This invention relates to a system for distributing electrical power from a junction box to electrical devices via conductors installed in a power track, referred to herein as a busway. More particularly, the invention relates to distribution sub-assemblies or power taps, referred to herein as tap-off boxes, that may be removably connected to the busway or track at arbitrary locations without shutting down the power supply.
The tap-off boxes of the invention include a number of improvements, including the addition of a mechanism for automatically latching the tap-off box to the busway, CT sensor assemblies that detect breaker status in addition to monitoring currents distributed via the tap-off box, and replaceable faceplates that permit thermal scanning of internal components from outside the tap-off box.
A preferred embodiment of the tap-off box includes optional but advantageous features that allow the sub-assemblies or power taps to be adapted to or configured for a wide variety of busway applications and electrical device requirements, so that the tap-off box may be referred to as a “universal” tap-off box.
The invention also relates to an improved CT sensor that detects tripping of a breaker, in addition to monitoring currents, and that may be used in a power distribution sub-assembly or power tap for a busway or track, as well as in other current-sensing applications.
The rigorous demands of mission critical data center sites require methods to quickly disconnect and reconnect equipment without removing power from any other equipment. Additionally, all power distribution systems of the type used in mission critical data centers and other sites requiring continuous power distribution to multiple devices must be capable of providing monitoring of power parameters both locally and remotely. An example of such a power distribution system is disclosed in U.S. Pat. No. 7,819,676, assigned to Power Distribution, Inc. and incorporated herein by reference.
It will be appreciated that the present invention may be applied to or used with busway systems other than the one disclosed in U.S. Pat. No. 7,819,676, or the PowerWave™ bus systems, and that features of the tap-off box may be varied to accommodate the different bus systems without departing from the scope of the invention. On the other hand, it is to be understood that the preferred embodiment of the invention shares features with the PowerWave™ bus system, including spring contacts that engage the conductors or bus bars 3, and a spring contact camming mechanism that is activated, as described below, by a slidable and rotatable knob.
One of the improvements offered by the present invention relates to securing of the tap-off box to the busway, and in particular to a latching mechanism that is independent of the contact-engagement mechanism, and that automatically latches the tap-off box in place before the camming mechanism is activated to cause the spring contacts to engage respective conductors in the busway. The inclusion of an independent latching mechanism ensures that the tap-off box is properly positioned at the time the contacts are engaged so as to ensure a proper connection and avoid damaging the contacts, while also preventing the tap-off box from being unintentionally pulled from the busway while the contacts are engaged, which could cause damage to the contacts or busway and present a serious safety hazard.
Unlike known tap-off box latching mechanisms, the latching mechanism of the invention does not require a complex interlock with the contact-engaging mechanism, and furthermore does not require any action on the part of the installer other than insertion of the tap-off box contact mast into the busway. In contrast, prior tap-off box arrangements having independent latching mechanisms, such as the ones disclosed in U.S. Pat. No. 3,611,252 and German Publication No. DE102010036081, have required some sort of manual intervention on the part of the installer to secure the tap-off box after the mast has been inserted into the track or busway.
For example, the tap-off box securing mechanism of U.S. Pat. No. 3,611,252 uses a spring-biased member that automatically extends into a slot only after a mast of the tap-off box has been inserted into the track and the tap-off box and mast have been rotated into a final contact-engaging position. In this arrangement, a spring-biased blocking member prevents rotation of the tap-off box back to a position at which it can be removed. On the other hand, the tap-off box latching mechanism disclosed in German Patent Publication No. DE102010036081 provides positive latching of a tap-off box upon purely linear insertion of a contact assembly into the track, without any rotation, but requires a complex “connecting mechanism” consisting of dual axially opposed spring-biased “connecting elements” that snap-on to latch the tap off box to the rail by engagement between bearing surfaces on the connecting elements and abutment surfaces on the rail, and further requires an additional “locking mechanism” operated by a handle in order to both initially prevent movement of the locking elements in a disengaging direction, and also to move the locking elements in a disengaging direction.
Other examples of non-automatic tap-off box latching mechanisms include those disclosed in U.S. Pat. No. 7,744,386 and PCT Patent Publication Nos. WO 94/24731 and WO 97/00167, in which the latch and contacts are actuated and withdrawn together by a common switch or lever; U.S. Pat. No. 9,379,502, which discloses a latching mechanism operated independently from the contact engaging/disengaging mechanism, but in which the latching mechanism is still lever-operated in both the latching and unlatching directions; and U.S. Pat. No. 3,686,614, which discloses a latching mechanism that is lever-operated to move a latching member in the latching direction, against a spring bias in the unlatching direction (which is operated the direction needed to achieve automatic latching).
