 2010 | US |