The present invention relates to a current source circuit.
By way of example, and as is known, but not exclusively, current source circuits are used in differential amplifiers, to be more precise as a foot current source for a differential pair of transistors.
In the illustrated circuits, the differential pair that has been mentioned in each case contains transistors T11, T12, and the foot current source has a transistor T2.
The foot current source supplies a foot current IT, which is also referred to as a tail current, to a common source node of the differential pair. A magnitude of the current (the magnitude of a voltage VB2 which controls the transistor T2) is normally produced via a transistor T2D (which is connected as a diode) and a current source IQ.
The circuitry on the drain side of the differential pair may, for example, contain load resistors R1, R2 (FIG. 1A), what is referred to as a folded cascode (
One major disadvantage of configurations of this type is that the tail current IT is dependent on inputs E+ (gate connection of the transistor T11), and E− (gate connection of the transistor T12) of the differential pair being driven in synchronism. The reason for this is the finite output conductance of the transistor T2, which may be very large, particularly in the case of modern CMOS processes with a channel length of 0.12 μm, thus resulting in major fluctuations in IT.
The conditions which occur at the common source node, to be more precise a potential Vs which occurs there, is also influenced from the drain side of the transistors T11 and T12, to be precise by finite output conductances of T11, T12, or by typical short-channel effects such as DIBL. These influences can be overcome by known measures such as drain-side cascodes (see, for example, FIG. 1B).
In principle, the foot current source T2 could also be cascoded (see
It is accordingly an object of the invention to provide a current source circuit that overcomes the above-mentioned disadvantages of the prior art devices of this general type, in which errors in the foot current source of differential pairs or of other electrical circuits which are caused by the synchronized drive can be minimized without restricting the usage options.
With the foregoing and other objects in view there is provided, in accordance with the invention, a current source circuit. The current source circuit contains a component determining a magnitude of a current emitted from the current source circuit, and a control apparatus connected to and controlling the component. A control process is carried out in dependence on conditions prevailing in a unit supplied with the current from the current source circuit.
The current source circuit according to the invention is distinguished, in that the current source circuit contains a control apparatus which controls a component of the current source circuit, which component determines the magnitude of the current which is emitted from the current source circuit, and in that the control process is carried out in dependence of the conditions which prevail in the unit which is supplied with current from the current source circuit.
This makes it possible in a very simple manner to ensure that the current that is emitted from the current source circuit has the desired magnitude in all circumstances.
In accordance with an added feature of the invention, the component is a transistor.
In accordance with an additional feature of the invention, the control apparatus contains a current replication path in which a given current is caused to flow corresponding to the current, a specific multiple of the current, or a specific fraction of the current fed to the unit supplied with the current from the current source circuit.
In accordance with another feature of the invention, the current replication path contains a first transistor having a substrate, a first terminal being a gate terminal or a base terminal, a second terminal being a drain terminal or a collector terminal, and a third terminal being a source terminal or a emitter terminal. During operation of the first transistor, the first, second and third terminals are substantially at a same potential with respect to the substrate as at corresponding connections of the transistor governing the magnitude of the current emitted from the current source circuit.
In accordance with a further feature of the invention, the current replication path contains a second transistor having a terminal being a gate terminal or a base terminal. A drain or collector potential of the first transistor is set for driving the terminal of the second transistor in a suitable manner from the unit supplied with the current.
In accordance with a further added feature of the invention, the control apparatus contains a regulation apparatus, and the current replication path outputs a replicated current fed to the regulation apparatus. The regulation apparatus receives a nominal current, and the regulation apparatus readjusts the magnitude of the current emitted from the current source circuit and supplied to the unit such that the replicated current from the current replication path corresponds to the nominal current.
In accordance with another additional feature of the invention, the regulation apparatus contains at least one third transistor.
In accordance with a concomitant feature of the invention, the control apparatus is a control loop containing a first transistor, at least one second transistor, a third transistor, and at least two current sources. The component has a control terminal and an output. The first transistor has a first terminal being a gate terminal or a base terminal, a second terminal being a drain terminal or a collector terminal, and a third terminal being a source terminal or an emitter terminal. The second transistor has a first terminal being a gate terminal or a base terminal, a second terminal being a drain terminal or a collector terminal, and a third terminal being a source terminal or an emitter terminal. The third transistor has a first terminal being a gate terminal or a base terminal, a second terminal being a drain terminal or a collector terminal, and a third terminal being a source terminal or an emitter terminal. The second terminal of the first transistor is connected to the third terminal of the second transistor. The second terminal of the second transistor is connected to a first of the current sources and to the third terminal of the third transistor. The second terminal of the third transistor is connected to a second of the current sources, to the first terminal of the first transistor and to the control terminal of the component governing the magnitude of the current emitted from the current source circuit. The first and second current sources are used to supply a nominal current and to supply and return an operating current for the control loop. The first terminal of the second transistor is driven such that a potential at the second terminal of the first transistor is substantially a same as that at the output of the component.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a current source circuit, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
Referring now to the figures of the drawing in detail and first, particularly, to
The configuration shown in
The circuit which is to be supplied with current in the example shown in
That component of the current source circuit which determines the magnitude of the emitted current is, in the present case, a transistor T2 whose drain side is connected to the common source node of the transistors T11 and T12 and whose source side is connected to a supply voltage VSS; in some cases, this transistor is also referred to as the foot current source transistor T2 in the following text.
The control apparatus that controls the transistor T2 is a control loop that is annotated FKS in FIG. 2A and which, in the example shown, contains a first current source IQ1, a second current source IQ2 as well as transistors T6, T2′ and T11′.