Finally, by way of further background, non-automatic tap-off box securing mechanisms or means that are neither automatic actuated by levers, cam, or the like include those of PCT Publication No. WO2012/032381, which describes a tap off box latching arrangement actuated by a cover interlock; U.S. Pat. No. 2,861,139, which discloses a cover-operated interlock for the contacts only, and in which the tap-off box is secured to the bus by screws; U.S. Pat. No. 2,984,769, which discloses a tap off-box with cover-contact interlock that is simply hung from the busway by hooks; and U.S. Pat. No. 2,888,529, which discloses a cover-operated interlock between a load switch and the contacts.
Another improvement offered by the present invention relates to monitoring of current in a branch circuit carried by the tap-off box, and in particular to the use of a new type of non-contact current sensor in which is installed a plastic or graphite voltage-sensing insert that provides an anchor for the current sensor and that replaces an auxiliary circuit breaker trip detection switch to detect tripping of a respective circuit breaker in the corresponding branch circuit.
It is known to use arrays of current transformer (CT) sensor components to non-invasively monitor current in branch circuits, both in connection with a breaker panel board and also in a tap-off box. Such CT sensor arrays are disclosed, for example, in U.S. Pat. Nos. 8,421,443 and 6,809,509. Other conventional CT sensor arrays and housing configurations are disclosed in U.S. Patent Publication Nos. 2014/0210453; 2014/0167787; and 2005/0162252, and U.S. Pat. Nos. 9,146,259; 8,680,845; 8,421,443; 7,652,871; 7,477,058; and 6,329,810. Of these, U.S. Pat. No. 8,421,443 is of interest because the CT sensor assembly an additional component, in the form of a memory chip 226, embedded in the individual transformer housing. However, none of the conventional current sensors have a way to detect whether an absence of current is caused by a tripped circuit breaker or just normal operation of the branch circuit. Instead, it has heretofore been necessary to provide an auxiliary circuit breaker trip detection switch operated by the movable contact arm assembly of the breaker to detect whether a current interruption has been caused by tripping of the breaker. While effective, the inclusion of auxiliary breaker trip detection switches in a multiple-breaker tap-off box, where space may be at a premium, is inconvenient and costly. Furthermore, each different type of breaker will require a different auxiliary trip detection switch. Because the trip detection switch is mechanically connected to the breaker, there is no way to provide a single auxiliary switch that can be used with multiple circuit breaker configurations.
Another especially advantageous feature that may be provided in the tap-off box of the present invention is a replaceable faceplate made of a material transparent to infrared radiation so as to permit infrared scanning of breakers from outside the tap-off box, and that may be replaced by a different infrared radiation transparent faceplate to accommodate different breaker configurations without having to replace the entire cover. By way of background, Power Distribution, Inc.'s U.S. Pat. No. 7,819,676 discloses a cover made of infrared transmissive material to facilitate infrared scanning of internal components. (col. 8, lines 19-22), but not with a variable configuration breaker faceplate for diverse types of breakers.
It is accordingly an objective of the invention to provide an improved tap-off box for a power distribution busway system.
It is also an objective the invention to provide an improved latching arrangement for a tap-off box.
It is a further objective of the invention to provide an improved current sensor arrangement for a tap-off box.
It is yet another objective of the invention to provide an improved IR monitoring faceplate arrangement for a tap-off box.
These objectives are achieved, according to one aspect of the invention, by a tap-off box that includes a latching mechanism that automatically secures the tap-off box to the busway upon insertion of a spring contact-carrying mast into the busway. Automatic latching of the tap-off box enables the spring contacts to be safely moved by an installer into engagement with conductors in the busway.
According to a preferred embodiment of the invention, the latch is in the form of a single spring-loaded member that latches onto a rail as the masthead is pushed into the busway. A push button actuated camming member pushes the latch away from the rail to enable the masthead to be withdrawn from the busway. The push button and camming member are independent of the mechanism that extends and retracts the spring contacts while the masthead is inserted and latched into the busway.
The objectives of the invention are also achieved by a tap-off box with circuit breaker monitoring that does not require an auxiliary breaker trip detection switch or other space-occupying components, but rather is provided by a voltage sensing insert that fits into the current monitoring CT sensors, and that can be used with any circuit breaker configuration. The voltage-sensing insert may also be used to replace an auxiliary breaker switch in applications other than a tap-off box.
Still further objectives of the invention are achieved by a tap-off box with a cover configured to include a replaceable infrared transmitting faceplate that can be adapted for a variety of different breaker configurations. According to a preferred embodiment of the invention, the cover may also include a replaceable current monitoring module with breaker status indicator lights.
These and other features of the present invention will become apparent from the following description and accompanying drawings.
Throughout the following description and drawings, like reference numbers/characters refer to like elements. It should be understood that, although specific exemplary embodiments are discussed herein there is no intent to limit the scope of present invention to such embodiments. To the contrary, it should be understood that the exemplary embodiments discussed herein are for illustrative purposes, and that modified and alternative embodiments may be implemented without departing from the scope of the present invention.
The camming mechanism includes posts 20, each having a cam shaped cross-section in portions of the respective posts that extend behind the spring contacts 13-16. The posts 20 are rotatably secured to the mast by clips 21, and each post includes a cylindrical base 22 having a radially extending bore 23 for receiving a horizontal crank post 24 attached to slider 25, visible in an end view in
In operation, the knob is initially on the left side as shown in
The configuration of the camming mechanism and spring contacts of the preferred embodiment illustrated herein may be the same as configuration of the camming mechanism and contacts in the PowerWave™ systems sold by Power Distribution, Inc. However, those skilled in the art will appreciate that the camming mechanism and spring contacts may also be varied without departing from the scope of the invention. Furthermore, unlike the conventional tap-off box connection system, the present invention adds an automatic latching arrangement that engages upon full insertion of the mast 12 into the busway, to hold the tap-off box in position before the spring contacts are engaged, and to permit the spring contacts to be disengaged by manipulation of knob 26 while the tap-off box is still securely locked in position.
The latching mechanism of the present invention is best viewed in
The latch member 30 is biased to pivot to the latching position by a separate spring fitted into slot 37, or by the integrated spring 38. During insertion of the masthead 11 into the busway, the inclined cam surface 33 first encounters a lower portion of the sub-channel 9, as shown in
While engagement of the latching mechanism is automatic, disengagement is provided by an unlatching mechanism that includes an unlatching member 47 having a central pusher 48 for engaging the pushing surface 36 of the latch member 30, integral or attached springs 49 for biasing the unlatching member 47 to a position in which the pusher 48 is disengaged from the pushing surface 36, and buttons 50 for causing the unlatching member 47 to move against the spring bias and cause the pusher 48 to engage the pushing surface 36. Further movement of the pusher 48 and pushing surface 36 in response to pushing of buttons 50 then causes the latch member 30 to pivot against its own spring bias, and busway engaging surface 32 to disengage from top surface 42 so that the tap off box can be removed from the busway. The use of two buttons 50 at opposite sides of the pushing member forces the operator to firmly grasp the tap off box by, for example, placing the operator's fingers on a surface of the housing 12 opposite the surface from which the buttons extend, on both sides of the box, and to simultaneously push on both buttons 50 by using the operator's thumbs in order to move the pusher 48 far enough to cause disengagement, thereby preventing premature or unintentional unlatching of the tap-off box and ensuring that the operator's hands are in a position to safely remove the tap off box by pulling vertically on both sides of the housing 12.
Each of the spring contacts 13-16 is electrical connected by respective wires (not shown) that extend through the mast to terminals 54 positioned near a top of the tap-off box. Terminals 54 are connected to the circuit breakers 55 by a laminated bus system 56 made up of four parts 57-60 shown respectively in
The downstream sides of the circuit breakers 55 and ground terminals 62 are connected by wires (not shown) to output connectors or receptacles 63,64 having selected alternative configurations, as will be described below in connection with
As illustrated in