The transistor T2′ is a replica transistor, onto which the common source potential Vs of the differential pair is mapped on the replica transistor T2′, this at the same time being the drain potential of the foot current source transistor T2.
This is done via a transistor T11′ that is connected in series with T2′ (or via two or more transistors which are connected in series with T2′). A gate of the transistor T11′ is driven such that the drain potentials Vs of T2 and Vs′ of T2′ are largely the same. The output current on the drain side of the series circuit formed by T2′ and T11′ in this case largely corresponds to a tail current IT of the differential pair, that is to say it is a replica of it, possibly scaled by a constant factor which is a result of the scaling of the transistor widths. In the example under consideration, the replicated current is, for example, IT/2 when T11 has precisely the width as T11′ but T2 is twice as great as T2′, with the same length of the transistors. The ratio 1:2 can be varied by varying the transistor geometries, although the only important factor for the best possible replication of the potential Vs in Vs′ is that the current densities in the respective transistor pairs T2, T2′ and T11, T11′ are the same.
The already mentioned first current source IQ1 supplies the control loop with a current which corresponds to the sum of the (possibly scaled by a factor) nominal value IS of the foot current, in this case chosen by way of example to be IS/2, and the operating current IB of the control loop. Its operating current IB is drawn once again from the control loop via the second current source IQ2. The gate potential VB2 at the common gate connection of T2 and T2′ rises when the replicated current IT/2 is less than the nominal current IS/2, and falls when it is greater than it. This control rule regulates the gate potential VB2 such that the tail current IT corresponds to the nominal current IS. The circuit topology allows very wide bandwidths, and is generally stable without any further measures, with the gate/source capacitances of T2 and T2′ acting as a compensation capacitance.
In order to use the invention for differential pairs, it is sufficient to connect the gate connection of T11′ to one of the inputs E+, E− of the differential pair, in order to pass the drain potential Vs from T2 as Vs′ to the drain of T2′.
For operation of the current control loop according to the invention, there is no need for the source connections of the current source transistor T2 and of the replica transistor T2′ to be connected directly to a supply voltage. It is sufficient for the source connections of T2, T2′ to be at the same voltage with respect to their substrate. The invention can thus be used in a highly versatile manner.
The current control loop according to the invention containing T2′, T6 and T11′ as well as the current sources IQ1 and IQ2 can be used even without a differential pair, that is to say in an entirely general form, in order to remove errors caused by output conductances of current source transistors, when the gate T11′ is driven by a case-specifically suitable circuit such that the drain potential Vs of the current source transistor T2, whose error is intended to be compensated for, is transferred to the drain potential Vs′ of the transistor T2′ in the current control loop. This more general situation is illustrated by way of example in FIG. 2B. Here, by way of example, an operational amplifier OP is used to transfer to the replica transistor T2′ the drain potential Vs of the current source transistor T2 caused by the drive to the gate of T11′. It should be noted that the circuit shown by way of example and having the operational amplifier OP is not the only suitable way to achieve the potential transfer but that, on a case-by-case basis, other circuits may also be suitable for this purpose, depending on where the current source whose error is to be compensated for is located.
The example in
The control loop variant shown in
Another variant of the current control loop is shown in
By way of example,
The current source IQ1 from
This implementation example of the current control loop according to the invention still has the disadvantage that the current mirrors are not cascoded at the terminals K1, K2. However, unless the requirements are relatively stringent, it is often sufficient in practice to ensure by suitable design of T2′ and T8 that the gate potential of T8″, T8′, T8 is approximately the same as the potential VB2. This overcomes at least the error caused by finite output conductances of the transistors T8″, T8′, T8.
By way of example,
By way of example,
The choice of the variant that forms the better solution in the end depends on the surrounding circuit.
The circuit according to the invention can be changed to a complementary circuit that operates in the same way by replacing n-channel transistors by p-channel transistors and vice versa, and by reversing the polarity of the supply voltage. It is also possible to use bipolar transistors instead of the MOSFET transistors in the figures.
In the situation where the error-compensated current source is a foot current source of a differential pair T11, T12, the gate or the base of the at least one control transistor T11′ is preferably connected to the gate or base of a first transistor T11 in the differential pair.
In the situation where there is a second control transistor T12′, its gate or base is preferably connected to the gate or base of the second transistor T12 in the differential pair, and its drain or collector is connected to the drain or collector of the first control transistor, with its source or its emitter in the same way being connected to the source or emitter of the first control transistor.
The described current source circuit is an error-compensated current source that is based on replication of the error in a current control loop. This allows high current source performance without cascoding the current source transistor.
Number | Date | Country | Kind |
---|---|---|---|
101 02 443 | Jan 2001 | DE | national |
This application is a continuation of copending International Application No. PCT/DE02/00111, filed Jan. 16, 2002, which designated the United States and was not published in English.
Number | Name | Date | Kind |
---|---|---|---|
4937517 | Kurashima | Jun 1990 | A |
4975631 | Kurashima | Dec 1990 | A |
5306964 | Taylor | Apr 1994 | A |
5552724 | Scott | Sep 1996 | A |
5703497 | Min | Dec 1997 | A |
5767699 | Bosnyak et al. | Jun 1998 | A |
5986479 | Mohan | Nov 1999 | A |
6040720 | Kosiec | Mar 2000 | A |
6094074 | Chi et al. | Jul 2000 | A |
Number | Date | Country | |
---|---|---|---|
20040017249 A1 | Jan 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCTDE02/00111 | Jan 2002 | US |
Child | 10623846 | US |