The voltage sensing inserts 74 replace the auxiliary breaker switches commonly used to detect tripping of the breaker based on breaker contact positions, and may be made up of a generally annular, plastic or graphite encased non-contact voltage sensor element. As is well known, non-contact voltage sensing elements may take a variety of forms, such as a capacitive plate or wire (not shown). In order to detect tripping of the breaker, the voltage sensing elements are arranged to output a signal upon detecting a change in voltage that results when the breaker goes from a closed position to an open position. Rather than being connected to the current monitor, the signal-outputs of the insert are connected to monitoring and indicator circuitry that would otherwise be connected to the auxiliary switch. The auxiliary switch monitoring circuitry may, for example, control breaker operation indicator lights 75 on the monitoring module 71, as shown in
The receptacle panel 85 shown in
Those skilled in the art will appreciate that it is also within the scope of the invention to provide side panel or receptacle arrangements other than the illustrated arrangements, including arrangements in which the top, side, and bottom panels or plates are integral with the back or front panels, or formed in one piece therewith, and arrangements in which the receptacles are provided with adapters or extenders 88 to leave more room within the enclosure for bigger wires or cables. It is also possible, as shown in
As shown in
Finally, as shown in FIG. the monitoring module 71 may optionally also include one or more additional LED indicator lights 96 to, for example, provide an indication that maintenance is required. To facilitate replacement of the faceplate 94, the recess 92 may include posts 97 for receiving captive quarter turn fasteners 98 or similar fastening members. In addition, an adapter 99 may be provided to enable connection of the illustrated jack 100 with a Molex type micro-fit connector provided in the busway. Those skilled in the art will appreciate that the monitoring unit may use any of a variety of different communications protocols and jacks or adapters without departing from the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
2888529 | Platz | May 1959 | A |
2984769 | Turton | May 1961 | A |
3611252 | Fremont | Oct 1971 | A |
3686614 | Hyylainen | Aug 1972 | A |
4790766 | Booty, Sr. | Dec 1988 | A |
6079992 | Kuchar | Jun 2000 | A |
6329810 | Reiid | Dec 2001 | B1 |
6670729 | Novinsky et al. | Dec 2003 | B2 |
6809509 | Bruno et al. | Oct 2004 | B2 |
6963195 | Berkcan | Nov 2005 | B1 |
7477058 | Montreuil | Jan 2009 | B2 |
7493222 | Bruno | Feb 2009 | B2 |
7652871 | Caggiano et al. | Jan 2010 | B2 |
7744386 | Speidel et al. | Jun 2010 | B1 |
7819676 | Cardoso et al. | Oct 2010 | B1 |
8421443 | Bitsch et al. | Apr 2013 | B2 |
8508212 | El-Essawy | Aug 2013 | B2 |
8680845 | Carpenter et al. | Mar 2014 | B2 |
8899999 | Mackiewicz | Dec 2014 | B2 |
8946567 | Nakatsu | Feb 2015 | B2 |
9000752 | El-Essawy | Apr 2015 | B2 |
9007077 | El-Essawy | Apr 2015 | B2 |
9063184 | Carpenter | Jun 2015 | B2 |
9146259 | Blake et al. | Sep 2015 | B2 |
9379502 | Davidson, Jr. et al. | Jun 2016 | B2 |
10135209 | Wynnik | Nov 2018 | B1 |
10211581 | Wynnik | Feb 2019 | B2 |
10454415 | Ledgerwood | Oct 2019 | B2 |
10840689 | Jaena | Nov 2020 | B2 |
20030003785 | Ross | Jan 2003 | A1 |
20050162252 | Kangas | Jul 2005 | A1 |
20070069715 | Bruno | Mar 2007 | A1 |
20130027162 | Carlino | Jan 2013 | A1 |
20140167787 | Sanchez et al. | Jun 2014 | A1 |
20140210453 | El-Essawy et al. | Jul 2014 | A1 |
20150219691 | Cook | Aug 2015 | A1 |
20160274153 | Deokar | Sep 2016 | A1 |
20170184638 | Moon | Jun 2017 | A1 |
20190324075 | Kinsella | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
1771633 | May 2006 | CN |
102651292 | Aug 2012 | CN |
202495369 | Oct 2012 | CN |
105247443 | Jan 2016 | CN |
105914062 | Aug 2016 | CN |
206076887 | Apr 2017 | CN |
102010036081 | Mar 2012 | DE |
1067028 | Apr 1967 | GB |
1 340 802 | Dec 1973 | GB |
WO9424731 | Oct 1994 | WO |
WO9700167 | Jan 1997 | WO |
WO2012032381 | Aug 2013 | WO |
Entry |
---|
European Search Report, EP 18864180.7, dated Feb. 19, 2021, 17 pages. |
International Preliminary Report on Patentability, PCT/US2018/054956, dated Nov. 20, 2018, 6 pages. |
International Search Report and Written Opinion, PCT/US2018/054956, dated Feb. 11, 2019, 9 pages. |
Power Distribution Inc., “PowerWave Bus System,” Aug. 29, 2017, Retrieved from the Internet on Sep. 14, 2021 at URL:https://web.archive.org/web/ 20170829234303if_/http://www.sometltd.com/uploads/13286905807587c.pdf. |
Power Distribution Inc.., “Power distribution options and trends in today's data center,” Feb. 4, 2016, Retrieved from the Internet on Sep. 14, 2021 at URL:https://weat-nts.org/wp-content/uploads/2016/02/ei_01_2016_power-distribution-trends-for-critical-power-applications.pdf. |
Examination Report, IN 202047014762, dated Mar. 17, 2022, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20200176966 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
62568902 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16154965 | Oct 2018 | US |
Child | 16783435 | US |